1
|
Li D, Song Y, Wang Y, Guo Y, Zhang Z, Yang G, Wang G, Xu C. Nos2 deficiency enhances carbon tetrachloride-induced liver injury in aged mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:600-605. [PMID: 32742597 PMCID: PMC7374991 DOI: 10.22038/ijbms.2020.39528.9380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Objective(s): As a multifunctional molecule, NO has different effects on liver injury. The present work aimed to investigate the effects of Nos2 knockout (KO) on acute liver injury in aged mice treated with carbon tetrachloride (CCl4). Materials and Methods: The acute liver injury model was produced by CCl4 at 10 ml/kg body weight in 24-month-old Nos2 KO mice and wild type (WT) mice groups. The histological changes, transaminase and glutathione (GSH) contents, and the expressions of liver function genes superoxide dismutase (SOD2) and butyrylcholinesterase (BCHE), as well as apoptosis- and inflammation-associated genes were detected at 0, 6, 16, 20, 28, and 48 hr, respectively. Results: Compared with WT aged mice, there are more fat droplets in liver tissues of Nos2 KO aged mice, and the serum levels of ALT and AST were elevated in the KO group; in addition, there was a decrease in the expression of SOD2 and BCHE and GSH content at multiple time-points. Furthermore, the expression of apoptosis protein CASPASE-3 was elevated from 20 to 48 hr, the same as CASPASE-9 at 28 and 48 hr and pro-apoptotic protein BAX at 6 and 28 hr, while the expression of apoptosis inhibitory protein BCL2 declined at 6 and 28 hr; at the same time the mRNA expressions of genes related to inflammation were increased at different extents in liver extracts of Nos2 KO aged mice. Conclusion: Nos2 KO exacerbated liver injury probably by elevated oxidative stress, apoptosis and inflammation response in CCl4-induced aged mice liver intoxication model.
Collapse
Affiliation(s)
- Deming Li
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Yaping Song
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Yahao Wang
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Yuedong Guo
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Zhaoke Zhang
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Ganggang Yang
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Gaiping Wang
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| | - Cunshuan Xu
- State Key Laboratory Cell Differentiation and Regulation, Xinxiang, Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis.,Henan center for outstanding overseas scientists of pulmonary fibrosis, Xinxiang, Henan, China.,College of Life Science, Xinxiang, Henan, China.,Institute of Biomedical Science, Xinxiang, Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Abstract
Sepsis affects practically all aspects of endothelial cell (EC) function and is thought to be the key factor in the progression from sepsis to organ failure. Endothelial functions affected by sepsis include vasoregulation, barrier function, inflammation, and hemostasis. These are among other mechanisms often mediated by glycocalyx shedding, such as abnormal nitric oxide metabolism, up-regulation of reactive oxygen species generation due to down-regulation of endothelial-associated antioxidant defenses, transcellular communication, proteases, exposure of adhesion molecules, and activation of tissue factor. This review covers current insight in EC-associated hemostatic responses to sepsis and the EC response to inflammation. The endothelial cell lining is highly heterogeneous between different organ systems and consequently also in its response to sepsis. In this context, we discuss the response of the endothelial cell lining to sepsis in the kidney, liver, and lung. Finally, we discuss evidence as to whether the EC response to sepsis is adaptive or maladaptive. This study is a result of an Acute Dialysis Quality Initiative XIV Sepsis Workgroup meeting held in Bogota, Columbia, between October 12 and 15, 2014.
Collapse
|
3
|
Survivin signaling is regulated through nuclear factor-kappa B pathway during glycochenodeoxycholate-induced hepatocyte apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:1368-75. [DOI: 10.1016/j.bbamcr.2010.08.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 07/28/2010] [Accepted: 08/18/2010] [Indexed: 11/21/2022]
|
4
|
Huang SH, Cao XJ, Liu W, Shi XY, Wei W. Inhibitory effect of melatonin on lung oxidative stress induced by respiratory syncytial virus infection in mice. J Pineal Res 2010; 48:109-16. [PMID: 20070490 DOI: 10.1111/j.1600-079x.2009.00733.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous research has shown that antioxidant (butylated hydroxyanisole) treatment ameliorates respiratory syncytial virus (RSV)-induced disease and lung inflammation. Melatonin has been reported to exhibit a wide varieties of biological effects, including antioxidant and anti-inflammation, and has no evident toxicity and side effect. But it is not known whether melatonin would modify RSV-induced lung disease and oxidative stress. The present study was to establish the involvement of oxidative stress in the pathogenesis of RSV-induced lung inflammation, and to investigate the protective effect of administration of melatonin in mice with RSV-induced oxidative pulmonary injury for 4 days. Malondialdehyde (MDA), an end product of lipid peroxidation, and glutathione (GSH) and superoxide dismutase (SOD) and nitric oxide (NO) levels were evaluated in lung tissue homogenates by spectrophotometry. Hydroxyl radical (.-OH), one of the indicators of free radical formation, was also detected in lung homogenates by Fenton reaction. Tumor necrosis factor-a (TNF-a) concentrations in mouse serum were measured with ELISA assay. The results demonstrated that the mice intranasally inoculated with RSV resulted in oxidative stress changes by increasing NO, MDA and .-OH levels, and decreasing GSH and SOD activities, whereas administration of melatonin significantly reversed all these effects. Furthermore, melatonin inhibited production of proinflammatory cytokines such as TNF-a in serum of RSV-infected mice. These results suggest that melatonin ameliorates RSV-induced lung inflammatory injury in mice via inhibition of oxidative stress and proinflammatory cytokine production and may be as a novel therapeutic agent in virus-induced pulmonary infection.
Collapse
Affiliation(s)
- Sheng-Hai Huang
- Department of Microbiology, Key Laboratory of Anti-inflammatory and Immunopharmacology in Anhui Province, Anhui Medical University, Hefei, China.
