1
|
Lui DTW, Wong CH, Ip A, Ng AKY. Ticagrelor was associated with lower fracture risk than clopidogrel in the dual anti-platelet regimen among patients with acute coronary syndrome treated with percutaneous coronary intervention. J Endocrinol Invest 2024; 47:895-902. [PMID: 37776493 DOI: 10.1007/s40618-023-02205-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
PURPOSE Patients with coronary artery disease have increased fracture risks. P2Y12 inhibitors may impact fracture risks. We compared the fracture risks associated with ticagrelor and clopidogrel in dual anti-platelet therapy (DAPT). METHODS We identified all adults who underwent first-ever percutaneous coronary intervention (PCI) for acute coronary syndrome (ACS) between 2010 and 2017 from a territory-wide PCI registry in Hong Kong. Following 1:1 propensity-score matching for baseline characteristics, patients were followed up till event occurrence, death, or 30 June 2022. Outcomes of interest were major osteoporotic fractures (MOF) identified by validated ICD-9-CM codes. Cox proportional hazards regression was used to compute the hazard ratio (HR) for MOF associated with ticagrelor versus clopidogrel use. RESULTS 3018 ticagrelor users and 3018 clopidogrel users were identified after propensity-score matching (mean age: 61.4 years; 84.1% men). Upon median follow-up of 6.5 years, 59 ticagrelor users and 119 clopidogrel users sustained MOF (annualized fracture risks: 0.34% and 0.56%, respectively). Ticagrelor use was associated with lower risks of MOF (HR 0.60, 95%CI 0.44-0.83; p = 0.002). Consistent HRs were observed for fractures over vertebrae, hip and upper limbs. Subgroup analyses showed no interaction according to age, sex, presence of diabetes, presence of chronic kidney disease and prior fracture history. CONCLUSION Among adults who underwent first-ever PCI for ACS, ticagrelor use in the DAPT was associated with a lower risk of MOF compared with clopidogrel. Our results support the use of ticagrelor in the DAPT from the perspective of bone health.
Collapse
Affiliation(s)
- D T W Lui
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - C H Wong
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - A Ip
- Critical Care Unit, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - A K Y Ng
- Cardiac Medical Unit, Grantham Hospital, Hong Kong SAR, China.
| |
Collapse
|
2
|
Wang H, Peng Y, Huang X, Xiao J, Ma L, Liu H, Huang H, Yang Z, Wang C, Wang X, Cao Z. Glycometabolic reprogramming in cementoblasts: A vital target for enhancing cell mineralization. FASEB J 2023; 37:e23241. [PMID: 37847512 DOI: 10.1096/fj.202300870rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Cementum, a constituent part of periodontal tissues, has important adaptive and reparative functions. It serves to attach the tooth to alveolar bone and acts as a barrier delimit epithelial growth and bacteria evasion. A dynamic and highly responsive cementum is essential for maintaining occlusal relationships and the integrity of the root surface. It is a thin layer of mineralized tissue mainly produced by cementoblasts. Cementoblasts are osteoblast-like cells essential for the restoration of periodontal tissues. In recent years, glucose metabolism has been found to be critical in bone remodeling and osteoblast differentiation. However, the glucose metabolism of cementoblasts remains incompletely understood. First, immunohistochemistry staining and in vivo tracing with 18 F-fluorodeoxyglucose (18 F-FDG) revealed significantly higher glucose metabolism in cementum formation. To test the bioenergetic pathways of cementoblast differentiation, we compared the bioenergetic profiles of mineralized and unmineralized cementoblasts. As a result, we observed a significant increase in the consumption of glucose and production of lactate, coupled with the higher expression of glycolysis-related genes. However, the expression of oxidative phosphorylation-related genes was downregulated. The verified results were consistent with the RNA sequencing results. Likewise, targeted energy metabolomics shows that the levels of glycolytic metabolites were significantly higher in the mineralized cementoblasts. Seahorse assays identified an increase in glycolytic flux and reduced oxygen consumption during cementoblast mineralization. Apart from that, we also found that lactate dehydrogenase A (LDHA), a key glycolysis enzyme, positively regulates the mineralization of cementoblasts. In summary, cementoblasts mainly utilized glycolysis rather than oxidative phosphorylation during the mineralization process.
