1
|
Wang L, Dai X, Yu L, Li H, Zhang X, Yu Q, Lv X, Wang Y, Zhang S, Hao G, Wang H, Wang Z. Dexmedetomidine therapy promotes cardiac dysfunction and increases mortality in sepsis: A translational study. Int Immunopharmacol 2025; 146:113924. [PMID: 39732103 DOI: 10.1016/j.intimp.2024.113924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/30/2024]
Abstract
Previous studies demonstrated that dexmedetomidine (Dex) posttreatment aggravated myocardial dysfunction and reduced survival in septic mice. Yet, whether Dex elicits similar effects in septic patients as defined by Sepsis-3 remains unknown. This study sought to assess the effects of Dex-based sedation on mortality and cardiac dysfunction in septic patients defined by Sepsis-3 and to further reveal the mechanisms in septic rats. In the retrospective cohort study, patients were categorised into sepsis with Dex, other sedatives (propofol or midazolam) or without sedatives, mortality at 28 days were compared, and patients with measurements of cardiovascular biomarkers and echocardiography were used to examine the effect of Dex on cardiac dysfunction. Septic rats and Langendorff-perfused isolated rat hearts were used, cardiac function, mortality and pro-inflammatory mediators were analyzed. The all-cause mortality of septic patients receiving Dex reached to 35.2 % on Day 28, significantly higher than that of patients with other sedatives (16.1 %), while no difference with group of no sedatives (27.3 %). Patients in Dex group showed lower left ventricular EF and lateral mitral annular early diastolic peak velocities, but higher interventricular septum diastolic dimension compared to those with other sedatives. The plasma levels of H-FABP, NT-proBNP and HMGB1 in Dex and other sedative groups showed no difference, while both were significantly lower than the group of no sedative. Notably, Dex posttreatment deteriorated cardiac dysfunction, increasing mortality in septic rats with enhanced systemic and myocardial proinflammatory mediators, including TNF-α, IL-1β, IL-6 and VCAM-1. Mechanistical study by Langendorff-perfusion revealed that Dex directly acted on the heart, aggravating LPS-induced myocardial inflammation and dysfunction. These results suggest that Dex increases mortality and deteriorates myocardial dysfunction compared with other sedatives in septic patients defined by Sepsis 3.0, maybe partly through promoting proinflammatory response via directly acting on the heart.
Collapse
Affiliation(s)
- Liaoyuan Wang
- Medical Imaging Center, the First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaomeng Dai
- Department of Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Yu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xue Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qing Yu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yiyang Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China
| | - Shuixing Zhang
- Medical Imaging Center, the First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Guang Hao
- Department of Epidemiology and Biostatistics, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou 510632, Guangdong, China.
| | - Zhigang Wang
- Department of Critical Care Medicine, the First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
2
|
Hobai IA. MECHANISMS OF CARDIAC DYSFUNCTION IN SEPSIS. Shock 2023; 59:515-539. [PMID: 36155956 DOI: 10.1097/shk.0000000000001997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Studies in animal models of sepsis have elucidated an intricate network of signaling pathways that lead to the dysregulation of myocardial Ca 2+ handling and subsequently to a decrease in cardiac contractile force, in a sex- and model-dependent manner. After challenge with a lethal dose of LPS, male animals show a decrease in cellular Ca 2+ transients (ΔCa i ), with intact myofilament function, whereas female animals show myofilament dysfunction, with intact ΔCa i . Male mice challenged with a low, nonlethal dose of LPS also develop myofilament desensitization, with intact ΔCa i . In the cecal ligation and puncture (CLP) model, the causative mechanisms seem similar to those in the LPS model in male mice and are unknown in female subjects. ΔCa i decrease in male mice is primarily due to redox-dependent inhibition of sarco/endoplasmic reticulum Ca 2+ ATP-ase (SERCA). Reactive oxygen species (ROS) are overproduced by dysregulated mitochondria and the enzymes NADPH/NADH oxidase, cyclooxygenase, and xanthine oxidase. In addition to inhibiting SERCA, ROS amplify cardiomyocyte cytokine production and mitochondrial dysfunction, making the process self-propagating. In contrast, female animals may exhibit a natural redox resilience. Myofilament dysfunction is due to hyperphosphorylation of troponin I, troponin T cleavage by caspase-3, and overproduction of cGMP by NO-activated soluble guanylate cyclase. Depleted, dysfunctional, or uncoupled mitochondria likely synthesize less ATP in both sexes, but the role of energy deficit is not clear. NO produced by NO synthase (NOS)-3 and mitochondrial NOSs, protein kinases and phosphatases, the processes of autophagy and sarco/endoplasmic reticulum stress, and β-adrenergic insensitivity may also play currently uncertain roles.
Collapse
Affiliation(s)
- Ion A Hobai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
3
|
Asllanaj B, Benge E, Bae J, McWhorter Y. Fluid management in septic patients with pulmonary hypertension, review of the literature. Front Cardiovasc Med 2023; 10:1096871. [PMID: 36937900 PMCID: PMC10017881 DOI: 10.3389/fcvm.2023.1096871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
The management of sepsis in patients with pulmonary hypertension (PH) is challenging due to significant conflicting goals of management and complex hemodynamics. As PH progresses, the ability of right heart to perfuse lungs at a normal central venous pressure (CVP) is impaired. Elevated pulmonary vascular pressure, due to pulmonary vasoconstriction and vascular remodeling, opposes blood flow through lungs thus limiting the ability of right ventricle (RV) to increase cardiac output (CO) and maintain adequate oxygen delivery to tissue. In sepsis without PH, avoidance of volume depletion with intravascular volume replacement, followed by vasopressor therapy if hypoperfusion persists, remains the cornerstone of therapy. Intravenous fluid (IVF) resuscitation based on individualized hemodynamic assessment can help improve the prognosis of critically ill patients. This is accomplished by optimizing CO by maintaining adequate preload, afterload and contractility. Particular challenges in patients with PH include RV failure as a result of pressure and volume overload, gas exchange abnormalities, and managing IVF and diuretic use. Suggested approaches to remedy these difficulties include early recognition of symptoms associated with pressure and volume overload, intravascular volume management strategies and serial lab monitoring to assess electrolytes and renal function.
Collapse
Affiliation(s)
- Blerina Asllanaj
- Department of Internal Medicine, HCA Healthcare, MountainView Hospital, Las Vegas, NV, United States
| | - Elizabeth Benge
- Department of Internal Medicine, HCA Healthcare, MountainView Hospital, Las Vegas, NV, United States
| | - Jieun Bae
- Kirk Kerkorian School of Medicine at UNLV, Las Vegas, NV, United States
| | - Yi McWhorter
- Department of Critical Care Medicine, HCA Healthcare, MountainView Hospital, Las Vegas, NV, United States
| |
Collapse
|
4
|
Tang X, Xu Y, Dai X, Xing Y, Yang D, Huang Q, Li H, Lv X, Wang Y, Lu D, Wang H. The Long-term Effect of Dobutamine on Intrinsic Myocardial Function and Myocardial Injury in Septic Rats with Myocardial Dysfunction. Shock 2021; 56:582-592. [PMID: 34524268 DOI: 10.1097/shk.0000000000001718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ABSTRACT Dobutamine (DOB) is recommended as an inotrope for septic patients with low cardiac output, but its long-term impact on sepsis-induced cardiomyopathy remains unclear. This study investigated the long-term effect of DOB on septic myocardial dysfunction and injury. Rats were exposed to cecal ligation and puncture (CLP), the intrinsic myocardial function, other organ functions, hemodynamics, inflammatory response, serum myocardial injury biomarkers, myocardial apoptosis, and vascular permeability were determined. At 6 h after CLP, the left ventricular ±dP/dt were significantly depressed, cardiac tumor necrosis factor-α and vascular cell adhesion molecule-1 expression were increased, but not serum cardiac troponin I (cTnI), N-terminal pro-brain natriuretic peptide (NT-proBNP), heart-type fatty acid-binding protein (H-FABP), creatinine, and urea nitrogen concentrations in CLP group compared with controls. At 9 h after CLP, hepatic dysfunction was present in CLP rats compared with controls. At 6 h after CLP, DOB treatment did not affect hemodynamics, the left ventricular ±dP/dt, cytokine levels in serum and myocardium, as well as cardiomyocyte apoptosis and cardiac vascular hyperpermeability at 20 h after CLP. However, DOB (10.0 μg/kg) increased serum IL-10 level and improved survival in septic rats. These results indicate that the intrinsic myocardial depression occurs earlier than hepatic and renal dysfunction in sepsis and serum cTnI, NT-proBNP, and H-FABP are not suitable as early biomarkers for sepsis-induced myocardial dysfunction. Although DOB treatment (10.0 μg/kg) in the presence of myocardial dysfunction improves survival in septic rats, it neither improves myocardial function and hemodynamics nor attenuates myocardial injury at the later stage of sepsis.
Collapse
Affiliation(s)
- Xiangxu Tang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Alhamoudi KM, Barhoumi T, Al-Eidi H, Asiri A, Nashabat M, Alaamery M, Alharbi M, Alhaidan Y, Tabarki B, Umair M, Alfadhel M. A homozygous nonsense mutation in DCBLD2 is a candidate cause of developmental delay, dysmorphic features and restrictive cardiomyopathy. Sci Rep 2021; 11:12861. [PMID: 34145321 PMCID: PMC8213761 DOI: 10.1038/s41598-021-92026-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
DCBLD2 encodes discodin, CUB and LCCL domain-containing protein 2, a type-I transmembrane receptor that is involved in intracellular receptor signalling pathways and the regulation of cell growth. In this report, we describe a 5-year-old female who presented severe clinical features, including restrictive cardiomyopathy, developmental delay, spasticity and dysmorphic features. Trio-whole-exome sequencing and segregation analysis were performed to identify the genetic cause of the disease within the family. A novel homozygous nonsense variant in the DCBLD2 gene (c.80G > A, p.W27*) was identified as the most likely cause of the patient's phenotype. This nonsense variant falls in the extracellular N-terminus of DCBLD2 and thus might affect proper protein function of the transmembrane receptor. A number of in vitro investigations were performed on the proband's skin fibroblasts compared to normal fibroblasts, which allowed a comprehensive assessment resulting in the functional characterization of the identified DCBLD2 nonsense variant in different cellular processes. Our data propose a significant association between the identified variant and the observed reduction in cell proliferation, cell cycle progression, intracellular ROS, and Ca2 + levels, which would likely explain the phenotypic presentation of the patient as associated with lethal restrictive cardiomyopathy.