| | | | | | | | | |
Collapse
|
5
|
López-Fontal R, Zeini M, Través PG, Gómez-Ferrería M, Aranda A, Sáez GT, Cerdá C, Martín-Sanz P, Hortelano S, Boscá L. Mice lacking thyroid hormone receptor Beta show enhanced apoptosis and delayed liver commitment for proliferation after partial hepatectomy. PLoS One 2010; 5:e8710. [PMID: 20090848 PMCID: PMC2806828 DOI: 10.1371/journal.pone.0008710] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 12/22/2009] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The role of thyroid hormones and their receptors (TR) during liver regeneration after partial hepatectomy (PH) was studied using genetic and pharmacologic approaches. Roles in liver regeneration have been suggested for T3, but there is no clear evidence distinguishing the contribution of increased amounts of T3 from the modulation by unoccupied TRs. METHODOLOGY/PRINCIPAL FINDINGS Mice lacking TRalpha1/TRbeta or TRbeta alone fully regenerated liver mass after PH, but showed delayed commitment to the initial round of hepatocyte proliferation and transient but intense apoptosis at 48h post-PH, affecting approximately 30% of the remaining hepatocytes. Pharmacologically induced hypothyroidism yielded similar results. Loss of TR activity was associated with enhanced nitrosative stress in the liver remnant, due to an increase in the activity of the nitric oxide synthase (NOS) 2 and 3, caused by a transient decrease in the concentration of asymmetric dimethylarginine (ADMA), a potent NOS inhibitor. This decrease in the ADMA levels was due to the presence of a higher activity of dimethylarginineaminohydrolase-1 (DDAH-1) in the regenerating liver of animals lacking TRalpha1/TRbeta or TRbeta. DDAH-1 expression and activity was paralleled by the activity of FXR, a transcription factor involved in liver regeneration and up-regulated in the absence of TR. CONCLUSIONS/SIGNIFICANCE We report that TRs are not required for liver regeneration; however, hypothyroid mice and TRbeta- or TRalpha1/TRbeta-deficient mice exhibit a delay in the restoration of liver mass, suggesting a specific role for TRbeta in liver regeneration. Altered regenerative responses are related with a delay in the expression of cyclins D1 and E, and the occurrence of liver apoptosis in the absence of activated TRbeta that can be prevented by administration of NOS inhibitors. Taken together, these results indicate that TRbeta contributes significantly to the rapid initial round of hepatocyte proliferation following PH, and improves the survival of the regenerating liver at later times.
Collapse
Affiliation(s)
| | - Miriam Zeini
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Paqui G. Través
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
| | | | - Ana Aranda
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
| | - Guillermo T. Sáez
- Departamento de Bioquímica y Biología Molecular-Servicio de Análisis Clínicos, Hospital General Universitario, Valencia, Spain
| | - Concha Cerdá
- Departamento de Bioquímica y Biología Molecular-Servicio de Análisis Clínicos, Hospital General Universitario, Valencia, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
| | - Sonsoles Hortelano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- * E-mail: (LB); (SH)
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Barcelona, Spain
- * E-mail: (LB); (SH)
| |
Collapse
|
6
|
Vollmar B, Menger MD. The hepatic microcirculation: mechanistic contributions and therapeutic targets in liver injury and repair. Physiol Rev 2009; 89:1269-339. [PMID: 19789382 DOI: 10.1152/physrev.00027.2008] [Citation(s) in RCA: 356] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The complex functions of the liver in biosynthesis, metabolism, clearance, and host defense are tightly dependent on an adequate microcirculation. To guarantee hepatic homeostasis, this requires not only a sufficient nutritive perfusion and oxygen supply, but also a balanced vasomotor control and an appropriate cell-cell communication. Deteriorations of the hepatic homeostasis, as observed in ischemia/reperfusion, cold preservation and transplantation, septic organ failure, and hepatic resection-induced hyperperfusion, are associated with a high morbidity and mortality. During the last two decades, experimental studies have demonstrated that microcirculatory disorders are determinants for organ failure in these disease states. Disorders include 1) a dysregulation of the vasomotor control with a deterioration of the endothelin-nitric oxide balance, an arterial and sinusoidal constriction, and a shutdown of the microcirculation as well as 2) an overwhelming inflammatory response with microvascular leukocyte accumulation, platelet adherence, and Kupffer cell activation. Within the sequelae of events, proinflammatory mediators, such as reactive oxygen species and tumor necrosis factor-alpha, are the key players, causing the microvascular dysfunction and perfusion failure. This review covers the morphological and functional characterization of the hepatic microcirculation, the mechanistic contributions in surgical disease states, and the therapeutic targets to attenuate tissue injury and organ dysfunction. It also indicates future directions to translate the knowledge achieved from experimental studies into clinical practice. By this, the use of the recently introduced techniques to monitor the hepatic microcirculation in humans, such as near-infrared spectroscopy or orthogonal polarized spectral imaging, may allow an early initiation of treatment, which should benefit the final outcome of these critically ill patients.
Collapse
Affiliation(s)
- Brigitte Vollmar
- Institute for Experimental Surgery, University of Rostock, Rostock, Germany.
| | | |
Collapse
|
7
|
Calafell R, Boada J, Santidrian AF, Gil J, Roig T, Perales JC, Bermudez J. Fructose 1,6-bisphosphate reduced TNF-alpha-induced apoptosis in galactosamine sensitized rat hepatocytes through activation of nitric oxide and cGMP production. Eur J Pharmacol 2009; 610:128-33. [PMID: 19324037 DOI: 10.1016/j.ejphar.2009.03.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/03/2009] [Accepted: 03/15/2009] [Indexed: 10/21/2022]
Abstract
Fructose 1,6-P2 (F1,6BP) protects rat liver against experimental hepatitis induced by galactosamine (GalN) by means of two parallel effects: prevention of inflammation, and reduction of hepatocyte sensitization to tumour necrosis factor-alpha (TNF-alpha). In a previous paper we reported the underlying mechanism involved in the prevention of inflammation. In the present study, we examined the intracellular mechanisms involved in the F1,6BP inhibition of the apoptosis induced by TNF-alpha in parenchyma cells of GalN-sensitized rat liver. We hypothesized that the increased nitric oxide (NO) production in livers of F1,6BP-treated rats mediates the antiapoptotic effect. This hypothesis was evaluated in cultured primary rat hepatocytes challenged by GalN plus tumour necrosis factor-alpha (GalN+TNF-alpha), to reproduce in vitro the injury associated with experimental hepatitis. Our results show a reduction in apoptosis concomitant with an increase in NO production and with a reduction in oxidative stress. In such conditions, guanylyl cyclase is activated and the increase in cGMP reduces the TNF-alpha-induced apoptosis in hepatocytes. These results provide new insights in the protective mechanism activated by F1,6BP and confirm its interest as a hepatoprotective agent.