Collapse
Affiliation(s)
- Huiyi Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xin Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junhong Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Li Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Heyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hantao Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengkun Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaoxuan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Noronha-Matos JB, Pinto-Cardoso R, Bessa-Andrês C, Magalhães-Cardoso MT, Ferreirinha F, Costa MA, Marinhas J, Freitas R, Lemos R, Vilaça A, Oliveira A, Pelletier J, Sévigny J, Correia-de-Sá P. Silencing NTPDase3 activity rehabilitates the osteogenic commitment of post-menopausal stem cell bone progenitors. Stem Cell Res Ther 2023; 14:97. [PMID: 37076930 PMCID: PMC10116749 DOI: 10.1186/s13287-023-03315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/29/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Endogenously released adenine and uracil nucleotides favour the osteogenic commitment of bone marrow-derived mesenchymal stromal cells (BM-MSCs) through the activation of ATP-sensitive P2X7 and UDP-sensitive P2Y6 receptors. Yet, these nucleotides have their osteogenic potential compromised in post-menopausal (Pm) women due to overexpression of nucleotide metabolizing enzymes, namely NTPDase3. This prompted us to investigate whether NTPDase3 gene silencing or inhibition of its enzymatic activity could rehabilitate the osteogenic potential of Pm BM-MSCs. METHODS MSCs were harvested from the bone marrow of Pm women (69 ± 2 years old) and younger female controls (22 ± 4 years old). The cells were allowed to grow for 35 days in an osteogenic-inducing medium in either the absence or the presence of NTPDase3 inhibitors (PSB 06126 and hN3-B3s antibody); pre-treatment with a lentiviral short hairpin RNA (Lenti-shRNA) was used to silence the NTPDase3 gene expression. Immunofluorescence confocal microscopy was used to monitor protein cell densities. The osteogenic commitment of BM-MSCs was assessed by increases in the alkaline phosphatase (ALP) activity. The amount of the osteogenic transcription factor Osterix and the alizarin red-stained bone nodule formation. ATP was measured with the luciferin-luciferase bioluminescence assay. The kinetics of the extracellular ATP (100 µM) and UDP (100 µM) catabolism was assessed by HPLC RESULTS: The extracellular catabolism of ATP and UDP was faster in BM-MSCs from Pm women compared to younger females. The immunoreactivity against NTPDase3 increased 5.6-fold in BM-MSCs from Pm women vs. younger females. Selective inhibition or transient NTPDase3 gene silencing increased the extracellular accumulation of adenine and uracil nucleotides in cultured Pm BM-MSCs. Downregulation of NTPDase3 expression or activity rehabilitated the osteogenic commitment of Pm BM-MSCs measured as increases in ALP activity, Osterix protein cellular content and bone nodule formation; blockage of P2X7 and P2Y6 purinoceptors prevented this effect. CONCLUSIONS Data suggest that NTPDase3 overexpression in BM-MSCs may be a clinical surrogate of the osteogenic differentiation impairment in Pm women. Thus, besides P2X7 and P2Y6 receptors activation, targeting NTPDase3 may represent a novel therapeutic strategy to increase bone mass and reduce the osteoporotic risk of fractures in Pm women.
Collapse
Affiliation(s)
- José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal.
| | - Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Maria Teresa Magalhães-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal
- Departamento de Química, Instituto de Ciências Biomédicas Abel Salazar - Universidade Do Porto (ICBAS-UP), 4050-313, Porto, Portugal
| | - José Marinhas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Rolando Freitas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Rui Lemos
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Gaia - Espinho, 4434-502, Vila Nova de Gaia, Portugal
| | - Adélio Vilaça
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
| | - António Oliveira
- Serviço de Ortopedia, Centro Hospitalar Universitário de Santo António, 4099-001, Porto, Portugal
| | - Julie Pelletier
- Centre de Recherche en Rhumatologie et Immunologie, University Laval, 2325, rue de l'Université Québec, Québec, G1V 0A6, Canada
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, University Laval, 2325, rue de l'Université Québec, Québec, G1V 0A6, Canada
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS) - Universidade do Porto (UP), R. Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
- Center for Drug Discovery and Innovative Medicines (MedInUP), Porto, Portugal.
| |
Collapse
|
4
|
Mao JT, Lai JN, Fu YH, Yip HT, Lai YC, Hsu CY, Chen SH, Kuo SJ. Protective Effects of Higher Exposure to Aspirin and/or Clopidogrel on the Occurrence of Hip Fracture among Diabetic Patients: A Retrospective Cohort Study. Biomedicines 2022; 10:biomedicines10102626. [PMID: 36289888 PMCID: PMC9599449 DOI: 10.3390/biomedicines10102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/16/2022] Open
Abstract
Aspirin and clopidogrel are commonly prescribed alone or together among the type 2 diabetes mellitus (T2DM) patients, and both agents could affect bone metabolism. This study aimed at demonstrating the effects of the dosage and the duration of aspirin and/or clopidogrel alone or together on the occurrence of hip fracture among T2DM patients. We chose the patients newly diagnosed with T2DM and divided them into four subgroups which are under aspirin monotherapy (78,522 patients), clopidogrel monotherapy (12,752 patients), dual therapy (7209 patients), and patients not taking antiplatelet drugs (401,686 patients). We found that only higher dosage (>360 cumulative daily defined dose (cDDD)) and longer duration (≥3 years) of antiplatelet agents could be associated with lower fracture risk. Compared with the subjects taking <1-year dual agents, the risk of hip fracture was 0.38-fold for the patients taking ≥3-year dual agents. Lower dosage (28−179 cDDD) and shorter duration (1~2 years) could even be associated with higher fracture risk. Overall, the best regimen to fend off the hip fracture was the use of aspirin and clopidogrel for ≥3 years.