Collapse
Affiliation(s)
- Kheloud M Alhamoudi
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Tlili Barhoumi
- Medical Core Facility and Research Platforms, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Hamad Al-Eidi
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Abdulaziz Asiri
- Faculty of Applied Medical Sciences, University of Bisha, Al Nakhil, 225, Bisha, 67714, Kingdom of Saudi Arabia
| | - Marwan Nashabat
- Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia
| | - Manal Alaamery
- Developmental Medicine Department, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Masheal Alharbi
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Yazeid Alhaidan
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Brahim Tabarki
- Division of Pediatric Neurology, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia. .,Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, P.O Box 22490, Riyadh, 11426, Kingdom of Saudi Arabia.
| |
Collapse
|
6
|
The Effect of Xinmailong Infusion on Sepsis-Induced Myocardial Dysfunction: a Pragmatic Randomized Controlled Trial. Shock 2020; 55:33-40. [PMID: 32604224 DOI: 10.1097/shk.0000000000001592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ABSTRACT Sepsis-induced myocardial dysfunction (SIMD) contributes significantly to cardiovascular dysfunction during septic shock. We aimed to evaluate the potential role of Xinmailong injection (XMLI), a polypeptide medicine extracted from Periplaneta americana, in reversing the progression of myocardial damage to SIMD in sepsis patients. This was a multicenter, randomized, double-blind, parallel-group trial. We recruited all patients consecutively admitted to intensive care units (ICUs) who were aged 18 to 85 years old and met the sepsis 3.0 criteria. The primary outcome measure was the incidence of sepsis-induced myocardial dysfunction while in the ICU. Of the 192 patients, 96 were assigned to the treatment group, and 96 to the control group. Subsequently, 41 patients [41/96 (42.7%)] in the XMLI group and 61 patients in the placebo group [61/96 (63.5%)] were confirmed to have diastolic dysfunction on the fifth day (D5). The incidence of diastolic SIMD was significantly different between the two groups (P = 0.004). There were 36 deaths in the two groups during the 28-day follow-up, with a general mortality rate of 18.8% (36/192). The 28-day mortality rates were not significantly different between the groups (P = 0.45). However, the brain natriuretic peptide (BNP) plasma concentration trends on D0, D2, and D5 significantly differed between the two groups (P = 0.049). In septic patients, XMLI decreased the occurrence rate of diastolic SIMD more effectively than the placebo. The improvement in serum BNP concentration was also greater in the XMLI group. XMLI may, therefore, effectively and safely improve cardiac function in patients with sepsis.
Collapse
|
7
|
Ventura Spagnolo E, Mondello C, Di Mauro D, Vermiglio G, Asmundo A, Filippini E, Alibrandi A, Rizzo G. Analysis on sarcoglycans expression as markers of septic cardiomyopathy in sepsis-related death. Int J Legal Med 2018; 132:1685-1692. [PMID: 29644391 DOI: 10.1007/s00414-018-1840-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/03/2018] [Indexed: 11/28/2022]
Abstract
The post-mortem assessment of sepsis-related death can be carry out by many methods recently suggested as microbiological and biochemical investigations. In these cases, the cause of death is a multiple organ dysfunction due to a dysregulated inflammatory response occurring after the failure of infection control process. It was highlighted also that the heart can be a target organ in sepsis which determines the so-called septic cardiomyopathy characterized by myocardial depression. Several mechanisms to explain the pathophysiology of septic cardiomyopathy were suggested, but very few studies about the structural alterations of cardiac cells responsible for myocardial depression were carried out. The aim of this study was to evaluate whether sarcoglycans (SG) were involved in septic cardiac damage analyzing their expression in sepsis-related deaths and, particularly, if these proteins can be used as markers of septic myocardial dysfunction. Cases of septic-related death confirmed by clinical and autopsy records were investigated and compared to a control group of traumatic deaths. Indirect immunofluorescence analysis was performed to analyze α-SG, β-SG, δ-SG, ζ-SG, ε-SG, and γ-SG. Decrease of fluorescence staining pattern for all tested sarcoglycans was observed in the septic-related deaths compared to normal fluorescence staining pattern of control group. These results provide new findings about the myocytes structural alterations due to sepsis and suggest that these proteins could be used in forensic assessment of septic cardiomyopathy.
Collapse
Affiliation(s)
- Elvira Ventura Spagnolo
- Legal Medicine Section, Department for Health Promotion and Mother-Child Care, University of Palermo, Via del Vespro, 129, 90127, Palermo, Italy.
| | - Cristina Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125, Messina, Italy
| | - Debora Di Mauro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125, Messina, Italy
| | - Giovanna Vermiglio
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125, Messina, Italy
| | - Alessio Asmundo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125, Messina, Italy
| | - Elena Filippini
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125, Messina, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Via dei Verdi 75, 98122, Messina, Italy
| | - Giuseppina Rizzo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, 98125, Messina, Italy
| |
Collapse
|
8
|
Yu X, Wang Y, Yang D, Tang X, Li H, Lv X, Qi R, Hu C, Lu D, Lv B, Wang H. α 2A-adrenergic blockade attenuates septic cardiomyopathy by increasing cardiac norepinephrine concentration and inhibiting cardiac endothelial activation. Sci Rep 2018; 8:5478. [PMID: 29615637 PMCID: PMC5882799 DOI: 10.1038/s41598-018-23304-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/06/2018] [Indexed: 02/08/2023] Open
Abstract
Cardiomyopathy is a common complication associated with increased mortality in sepsis, but lacks specific therapy. Here, using genetic and pharmacological approaches, we explored the therapeutic effect of α2A-adrenergic receptor (AR) blockade on septic cardiomyopathy. CLP-induced septic rats were treated with BRL44408 (α2A-AR antagonist), prazosin (α1-AR antagonist) and/or reserpine. CLP-induced cardiomyopathy, indicated by reduced dP/dt and increased cardiac troponin I phosphorylation, was attenuated by BRL44408, this was associated with reduced cardiac TNF-α and endothelial VCAM-1 expression, cardiomyocyte apoptosis and related signal molecule phosphorylation. BRL44408 increased cardiac norepinephrine (NE) concentration in CLP rats. Pretreatment with reserpine that exhausts cardiac NE without affecting the circulating NE concentration or with prazosin partially abolished the cardioprotection of BRL44408 and reversed its inhibitory effects on myocardial TNF-α, apoptosis and related signal molecule phosphorylation, but not on VCAM-1 expression in septic rats. These effects of BRL44408 were confirmed by α2A-AR gene deletion in septic mice. Furthermore, α2-AR agonist not only enhanced LPS-induced TNF-α and VCAM-1 expression in cardiac endothelial cells that express α2A-AR, but also enhanced LPS-induced cardiac dysfunction in isolated rat hearts. Our data indicate that α2A-AR blockade attenuates septic cardiomyopathy by promoting cardiac NE release that activates myocardial α1-AR and suppressing cardiac endothelial activation.
Collapse
Affiliation(s)
- Xiaohui Yu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Yuan Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Duomeng Yang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiangxu Tang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Renbin Qi
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Chaofeng Hu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China
| | - Ben Lv
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
9
|
Monteiro VVS, Reis JF, de Souza Gomes R, Navegantes KC, Monteiro MC. Dual Behavior of Exosomes in Septic Cardiomyopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 998:101-112. [PMID: 28936735 DOI: 10.1007/978-981-10-4397-0_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Sepsis is one of the main causes of ICU hospitalization worldwide, with a high mortality rate, and is associated with a large number of comorbidities. One of the main comorbidities associated with sepsis is septic cardiomyopathy. This process occurs mainly due to mechanisms of damage in the cardiovascular system that will lead to changes in cardiovascular physiology, such as decreased Ca2+ response, mitochondrial dysfunction and decreased β-adrenergic receptor response. Within this process the exosomes play an important role in the pathophysiology of this disease, in which the exosomal content is related to mechanisms that will trigger its development. After platelet activation through ROS exposition, exosomes containing high concentrations of NADPH are released in heart blood vessels, those exosomes will be internalized in endothelial cells leading to cell death and cardiac dysfunction. On the opposite, exosomes derived from mesenchymal stem cells contain miR-223, that have anti-inflammatory properties, are released in less quantities in septic patients causing an imbalance that leads to cardiac dysfunction.
Collapse
Affiliation(s)
| | - Jordano Ferreira Reis
- School of Pharmacy, Health Science Institute, Federal University of Pará/UFPA, Belém, PA, 66075900, Brazil
| | - Rafaelli de Souza Gomes
- Pharmaceutical Science Post-Graduation Program, Health Science Institute, Federal University of Pará/UFPA, Belém, PA, 66075900, Brazil
| | - Kely Campos Navegantes
- Pharmaceutical Science Post-Graduation Program, Health Science Institute, Federal University of Pará/UFPA, Belém, PA, 66075900, Brazil
| | - Marta Chagas Monteiro
- Pharmaceutical Science Post-Graduation Program, Health Science Institute, Federal University of Pará/UFPA, Belém, PA, 66075900, Brazil.
| |
Collapse
|
10
|
Clementi A, Virzì GM, Brocca A, Ronco C. The Role of Endotoxin in the Setting of Cardiorenal Syndrome Type 5. Cardiorenal Med 2017; 7:276-283. [PMID: 29118766 PMCID: PMC5662967 DOI: 10.1159/000475846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lipopolysaccharide or endotoxin, the major cell wall component of gram-negative bacteria, plays a pivotal role in the pathogenesis of sepsis. It is able to activate the host defense system through the interaction with Toll-like receptor 4, thus triggering pro-inflammatory mechanisms. When the production of inflammatory mediators becomes uncontrolled and excessive, septic shock develops with multiple organ dysfunction, such as myocardial and renal impairment, which are hallmarks of cardiorenal syndrome type 5. In this review, we will analyze the role of endotoxin in the pathogenesis of sepsis, its effects on cardiac and renal interactions in the setting of cardiorenal syndrome type 5 and the possible use of extracorporeal therapies in this clinical condition.
Collapse
Affiliation(s)
- Anna Clementi
- IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
- Department of Nephrology and Dialysis, San Giovanni Di Dio Hospital, Agrigento, Italy
| | - Grazia Maria Virzì
- IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy
| | - Alessandra Brocca
- IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy
- Department of Medicine DIMED, University of Padova Medical School, Padova, Italy
| | - Claudio Ronco
- IRRIV-International Renal Research Institute Vicenza, Vicenza, Italy
- Department of Nephrology, Dialysis and Transplant, San Bortolo Hospital, Vicenza, Italy
| |
Collapse
|
11
|
Sasi SP, Yan X, Zuriaga-Herrero M, Gee H, Lee J, Mehrzad R, Song J, Onufrak J, Morgan J, Enderling H, Walsh K, Kishore R, Goukassian DA. Different Sequences of Fractionated Low-Dose Proton and Single Iron-Radiation-Induced Divergent Biological Responses in the Heart. Radiat Res 2017; 188:191-203. [PMID: 28613990 DOI: 10.1667/rr14667.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Deep-space travel presents risks of exposure to ionizing radiation composed of a spectrum of low-fluence protons (1H) and high-charge and energy (HZE) iron nuclei (e.g., 56Fe). When exposed to galactic cosmic rays, each cell in the body may be traversed by 1H every 3-4 days and HZE nuclei every 3-4 months. The effects of low-dose sequential fractionated 1H or HZE on the heart are unknown. In this animal model of simulated ionizing radiation, middle-aged (8-9 months old) male C57BL/6NT mice were exposed to radiation as follows: group 1, nonirradiated controls; group 2, three fractionated doses of 17 cGy 1H every other day (1H × 3); group 3, three fractionated doses of 17 cGy 1H every other day followed by a single low dose of 15 cGy 56Fe two days after the final 1H dose (1H × 3 + 56Fe); and group 4, a single low dose of 15 cGy 56Fe followed (after 2 days) by three fractionated doses of 17 cGy 1H every other day (56Fe + 1H × 3). A subgroup of mice from each group underwent myocardial infarction (MI) surgery at 28 days postirradiation. Cardiac structure and function were assessed in all animals at days 7, 14 and 28 after MI surgery was performed. Compared to the control animals, the treatments that groups 2 and 3 received did not induce negative effects on cardiac function or structure. However, compared to all other groups, the animals in group 4, showed depressed left ventricular (LV) functions at 1 month with concomitant enhancement in cardiac fibrosis and induction of cardiac hypertrophy signaling at 3 months. In the irradiated and MI surgery groups compared to the control group, the treatments received by groups 2 and 4 did not induce negative effects at 1 month postirradiation and MI surgery. However, in group 3 after MI surgery, there was a 24% increase in mortality, significant decreases in LV function and a 35% increase in post-infarction size. These changes were associated with significant decreases in the angiogenic and cell survival signaling pathways. These data suggest that fractionated doses of radiation induces cellular and molecular changes that result in depressed heart functions both under basal conditions and particularly after myocardial infarction.