Collapse
Affiliation(s)
- Roser Calafell
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Brown AE, Baumbach J, Cook PE, Ligoxygakis P. Short-term starvation of immune deficient Drosophila improves survival to gram-negative bacterial infections. PLoS One 2009; 4:e4490. [PMID: 19221590 PMCID: PMC2637427 DOI: 10.1371/journal.pone.0004490] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 01/06/2009] [Indexed: 01/08/2023] Open
Abstract
Background Primary immunodeficiencies are inborn errors of immunity that lead to life threatening conditions. These predispositions describe human immunity in natura and highlight the important function of components of the Toll-IL-1- receptor-nuclear factor kappa B (TIR-NF-κB) pathway. Since the TIR-NF-κB circuit is a conserved component of the host defence in higher animals, genetically tractable models may contribute ideas for clinical interventions. Methodology/Principal Findings We used immunodeficient fruit flies (Drosophila melanogaster) to address questions pertaining to survival following bacterial infection. We describe here that flies lacking the NF-κB protein Relish, indispensable for countering Gram-negative bacteria, had a greatly improved survival to such infections when subject to dietary short-term starvation (STS) prior to immune challenge. STS induced the release of Nitric Oxide (NO), a potent molecule against pathogens in flies, mice and humans. Administering the NO Synthase-inhibitory arginine analog N-Nitro-L-Arginine-Methyl-Ester (L-NAME) but not its inactive enantiomer D-NAME increased once again sensitivity to infection to levels expected for relish mutants. Surprisingly, NO signalling required the NF-κB protein Dif, usually needed for responses against Gram-positive bacteria. Conclusions/Significance Our results show that NO release through STS may reflect an evolutionary conserved process. Moreover, STS could be explored to address immune phenotypes related to infection and may offer ways to boost natural immunity.
Collapse
Affiliation(s)
- Anthony E. Brown
- Genetics Unit Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Janina Baumbach
- Genetics Unit Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Peter E. Cook
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Petros Ligoxygakis
- Genetics Unit Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Nitric oxide and MCP-1 regulation in LPS activated rat Kupffer cells. Mol Cell Biochem 2008; 319:91-8. [DOI: 10.1007/s11010-008-9881-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Accepted: 07/03/2008] [Indexed: 01/16/2023]
|
10
|
Lee SH, Culberson C, Korneszczuk K, Clemens MG. Differential mechanisms of hepatic vascular dysregulation with mild vs. moderate ischemia-reperfusion. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1219-26. [PMID: 18325981 DOI: 10.1152/ajpgi.00527.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endotoxemia produces hepatic vascular dysregulation resulting from inhibition of endothelin (ET)-stimulated NO production. Mechanisms include overexpression of caveolin-1 (Cav-1) and altered phosphorylation of endothelial nitric oxide (NO) synthase (NOS; eNOS) in sinusoidal endothelial cells. Since ischemia-reperfusion (I/R) also causes vascular dysregulation, we tested whether the mechanisms are the same. Rats were exposed to either mild (30 min) or moderate (60 min) hepatic ischemia in vivo followed by reperfusion (6 h). Livers were harvested and prepared into precision-cut liver slices for in vitro analysis of NOS activity and regulation. Both I/R injuries significantly abrogated both the ET-1 (1 microM) and the ET(B) receptor agonist (IRL-1620, 0.5 microM)-mediated stimulation of NOS activity. 30 min I/R resulted in overexpression of Cav-1 and loss of ET-stimulated phosphorylation of Ser1177 on eNOS, consistent with an inflammatory response. Sixty-minute I/R also resulted in loss of ET-stimulated Ser1177 phosphorylation, but Cav-1 expression was not altered. Moreover, expression of ET(B) receptors was significantly decreased. This suggests that the failure of ET to activate eNOS following 60-min I/R is associated with decreased protein expression consistent with ischemic injury. Thus hepatic vascular dysregulation following I/R is mediated by inflammatory mechanisms with mild I/R whereas ischemic mechanisms dominate following more severe I/R stress.
Collapse
Affiliation(s)
- Sang Ho Lee
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | | | | | | |
Collapse
|
11
|
Guruvayoorappan C, Kuttan G. Methanol extract of Biophytum sensitivum alters the cytokine profile and inhibits iNOS and COX-2 expression in LPS/Con A stimulated macrophages. Drug Chem Toxicol 2008; 31:175-88. [PMID: 18161516 DOI: 10.1080/01480540701688915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Biophytum sensitivum has been used in traditional folk medicine to treat numerous diseases. The molecular mechanism of B. sensitivum pharmacological and biochemical actions of macrophages in inflammation has not been clearly elucidated. We examined how the methanol extract of B. sensitivum regulates the production of interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha, IL-6, and nitric oxide (NO) in vitro and in vivo. The extract inhibits the production of NO and proinflammatory cytokines in lipopolysaccharide (LPS) or Concanavalin (Con) A-stimulated primary macrophages. In vitro L929 bioassay revealed the inhibition of TNF-alpha production by B. sensitivum treatment. Moreover, the extract could suppress the inducible nitric oxide synthase and cyclo-oxygenase-2 mRNA expression in LPS or Con A-stimulated macrophages. These findings provide evidence that B. sensitivum possesses potential anti-inflammatory activity and may be beneficial for the treatment of endotoxin shock or sepsis.
Collapse
|
12
|
Na HJ, Chung HT, Ha KS, Lee H, Kwon YG, Billiar TR, Kim YM. Detection and measurement for the modification and inactivation of caspase by nitrosative stress in vitro and in vivo. Methods Enzymol 2008; 441:317-27. [PMID: 18554542 DOI: 10.1016/s0076-6879(08)01217-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nitrosative stress, a nitric oxide (NO)-mediated nitrosylation of redox-sensitive thiols, has been linked to the regulation of signal transduction, gene expression, and cell growth and apoptosis and thus may be widely implicated in both physiological and pathological actions of NO. Protein S-nitrosylation has been observed to occur in vitro and in vivo in pathophysiological conditions. Apoptosis can be regulated by S-nitrosylation of the redox-sensitive cysteine residue in the active site of all caspase family proteases. Detection and measurement for the modification and inactivation of caspases by S-nitrosylation remain a new challenge because of the lability of the S-nitrosothiol moiety. This chapter describes approaches for assaying and identifying S-nitrosylated caspase enzymes in vitro and in vivo. These methods permit rapid and reproducible assays of S-nitrosylated caspases in biological and clinical specimens and should be useful for studies defining a pathophysiological role of NO in several apoptosis-associated human diseases.