Collapse
Affiliation(s)
- Jui-Ting Mao
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Jung-Nien Lai
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Yi-Hsiu Fu
- Department of Education, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Hei-Tung Yip
- Management office for Health Data, China Medical University Hospital, Taichung 404, Taiwan
| | - Yen-Chun Lai
- School of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chung-Y. Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Sung-Hsiung Chen
- Department of Orthopedic Surgery, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Correspondence: (S.-H.C.); (S.-J.K.)
| | - Shu-Jui Kuo
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung 404, Taiwan
- School of Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: (S.-H.C.); (S.-J.K.)
| |
Collapse
|
5
|
Dsouza C, Moussa MS, Mikolajewicz N, Komarova SV. Extracellular ATP and its derivatives provide spatiotemporal guidance for bone adaptation to wide spectrum of physical forces. Bone Rep 2022; 17:101608. [PMID: 35992507 PMCID: PMC9385560 DOI: 10.1016/j.bonr.2022.101608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
ATP is a ubiquitous intracellular molecule critical for cellular bioenergetics. ATP is released in response to mechanical stimulation through vesicular release, small tears in cellular plasma membranes, or when cells are destroyed by traumatic forces. Extracellular ATP is degraded by ecto-ATPases to form ADP and eventually adenosine. ATP, ADP, and adenosine signal through purinergic receptors, including seven P2X ATP-gated cation channels, seven G-protein coupled P2Y receptors responsive to ATP and ADP, and four P1 receptors stimulated by adenosine. The goal of this review is to build a conceptual model of the role of different components of this complex system in coordinating cellular responses that are appropriate to the degree of mechanical stimulation, cell proximity to the location of mechanical injury, and time from the event. We propose that route and amount of ATP release depend on the scale of mechanical forces, ranging from vesicular release of small ATP boluses upon membrane deformation, to leakage of ATP through resealable plasma membrane tears, to spillage of cellular content due to destructive forces. Correspondingly, different P2 receptors responsive to ATP will be activated according to their affinity at the site of mechanical stimulation. ATP is a small molecule that readily diffuses through the environment, bringing the signal to the surrounding cells. ATP is also degraded to ADP which can stimulate a distinct set of P2 receptors. We propose that depending on the magnitude of mechanical forces and distance from the site of their application, ATP/ADP profiles will be different, allowing the relay of information about tissue level injury and proximity. Lastly, ADP is degraded to adenosine acting via its P1 receptors. The presence of large amounts of adenosine without ATP, indicates that an active source of ATP release is no longer present, initiating the transition to the recovery phase. This model consolidates the knowledge regarding the individual components of the purinergic system into a conceptual framework of choreographed responses to physical forces. Cellular bioenergetic molecule ATP is released when cell is mechanically stimulated. ATP release is proportional to the amount of cellular damage. ATP diffusion and transformation to ADP indicates the proximity to the damage. Purinergic receptors form a network choreographing cell response to physical forces. Complete transformation of ATP to adenosine initiates the recovery phase.
Collapse
Affiliation(s)
- Chrisanne Dsouza
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
| | - Mahmoud S. Moussa
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Nicholas Mikolajewicz
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Svetlana V. Komarova
- Department of Experimental Surgery, McGill University, Montreal, QC H3G 1A4, Canada
- Shriners Hospitals for Children- Canada, Montreal, QC H4A 0A9, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
- Corresponding author.
| |
Collapse
|
6
|
Identification of ALP+/CD73+ defining markers for enhanced osteogenic potential in human adipose-derived mesenchymal stromal cells by mass cytometry. Stem Cell Res Ther 2021; 12:7. [PMID: 33407847 PMCID: PMC7789251 DOI: 10.1186/s13287-020-02044-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The impressive progress in the field of stem cell research in the past decades has provided the ground for the development of cell-based therapy. Mesenchymal stromal cells obtained from adipose tissue (AD-MSCs) represent a viable source for the development of cell-based therapies. However, the heterogeneity and variable differentiation ability of AD-MSCs depend on the cellular composition and represent a strong limitation for their use in therapeutic applications. In order to fully understand the cellular composition of MSC preparations, it would be essential to analyze AD-MSCs at single-cell level. METHOD Recent advances in single-cell technologies have opened the way for high-dimensional, high-throughput, and high-resolution measurements of biological systems. We made use of the cytometry by time-of-flight (CyTOF) technology to explore the cellular composition of 17 human AD-MSCs, interrogating 31 markers at single-cell level. Subcellular composition of the AD-MSCs was investigated in their naïve state as well as during osteogenic commitment, via unsupervised dimensionality reduction as well as supervised representation learning approaches. RESULT This study showed a high heterogeneity and variability in the subcellular composition of AD-MSCs upon isolation and prolonged culture. Algorithm-guided identification of emerging subpopulations during osteogenic differentiation of AD-MSCs allowed the identification of an ALP+/CD73+ subpopulation of cells with enhanced osteogenic differentiation potential. We could demonstrate in vitro that the sorted ALP+/CD73+ subpopulation exhibited enhanced osteogenic potential and is moreover fundamental for osteogenic lineage commitment. We finally showed that this subpopulation was present in freshly isolated human adipose-derived stromal vascular fractions (SVFs) and that could ultimately be used for cell therapies. CONCLUSION The data obtained reveal, at single-cell level, the heterogeneity of AD-MSCs from several donors and highlight how cellular composition impacts the osteogenic differentiation capacity. The marker combination (ALP/CD73) can not only be used to assess the differentiation potential of undifferentiated AD-MSC preparations, but also could be employed to prospectively enrich AD-MSCs from the stromal vascular fraction of human adipose tissue for therapeutic applications.