Collapse
Affiliation(s)
- Sharath P Sasi
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Xinhua Yan
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts.,b Tufts University School of Medicine, Boston, Massachusetts
| | - Marian Zuriaga-Herrero
- f Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Hannah Gee
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Juyong Lee
- c Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, Connecticut
| | - Raman Mehrzad
- d Steward Carney Hospital, Dorchester, Massachusetts
| | - Jin Song
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - Jillian Onufrak
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts
| | - James Morgan
- b Tufts University School of Medicine, Boston, Massachusetts.,d Steward Carney Hospital, Dorchester, Massachusetts
| | - Heiko Enderling
- e Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kenneth Walsh
- f Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts
| | - Raj Kishore
- 7 Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| | - David A Goukassian
- a Cardiovascular Research Center, GeneSys Research Institute, Boston, Massachusetts.,f Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts.,7 Center for Translational Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Calcium/Calmodulin Protein Kinase II-Dependent Ryanodine Receptor Phosphorylation Mediates Cardiac Contractile Dysfunction Associated With Sepsis. Crit Care Med 2017; 45:e399-e408. [PMID: 27648519 DOI: 10.1097/ccm.0000000000002101] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Sepsis is associated with cardiac contractile dysfunction attributed to alterations in Ca handling. We examined the subcellular mechanisms involved in sarcoplasmic reticulum Ca loss that mediate altered Ca handling and contractile dysfunction associated with sepsis. DESIGN Randomized controlled trial. SETTING Research laboratorySUBJECTS:: Male wild type and transgenic miceINTERVENTIONS:: We induced sepsis in mice using the colon ascendens stent peritonitis model. MEASUREMENTS AND MAIN RESULTS Twenty-four hours after colon ascendens stent peritonitis surgery, we observed that wild type mice had significantly elevated proinflammatory cytokine levels, reduced ejection fraction, and fractional shortening (ejection fraction %, 54.76 ± 0.67; fractional shortening %, 27.53 ± 0.50) compared with sham controls (ejection fraction %, 73.57 ± 0.20; fractional shortening %, 46.75 ± 0.38). At the cardiac myocyte level, colon ascendens stent peritonitis cells showed reduced cell shortening, Ca transient amplitude and sarcoplasmic reticulum Ca content compared with sham cardiomyocytes. Colon ascendens stent peritonitis hearts showed a significant increase in oxidation-dependent calcium and calmodulin-dependent protein kinase II activity, which could be prevented by pretreating animals with the antioxidant tempol. Pharmacologic inhibition of calcium and calmodulin-dependent protein kinase II with 2.5 µM of KN93 prevented the decrease in cell shortening, Ca transient amplitude, and sarcoplasmic reticulum Ca content in colon ascendens stent peritonitis myocytes. Contractile function was also preserved in colon ascendens stent peritonitis myocytes isolated from transgenic mice expressing a calcium and calmodulin-dependent protein kinase II inhibitory peptide (AC3-I) and in colon ascendens stent peritonitis myocytes isolated from mutant mice that have the ryanodine receptor 2 calcium and calmodulin-dependent protein kinase II-dependent phosphorylation site (serine 2814) mutated to alanine (S2814A). Furthermore, colon ascendens stent peritonitis S2814A mice showed preserved ejection fraction and fractional shortening (ejection fraction %, 73.06 ± 6.31; fractional shortening %, 42.33 ± 5.70) compared with sham S2814A mice (ejection fraction %, 71.60 ± 4.02; fractional shortening %, 39.63 ± 3.23). CONCLUSIONS Results indicate that oxidation and subsequent activation of calcium and calmodulin-dependent protein kinase II has a causal role in the contractile dysfunction associated with sepsis. Calcium and calmodulin-dependent protein kinase II, through phosphorylation of the ryanodine receptor would lead to Ca leak from the sarcoplasmic reticulum, reducing sarcoplasmic reticulum Ca content, Ca transient amplitude and contractility. Development of organ-specific calcium and calmodulin-dependent protein kinase II inhibitors may result in a beneficial therapeutic strategy to ameliorate contractile dysfunction associated with sepsis.
Collapse
|
13
|
Apelin Compared With Dobutamine Exerts Cardioprotection and Extends Survival in a Rat Model of Endotoxin-Induced Myocardial Dysfunction. Crit Care Med 2017; 45:e391-e398. [PMID: 27571457 DOI: 10.1097/ccm.0000000000002097] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Dobutamine is the currently recommended β-adrenergic inotropic drug for supporting sepsis-induced myocardial dysfunction when cardiac output index remains low after preload correction. Better and safer therapies are nonetheless mandatory because responsiveness to dobutamine is limited with numerous side effects. Apelin-13 is a powerful inotropic candidate that could be considered as an alternative noncatecholaminergic support in the setting of inflammatory cardiovascular dysfunction. DESIGN Interventional controlled experimental animal study. SETTING Tertiary care university-based research institute. SUBJECTS One hundred ninety-eight adult male rats. INTERVENTIONS Using a rat model of "systemic inflammation-induced cardiac dysfunction" induced by intraperitoneal lipopolysaccharide injection (10 mg/kg), hemodynamic efficacy, cardioprotection, and biomechanics were assessed under IV osmotic pump infusions of apelin-13 (0.25 μg/kg/min) or dobutamine (7.5 μg/kg/min). MEASUREMENTS AND MAIN RESULTS In this model and in both in vivo and ex vivo studies, apelin-13 compared with dobutamine provoked distinctive effects on cardiac function: 1) optimized cardiac energy-dependent workload with improved cardiac index and lower vascular resistance, 2) upgraded hearts' apelinergic responsiveness, and 3) consecutive downstream advantages, including increased urine output, enhanced plasma volume, reduced weight loss, and substantially improved overall outcomes. In vitro studies confirmed that these apelin-13-driven processes encompassed a significant and rapid reduction in systemic cytokine release with dampening of myocardial inflammation, injury, and apoptosis and resolution of associated molecular pathways. CONCLUSIONS In this inflammatory cardiovascular dysfunction, apelin-13 infusion delivers distinct and optimized hemodynamic support (including positive fluid balance), along with cardioprotective effects, modulation of circulatory inflammation and extended survival.
Collapse
|
14
|
|
15
|
Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy. Shock 2015; 43:3-15. [PMID: 25186837 DOI: 10.1097/shk.0000000000000261] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis-induced cardiomyopathy (SIC) develops as the result of myocardial calcium (Ca) dysregulation. Here we reviewed all published studies that quantified the dysfunction of intracellular Ca transporters and the myofilaments in animal models of SIC. Cardiomyocytes isolated from septic animals showed, invariably, a decreased twitch amplitude, which is frequently caused by a decrease in the amplitude of cellular Ca transients (ΔCai) and sarcoplasmic reticulum (SR) Ca load (CaSR). Underlying these deficits, the L-type Ca channel is downregulated, through mechanisms that may involve adrenomedullin-mediated redox signaling. The SR Ca pump is also inhibited, through oxidative modifications (sulfonylation) of one reactive thiol group (on Cys) and/or modulation of phospholamban. Diastolic Ca leak of ryanodine receptors is frequently increased. In contrast, Na/Ca exchange inhibition may play a partially compensatory role by increasing CaSR and ΔCai. The action potential is usually shortened. Myofilaments show a bidirectional regulation, with decreased Ca sensitivity in milder forms of disease (due to troponin I hyperphosphorylation) and an increase (redox mediated) in more severe forms. Most deficits occurred similarly in two different disease models, induced by either intraperitoneal administration of bacterial lipopolysaccharide or cecal ligation and puncture. In conclusion, substantial cumulative evidence implicates various Ca transporters and the myofilaments in SIC pathology. What is less clear, however, are the identity and interplay of the signaling pathways that are responsible for Ca transporters dysfunction. With few exceptions, all studies we found used solely male animals. Identifying sex differences in Ca dysregulation in SIC becomes, therefore, another priority.
Collapse
|
16
|
Hobai IA, Morse JC, Siwik DA, Colucci WS. Lipopolysaccharide and cytokines inhibit rat cardiomyocyte contractility in vitro. J Surg Res 2015; 193:888-901. [PMID: 25439505 PMCID: PMC4268427 DOI: 10.1016/j.jss.2014.09.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/11/2014] [Accepted: 09/12/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SIC) is thought to be the result of detrimental effects of inflammatory mediators on the cardiac muscle. Here we studied the effects of prolonged (24 ± 4 h) exposure of adult rat ventricular myocytes (ARVM) to bacterial lipopolysaccharide (LPS) and inflammatory cytokines tumor necrosis factor (TNF) and interleukins-1 (IL-1) and IL-6. MATERIALS AND METHODS We measured sarcomere shortening (SS) and cellular calcium (Ca(2+)) transients (ΔCai, with fura-2 AM) in isolated cardiomyocytes externally paced at 5 Hz at 37°C. RESULTS SS decreased after incubation with LPS (100 μg/mL), IL-1 (100 ng/mL), and IL-6 (30 ng/mL), but not with lesser doses of these mediators, or TNF (10-100 ng/mL). A combination of LPS (100 μg/mL), TNF, IL-1, and IL-6 (each 100 ng/mL; i.e., "Cytomix-100") induced a maximal decrease in SS and ΔCai. Sarcoplasmic reticulum (SR) Ca(2+) load (CaSR, measured with caffeine) was unchanged by Cytomix-100; however, SR fractional release (ΔCai/CaSR) was decreased. Underlying these effects, Ca(2+) influx into the cell (via L-type Ca(2+) channels, LTCC) and Ca(2+) extrusion via Na(+)/Ca(2+) exchange were decreased by Cytomix-100. SR Ca(2+) pump (SERCA) (SR Ca(2+) ATPase) was not affected. CONCLUSIONS Prolonged exposure of ARVM to a mixture of LPS and inflammatory cytokines inhibits cell contractility. The effect is mediated by the inhibition of Ca(2+) influx via LTCC, and partially opposed by the inhibition of Na(+)/Ca(2+) exchange. Because both mechanisms are commonly seen in animal models of SIC, we conclude that prolonged challenge with Cytomix-100 of ARVM may represent an accurate in vitro model for SIC.