Collapse
Affiliation(s)
- Hee-Jun Na
- Vascular System Research Center, Kangwon National University, Chunchon, Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Kolios G, Kotzampassi K, Manousou P, Paramythiotis D, Papanastasiou H, Drygiannakis I, Notas G, Tsagarakis N, Eleftheriadis E, Kouroumalis E. Enteral nutrition affects nitric oxide production in peripheral blood and liver after a postoperative lipopolysaccharide-induced endotoxemia in rats. Nutrition 2007; 23:575-81. [PMID: 17560081 DOI: 10.1016/j.nut.2007.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 04/22/2007] [Accepted: 04/23/2007] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Sepsis is a common complication in the early postoperative period, leading to the augmentation of oxidative and nitrosative stresses. The present study investigated the role of enteral nutrition on nitric oxide (NO) production after a lipopolysaccharide (LPS)-induced endotoxemia as an index of nitrosative stress. METHODS Fifty rats were subjected to midline laparotomy and feeding gastrostomy. Ten rats served as controls after recovering from operative stress. The remaining rats received, through gastrostomy, enteral nutrition or placebo feeding for 24 h, after which they were injected intraperitoneally with LPS or equal volume of saline. Two hours later blood and liver tissue were collected. NO production was quantified in serum samples and homogenates of liver tissue by a modification of Griess's reaction. NO synthase (NOS) mRNA expression was examined in homogenate of liver tissue by reverse transcription-polymerase chain reaction. RESULTS The operation significantly increased basal NO production in rat serum. LPS induced a further significant increase of NO levels. Enteral feeding of rats significantly decreased NO levels in both groups. In contrast, enteral nutrition was found to increase significantly NO levels in liver homogenates from rats treated with LPS. A constitutive endothelial NOS mRNA expression was found in liver tissue, whereas LPS administration induced inducible NOS mRNA expression in liver tissue regardless of enteral feeding. CONCLUSION These findings indicate that early enteral feeding leads to a reduction in circulating NO levels induced by operation and endotoxemia, but increases hepatic NO levels in endotoxemia probably by the effect of LPS-induced inducible NOS on the increased L-arginine uptake.
Collapse
Affiliation(s)
- George Kolios
- Department of Gastroenterology, University of Crete, Heraklion, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Vadrot N, Legrand A, Nello E, Bringuier AF, Guillot R, Feldmann G. Inducible nitric oxide synthase (iNOS) activity could be responsible for resistance or sensitivity to IFN-gamma-induced apoptosis in several human hepatoma cell lines. J Interferon Cytokine Res 2007; 26:901-13. [PMID: 17238833 DOI: 10.1089/jir.2006.26.901] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Response to interferon-gamma (IFN-gamma)-induced apoptosis of human hepatoma cell lines (HHCLs) is variable. We analyzed this different behavior in Hep3B, Chang-liver, HepG2, and HuH7 cells. We studied (1) IFN-gamma-induced apoptosis, (2) protein expression of Stat1, (3) binding of nuclear proteins to IFN-gamma activated sequence (GAS), (4) mRNA and expression of proteins acting in apoptosis, and (5) HuH7 sensitivity after inducible nitric oxide synthase (iNOS) siRNA transfection. IFN-gamma induced apoptosis in Hep3B and Chang-liver cells only. In all HHCLs, Stat1 protein increased. Binding of proteins and transactivation activity of GAS increased much more in HuH7. In all HHCLs, caspase activity and apoptotic proteins were not implicated in resistance or sensitivity. iNOS mRNA and protein expression increased in HuH7, disappeared in Hep3B, and remained unchanged in Chang-liver and HepG2. We compared the role of iNOS in Hep3B and HuH7. The iNOS inhibitor, L-NAME, sensitized HuH7 to IFN-gamma, Hep3B/HuH7 coculture partially inhibited Hep3B apoptosis, and HuH7 transfection with iNOS siRNA induced a 50% inhibition of iNOS protein and cell apoptosis. GAS activity and overexpression of iNOS in HuH7, but not in the other HHCLs, suggest that this enzyme could play an important role in the resistance of HuH7 to IFN-gamma-induced apoptosis, perhaps by the antiapoptotic action of NO.
Collapse
Affiliation(s)
- Nathalie Vadrot
- INSERM U773, Centre de Recherche Biologique CRB3, Equipe 5, U.F.R. de Médecine Denis Diderot, site Xavier Bichat (Université Paris 7-Denis Diderot), France
| | | | | | | | | | | |
Collapse
|
15
|
Zeini M, Través PG, López-Fontal R, Pantoja C, Matheu A, Serrano M, Boscá L, Hortelano S. Specific contribution of p19(ARF) to nitric oxide-dependent apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2006; 177:3327-36. [PMID: 16920973 DOI: 10.4049/jimmunol.177.5.3327] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NO is an important bioactive molecule involved in a variety of physio- and pathological processes, including apoptosis induction. The proapoptotic activity of NO involves the rise in the tumor suppressor p53 and the accumulation and targeting of proapoptotic members of the Bcl-2 family, in particular Bax and the release of cytochrome c from the mitochondria. However, the exact mechanism by which NO induces p53 activation has not been fully elucidated. In this study, we describe that NO induces p19(ARF) through a transcriptional mechanism. This up-regulation of p19(ARF) activates p53, leading to apoptosis. The importance of p19(ARF) on NO-dependent apoptosis was revealed by the finding that various cell types from alternate reading frame-knockout mice exhibit a diminished response to NO-mediated apoptosis when compared with normal mice. Moreover, the biological relevance of alternative reading frame to p53 apoptosis was confirmed in in vivo models of apoptosis. Together, these results demonstrate that NO-dependent apoptosis requires, in part, the activation of p19(ARF).
Collapse
Affiliation(s)
- Miriam Zeini
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Minin EA, Buchwalow IB, Wellner M, Palmes D, Spiegel HU, Neumann J, Boecker W, Herbst H. L-Arginine-NO-cGMP signaling following acute liver injury in the rat. ACTA ACUST UNITED AC 2005; 57:161-71. [PMID: 16325526 DOI: 10.1016/j.etp.2005.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 08/12/2005] [Indexed: 10/25/2022]
Abstract
The incidence of liver diseases has increased over the past few years. For this reason, the consequences of induced nitric oxide (NO) synthesis in liver damages warrant further studies. To address this issue, we investigated the expression of key enzymes engaged in the control of NO signaling in the rat liver after carbon tetrachloride (CCl4) intoxication and subsequent regeneration. CCl4 intoxication resulted in up-regulation of the entire NO signal transduction machinery. Expression patterns of arginase, soluble guanylyl cyclase and cyclic nucleotide phosphodiesterase revealed striking parallels with that of NO synthase (NOS). Co-expression of the major components of the l-arginine-NO-cGMP signaling cascade both in hepatocytes and in nonparenchymal cells indicates an autocrine rather than a paracrine fashion of NO signaling in the liver. Up-regulation of NOS after CCl4 intoxication fell behind the oxidative stress and was found to be associated with the initiation of parenchymal regeneration implying a beneficial effect of NO.