Collapse
|
7
|
Cui QQ, Hu ZL, Hu YL, Chen X, Wang J, Mao L, Lu XJ, Ni M, Chen JG, Wang F. Hippocampal CD39/ENTPD1 promotes mouse depression-like behavior through hydrolyzing extracellular ATP. EMBO Rep 2020; 21:e47857. [PMID: 32133764 DOI: 10.15252/embr.201947857] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence implicates that low levels of ATP in the extracellular space may contribute to the pathophysiology of major depressive disorder (MDD). The concentration of extracellular ATP is regulated by its hydrolase ectonucleotide tri(di)phosphohydrolase (ENTPD). However, the role of ENTPD in depression remains poorly understood. Here we examine the role of CD39 (known as ENTPD1) in mouse depression-like behavior induced by chronic social defeat stress (CSDS). We demonstrate that CSDS enhances the expression and activity of CD39 in hippocampus. The CD39 functional analog apyrase also induces depression-like behavior, which can be ameliorated by ATP replenishment. Pharmacological inhibition and genetic silencing of CD39 has an antidepressant-like effect via increasing hippocampal extracellular ATP concentration, accompanied with an increase in hippocampal neurogenesis and dendritic spine numbers in defeated mice. These results suggest that hippocampal CD39 contributes to CSDS-induced depression-like behavior via hydrolyzing extracellular ATP, indicating that CD39 may be a promising new target for the treatment of depression.
Collapse
Affiliation(s)
- Qian-Qian Cui
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Lang Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China
| | - Xi Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China
| | - Ji Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China
| | - Li Mao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China
| | - Xiao-Jia Lu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China
| | - Ming Ni
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China
| | - Jian-Guo Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan City, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan City, China.,Laboratory of Neuropsychiatric Diseases, The Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.,The Research Center for Depression, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Neurological Diseases (HUST), Ministry of Education of China, Wuhan City, China
| |
Collapse
|
8
|
Lillis T, Veis A, Sakellaridis N, Tsirlis A, Dailiana Z. Effect of clopidogrel in bone healing-experimental study in rabbits. World J Orthop 2019; 10:434-445. [PMID: 31908992 PMCID: PMC6937425 DOI: 10.5312/wjo.v10.i12.434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/27/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Clopidogrel is a widely prescribed drug for prevention of myocardial infarction and stroke in patients at risk. It inhibits thrombus formation via inhibition of the P2Y12 purinergic receptor on platelets, which is important in their activation by ADP. However, the P2Y12 receptor has also been found to be expressed in both osteoblasts and osteoclasts. Accumulated evidence suggests that purinergic receptors regulate important functions of bone turnover. Previous studies on the effect of clopidogrel on bone metabolism indicated potential harmful effects, but their results remain conflicting. Thus, clopidogrel treatment may affect bone healing, but it has not yet been studied. AIM To evaluate if continuous perioperative clopidogrel treatment has any negative effect on bone healing in the rabbit calvarial defect model. METHODS Sixteen male white New Zealand rabbits were randomly assigned in two groups: One group received daily 3 mg/kg of clopidogrel per os and the other group received the vehicle alone for a week prior to the surgical procedures; the treatments were continued for another 6 wk postoperatively. The surgical procedures included generation of two circular calvarial defects 11 mm in diameter in every animal. After the 6-wk period of healing, postmortem radiographic and histomorphometric evaluation of the defects was performed. RESULTS Both the surgical procedures and the postoperative period were uneventful and well tolerated by all the animals, without any surgical wound dehiscence, signs of infection or other complication. New bone was formed either inwards from the defect margins or in the central portion of the defect as separated bony islets. While defect healing was still incomplete in both groups, the clopidogrel group had significantly improved radiographic healing scores. Moreover, the histomorphometric analysis showed that bone regeneration (%) was 28.07 ± 7.7 for the clopidogrel group and 19.47 ± 4.9 for the control group, showing a statistically significant difference between them (P = 0.018). Statistically significant difference was also found in the defect bridging (%), i.e. 72.17 ± 21.2 for the clopidogrel group and 41.17 ± 8.5 for the control group, respectively (P = 0.004), whereas there was no statistical difference in bone tissue density between the groups. CONCLUSION Our results indicate that maintenance of perioperative clopidogrel treatment does not negatively affect bone healing but rather promotes it. Further research is needed in order to find useful applications of this finding.