Collapse
Affiliation(s)
- Ion A Hobai
- Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts.
| | - Justin C Morse
- Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Deborah A Siwik
- Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Wilson S Colucci
- Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| |
Collapse
|
17
|
Cuello F, Shankar-Hari M, Mayr U, Yin X, Marshall M, Suna G, Willeit P, Langley SR, Jayawardhana T, Zeller T, Terblanche M, Shah AM, Mayr M. Redox state of pentraxin 3 as a novel biomarker for resolution of inflammation and survival in sepsis. Mol Cell Proteomics 2014; 13:2545-57. [PMID: 24958171 PMCID: PMC4188985 DOI: 10.1074/mcp.m114.039446] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In an endotoxaemic mouse model of sepsis, a tissue-based proteomics approach for biomarker discovery identified long pentraxin 3 (PTX3) as the lead candidate for inflamed myocardium. When the redox-sensitive oligomerization state of PTX3 was further investigated, PTX3 accumulated as an octamer as a result of disulfide-bond formation in heart, kidney, and lung—common organ dysfunctions seen in patients with sepsis. Oligomeric moieties of PTX3 were also detectable in circulation. The oligomerization state of PTX3 was quantified over the first 11 days in critically ill adult patients with sepsis. On admission day, there was no difference in the oligomerization state of PTX3 between survivors and non-survivors. From day 2 onward, the conversion of octameric to monomeric PTX3 was consistently associated with a greater survival after 28 days of follow-up. For example, by day 2 post-admission, octameric PTX3 was barely detectable in survivors, but it still constituted more than half of the total PTX3 in non-survivors (p < 0.001). Monomeric PTX3 was inversely associated with cardiac damage markers NT-proBNP and high-sensitivity troponin I and T. Relative to the conventional measurements of total PTX3 or NT-proBNP, the oligomerization of PTX3 was a superior predictor of disease outcome.
Collapse
Affiliation(s)
- Friederike Cuello
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK; §Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Centre, University Medical Center Hamburg-Eppendorf, Hamburg, 20246 Germany; ¶DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Manu Shankar-Hari
- ‖Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH UK; **Division of Asthma Allergy and Lung Biology, King's College, London SE1 9RT, UK
| | - Ursula Mayr
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Xiaoke Yin
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Melanie Marshall
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Gonca Suna
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Peter Willeit
- ‡‡Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK; §§Department of Neurology, Innsbruck Medical University, Innsbruck, 6020 Austria
| | - Sarah R Langley
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Tamani Jayawardhana
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Tanja Zeller
- ¶¶Clinic for General and Interventional Cardiology, University Heart Centre Hamburg, Hamburg 20246, Germany
| | - Marius Terblanche
- ‖Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, SE1 7EH UK
| | - Ajay M Shah
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK
| | - Manuel Mayr
- From the ‡King's British Heart Foundation Centre, King's College London, SE5 9NU London, UK;
| |
Collapse
|
18
|
Place des inotropes en réanimation. MEDECINE INTENSIVE REANIMATION 2014. [DOI: 10.1007/s13546-014-0860-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Rungatscher A, Hallström S, Giacomazzi A, Linardi D, Milani E, Tessari M, Luciani GB, Scarabelli TM, Mazzucco A, Faggian G. Role of calcium desensitization in the treatment of myocardial dysfunction after deep hypothermic circulatory arrest. Crit Care 2013; 17:R245. [PMID: 24138817 PMCID: PMC4056352 DOI: 10.1186/cc13071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022] Open
Abstract
Introduction Rewarming from deep hypothermic circulatory arrest (DHCA) produces calcium desensitization by troponin I (cTnI) phosphorylation which results in myocardial dysfunction. This study investigated the acute overall hemodynamic and metabolic effects of epinephrine and levosimendan, a calcium sensitizer, on myocardial function after rewarming from DHCA. Methods Forty male Wistar rats (400 to 500 g) underwent cardiopulmonary bypass (CPB) through central cannulation and were cooled to a core temperature of 13°C to 15°C within 30 minutes. After DHCA (20 minutes) and CPB-assisted rewarming (60 minutes) rats were randomly assigned to 60 minute intravenous infusion with levosimendan (0.2 μg/kg/min; n = 15), epinephrine (0.1 μg/kg/min; n = 15) or saline (control; n = 10). Systolic and diastolic functions were evaluated at different preloads with a conductance catheter. Results The slope of left ventricular end-systolic pressure volume relationship (Ees) and preload recruitable stroke work (PRSW) recovered significantly better with levosimendan compared to epinephrine (Ees: 85 ± 9% vs 51 ± 11%, P<0.003 and PRSW: 78 ± 5% vs 48 ± 8%, P<0.005; baseline: 100%). Levosimendan but not epinephrine reduced left ventricular stiffness shown by the end-diastolic pressure-volume relationship and improved ventricular relaxation (Tau). Levosimendan preserved ATP myocardial content as well as energy charge and reduced plasma lactate concentrations. In normothermia experiments epinephrine in contrast to Levosimendan increased cTnI phosphorylation 3.5-fold. After rewarming from DHCA, cTnI phosphorylation increased 4.5-fold in the saline and epinephrine group compared to normothermia but remained unchanged with levosimendan. Conclusions Levosimendan due to prevention of calcium desensitization by cTnI phosphorylation is more effective than epinephrine for treatment of myocardial dysfunction after rewarming from DHCA.
Collapse
|
20
|
Maharaj R. Diastolic dysfunction and heart failure with a preserved ejection fraction: Relevance in critical illness and anaesthesia. J Saudi Heart Assoc 2012; 24:99-121. [PMID: 23960679 DOI: 10.1016/j.jsha.2012.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 01/22/2012] [Accepted: 01/23/2012] [Indexed: 01/19/2023] Open
Abstract
Epidemiological and clinical studies suggest that HF with a preserved ejection fraction will become the more common form of HF which clinicians will encounter. The spectrum of diastolic disease extends from the asymptomatic phase to fulminant cardiac failure. These patients are commonly encountered in operating rooms and critical care units. A clearer understanding of the underlying pathophysiology and clinical implications of HF with a preserved ejection fraction is fundamental to directing further research and to evaluate interventions. This review highlights the impact of diastolic dysfunction and HF with a preserved ejection fraction during the perioperative period and during critical illness.
Collapse
Affiliation(s)
- R Maharaj
- Department of Intensive Care Medicine, Kings College Hospital, London SE5 9RS, UK
| |
Collapse
|
21
|
Kan H, Wu Z, Young SH, Chen TH, Cumpston JL, Chen F, Kashon ML, Castranova V. Pulmonary exposure of rats to ultrafine titanium dioxide enhances cardiac protein phosphorylation and substance P synthesis in nodose ganglia. Nanotoxicology 2011; 6:736-45. [PMID: 21877901 DOI: 10.3109/17435390.2011.611915] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The inhalation of engineered nanoparticles stimulates the development of atherosclerosis and impairs vascular function. However, the cardiac effects of inhaled engineered nanoparticles are unknown. Here, we investigate the effects of ultrafine titanium dioxide (UFTiO(2)) on the heart, and we define the possible mechanisms underlying the measured effects. Pulmonary exposure of rats to UFTiO(2) increased the phosphorylation levels of p38 mitogen-activated protein kinase and cardiac troponin I, but not Akt, in the heart and substance P synthesis in nodose ganglia. Circulatory levels of pro-inflammatory cytokines, and blood cell counts and differentials were not significantly changed after pulmonary exposure. Separately, the incubation of cardiac myocytes isolated from naïve adult rat hearts in vitro with UFTiO(2) did not alter the phosphorylation status of the same cardiac proteins. In conclusion, the inhalation of UFTiO(2) enhanced the phosphorylation levels of cardiac proteins. Such responses are likely independent of systemic inflammation, but may involve a lung-neuron-regulated pathway.
Collapse
Affiliation(s)
- Hong Kan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Abstract
Depression of left ventricular (LV) intrinsic contractility is constant in patients with septic shock. Because most parameters of cardiac function are strongly dependent on afterload, especially in this context, the cardiac performance evaluated at the bedside reflects intrinsic contractility, but also the degree of vasoplegia. Recent advances in echocardiography have allowed better characterization of septic cardiomyopathy. It is always reversible providing the patient's recovery. Unlike classic cardiomyopathy, it is not associated with high filling pressures, for two reasons: improvement in LV compliance and associated right ventricular dysfunction. Although, it is unclear to which extent it affects prognosis, a hyperkinetic state is indicative of a profound and persistent vasoplegia associated with a high mortality rate. Preliminary data suggest that the hemodynamic response to a dobutamine challenge has a prognostic value, but large studies are required to establish whether inotropic drugs should be used to treat this septic cardiac dysfunction.
Collapse
Affiliation(s)
- Antoine Vieillard-Baron
- Service de Réanimation, Hôpital Ambroise Paré, Assistance Publique des Hôpitaux de Paris, 9 avenue Charles de Gaulle, 92104 Boulogne, France.
| |
Collapse
|
24
|
Chelazzi C, Villa G, De Gaudio AR. Cardiorenal syndromes and sepsis. Int J Nephrol 2011; 2011:652967. [PMID: 21603105 PMCID: PMC3097051 DOI: 10.4061/2011/652967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 01/25/2011] [Accepted: 01/28/2011] [Indexed: 12/15/2022] Open
Abstract
The cardiorenal syndrome is a clinical and pathophysiological entity defined as the concomitant presence of renal and cardiovascular dysfunction. In patients with severe sepsis and septic shock, acute cardiovascular, and renal derangements are common, that is, the septic cardiorenal syndrome. The aim of this paper is to describe the pathophysiology and clinical features of septic cardiorenal syndrome in light of the actual clinical and experimental evidence. In particular, the importance of systemic and intrarenal endothelial dysfunction, alterations of kidney perfusion, and myocardial function, organ “crosstalk” and ubiquitous inflammatory injury have been extensively reviewed in light of their role in cardiorenal syndrome etiology. Treatment includes early and targeted optimization of hemodynamics to reverse systemic hypotension and restore urinary output. In case of persistent renal impairment, renal replacement therapy may be used to remove cytokines and restore renal function.