Collapse
Affiliation(s)
- Evgeny A Minin
- Gerhard Domagk Institute of Pathology, University of Muenster, Domagkstr. 17, 48149 Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hseu YC, Wu FY, Wu JJ, Chen JY, Chang WH, Lu FJ, Lai YC, Yang HL. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. Int Immunopharmacol 2005; 5:1914-25. [PMID: 16275626 DOI: 10.1016/j.intimp.2005.06.013] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 02/23/2005] [Accepted: 06/20/2005] [Indexed: 01/22/2023]
Abstract
Antrodia camphorata (A. camphorata), well known in Taiwan as a traditional Chinese medicine, has been shown to exhibit antioxidant and anticancer effects. In the present study, therefore, we have examined the effects of the fermented culture broth of A. camphorata (25-100 microg/ml) in terms of lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production, and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression in RAW 264.7 macrophages. Our results indicate concentration-dependent A. camphorata inhibition of LPS-induced NO and PGE2 production, without appreciable cytotoxicity on the RAW 264.7 cells. A. camphorata also attenuates the production of LPS-induced tumor necrosis factor (TNF-alpha) and interleukin (IL)-1beta. Furthermore, A. camphorata blocks the IkappaB-alpha degradation induced by LPS. These results indicate that A. camphorata inhibits LPS induction of cytokine, iNOS and COX-2 expression by blocking NF-kappaB activation. Therefore, we report the first confirmation of the anti-inflammatory potential of this traditionally employed herbal medicine in vitro.
Collapse
Affiliation(s)
- You-Cheng Hseu
- Department of Food Science, Changtai Institute of Health Sciences and Technology, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zeini M, Hortelano S, Través PG, Gómez-Valadés AG, Pujol A, Perales JC, Bartrons R, Boscá L. Assessment of a dual regulatory role for NO in liver regeneration after partial hepatectomy: protection against apoptosis and retardation of hepatocyte proliferation. FASEB J 2005; 19:995-7. [PMID: 15788446 DOI: 10.1096/fj.04-3233fje] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of hepatic nitric oxide (NO) in liver regeneration after partial hepatectomy (PH) was studied in animals carrying a nitric oxide synthase-2 transgene under the control of the phospho(enol)pyruvate carboxykinase promoter. These mice expressed NOS-2 in liver cells under fasting conditions. Liver mass recovery and molecular parameters related to cell proliferation were determined after PH. Preexisting hepatic NO synthesis, as well as NO delivery by NO-donors, impaired early signaling (for example, attenuated NF-kappaB activation and TNF-alpha and IL-6 release). The regenerative process was also impaired as a result of an insufficient proliferative response, but mouse survival after surgery was not compromised. However, NO exerted a protective role against apoptosis in transgenic hepatectomized mice. Local production of NO in liver cells, achieved by hydrodynamic-based transfection with a NOS-2-encoding plasmid, also resulted in delayed liver recovery after PH and also protected against Fas-mediated apoptosis. These data show that sustained presence of NO after PH exerts a dual role: attenuating liver regeneration while efficiently protecting against liver apoptosis.
Collapse
Affiliation(s)
- Miriam Zeini
- Instituto de Bioquímica (Centro Mixto CSIC-UCM) and Centro Nacional de Investigaciones Cardiovasculares, Facultad de Farmacia, Universidad, Complutense, Madrid
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Jang SI, Kim BH, Lee WY, An SJ, Choi HG, Jeon BH, Chung HT, Rho JR, Kim YJ, Chai KY. Stylopine from Chelidonium majus inhibits LPS-induced inflammatory mediators in RAW 264.7 cells. Arch Pharm Res 2005; 27:923-9. [PMID: 15473662 DOI: 10.1007/bf02975845] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Stylopine is a major component of the leaf of Chelidonium majus L. (Papaveraceae), which has been used for the removal of warts, papillomas and condylomas, as well as the treatment of liver disease, in oriental countries. Stylopine per se had no cytotoxic effect in unstimulated RAW 264.7 cells, but concentration-dependently reduced nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta), and the IL-6 production and cyclooxygenase-2 (COX-2) activity caused by the LPS stimulation. The levels of inducible nitric oxide synthase (iNOS) and COX-2 protein expressions were markedly suppressed by stylopine in a concentration dependent manner. These results suggest that stylopine suppress the NO and PGE2 production in macrophages by inhibiting the iNOS and COX-2 expressions. These biological activities of stylopine may contribute to the anti-inflammatory activity of Chelidonium majus.
Collapse
Affiliation(s)
- Seon Il Jang
- Department of Skin & beauty, Seojeong College, Yangju 482-860, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jang SI, Kim YJ, Lee WY, Kwak KC, Baek SH, Kwak GB, Yun YG, Kwon TO, Chung HT, Chai KY. Scoparone from artemisia capillaris inhibits the release of inflammatory mediators in RAW 264.7 cells upon stimulation cells by interferon-γ plus LPS. Arch Pharm Res 2005; 28:203-8. [PMID: 15789752 DOI: 10.1007/bf02977716] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Scoparone is a major component of the shoot of Artemisia capillaris (Compositae), which has been used for the treatment of hepatitis and biliary tract infection in oriental countries. In the present study we observed that, scorparone exhibited no cytotoxic effect in unstimulated macrophages, but reduced the release of nitric oxide (NO) and prostaglandin E2 (PGE2) upon stimulation by IFN-gamma/LPS or LPS. The inhibitory effects were found to be in conjuction with the suppression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in IFN-gamma/LPS stimulated RAW 264.7 cells. Moreover, scoparone also attenuated the production of tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta and IL-6 in LPS-stimulated RAW264.7 cells. These results suggest that scoparone decreases the production of the inflammatory mediators such as NO and PGE2 in macrophages by inhibiting iNOS and COX-2 expression.
Collapse
Affiliation(s)
- Seon Il Jang
- Department of Skin & Beauty, Seojeong College, Yangju 482-860, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Siendones E, Fouad D, Díaz-Guerra MJM, de la Mata M, Boscá L, Muntané J. PGE1-induced NO reduces apoptosis by D-galactosamine through attenuation of NF-kappaB and NOS-2 expression in rat hepatocytes. Hepatology 2004; 40:1295-303. [PMID: 15565661 DOI: 10.1002/hep.20448] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Prostaglandin E1 (PGE1) reduces cell death in experimental and clinical liver dysfunction. We have previously shown that PGE1 preadministration protects against NO-dependent cell death induced by D-galactosamine (D-GalN) through a rapid increase of nuclear factor kappaB (NF-kappaB) activity, inducible NO synthase (NOS-2) expression, and NO production. The present study investigates whether PGE1-induced NO was able to abolish NF-kappaB activation, NOS-2 expression, and apoptosis elicited by D-GalN. Rat hepatocytes were isolated following the classical method of collagenase perfusion of liver. PGE1 (1 micromol/L) was administered 2 hours before D-GalN (5 mmol/L) in primary culture rat hepatocytes. PGE1 reduced inhibitor kappaBalpha degradation, NF-kappaB activation, NOS-2 expression, and apoptosis induced by D-GalN. The administration of an inhibitor of NOS-2 abolished the inhibitory effect of PGE1 on NF-kappaB activation and NOS-2 expression in D-GalN-treated hepatocytes. Transfection studies using different plasmids corresponding to the NOS-2 promoter region showed that D-GalN and PGE1 regulate NOS-2 expression through NF-kappaB during the initial stage of hepatocyte treatment. PGE1 was able to reduce the promoter activity induced by D-GalN. In addition, a NO donor reduced NOS-2 promoter activity in transfected hepatocytes. In conclusion, administration of PGE1 to hepatocytes produces low levels of NO, which inhibits its own formation during D-GalN-induced cell death through the attenuation of NF-kappaB-dependent NOS-2 expression. Therefore, a dual role for NO in PGE1-treated D-GalN-induced toxicity in hepatocytes is characterized by a rapid NO release that attenuates the late and proapoptotic NOS-2 expression.