Collapse
Affiliation(s)
- Theodoros Lillis
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
- Department of Dentoalveolar Surgery, Implantology and Oral Radiology, Faculty of Dentistry, Aristotle University of Thessaloniki, Panepistimioupoli, Thessaloniki 54124, Greece
| | - Alexander Veis
- Department of Dentoalveolar Surgery, Implantology and Oral Radiology, Faculty of Dentistry, Aristotle University of Thessaloniki, Panepistimioupoli, Thessaloniki 54124, Greece
| | - Nikolaos Sakellaridis
- Department of Clinical Pharmacology, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| | - Anastasios Tsirlis
- Department of Dentoalveolar Surgery, Implantology and Oral Radiology, Faculty of Dentistry, Aristotle University of Thessaloniki, Panepistimioupoli, Thessaloniki 54124, Greece
| | - Zoe Dailiana
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Thessaly, Biopolis, Larissa 41500, Greece
| |
Collapse
|
9
|
Müller WEG, Wang S, Neufurth M, Kokkinopoulou M, Feng Q, Schröder HC, Wang X. Polyphosphate as a donor of high-energy phosphate for the synthesis of ADP and ATP. J Cell Sci 2017; 130:2747-2756. [PMID: 28687622 DOI: 10.1242/jcs.204941] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/05/2017] [Indexed: 01/15/2023] Open
Abstract
Here, we studied the potential role of inorganic polyphosphate (polyP) as an energy source for ADP and ATP formation in the extracellular space. In SaOS-2 cells, we show that matrix vesicles are released into the extracellular space after incubation with polyP. These vesicles contain both alkaline phosphatase (ALP) and adenylate kinase (AK) activities (mediated by ALPL and AK1 enzymes). Both enzymes translocate to the cell membrane in response to polyP. To distinguish the process(es) of AMP and ADP formation during ALP hydrolysis from the ATP generated via the AK reaction, inhibition studies with the AK inhibitor A(5')P5(5')A were performed. We found that ADP formation in the extracellular space occurs after enzymatic ATP synthesis. After exposure to polyP, a significant increase of the ADP level was observed, which is likely to be been catalyzed by ALP. This increase is not due to an intensified ATP release via exocytosis. The ATP level in the extracellular space of SaOS-2 cells is strongly increased in response to polyP, very likely mediated by the AK. We propose that the ALP and AK enzymes are involved in the extracellular ADP and ATP synthesis.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Maria Kokkinopoulou
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
10
|
Bonten TN, de Mutsert R, Rosendaal FR, Jukema JW, van der Bom JG, de Jongh RT, den Heijer M. Chronic use of low-dose aspirin is not associated with lower bone mineral density in the general population. Int J Cardiol 2017; 244:298-302. [PMID: 28673738 DOI: 10.1016/j.ijcard.2017.06.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/01/2017] [Accepted: 06/22/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Low-dose aspirin is the cornerstone of secondary prevention of cardiovascular disease. Previous studies suggested that the use of aspirin is associated with an increased fracture risk. However, there is uncertainty whether this is due to an effect of aspirin on bone mineral density (BMD). METHODS Between 2008 and 2012, information on medication use and dual X-ray absorptiometry measured vertebral and femoral BMD of 916 participants was collected in the Netherland Epidemiology of Obesity study. The cross-sectional association between chronic low-dose aspirin use and BMD was estimated using linear regression, controlling for demography, body composition, comorbidity and other medication use which could affect BMD. A subgroup analysis in postmenopausal women (n=329) was conducted. RESULTS After full adjustment, there was no difference between aspirin users and non-users for vertebral BMD (adjusted mean difference: 0.036 (95% CI -0.027 to 0.100) g/cm2) and femoral BMD (adjusted mean difference: 0.001 (-0.067 to 0.069) g/cm2). Also in the subgroup of postmenopausal women, aspirin use was not associated with lower vertebral (adjusted mean difference: 0.069 (-0.046 to 0.184) g/cm2) or femoral BMD (adjusted mean difference: -0.055 (-0.139;0.029) g/cm2). CONCLUSION Chronic use of low-dose aspirin is not associated with lower BMD in the general population. The increased risk of fractures observed in aspirin users in previous studies is therefore more likely to be the result of common causes of aspirin use and fractures, but not of direct effects of aspirin on BMD.
Collapse
Affiliation(s)
- T N Bonten
- Department of Public Health & Primary Care, Leiden University Medical Center, Leiden, The Netherlands; Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | - R de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, The Netherlands
| | - F R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, The Netherlands
| | - J W Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - J G van der Bom
- Department of Clinical Epidemiology, Leiden University Medical Center, The Netherlands; JJ van Rood Center for Clinical Transfusion Research, Sanquin Research, Leiden, The Netherlands
| | - R T de Jongh
- Department of Internal Medicine, VU Medical Center, Amsterdam, The Netherlands
| | - M den Heijer
- Department of Clinical Epidemiology, Leiden University Medical Center, The Netherlands; Department of Internal Medicine, VU Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Ziller C, Lin J, Knittel P, Friedrich L, Andronescu C, Pöller S, Schuhmann W, Kranz C. Poly(benzoxazine) as an Immobilization Matrix for Miniaturized ATP and Glucose Biosensors. ChemElectroChem 2017. [DOI: 10.1002/celc.201600765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Charlotte Ziller
- Institute of Analytical and Bioanalytical Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Jing Lin
- Institute of Analytical and Bioanalytical Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Peter Knittel
- Institute of Analytical and Bioanalytical Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Laura Friedrich
- Institute of Analytical and Bioanalytical Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Corina Andronescu
- Department of Bioresources and Polymer Science University; Politehnica of Bucharest; 1-7 Polizu Street 011061 Bucharest Romania