Collapse
Affiliation(s)
- C Chelazzi
- Section of Anesthesiology and Intensive Care, Department of Critical Care, University of Florence, Padiglione Cliniche Chirurgiche, Viale Morgagni 85, 50134 Florence, Italy
| | | | | |
Collapse
|
25
|
Han YS, Tveita T, Prakash YS, Sieck GC. Mechanisms underlying hypothermia-induced cardiac contractile dysfunction. Am J Physiol Heart Circ Physiol 2010; 298:H890-7. [PMID: 20023122 PMCID: PMC7938765 DOI: 10.1152/ajpheart.00805.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 12/14/2009] [Indexed: 11/22/2022]
Abstract
Rewarming patients after profound hypothermia may result in acute heart failure and high mortality (50-80%). However, the underlying pathophysiological mechanisms are largely unknown. We characterized cardiac contractile function in the temperature range of 15-30 degrees C by measuring the intracellular Ca(2+) concentration ([Ca(2+)](i)) and twitch force in intact left ventricular rat papillary muscles. Muscle preparations were loaded with fura-2 AM and electrically stimulated during cooling at 15 degrees C for 1.5 h before being rewarmed to the baseline temperature of 30 degrees C. After hypothermia/rewarming, peak twitch force decreased by 30-40%, but [Ca(2+)](i) was not significantly altered. In addition, we assessed the maximal Ca(2+)-activated force (F(max)) and Ca(2+) sensitivity of force in skinned papillary muscle fibers. F(max) was decreased by approximately 30%, whereas the pCa required for 50% of F(max) was reduced by approximately 0.14. In rewarmed papillary muscle, both total cardiac troponin I (cTnI) phosphorylation and PKA-mediated cTnI phosphorylation at Ser23/24 were significantly increased compared with controls. We conclude that after hypothermia/rewarming, myocardial contractility is significantly reduced, as evidenced by reduced twitch force and F(max). The reduced myocardial contractility is attributed to decreased Ca(2+) sensitivity of force rather than [Ca(2+)](i) itself, resulting from increased cTnI phosphorylation.
Collapse
Affiliation(s)
- Young-Soo Han
- Dept. of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
26
|
Schauvliege S, Gozalo Marcilla M, Duchateau L, Martens A, Vlaminck L, Pille F, Declercq J, Levet T, Gasthuys F. Cardiorespiratory effects of enoximone in anaesthetised colic horses. Equine Vet J 2010; 41:778-85. [PMID: 20095226 DOI: 10.2746/042516409x424117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
REASONS FOR PERFORMING STUDY No studies have been reported on the effects of enoximone in anaesthetised colic horses. OBJECTIVE To examine whether enoximone improves cardiovascular function and reduces dobutamine requirement in anaesthetised colic horses. METHODS Forty-eight mature colic horses were enrolled in this prospective, randomised clinical trial. After sedation (xylazine 0.7 mg/kg bwt) and induction (midazolam 0.06 mg/kg bwt, ketamine 2.2 mg/kg bwt), anaesthesia was maintained with isoflurane in oxygen and a lidocaine constant rate infusion (15 mg/kg bwt, 2 mg/kg/h). Horses were ventilated (PaCO2 < 8.00 kPa). If hypotension occurred, dobutamine and/or colloids were administered. Ten minutes after skin incision, horses randomly received an i.v. bolus of enoximone (0.5 mg/kg bwt) or saline. Monitoring included respiratory and arterial blood gases, heart rate (HR), arterial pressure and cardiac index (CI). Systemic vascular resistance (SVR), stroke index (SI) and oxygen delivery index (DO2I) were calculated. For each variable, changes between baseline and T10 within each treatment group and/or colic type (small intestines, large intestines or mixed) were analysed and compared between treatments in a fixed effects model. Differences between treatments until T30 were investigated using a mixed model (a = 0.05). RESULTS Ten minutes after enoximone treatment, CI (P = 0.0010), HR (P = 0.0033) and DO2I (P = 0.0007) were higher and SVR lower (P = 0.0043) than at baseline. The changes in CI, HR and SVR were significantly different from those after saline treatment. During the first 30 min after enoximone treatment, DO2I (P = 0.0224) and HR (P = 0.0003) were higher than after saline administration. Because the difference in HR between treatments was much clearer in large intestine colic cases, an interaction was detected between treatment and colic type in both analyses (P = 0.0076 and 0.0038, respectively). CONCLUSIONS Enoximone produced significant, but short lasting, cardiovascular effects in colic horses. POTENTIAL RELEVANCE Enoximone's cardiovascular effects in colic horses were of shorter duration than in healthy ponies.
Collapse
Affiliation(s)
- S Schauvliege
- Department of Surgery and Anaesthesia of Domestic Animals, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Influence of temperature on the positive inotropic effect of levosimendan, dobutamine and milrinone. Eur J Anaesthesiol 2009; 26:946-53. [DOI: 10.1097/eja.0b013e328330e9a0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Elucidating the role of reversible protein phosphorylation in sepsis-induced myocardial dysfunction. Shock 2009; 32:49-54. [PMID: 19533850 DOI: 10.1097/shk.0b013e3181991926] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mortality in children with sepsis is most often related to diminished cardiac output with cardiovascular collapse, resulting in impaired oxygen delivery and, ultimately, end-organ failure. Although cardiovascular "collapse" is commonly observed in individuals with septic shock, the hemodynamic causes of this differ greatly. In children, intrinsic myocardial dysfunction is most commonly present, whereas the systemic vascular resistance is typically high. This pattern is distinct from adults with sepsis where the principal hemodynamic profile shows elevated cardiac output, but substantially reduced systemic vascular resistance. Various studies support the concept that myocardial dysfunction, as occurs in pediatric septic patients, is due to intrinsic abnormalities in cardiomyocyte function and is not related to hypoperfusion as a result of low systemic vascular resistance. Importantly, when examined more closely, data from adults with septic shock also reveal that intrinsic myocardial dysfunction may play a larger role than previously appreciated. As a result, cardiovascular support, especially in pediatric sepsis, requires a treatment strategy directed at the underlying mechanism(s) responsible for this dysfunction. Thus, it is imperative to gain a better understanding of the myocardial derangements that occur during sepsis to identify targets that will ultimately influence the management of children with septic shock and favorably alter the associated mortality. We hypothesize that key signaling pathways that control myocardial calcium flux, regulated to key kinases and phosphatases, influence myocyte contractility in sepsis. Thus, we review the data relevant to the sepsis-induced intracellular alterations in calcium flux in the cardiomyocyte, with an emphasis on changes in the phosphorylation state of the contractile proteins regulated by the balance between kinases and phosphatases. We believe that therapies modulating the activity of these key proteins may provide an improvement in calcium handling and myocardial contractility and alter the clinical outcomes in sepsis.
Collapse
|
29
|
Rabuel C, Samuel JL, Lortat-Jacob B, Marotte F, Lanone S, Keyser C, Lessana A, Payen D, Mebazaa A. Activation of the ubiquitin proteolytic pathway in human septic heart and diaphragm. Cardiovasc Pathol 2009; 19:158-64. [PMID: 19375358 DOI: 10.1016/j.carpath.2009.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 11/30/2008] [Accepted: 01/14/2009] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE Mechanisms of sepsis-induced myocardial and diaphragmatic alteration are multiple and remain largely unknown, particularly in humans. In the present study, we compared the inducible nitric oxide synthase (NOS-2) expression, the peroxynitrite production and the expression and activation of the ubiquitin proteolytic pathway in the wall of the 4 cardiac chambers, in the diaphragm, and in the rectus abdominis. PATIENTS Seven patients who died from septic shock associated with a myocardial depression and 5 nonseptic (control) patients. MEASUREMENTS AND RESULTS We evaluated protein expression by Western blot. Nitrotyrosin and ubiquitin residues were localized by immunofluorescence. NOS-2, nitrated proteins, free ubiquitin, and ubiquitinated proteins are overexpressed in the wall of the four cardiac cavities, in the diaphragm and in the rectus abdominis of septic patients at a similar level. Ubiquitinated proteins with a molecular mass of 50, 35, 30, and 25 kD were consistently detected in heart, diaphragm, and rectus abdominis of septic shock patients but lacking in nonseptic patients. In situ immunolabelling of ubiquitin showed a colocalisation with nitrotyrosine residues at the sarcomeric level of cardiac myocytes in septic patients. CONCLUSIONS This study showed the first evidence for the activation of the proteolytic ubiquitin-proteasome pathway in human heart and diaphragm in septic shock.
Collapse
Affiliation(s)
- Christophe Rabuel
- Department of Anesthesiology and Critical Care Medicine, Lariboisière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Mohamed TMA, Oceandy D, Prehar S, Alatwi N, Hegab Z, Baudoin FM, Pickard A, Zaki AO, Nadif R, Cartwright EJ, Neyses L. Specific role of neuronal nitric-oxide synthase when tethered to the plasma membrane calcium pump in regulating the beta-adrenergic signal in the myocardium. J Biol Chem 2009; 284:12091-8. [PMID: 19278978 DOI: 10.1074/jbc.m809112200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cardiac neuronal nitric-oxide synthase (nNOS) has been described as a modulator of cardiac contractility. We have demonstrated previously that isoform 4b of the sarcolemmal calcium pump (PMCA4b) binds to nNOS in the heart and that this complex regulates beta-adrenergic signal transmission in vivo. Here, we investigated whether the nNOS-PMCA4b complex serves as a specific signaling modulator in the heart. PMCA4b transgenic mice (PMCA4b-TG) showed a significant reduction in nNOS and total NOS activities as well as in cGMP levels in the heart compared with their wild type (WT) littermates. In contrast, PMCA4b-TG hearts showed an elevation in cAMP levels compared with the WT. Adult cardiomyocytes isolated from PMCA4b-TG mice demonstrated a 3-fold increase in Ser(16) phospholamban (PLB) phosphorylation as well as Ser(22) and Ser(23) cardiac troponin I (cTnI) phosphorylation at base line compared with the WT. In addition, the relative induction of PLB phosphorylation and cTnI phosphorylation following isoproterenol treatment was severely reduced in PMCA4b-TG myocytes, explaining the blunted physiological response to the beta-adrenergic stimulation. In keeping with the data from the transgenic animals, neonatal rat cardiomyocytes overexpressing PMCA4b showed a significant reduction in nitric oxide and cGMP levels. This was accompanied by an increase in cAMP levels, which led to an increase in both PLB and cTnI phosphorylation at base line. Elevated cAMP levels were likely due to the modulation of cardiac phosphodiesterase, which determined the balance between cGMP and cAMP following PMCA4b overexpression. In conclusion, these results showed that the nNOS-PMCA4b complex regulates contractility via cAMP and phosphorylation of both PLB and cTnI.