Collapse
Affiliation(s)
- Emilio Siendones
- Unidad de Investigación, Unidad Clínica Aparato Digestivo, Hospital Universitario Reina Sofía, Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Guler R, Olleros ML, Vesin D, Parapanov R, Vesin C, Kantengwa S, Rubbia-Brandt L, Mensi N, Angelillo-Scherrer A, Martinez-Soria E, Tacchini-Cottier F, Garcia I. Inhibition of inducible nitric oxide synthase protects against liver injury induced by mycobacterial infection and endotoxins. J Hepatol 2004; 41:773-81. [PMID: 15519650 DOI: 10.1016/j.jhep.2004.07.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 07/19/2004] [Accepted: 07/22/2004] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Bacillus Calmette Guerin (BCG) infection causes hepatic injury following granuloma formation and secretion of cytokines which render mice highly sensitive to endotoxin-mediated hepatotoxicity. This work investigates the role of inducible nitric oxide synthase (iNOS) in liver damage induced by BCG and endotoxins in BCG-infected mice. METHODS Liver injury and cytokine activation induced by BCG and by LPS upon BCG infection (BCG/LPS) were compared in wild-type and iNOS-/- mice. RESULTS iNOS-/- mice infected with living BCG are protected from hepatic injury when compared to wild-type mice which express iNOS protein in macrophages forming hepatic granulomas. In addition, iNOS-/- mice show a decrease in BCG-induced IFN-gamma serum levels. LPS challenge in BCG-infected mice strongly activates iNOS in the liver and spleen of wild-type mice which show important liver damage associated with a dramatic increase in TNF and IL-6 and also Th1 type cytokines. In contrast, iNOS-/- mice are protected from liver injury after BCG/LPS challenge and their TNF, IL-6 and Th1 type cytokine serum levels raise moderately. CONCLUSIONS These results demonstrate that nitric oxide (NO) from iNOS is involved in hepatotoxicity induced by both mycobacterial infection and endotoxin effects upon BCG infection and that inhibition of NO from iNOS protects from liver injuries.
Collapse
Affiliation(s)
- Reto Guler
- Department of Pathology, CMU, Faculty of Medicine, University of Geneva, 1, rue Michel-Servet, CH 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Low NO concentrations synthesized by constitutively expressed NO synthases act on several signaling pathways activating transcription factors (TF), such as NF-kappaB or AP-1, and thereby influence gene expression. In contrast, during inflammatory reactions the inducible NO synthase produces NO for prolonged periods of time. The resulting nitrosative stress directly affects redox-sensitive TF like NF-kappaB, AP-1, Oct-1, c-Myb, or zinc finger-containing TF, but also additional mechanisms have been identified. Nitrosative stress in some cases induces expression of TF (AP-1, p53), indirectly modulates activity or stability of TF (HIF-1, p53) or their inhibitors (NF-kappaB), or modulates accessibility of promoters via increased DNA methylation or histone deacetylation. Depending on the promoter the result is induced, increased, decreased or even totally inhibited expression of various target genes. In unstimulated cells nitrosative stress increases NF-kappaB- or AP-1-dependent transcription, while in activated cells nitrosative stress rather abolishes NF-kappaB- or AP-1-dependent transcription. Sometimes the oxygen concentration also is of prime importance, since under normoxic conditions nitrosative stress activates HIF-1-dependent transcription, while under hypoxic conditions nitrosative stress leads to inhibition of HIF-1-dependent transcription. This review summarizes what is known about effects of physiological NO levels as well as of nitrosative stress on transcription.
Collapse
Affiliation(s)
- Klaus-Dietrich Kröncke
- Institute of Molecular Medicine, Research Group Immunobiology, Medical Department, Heinrich-Heine-University Düsseldorf, D-20225 Düsseldorf, Germany
| |
Collapse
|
24
|
Sarady JK, Zuckerbraun BS, Bilban M, Wagner O, Usheva A, Liu F, Ifedigbo E, Zamora R, Choi AMK, Otterbein LE. Carbon monoxide protection against endotoxic shock involves reciprocal effects on iNOS in the lung and liver. FASEB J 2004; 18:854-6. [PMID: 15001560 DOI: 10.1096/fj.03-0643fje] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon monoxide (CO) has recently emerged as having potent cytoprotective properties; the mechanisms underlying these effects, however, are just beginning to be elucidated. In a rat model of lipopolysaccharide (LPS)-induced multiorgan failure, we demonstrate that exposure to a low concentration of CO for only 1 h imparts a potent defense against lethal endotoxemia and effectively abrogates the inflammatory response. Exposure to CO leads to long-term survival of >80% of animals vs. 20% in controls. In the lung, CO suppressed LPS-induced lung alveolitis and associated edema formation, while in the liver, it reduced expression of serum alanine aminotransferase, a marker of liver injury. This protection appears to be based in part on different mechanisms in the lung and liver in that CO had reciprocal effects on LPS-induced expression of iNOS and NO production, important mediators in the response to LPS. CO prevented the up-regulation of iNOS and NO in the lung while augmenting expression of iNOS and NO in the liver. Studies of primary lung macrophages and hepatocytes in vitro revealed a similar effect; CO inhibited LPS-induced cytokine production in lung macrophages while reducing LPS-induced iNOS expression and nitrite accumulation and protected hepatocytes from apoptosis while augmenting iNOS expression. Although it is unclear to which extent these changes in iNOS contribute to the cytoprotection conferred by CO, it is fascinating that in each organ CO influences iNOS in a manner known to be protective in that organ: NO is therapeutic in the liver while it is damaging in the lung.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Bronchoalveolar Lavage Fluid
- Carbon Monoxide/pharmacology
- Cells, Cultured/drug effects
- Cells, Cultured/enzymology
- Chemotaxis, Leukocyte/drug effects
- Cytokines/blood
- Cytokines/metabolism
- Enzyme Induction/drug effects
- Heme Oxygenase (Decyclizing)/biosynthesis
- Heme Oxygenase-1
- Hepatocytes/cytology
- Hepatocytes/drug effects
- Hepatocytes/enzymology
- Lipopolysaccharides/pharmacology
- Lipopolysaccharides/toxicity
- Liver/enzymology
- Lung/enzymology
- Macrophage Activation/drug effects
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/metabolism
- Male
- Multiple Organ Failure/enzymology
- Multiple Organ Failure/etiology
- Multiple Organ Failure/prevention & control
- NF-kappa B/physiology
- Nitric Oxide/physiology
- Nitric Oxide Synthase/biosynthesis
- Nitric Oxide Synthase/physiology
- Nitric Oxide Synthase Type II
- Organ Specificity
- Rats
- Rats, Sprague-Dawley
- Shock, Septic/complications
- Shock, Septic/enzymology