- Analytical Chemistry - Center for Electrochemical Sciences (CES); Ruhr University Bochum; Universitätsstr. 150 44780 Bochum Germany
| | - Sascha Pöller
- Analytical Chemistry - Center for Electrochemical Sciences (CES); Ruhr University Bochum; Universitätsstr. 150 44780 Bochum Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry - Center for Electrochemical Sciences (CES); Ruhr University Bochum; Universitätsstr. 150 44780 Bochum Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry; Ulm University; Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
12
|
Orriss IR, Arnett TR, Russell RGG. Pyrophosphate: a key inhibitor of mineralisation. Curr Opin Pharmacol 2016; 28:57-68. [PMID: 27061894 DOI: 10.1016/j.coph.2016.03.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Abstract
Inorganic pyrophosphate has long been known as a by-product of many intracellular biosynthetic reactions, and was first identified as a key endogenous inhibitor of biomineralisation in the 1960s. The major source of pyrophosphate appears to be extracellular ATP, which is released from cells in a controlled manner. Once released, ATP can be rapidly hydrolysed by ecto-nucleotide pyrophosphatase/phosphodiesterases to produce pyrophosphate. The main action of pyrophosphate is to directly inhibit hydroxyapatite formation thereby acting as a physiological 'water-softener'. Evidence suggests pyrophosphate may also act as a signalling molecule to influence gene expression and regulate its own production and breakdown. This review will summarise our current understanding of pyrophosphate metabolism and how it regulates bone mineralisation and prevents harmful soft tissue calcification.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
| | - Timothy R Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - R Graham G Russell
- The Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, UK; The Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Noronha-Matos JB, Correia-de-Sá P. Mesenchymal Stem Cells Ageing: Targeting the "Purinome" to Promote Osteogenic Differentiation and Bone Repair. J Cell Physiol 2016; 231:1852-61. [PMID: 26754327 DOI: 10.1002/jcp.25303] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/07/2016] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into bone forming cells. Such ability is compromised in elderly individuals resulting in bone disorders such as osteoporosis, also limiting their clinical usage for cell transplantation and bone tissue engineering strategies. In bone marrow niches, adenine and uracil nucleotides are important local regulators of osteogenic differentiation of MSCs. Nucleotides can be released to the extracellular milieu under both physiological and pathological conditions via (1) membrane cell damage, (2) vesicle exocytosis, (3) ATP-binding cassette transporters, and/or (4) facilitated diffusion through maxi-anion channels, hemichannels or ligand-gated receptor pores. Nucleotides and their derivatives act via adenosine P1 (A1 , A2A , A2B , and A3 ) and nucleotide-sensitive P2 purinoceptors comprising ionotropic P2X and G-protein-coupled P2Y receptors. Purinoceptors activation is terminated by membrane-bound ecto-nucleotidases and other ecto-phosphatases, which rapidly hydrolyse extracellular nucleotides to their respective nucleoside 5'-di- and mono-phosphates, nucleosides and free phosphates, or pyrophosphates. Current knowledge suggests that different players of the "purinome" cascade, namely nucleotide release sites, ecto-nucleotidases and purinoceptors, orchestrate to fine-tuning regulate the activity of MSCs in the bone microenvironment. Increasing studies, using osteoprogenitor cell lines, animal models and, more recently, non-modified MSCs from postmenopausal women, raised the possibility to target chief components of the purinergic signaling pathway to regenerate the ability of aged MSCs to differentiate into functional osteoblasts. This review summarizes the main findings of those studies, prompting for novel therapeutic strategies to control ageing disorders where bone destruction exceeds bone formation, like osteoporosis, rheumatoid arthritis, and fracture mal-union. J. Cell. Physiol. 231: 1852-1861, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- J B Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Portugal
| | - P Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia-Center for Drug Discovery and Innovative Medicines (MedInUP), Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Portugal
| |
Collapse
|
14
|
Effect of near-infrared light on in vitro cellular ATP production of osteoblasts and fibroblasts and on fracture healing with intramedullary fixation. J Clin Orthop Trauma 2016; 7:234-241. [PMID: 27857496 PMCID: PMC5106470 DOI: 10.1016/j.jcot.2016.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 02/11/2016] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Evaluate the effect of near-infrared light (NIR) on immediate production of ATP by osteoblasts and fibroblasts in vitro, and the healing process of rat femur fractures with intramedullary fixation. BACKGROUND NIR is one potential treatment option for complications of fracture healing, which has shown to stimulate cellular proliferation and to enhance the healing process. METHODS Cell culture - MC3T3-E1 and 3T3-A31 cells were subjected to NIR at 660 nm, 830 nm, or both combined. ATP was assayed at 5, 10, 20, and 45 min after exposure. Animal study - 18 rats had surgery with retrograde intramedullary pins inserted into their femurs, which then underwent closed, transverse femur fracture. Rats were randomly divided into 3 study groups of 6 each: nonirradiated controls, 660 nm, and 830 nm NIR. Healing process was assessed by a blinded radiologist, assigning a healing score of 1-6 for radiographs taken on days 0, 7, 14, and 21. RESULTS Cell culture - All groups gave significant increase in ATP within 5-10 min, with decay to baseline by 45 min. 660 nm NIR was significantly more effective than 830 nm with fibroblasts or either wavelength with osteoblasts. Animal study - A significant increase in the fracture healing grade in the 660 nm group at day 14, but with no differences at day 21. CONCLUSION The study demonstrated an immediate increase in ATP production in vitro and an initial acceleration of callus formation in the fracture healing process, in the presence of NIR.