Collapse
Affiliation(s)
- Tamer M A Mohamed
- Department of Cardiology, University of Manchester and Biomedical Research Centre, Central Manchester NHS Foundation Trust, Manchester, Lancashire M13 9PT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Can troponin identify those critically ill septic patients who would benefit most from activated protein C treatment? Crit Care Med 2009; 37:367-8. [PMID: 19112310 DOI: 10.1097/ccm.0b013e31819350c7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Marshall M, Anilkumar N, Layland J, Walker SJ, Kentish JC, Shah AM, Cave AC. Protein phosphatase 2A contributes to the cardiac dysfunction induced by endotoxemia. Cardiovasc Res 2009; 82:67-76. [PMID: 19201758 PMCID: PMC2652740 DOI: 10.1093/cvr/cvp037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aims Sepsis-associated cardiac dysfunction represents an intrinsic impairment of cardiomyocyte function due in part to a decrease in myofilament Ca2+ sensitivity associated with a sustained increase in cardiac troponin I (cTnI) phosphorylation at Ser23/24. Dephosphorylation of cTnI is under regulatory control. Thus, muscarinic and adenosine A1-receptor agonists antagonize β-adrenergic stimulation via activation of protein phosphatase 2A (PP2A). The aim of this study was to determine whether modulation of PP2A and thus cTnI phosphorylation could improve sepsis-induced contractile dysfunction. Methods and results Cardiomyocytes were isolated from control or septic mice 16–18 h after an injection of vehicle or lipopolysaccharide (LPS; 9 mg/kg ip) respectively. Protein expression and phosphatase activity were determined in homogenates of control and septic hearts. Our data showed that LPS significantly increased cTnI phosphorylation at Ser23/24 in cardiomyocytes and reduced contraction amplitude without affecting Ca2+-transients. Treatment of cardiomyocytes with the A1 agonist cyclopentyladenosine (CPA) or the protein kinase A inhibitor H89 significantly attenuated the LPS-induced contractile dysfunction without effect on Ca2+-transients. Co-treatment with CPA and H89 completely reversed the contractile dysfunction. Increased cTnI phosphorylation in septic hearts was associated with a significant reduction in the protein expression of both the catalytic and regulatory subunits (B56α) of PP2A and a decrease in PP2A activity. CPA treatment of septic hearts increased PP2A activity. An increase in the protein expression of demethylated PP2A and a decrease in the PP2A-methyltransferase (PPMT; the methyltransferase that catalyses this reaction) were also observed. Conclusion These data support the hypothesis that sustained cTnI phosphorylation underlies the contractile dysfunction seen in sepsis.
Collapse
Affiliation(s)
- Melanie Marshall
- Cardiovascular Division, Department of Cardiology, King's College London, James Black Centre, London SE5 9NU, UK.
| | | | | | | | | | | | | |
Collapse
|
33
|
Prevention of endotoxin-induced sarcoplasmic reticulum calcium leak improves mitochondrial and myocardial dysfunction. Crit Care Med 2008; 36:2590-6. [PMID: 18679108 DOI: 10.1097/ccm.0b013e3181844276] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Growing evidence suggests that mitochondria function is impaired in sepsis. Here, we tested the hypothesis that lipopolysaccharide would induce mitochondrial Ca2+ overload and oxygen utilization abnormalities as consequences of sarcoplasmic reticulum Ca2+ handling derangements that are typically observed in sepsis. As lipopolysaccharide-induced sarcoplasmic reticulum dysfunction was mainly characterized by reduced sarcoplasmic reticulum Ca2+ uptake and Ca2+ leak, we tested whether dantrolene, a sarco(endo)plasmic reticulum calcium ATPase leak inhibitor, would prevent mitochondrial and cardiac contractile dysfunction. DESIGN Randomized controlled trial. SETTING Experimental laboratory. SUBJECTS Male Sprague Dawley rats. INTERVENTIONS Sepsis was induced by injection of endotoxin lipopolysaccharide (10 mg/kg/intravenously). Assessment of contractile function and Ca2+ handling was performed 4 hr after lipopolysaccharide. The relative contribution of the different Ca2+ transporters to relaxation in intact cardiomyocytes was studied during successive electrically evoked twitches and caffeine stimulation. Sarcoplasmic reticulum vesicles and mitochondria from ventricles of rats treated or not with lipopolysaccharide were prepared to evaluate Ca2+ uptake-release and oxygen fluxes, respectively. Effects of dantrolene (10 mg/kg) treatment in rats were evaluated in sarcoplasmic reticulum vesicles, mitochondria, and isolated hearts. MEASUREMENTS AND MAIN RESULTS Lipopolysaccharide challenge elicited cardiac contractile dysfunction that was accompanied by severe derangements in sarcoplasmic reticulum function, i.e., reduced Ca2+ uptake and increased sarcoplasmic reticulum Ca2+ leak. Functional sarcoplasmic reticulum changes were associated with modification in the status of phospholamban phosphorylation whereas SERCA was unchanged. Rises in mitochondrial Ca2+ content observed in lipopolysaccharide-treated rats coincided with derangements in mitochondrial oxygen efficacy, i.e., reduced respiratory control ratio. Administration of dantrolene in lipopolysaccharide-treated rats prevented mitochondrial Ca2+ overload and mitochondrial oxygen utilization abnormalities. Moreover, dantrolene treatment in lipopolysaccharide rats improved heart mitochondrial redox state and myocardial dysfunction. CONCLUSION These experiments suggest that sarcoplasmic reticulum Ca2+ handling dysfunction is an early event during endotoxemia that could be responsible for, or contribute to, mitochondrial Ca2+ overload, metabolic failure, and cardiac dysfunction.
Collapse
|
34
|
Sepsis-induced myocardial depression and calcium mishandling: an acceptable unifying theory? Crit Care Med 2008; 36:2695-6. [PMID: 18728488 DOI: 10.1097/ccm.0b013e3181833d2c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
35
|
|
36
|
Moniotte S, Belge C, Sekkali B, Massion PB, Rozec B, Dessy C, Balligand JL. Sepsis is associated with an upregulation of functional beta3 adrenoceptors in the myocardium. Eur J Heart Fail 2007; 9:1163-71. [PMID: 17999941 DOI: 10.1016/j.ejheart.2007.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 09/21/2007] [Accepted: 10/18/2007] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To analyze the implication of the beta3-adrenoceptor (beta3-AR) pathway in human septic myocardium and a murine model of sepsis, a condition associated with myocardial depression. METHODS AND RESULTS beta3-AR and eNOS protein abundance were increased (332+/-66.4% and 218+/-39.3; P<0.05) in hearts from septic patients. The effect of BRL37344, a beta3-AR-preferential agonist, was analyzed by videomicroscopy on the contractility of neonatal mouse ventricular myocytes (NMVM) incubated with conditioned medium from LPS-stimulated cultured macrophages (Mc-LPS+ medium). Stimulation of untreated NMVM with BRL37344 dose-dependently decreased the amplitude of contractile shortening (P<0.05). This response was abolished by L-NAME (NOS inhibitor). Incubation in Mc-LPS+ medium potentiated the depressing effect of BRL37344 (P<0.05) as well as of SR58611A (P<0.05) in wild-type myocytes. Importantly, the contractile depression was abrogated in cardiomyocytes from beta3-AR KO mice. CONCLUSIONS beta3-AR are upregulated during sepsis in the human myocardium and by cytokines in murine cardiomyocytes, where they mediate an increased negative inotropic response to beta3 agonists. Activation of the beta3-AR pathway by catecholamines may contribute to the myocardial dysfunction in sepsis.
Collapse
Affiliation(s)
- S Moniotte
- Unit of Pharmacology and Therapeutics, FATH 5349, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
37
|
Zager RA. Parenteral iron compounds: potent oxidants but mainstays of anemia management in chronic renal disease. Clin J Am Soc Nephrol 2007; 1 Suppl 1:S24-31. [PMID: 17699373 DOI: 10.2215/cjn.01410406] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ferric iron (Fe)-carbohydrate complexes are widely used for treating Fe deficiency in patients who are unable to meet their Fe requirements with oral supplements. Intravenous Fe generally is well tolerated and effective in correcting Fe-deficient states. However, the complexing of Fe to carbohydrate polymers does not block its potent pro-oxidant effects; systemic free radical generation and, possibly, tissue damage may result. The purpose of this review is to (1) underscore the capacity of currently used parenteral Fe formulations to induce oxidative stress, (2) compare the severity of these oxidant reactions with those that result from unshielded Fe salts and with each other, and (3) speculate as to the potential of these agents to induce acute renal cell injury and augment systemic inflammatory responses. The experimental data that are reviewed should not be extrapolated to the clinical setting or be used for clinical decision making. Rather, it is hoped that the information provided herein may have utility for clinical hypothesis generation and, hence, future clinical studies. By so doing, a better understanding of Fe's potential protean effects on patients with renal disease may result.
Collapse
MESH Headings
- Acute Kidney Injury/chemically induced
- Acute Kidney Injury/metabolism
- Adenosine Triphosphate/metabolism
- Anemia, Iron-Deficiency/drug therapy
- Anemia, Iron-Deficiency/etiology
- Anemia, Iron-Deficiency/metabolism
- Animals
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Ferric Compounds/toxicity
- Ferric Oxide, Saccharated
- Glucaric Acid
- Hematinics/administration & dosage
- Hematinics/toxicity
- Humans
- Inflammation/chemically induced
- Inflammation/metabolism
- Infusions, Intravenous
- Iron Compounds/administration & dosage
- Iron Compounds/toxicity
- Iron-Dextran Complex/toxicity
- Kidney Cortex/drug effects
- Kidney Cortex/metabolism
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Lipid Peroxidation/drug effects
- Mitochondria/drug effects
- Mitochondria/metabolism
- Oxidative Stress/drug effects
- Renal Dialysis
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/therapy
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Richard A Zager
- Fred Hutchinson Cancer Research Center, Department of Medicine, University of Washington, Seattle, Washington 98109, USA.
| |
Collapse
|
38
|
Pirracchio R, Cholley B, De Hert S, Solal AC, Mebazaa A. Diastolic heart failure in anaesthesia and critical care. Br J Anaesth 2007; 98:707-21. [PMID: 17468492 DOI: 10.1093/bja/aem098] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Diastolic heart failure is an underestimated pathology with a high risk of acute decompensation during the perioperative period. This article reviews the epidemiology, risk factors, pathophysiology, and treatment of diastolic heart failure. Although frequently underestimated, diastolic heart failure is a common pathology. Diastolic heart failure involves heart failure with preserved left ventricular (LV) function, and LV diastolic dysfunction may account for acute heart failure occurring in critical care situations. Hypertensive crisis, sepsis, and myocardial ischaemia are frequently associated with acute diastolic heart failure. Symptomatic treatment focuses on the reduction in pulmonary congestion and the improvement in LV filling. Specific treatment is actually lacking, but encouraging data are emerging concerning the use of renin-angiotensin-aldosterone axis blockers, nitric oxide donors, or, very recently, new agents specifically targeting actin-myosin cross-bridges.