- Shock, Septic/prevention & control
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Judit K Sarady
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zuckerbraun BS, Billiar TR, Otterbein SL, Kim PKM, Liu F, Choi AMK, Bach FH, Otterbein LE. Carbon monoxide protects against liver failure through nitric oxide-induced heme oxygenase 1. ACTA ACUST UNITED AC 2004; 198:1707-16. [PMID: 14657222 PMCID: PMC2194127 DOI: 10.1084/jem.20031003] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Carbon monoxide (CO) and nitric oxide (NO) each have mechanistically unique roles in various inflammatory disorders. Although it is known that CO can induce production of NO and that NO can induce expression of the cytoprotective enzyme heme oxygenase 1 (HO-1), there is no information whether the protective effect of CO ever requires NO production or whether either gas must induce expression of HO-1 to exert its functional effects. Using in vitro and in vivo models of tumor necrosis factor α–induced hepatocyte cell death in mice, we find that activation of nuclear factor κB and increased expression of inducible NO are required for the protective effects of CO, whereas the protective effects of NO require up-regulation of HO-1 expression. When protection from cell death is initiated by CO, NO production and HO-1 activity are each required for the protective effect showing for the first time an essential synergy between these two molecules in tandem providing potent cytoprotection.
Collapse
Affiliation(s)
- Brian S Zuckerbraun
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim PKM, Zuckerbraun BS, Otterbein LE, Vodovotz Y, Billiar TR. Til cell death do us part: nitric oxide and mechanisms of hepatotoxicity. Biol Chem 2004; 385:11-5. [PMID: 14977041 DOI: 10.1515/bc.2004.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Like many juggernauts in biology, the elusive nature of nitric oxide (NO) sprints through the fields, sometimes the savior, at other times the scimitar. In the liver, which is the metabolic center of the organism, hepatocytes and immune cells trade blows using the reactive diatomic molecule NO to induce cellular damage under toxic conditions. In response, hepatocytes can utilize several mechanisms of NO to their protective advantage by prohibiting the activation of programmed cell death, a.k.a. apoptosis. The balance of these effects in this reactive milieu set the stage for the homeostatic response to cellular injury that determines whether hepatocytes will live, die, or regenerate. Insights that we and others have gained from the liver under pathologic conditions of stress can be applied to the understanding of cellular death mechanisms in other organs and tissues.
Collapse
Affiliation(s)
- Peter K M Kim
- Department of Surgery, University of Pittsburgh Medical School, NW607 MUH, 3459 Fifth Avenue, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
27
|
Ding JW, Wang K, Brems JJ, Gamelli RL. Protection against concanavalin A–induced hepatocyte apoptosis by molsidomine is time-dependent. J Am Coll Surg 2004; 198:67-77. [PMID: 14698313 DOI: 10.1016/j.jamcollsurg.2003.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Viral hepatitis and autoimmune liver diseases cause hepatocyte apoptosis. Concanavalin A (Con A)-induced hepatitis resembles human viral hepatitis and autoimmune hepatitis. The role of nitric oxide (NO) in liver injury was controversial in different liver injury models. We hypothesize both endogenous and exogenous NO protect liver against Con A-induced liver injury. Molsidomine is metabolized into SIN-1 by the liver, and SIN-1 subsequently generates NO. So, molsidomine was used as a NO donor in this study. STUDY DESIGN To study a protective role of endogenous NO in Con A-induced liver injury, mice were pretreated with a specific inducible nitric oxide synthase (iNOS) inhibitor, L-N(6)-(1-iminoethyl)-lysine (L-NIL), before Con A challenge. To study a time-dependent protection against Con A-induced liver injury, animals were either given molsidomine, a NO donor, before or after Con A administration. Serum alanine aminotranferase (ALT) was analyzed. Liver samples were subjected to DNA fragmentation assay, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling stain, Western blot analysis, and caspase activity assays. RESULTS Animals pretreated with L-NIL had significantly increased serum ALT levels compared with those challenged with Con A alone; but pretreatment with molsidomine dramatically decreased ALT levels in L-NIL-pretreated animals or in animals that received Con A alone. Administration of molsidomine 30 minutes before or 1, 2, and 3 hours after Con A injection significantly reduced serum ALT levels and attenuated hepatocyte apoptosis from caspase inactivation. The ALT reduction was associated with inhibition of both caspase-3 and caspase-8 activation and reduction of hepatocyte apoptosis. CONCLUSIONS Endogenous NO plays an important protective role against Con A-induced liver injury by reducing hepatocyte apoptosis. Administration of a NO donor early after Con A injection protects the liver from injury. This is the first study demonstrating a time-dependent inhibition of liver injury induced by Con A administration.
Collapse
Affiliation(s)
- Jin Wen Ding
- Department of Surgery, Loyola University Medical Center, Maywood, IL 60607, USA
| | | | | | | |
Collapse
|
28
|
Hines IN, Kawachi S, Harada H, Pavlick KP, Hoffman JM, Bharwani S, Wolf RE, Grisham MB. Role of nitric oxide in liver ischemia and reperfusion injury. Mol Cell Biochem 2003. [PMID: 12162439 DOI: 10.1023/a:1015952926016] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The present study was designed to assess the role of endothelial cell and inducible nitric oxide synthase (eNOS, iNOS)-derived NO in ischemia/reperfusion (I/R)-induced pro-inflammatory cytokine expression and tissue injury in a murine model of hepatic I/R. Forty-five min of partial hepatic ischemia and 3 h of reperfusion resulted in a significant increase in liver injury as assessed by serum alanine aminotransferase and histopathology which occurred in the absence of neutrophil infiltration. Both iNOS and eNOS deficient mice exhibited enhanced liver injury when compared to their wild type (wt) controls again in the absence of neutrophil infiltration. Interestingly, message expression for both tumor necrosis factor-alpha (TNF-alpha) and interleukin 12 (IL-12) were enhanced in eNOS, but not iNOS-deficient mice at 1 h post-ischemia when compared to their wt controls. In addition, eNOS message expression appeared to be up-regulated between 1 and 3 h ofreperfusion in wt mice while iNOS deficient mice exhibited substantial increases at I but not 3 h. Taken together, these data demonstrate the ability of eNOS and iNOS to protect the post-ischemic liver, however their mechanisms of action may be very different.