Collapse
|
15
|
Müller WEG, Tolba E, Schröder HC, Wang X. Polyphosphate: A Morphogenetically Active Implant Material Serving as Metabolic Fuel for Bone Regeneration. Macromol Biosci 2015; 15:1182-1197. [DOI: 10.1002/mabi.201500100] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| | - Emad Tolba
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
- Biomaterials Department; Inorganic Chemical Industries Division; National Research Center; Doki Cairo; 11884 Egypt
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry; University Medical Center of the Johannes Gutenberg University; Duesbergweg 6; D-55128 Mainz Germany
| |
Collapse
|
16
|
Abstract
Accumulating evidence now suggests that purinergic signalling exerts significant regulatory effects in the musculoskeletal system. In particular, it has emerged that extracellular nucleotides are key regulators of bone cell differentiation, survival and function. This review discusses our current understanding of the direct effects of purinergic signalling in bone, cartilage and muscle.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom.
| |
Collapse
|
17
|
The P2X7 receptor: a key player in immune-mediated bone loss? ScientificWorldJournal 2014; 2014:954530. [PMID: 24574936 PMCID: PMC3915485 DOI: 10.1155/2014/954530] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 10/29/2013] [Indexed: 12/20/2022] Open
Abstract
Inflammatory diseases are often multiorganic diseases with manifestations not related directly to the primary affected organ. They are often complicated by a generalized bone loss that subsequently leads to osteoporosis and bone fractures. The exact mechanism for the accompanying bone loss is not understood in full detail, but factors such as glucocorticoid treatment, immobilization, malnutrition, and insufficient intake of vitamin D play a role. However, it has become evident that the inflammatory process itself is involved and the resulting bone loss is termed immune-mediated bone loss. It stems from an increase in bone resorption and the pro-inflammatory cytokines tumor necrosis factor alpha and interleukin 1 beta and has been shown to not only mediate the inflammatory response but also to strongly stimulate bone degradation. The purinergic P2X7 receptor is central in the processing of these two cytokines and in the initiation of the inflammatory response, and it is a key molecule in the regulation of both bone formation and bone resorption. The aim of this review is therefore to provide evidence-based novel hypotheses of the role of ATP-mediated purinergic signalling via the P2X7 receptor in immune-mediated bone loss and -osteoporosis.
Collapse
|
18
|
Burnstock G, Arnett TR, Orriss IR. Purinergic signalling in the musculoskeletal system. Purinergic Signal 2013; 9:541-72. [PMID: 23943493 PMCID: PMC3889393 DOI: 10.1007/s11302-013-9381-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022] Open
Abstract
It is now widely recognised that extracellular nucleotides, signalling via purinergic receptors, participate in numerous biological processes in most tissues. It has become evident that extracellular nucleotides have significant regulatory effects in the musculoskeletal system. In early development, ATP released from motor nerves along with acetylcholine acts as a cotransmitter in neuromuscular transmission; in mature animals, ATP functions as a neuromodulator. Purinergic receptors expressed by skeletal muscle and satellite cells play important pathophysiological roles in their development or repair. In many cell types, expression of purinergic receptors is often dependent on differentiation. For example, sequential expression of P2X5, P2Y1 and P2X2 receptors occurs during muscle regeneration in the mdx model of muscular dystrophy. In bone and cartilage cells, the functional effects of purinergic signalling appear to be largely negative. ATP stimulates the formation and activation of osteoclasts, the bone-destroying cells. Another role appears to be as a potent local inhibitor of mineralisation. In osteoblasts, the bone-forming cells, ATP acts via P2 receptors to limit bone mineralisation by inhibiting alkaline phosphatase expression and activity. Extracellular ATP additionally exerts significant effects on mineralisation via its hydrolysis product, pyrophosphate. Evidence now suggests that purinergic signalling is potentially important in several bone and joint disorders including osteoporosis, rheumatoid arthritis and cancers. Strategies for future musculoskeletal therapies might involve modulation of purinergic receptor function or of the ecto-nucleotidases responsible for ATP breakdown or ATP transport inhibitors.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
19
|
Orriss IR, Key ML, Hajjawi MOR, Arnett TR. Extracellular ATP released by osteoblasts is a key local inhibitor of bone mineralisation. PLoS One 2013; 8:e69057. [PMID: 23874866 PMCID: PMC3706437 DOI: 10.1371/journal.pone.0069057] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/04/2013] [Indexed: 12/31/2022] Open
Abstract
Previous studies have shown that exogenous ATP (>1µM) prevents bone formation in vitro by blocking mineralisation of the collagenous matrix. This effect is thought to be mediated via both P2 receptor-dependent pathways and a receptor-independent mechanism (hydrolysis of ATP to produce the mineralisation inhibitor pyrophosphate, PPi). Osteoblasts are also known to release ATP constitutively. To determine whether this endogenous ATP might exert significant biological effects, bone-forming primary rat osteoblasts were cultured with 0.5-2.5U/ml apyrase (which sequentially hydrolyses ATP to ADP to AMP + 2Pi). Addition of 0.5U/ml apyrase to osteoblast culture medium degraded extracellular ATP to <1% of control levels within 2 minutes; continuous exposure to apyrase maintained this inhibition for up to 14 days. Apyrase treatment for the first 72 hours of culture caused small decreases (≤25%) in osteoblast number, suggesting a role for endogenous ATP in stimulating cell proliferation. Continuous apyrase treatment for 14 days (≥0.5U/ml) increased mineralisation of bone nodules by up to 3-fold. Increases in bone mineralisation were also seen when osteoblasts were cultured with the ATP release inhibitors, NEM and brefeldin A, as well as with P2X1 and P2X7 receptor antagonists. Apyrase decreased alkaline phosphatase (TNAP) activity by up to 60%, whilst increasing the activity of the PPi-generating ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs) up to 2.7-fold. Both collagen production and adipocyte formation were unaffected. These data suggest that nucleotides released by osteoblasts in bone could act locally, via multiple mechanisms, to limit mineralisation.