Collapse
Affiliation(s)
- R Pirracchio
- Department of Anaesthesiology, Lariboisière University Hospital, Paris, France
| | | | | | | | | |
Collapse
|
39
|
Jozefowicz E, Brisson H, Rozenberg S, Mebazaa A, Gelé P, Callebert J, Lebuffe G, Vallet B, Bordet R, Tavernier B. Activation of peroxisome proliferator-activated receptor-alpha by fenofibrate prevents myocardial dysfunction during endotoxemia in rats. Crit Care Med 2007; 35:856-63. [PMID: 17255874 DOI: 10.1097/01.ccm.0000256843.75446.a0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the effects of fenofibrate, an activator of peroxisome proliferator-activated receptor-alpha, on cardiac function in a rat endotoxemia model. DESIGN Prospective, randomized, controlled study. SETTING University research laboratory. SUBJECTS Three-month-old male Wistar rats. INTERVENTIONS Animals were fed with standard diet containing no drug or fenofibrate (0.2%) for 14 days. They were then injected intravenously with either 5 mg/kg lipopolysaccharide (LPS and fenofibrate + LPS groups) or saline (control and fenofibrate groups). MEASUREMENTS AND MAIN RESULTS In the LPS group, body weight loss, metabolic acidosis, and thrombocytopenia confirmed presence of systemic endotoxemia. LPS administration resulted in an early peak in plasma tumor necrosis factor-alpha, decreased cardiac contractility (isolated and perfused heart), reduced myofilament Ca2+ sensitivity (Triton-skinned cardiac fibers), and increased left ventricular nitric oxide (NO) end-oxidation products (NO(x) and NO2), without evidence of myocardial oxidative stress (thiobarbituric acid-reactive substances and antioxidant enzyme activities). Fenofibrate pretreatment (fenofibrate + LPS group) did not alter signs of endotoxemia but prevented reductions in both cardiac contractility and myofilament Ca2+ sensitivity. The peak of plasma tumor necrosis factor-alpha was attenuated, whereas myocardial NO(x) and NO2 remained similar to the LPS group. Oxidative stress was suggested from moderate increase in cardiac thiobarbituric acid-reactive substances and reduced glutathione peroxidase activity. CONCLUSION Fenofibrate, an activator of peroxisome proliferator-activated receptor-alpha, may prevent endotoxemia-induced cardiac dysfunction and reduction in myofilament Ca2+ sensitivity. Our data also suggest a mediating role for early peak plasma tumor necrosis factor-alpha, but not for myocardial NO production or oxidative stress.
Collapse
Affiliation(s)
- Elsa Jozefowicz
- Laboratoire de Pharmacologie, Faculté de Médecine, Université Lille II, Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Barraud D, Faivre V, Damy T, Welschbillig S, Gayat E, Heymes C, Payen D, Shah AM, Mebazaa A. Levosimendan restores both systolic and diastolic cardiac performance in lipopolysaccharide-treated rabbits: Comparison with dobutamine and milrinone. Crit Care Med 2007; 35:1376-82. [PMID: 17414729 DOI: 10.1097/01.ccm.0000261889.18102.84] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Current treatment strategies for severe septic conditions (i.e., intravenous fluids, vasopressors, and cardiac inotropes) reestablish fluid balance and improve cardiac systole but do not address diastolic dysfunction. Our study aimed to fully characterize both systolic and diastolic abnormalities of sepsis-associated heart failure and to identify treatment that would support full-cycle cardiac improvement. DESIGN Endotoxin-injected rabbits, an animal model of abnormal cardiac function in human sepsis, were used to delineate cardiac abnormalities and to examine effects of drug treatments on heart systolic and diastolic function (n = 30); saline-injected animals served as comparators (n = 17). As treatment, three inotropes commonly used for treatment of cardiac failure were infused for 45 mins in separate animal groups-milrinone, dobutamine, and levosimendan. MEASUREMENTS Variables of left ventricular systolic and diastolic function were assessed with a pressure conductance catheter. Measurements were made before and after endotoxin/saline injection and before and after inotrope treatment. RESULTS Pressure-volume analyses of the left ventricle showed marked impairment in systolic function and in all indices of diastolic function (isovolumic relaxation time constant, left ventricular end-diastolic pressure, and end-diastolic pressure-volume relationship) in endotoxin-treated rabbits. The inotropes, milrinone, dobutamine, and levosimendan, could each partially or completely restore systolic function in the lipopolysaccharide-treated rabbits. However, only levosimendan therapy led to additional beneficial effects on left ventricular relaxation and diastolic function. CONCLUSIONS Cardiac failure in severe sepsis results from impairments in both systolic and diastolic functions. Treatment with the calcium sensitizer levosimendan improved both systolic and diastolic cardiac functions in septic animals, but cyclic adenosine monophosphate-dependent inotropes milrinone and dobutamine only improved systolic function.
Collapse
|
41
|
|
42
|
Gómez RM, Pacienza N, Schattner M, Habarta A, Levander OA, Sterin-Borda L. Decreased beta-adrenoceptor chronotropic response in selenium-deficient mice: negative crosstalk between iNOS activity and cAMP accumulation. Biol Trace Elem Res 2007; 117:127-38. [PMID: 17873398 DOI: 10.1007/bf02698089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 11/30/1999] [Accepted: 10/30/2006] [Indexed: 11/26/2022]
Abstract
With the aim to study if selenium (Se) deficiency affects the basal frequency and cardiac response to isoproterenol (ISO), mice were fed a Se-deficient diet (Se-) or the same diet supplemented with 0.2 ppm Se as sodium selenite (Se+) for 4 wk. Atria frequency, cyclic AMP (cAMP) accumulation, nitric oxide synthase (NOS) activity, and beta-adrenoceptor-binding assay were then examined. Results showed that Se-mice have both a reduction in atria frequency as well as in cAMP content but higher NOS activity levels either at basal or after ISO stimulation. These differences were suppressed by feeding Se-mice with a Se-supplemented diet for 1 wk or by inhibition of inducible nitric oxide synthase (iNOS). Alterations observed after ISO stimulation in atria of Se-mice were not related to a beta-adrenoceptor expression modification because specific radioligand-binding parameters in cardiac membranes from Se-mice and Se+ mice were similar. The reduced response on rate and cAMP in atria from Se-mice to direct adenylate cyclase (AC) stimulation by forskolin and the shifted upward levels present in 2-amino-4-methylpyridine-treated Se-mice is in agreement with a negative crosstalk between iNOS activity and AC activity in Se-mice.
Collapse
Affiliation(s)
- Ricardo M Gómez
- Cátedra de Farmacología, Facultad de Odontología, Universidad de Buenos Aires, Buenos Aires, 1122, Argentina
| | | | | | | | | | | |
Collapse
|
43
|
Rozenberg S, Besse S, Brisson H, Jozefowicz E, Kandoussi A, Mebazaa A, Riou B, Vallet B, Tavernier B. Endotoxin-induced myocardial dysfunction in senescent rats. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2006; 10:R124. [PMID: 16942612 PMCID: PMC1750995 DOI: 10.1186/cc5033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/15/2006] [Accepted: 08/30/2006] [Indexed: 02/07/2023]
Abstract
Introduction Aging is associated with a decline in cardiac contractility and altered immune function. The aim of this study was to determine whether aging alters endotoxin-induced myocardial dysfunction. Methods Senescent (24 month) and young adult (3 month) male Wistar rats were treated with intravenous lipopolysaccharide (LPS) (0.5 mg/kg (senescent and young rats) or 5 mg/kg (young rats only)), or saline (senescent and young control groups). Twelve hours after injection, cardiac contractility (isolated perfused hearts), myofilament Ca2+ sensitivity (skinned fibers), left ventricular nitric oxide end-oxidation products (NOx and NO2) and markers of oxidative stress (thiobarbituric acid reactive species (TBARS) and antioxidant enzymes) were investigated. Results LPS (0.5 mg/kg) administration resulted in decreased contractility in senescent rats (left ventricular developed pressure (LVDP), 25 ± 4 vs 53 ± 4 mmHg/g heart weight in control; P < 0.05) of amplitude similar to that in young rats with LPS 5 mg/kg (LVDP, 48 ± 7 vs 100 ± 7 mmHg/g heart weight in control; P < 0.05). In contrast to young LPS rats (0.5 and 5 mg/kg LPS), myofilament Ca2+ sensitivity was unaltered in senescent LPS hearts. Myocardial NOx and NO2 were increased in a similar fashion by LPS in young (both LPS doses) and senescent rats. TBARS and antioxidant enzyme activities were unaltered by sepsis whatever the age of animals. Conclusion Low dose of LPS induced a severe myocardial dysfunction in senescent rats. Ca2+ myofilament responsiveness, which is typically reduced in myocardium of young adult septic rats, however, was unaltered in senescent rats. If these results are confirmed in in vivo conditions, they may provide a cellular explanation for the divergent reports on ventricular diastolic function in septic shock. In addition, Ca2+-sensitizing agents may not be as effective in aged subjects as in younger subjects.
Collapse
Affiliation(s)
- Sandrine Rozenberg
- Université Lille 2, Laboratoire de pharmacologie, EA 1046, Centre hospitalier universitaire (CHU) de Lille, Lille, France
- Fédération d'anesthésie réanimation, CHU de Lille, Lille, France
| | - Sophie Besse
- Laboratoire de recherche sur la croissance cellulaire, la réparation et la régénération tissulaires, UMR CNRS 7149, Université Paris 12 – Val de Marne, Créteil and Université René Descartes – Paris 5, Paris, France
| | - Hélène Brisson
- Université Lille 2, Laboratoire de pharmacologie, EA 1046, Centre hospitalier universitaire (CHU) de Lille, Lille, France
| | - Elsa Jozefowicz
- Université Lille 2, Laboratoire de pharmacologie, EA 1046, Centre hospitalier universitaire (CHU) de Lille, Lille, France
| | | | - Alexandre Mebazaa
- Université Denis Diderot – Paris 7, Laboratoire d'anesthésiologie, EA 322, Département d'anesthésie-réanimation, CHU Lariboisière, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Bruno Riou
- Université Pierre et Marie Curie – Paris 6, Laboratoire d'anesthésiologie, EA 3975, Service d'accueil des urgences, CHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Benoît Vallet
- Université Lille 2, Laboratoire de pharmacologie, EA 1046, Centre hospitalier universitaire (CHU) de Lille, Lille, France
- Fédération d'anesthésie réanimation, CHU de Lille, Lille, France
| | - Benoît Tavernier
- Université Lille 2, Laboratoire de pharmacologie, EA 1046, Centre hospitalier universitaire (CHU) de Lille, Lille, France
- Fédération d'anesthésie réanimation, CHU de Lille, Lille, France
| |
Collapse
|
44
|
Berroëta C, Provenchère S, Mongredien A, Lasocki S, Benessiano J, Dehoux M, Philip I. Dosage des isoformes cardiaques des troponines T ou I : intérêt en cardiologie et en anesthésie–réanimation. ACTA ACUST UNITED AC 2006; 25:1053-63. [PMID: 16019183 DOI: 10.1016/j.annfar.2005.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 05/09/2005] [Indexed: 01/08/2023]
Abstract
Measurement of cardiac troponin I or T in serum (highly specific for the myocardium) have replaced classical markers, such as creatine kinase MB. Cardiac troponins are preferred markers because of their high specificity and sensitivity. This had led to modifications of the original World Health Organization criteria for acute myocardial infarction. Furthermore, the place of the troponins as superior markers of subsequent cardiac risk in acute coronary syndrome has now become firmly established, for both diagnostic and risk stratification purposes. The use of C-reactive protein and/or other inflammatory biomarkers may add independent information in this context. After non cardiac surgery, the total cardiospecificity of cardiac troponins explains why other biomarkers of necrosis should no longer be used. Recent studies suggest that any elevation of troponin in the postoperative period is indicative of increased risk of long-term cardiac complications. This prognostic value has been previously demonstrated in other clinical settings such as invasive coronary intervention (surgical myocardial revascularization and percutaneous coronary intervention) and after heart valve surgery. Increases of troponin indicate cardiac damage, whatever the mechanism (ischemic or not). Other causes of cardiac injury include: pulmonary embolism, myocarditis, pericarditis, congestive heart failure, septic shock, myocardial contusion. In most cases, elevation of troponins has been shown to be associated with a bad outcome.