Collapse
Affiliation(s)
- Ian N Hines
- Department of Molecular and Cellular Physiology, LSU Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Martín-Sanz P, Olmedilla L, Dulin E, Casado M, Callejas NA, Pérez-Peña J, Garutti I, Sanz J, Calleja J, Barrigón S, Boscá L. Presence of methylated arginine derivatives in orthotopic human liver transplantation: relevance for liver function. Liver Transpl 2003; 9:40-8. [PMID: 12514772 DOI: 10.1053/jlts.2003.50008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orthotopic liver transplantation (OLT) is a frequent option in the treatment of liver diseases. During the cold ischemia period of the donor liver, there is an accumulation of metabolites that are potent inhibitors of the cytokine-inducible and endothelial nitric oxide synthase isoenzymes. We identified the presence of L-N-monomethylarginine and asymmetric dimethylarginine (ADMA) as the main inhibitors by means of analytic high-pressure liquid chromatography and mass spectrometry techniques. An average ADMA concentration of 450 micromol/L was measured in the preservation medium of donor livers with poor outcomes after OLT. A statistically significant relationship was observed between the concentration of methylated arginine derivatives in the graft and liver function after OLT. These data suggest that measurement of methylated arginine, released after liver protein catabolism, might provide an indication of functional status of the liver that can help the development of strategies intended to improve graft viability.
Collapse
Affiliation(s)
- Paloma Martín-Sanz
- Instituto de Bioquímica, Centro Mixto Cousejo Superior de Investigacious Científicas-Universidad Compluteuse de Madrid (CSIC-UCM), Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Martin-Sanz P, Hortelano S, Callejas NA, Goren N, Casado M, Zeini M, Boscá L. Nitric oxide in liver inflammation and regeneration. Metab Brain Dis 2002; 17:325-34. [PMID: 12602509 DOI: 10.1023/a:1021909902310] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocytes express and release inflammatory mediators after challenge with bacterial cell wall molecules and proinflammatory cytokines. Nitric oxide synthase-2 (NOS-2) is expressed under these conditions and the high-output NO synthesis that follows contributes to the inflammatory response in this tissue and participates in the onset of several hepatopathies. However, in the course of liver regeneration, for example, after partial hepatectomy, NOS-2 is expressed at moderate levels and contributes to inhibit apoptosis and to favor progression in the cell cycle until the organ size and function are restored. The mechanisms involved in the regulation of NOS-2 expression under these conditions are revised.
Collapse
Affiliation(s)
- Paloma Martin-Sanz
- Instituto de Bioquímica (Centro Mixto CSIC-UCM), Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
|
32
|
Abstract
Research on the free radical gas, nitric oxide (NO), during the past twenty years is one of the most rapid growing areas in biology. NO seems to play a part in almost every organ and tissue. However, there is considerable controversy and confusion in understanding its role. The liver is one organ that is clearly influenced by NO. Acute versus chronic exposure to NO has been associated with distinct patterns of liver disease. In this paper we review and discuss the involvement of NO in various liver diseases collated from observations by various researchers. Overall, the important factors in determining the beneficial versus harmful effects of NO are the amount, duration, and site of NO production. A low dose of NO serves to maximize blood perfusion, prevent platelet aggregation and thrombosis, and neutralize toxic oxygen radicals in the liver during acute sepsis and reperfusion events. NO also demonstrates antimicrobial and antiapoptosis properties during acute hepatitis infection and other inflammatory processes. However, in the setting of chronic liver inflammation, when a large sustained amount of NO is present, NO might become genotoxic and lead to the development of liver cancer. Additionally, during prolonged ischemia, high levels of NO may have cytotoxic effects leading to severe liver injury. In view of the various possible roles that NO plays, the pharmacologic modulation of NO synthesis is promising in the future treatment of liver diseases, especially with the emergence of selective NO synthase inhibitors and cell-specific NO donors.
Collapse
Affiliation(s)
- Wei Min Hon
- Department of Medicine, National University of Singapore, Singapore.
| | | | | |
Collapse
|
33
|
Abstract
Nitric oxide can prevent or induce apoptosis depending on its concentration, cell type, and the oxidative milieu. Nitric oxide inhibits apoptosis and inflammation by S-nitrosylation of the active site cysteine of caspases, the central effector molecules of cell death as well as maturation of IL-1beta and IL-18. The ability of nitric oxide to S-nitrosylate caspases depends on multiple factors including the presence of free iron and intracellular redox potential. There are no known direct effects of nitric oxide on promoting caspase activation or activity. However, nitric oxide has been shown to promote apoptotic pathways in numerous cell types through the indirect activation of caspases. In this article we review the relationship of nitric oxide and caspase activity, modulation of this effect by iron, and clinical implications for the use of nitric oxide in regulating inflammation and apoptosis.
Collapse
Affiliation(s)
- Peter K M Kim
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | | |
Collapse
|
34
|
Hines IN, Harada H, Bharwani S, Pavlick KP, Hoffman JM, Grisham MB. Enhanced post-ischemic liver injury in iNOS-deficient mice: a cautionary note. Biochem Biophys Res Commun 2001; 284:972-6. [PMID: 11409889 DOI: 10.1006/bbrc.2001.5069] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The objective of this study was to assess the role of inducible nitric oxide synthase (iNOS) in ischemia- and reperfusion (I/R)-induced liver injury. We found that partial hepatic ischemia involving 70% of the liver resulted in a time-dependent increase in serum alanine aminotransferase (ALT) levels at 1-6 h following reperfusion. Liver injury at 1, 3, and 6 h post-ischemia was not due to the infiltration of neutrophils as assessed by tissue myeloperoxidase (MPO) activity and histopathology. iNOS-deficient mice subjected to the same duration of ischemia and reperfusion showed dramatic and significant increases in liver injury at 3 but not 6 h following reperfusion compared to their wild type controls. Paradoxically, iNOS mRNA expression was not detected in the livers of wild type mice at any point during the reperfusion period and pharmacological inhibition of iNOS using L-N(6)(iminoethyl)-lysine (L-NIL) did not exacerbate post-ischemic liver injury at any time post-reperfusion. These data suggest that iNOS deficiency produces unanticipated genetic alterations that renders these mice more sensitive to liver I/R-induced injury.
Collapse
Affiliation(s)
- I N Hines
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | |
Collapse
|