Collapse
Affiliation(s)
- C Berroëta
- Département d'anesthésie-réanimation, hôpital Bichat-Claude-Bernard, Assistance publique-Hôpitaux de Paris, 48 rue Henri-Huchard, 75018 Paris, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Rabuel C, Mebazaa A. Septic shock: a heart story since the 1960s. Intensive Care Med 2006; 32:799-807. [PMID: 16570145 DOI: 10.1007/s00134-006-0142-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 03/01/2006] [Indexed: 01/20/2023]
Affiliation(s)
- C Rabuel
- University Paris 7 Denis Diderot, AP-HP, Department of Anesthesiology and Critical Care Medicine, Lariboisiere Hospital, 2 Rue Ambroise Paré, 75010 Paris, France
| | | |
Collapse
|
46
|
Zager RA, Johnson AC, Lund S, Hanson SY, Abrass CK. Levosimendan protects against experimental endotoxemic acute renal failure. Am J Physiol Renal Physiol 2006; 290:F1453-62. [PMID: 16418300 DOI: 10.1152/ajprenal.00485.2005] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Endotoxemia induces a hemodynamic form of acute renal failure (ARF; renal vasoconstriction +/- reduced glomerular ultrafiltration coefficient, K(f); minimal/no histological damage). We tested whether levosimendan (LS), an ATP-sensitive K+ (K(ATP)) channel opener with cardiac ionotropic and possible anti-inflammatory properties, might have utility in combating this form of ARF. CD-1 mice were injected with LPS +/- LS. LS effects on LPS-induced systemic inflammation (plasma TNF-alpha/MCP-1; cardiorenal mRNAs), plasma NO levels, and azotemia were assessed. Because K(ATP) channel opening has been reported to mediate hypoxic tubular injury, possible adverse LS effects on ischemic ARF and ATP depletion injury were sought. Effects of diazoxide (another K(ATP) channel agonist) and glibenclamide (a channel antagonist) on hypoxic tubular injury also were assessed. Finally, the ability of LS to alter rat mesangial cell (MC) contraction in response to ANG II (elevated in sepsis) was tested. LS conferred almost complete protection against LPS-induced ARF, without any apparent reduction in the LPS-induced inflammatory response. Neither LS nor diazoxide altered ATP depletion-mediated tubule injury (in vivo or in vitro). Conversely, glibenclamide induced a marked and direct cytotoxic effect. LS completely blocked ANG II-induced MC contraction, an action likely to increase K(f). We concluded that 1) LS can confer marked protection against LPS-induced ARF; 2) this likely stems from vasoactive properties, rather than reductions in LPS-induced inflammation; and 3) K(ATP) channel agonists (but not antagonists) appear to be devoid of toxic proximal tubular cell effects. This suggests that LS, and other K(ATP) channel agonists, have a margin of safety if employed in situations (sepsis syndrome, heart failure) in which severe renal vasoconstriction might lead to ischemic ARF.
Collapse
Affiliation(s)
- Richard A Zager
- Department of Medicine, University of Washington, Seattle, USA.
| | | | | | | | | |
Collapse
|
47
|
Englert JA, Fink MP. The multiple organ dysfunction syndrome and late-phase mortality in sepsis. Curr Infect Dis Rep 2005; 7:335-41. [PMID: 16107229 DOI: 10.1007/s11908-005-0006-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sepsis is a devastating and common syndrome characterized by systemic inflammation. Sepsis accounts for considerable morbidity and mortality among intensive care unit patients. Although the inflammatory response generated by the immune system represents the body's attempt to clear invading pathogens, it is the failure to modulate this response that leads to dysregulated inflammation and the injury of healthy tissue. A great deal of research has characterized many of the early events and mediators that lead to systemic inflammation and sepsis. However, substantially less is known about the pathogenesis of the late phase of sepsis, which accounts for the vast majority of sepsis-related mortality (ie, the dysfunction and subsequent failure of the major parenchymal organs).
Collapse
Affiliation(s)
- Joshua A Englert
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, 615 Scaife Hall, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
48
|
Lancel S, Joulin O, Favory R, Goossens JF, Kluza J, Chopin C, Formstecher P, Marchetti P, Neviere R. Ventricular Myocyte Caspases Are Directly Responsible for Endotoxin-Induced Cardiac Dysfunction. Circulation 2005; 111:2596-604. [PMID: 15897345 DOI: 10.1161/circulationaha.104.490979] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Although most of the deleterious effects of sepsis-induced apoptosis have been attributed to increased lymphocyte cell death, caspase activation may directly alter cell function of different organ systems. We postulated that left ventricular (LV) cardiomyocyte caspase activation is directly involved in sepsis-induced heart contractile dysfunction.
Methods and Results—
LV cardiomyocytes isolated 4 hours after rat treatment with endotoxin injection (10 mg/kg) displayed major reductions in contractile reserve and myofilament response to Ca
2+
. Concomitantly, endotoxin also induced increases in LV cardiomyocyte caspase-3, -8, and -9-like activities, which were associated with sarcomeric structure destruction and cleavage of components of the cardiac myofilament. Interestingly, zVAD.fmk treatment of septic rat prevented LV cardiomyocyte contractile dysfunction, reductions in myofilament response to calcium, troponin T cleavage, and sarcomere destruction. Serum (10%) of endotoxin-treated rats induced contractile dysfunction, caspase-3–like activity increase, and troponin T cleavage of naive LV cardiomyocytes. The effects of septic serum were prevented in LV cardiomyocytes isolated from zVAD.fmk- or zDEVD.cmk-treated rats or LV cardiomyocytes preincubated with zVAD.fmk or zDEVD.cmk.
Conclusions—
The results show an important relationship between endotoxin-induced caspase activation and reduced contractile reserve and sarcomere disarray at the level of single LV cardiomyocytes.
Collapse
Affiliation(s)
- Steve Lancel
- EA 2689, CHRU, and Université de Lille 2, IFR 114 IMPRT, Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Comini L, Boraso A, Bachetti T, Bernocchi P, Pasini E, Bastianon D, Curello S, Terracciano CM, Ceconi C, Ferrari R. Effects of endotoxic shock on neuronal NOS and calcium transients in rat cardiac myocytes. Pharmacol Res 2005; 51:409-17. [PMID: 15749455 DOI: 10.1016/j.phrs.2004.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/05/2004] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The effects of endotoxic shock on transcriptional and translational pattern of nitric oxide synthase isoforms (NOSs) and cytoplasmic calcium were investigated. METHODS Male SD rats injected with lipopolysaccharides or saline were sacrificed after 6 and 20 h. Cardiac myocytes were enzimatically isolated from the excised hearts and evaluated for: (1) expression of constitutive (e and n) and inducible (i) NOSs by RT-PCR; (2) NOSs protein levels by Western blot, enzymatic activities by a radioimmunometric assay and nitric oxide metabolites by spectrophotometry; (3) calcium transients by Indo-1 fluorescence. RESULTS Increase in iNOS mRNA, and decrease in e and nNOS mRNAs were observed in cardiac myocytes isolated 6h after LPS injection with recovery to basal levels at 20 h. Significant down-regulation of e and nNOS protein levels (p < 0.01) and calcium-dependent activity (p < 0.05) were detected at 20 h. Serum TNF-alpha increased after 6 and 20 h (p < 0.05), whereas NO metabolites rose only after 20 h (p < 0.0001). The diastolic calcium increased 6 h from LPS injection (p < 0.0001) and remained significantly higher after 20 h. Calcium transients amplitude was not affected by LPS injection. CONCLUSIONS Endotoxic shock stimulates iNOS and down-regulates expression of nNOS in purified cardiac myocytes, but endogenous NO production does not likely affect calcium transients.
Collapse
Affiliation(s)
- Laura Comini
- Fondazione Salvatore Maugeri IRCCS, Center of Cardiovascular Pathophysiology, Via Pinidolo 23, 25064 Gussago, Brescia, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Layland J, Cave AC, Warren C, Grieve DJ, Sparks E, Kentish JC, Solaro RJ, Shah AM. Protection against endotoxemia-induced contractile dysfunction in mice with cardiac-specific expression of slow skeletal troponin I. FASEB J 2005; 19:1137-9. [PMID: 15855227 DOI: 10.1096/fj.04-2519fje] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gram negative endotoxemia is associated with an intrinsic impairment of cardiomyocyte contraction, in part due to a reduction in myofilament Ca2+ responsiveness. Endotoxemic rat hearts show increased cardiac troponin I (cTnI) phosphorylation at serines 23 and 24, residues required for the protein kinase A (PKA)-dependent reduction of myofilament Ca2+ sensitivity after beta-adrenoceptor stimulation. To investigate the functional significance of increased TnI phosphorylation in endotoxemia, we studied the contractile effects of systemic bacterial lipopolysaccharide (LPS) treatment in transgenic mice (TG) with cardiac-specific replacement of cTnI by slow skeletal TnI (ssTnI, which lacks the PKA phosphorylation sites) and matched nontransgenic littermates (NTG) on a CD1 background. In wild-type CD1 mice treated with LPS (6 mg/kg ip), after 16-18 h there was a significant reduction in the maximum rates of left ventricular pressure development and pressure decline in isolated Langendorff-perfused hearts compared with saline-treated controls and a decrease in isolated myocyte unloaded sarcomere shortening from 6.1 +/- 0.2 to 3.9 +/- 0.2% (1 Hz, 32 degrees C, P<0.05). Similarly, in NTG myocytes, endotoxemia reduced myocyte shortening by 42% from 6.7 +/- 0.2 to 3.9 +/- 0.1% (P<0.05) with no change in intracellular Ca2+ transients. However, in the TG group, LPS reduced myocyte shortening by only 13% from 7.5 +/- 0.2 to 6.5 +/- 0.2% (P<0.05). LPS treatment significantly reduced the positive inotropic effect of isoproterenol in NTG myocytes but not in TG myocytes, even though isoproterenol-induced increases in Ca2+ transient amplitude were similar in both groups. Only LPS-treated NTG hearts showed a significant increase in cTnI phosphorylation. Investigation of the sarcomere shortening-Ca2+ relationship in Triton-skinned cardiomyocytes revealed a significant reduction in myofilament Ca2+ sensitivity after LPS treatment in NTG myocytes, an effect that was substantially attenuated in TG myocytes. In conclusion, the replacement of cTnI with ssTnI in the heart provides significant protection against endotoxemia-induced cardiac contractile dysfunction, most probably by preserving myofilament Ca2+ responsiveness due to prevention of phosphorylation of TnI at PKA-sensitive sites.
Collapse
Affiliation(s)
- Joanne Layland
- Cardiovascular Division, King's College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|