Collapse
Affiliation(s)
- Isabel R. Orriss
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Michelle L. Key
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Mark O. R. Hajjawi
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Timothy R. Arnett
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
|
21
|
Jørgensen NR, Grove EL, Schwarz P, Vestergaard P. Clopidogrel and the risk of osteoporotic fractures: a nationwide cohort study. J Intern Med 2012; 272:385-93. [PMID: 22372976 DOI: 10.1111/j.1365-2796.2012.02535.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The P2Y(12) inhibitor clopidogrel inhibits platelet aggregation and is used in the treatment and prevention of coronary artery disease. It is widely used and, in combination with acetylsalicylic acid, is the standard of care for acute coronary syndrome and percutaneous coronary intervention. The mode of action of clopidogrel involves pathways that are important to the metabolic activity in bone cells, although to our knowledge whether P2Y(12) receptors are involved in the regulation of bone metabolism has not yet been investigated. Therefore, the objective of the present study was to investigate the association between clopidogrel use and risk of fractures. METHODS We investigated the association between clopidogrel use and fracture incidence in a nationwide cohort study within the Danish population of approximately 5.3 million individuals. All patients who were prescribed clopidogrel during the years 1996-2008 were included in the study (n = 77 503), and three nonusers were randomly selected, matched for age and gender (n = 232 510), for each clopidogrel-treated subject. RESULTS Treatment with clopidogrel was associated with both increased overall fracture risk and increased risk of osteoporotic fractures, especially in subjects with a treatment duration of more than 1 year. However, individuals with low exposure to clopidogrel (<0.01 defined daily dose) had a lower risk of fracture than never users. CONCLUSIONS Use of the P2Y(12) inhibitor clopidogrel is associated with risk of fractures. There seems to be a biphasic relation so that lower doses are associated with decreased fracture risk, whereas higher doses (recommended dose range) are associated with increased risk. More studies are warranted to determine the potential in vivo effect of platelet aggregation inhibitors on bone metabolism.
Collapse
Affiliation(s)
- N R Jørgensen
- Departments of Clinical Biochemistry and Medicine M, Research Center for Aging and Osteoporosis, Copenhagen University Hospital, Glostrup, Denmark
| | | | | | | |
Collapse
|
22
|
|
23
|
Rumney RMH, Wang N, Agrawal A, Gartland A. Purinergic signalling in bone. Front Endocrinol (Lausanne) 2012; 3:116. [PMID: 23049524 PMCID: PMC3446723 DOI: 10.3389/fendo.2012.00116] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 09/04/2012] [Indexed: 12/11/2022] Open
Abstract
Purinergic signaling in bone was first proposed in the early 1990s with the observation that extracellular ATP could modulate events crucial to the normal functioning of bone cells. Since then the expression of nearly all the P2Y and P2X receptors by osteoblasts and osteoclasts has been reported, mediating multiple processes including cell proliferation, differentiation, function, and death. This review will highlight the most recent developments in the field of purinergic signaling in bone, with a special emphasis on recent work resulting from the European Framework 7 funded collaboration ATPBone, as well as Arthritis Research UK and Bone Research Society supported projects.
Collapse
Affiliation(s)
| | | | | | - Alison Gartland
- Department of Human Metabolism, The Mellanby Centre for Bone Research, The University of SheffieldSheffield, UK
| |
Collapse
|
24
|
Orriss IR, Key ML, Brandao-Burch A, Patel JJ, Burnstock G, Arnett TR. The regulation of osteoblast function and bone mineralisation by extracellular nucleotides: The role of p2x receptors. Bone 2012; 51:389-400. [PMID: 22749889 DOI: 10.1016/j.bone.2012.06.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/06/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
Abstract
Extracellular nucleotides, signalling through P2 receptors, regulate the function of both osteoblasts and osteoclasts. Osteoblasts are known to express multiple P2 receptor subtypes (P2X2,5,7 and P2Y(1),(2,4,6)), levels of which change during differentiation. ATP and UTP potently inhibit bone mineralisation in vitro, an effect mediated, at least in part, via the P2Y(2) receptor. We report here that primary rat osteoblasts express additional, functional P2 receptors (P2X1, P2X3, P2X4, P2X6, P2Y(12), P2Y(13) and P2Y(14)). Receptor expression changed with cellular differentiation: e.g., P2X4 receptor mRNA levels were 5-fold higher in mature, bone-forming osteoblasts, relative to immature, proliferating cells. The rank order of expression of P2 receptor mRNAs in mature osteoblasts was P2X4>>P2Y(1)>P2X2>P2Y(6)>P2X1>P2Y(2)>P2Y(4)>P2X6>P2X5>P2X7>P2X3>P2Y(14)>P2Y(13)>P2Y(12). Increased intracellular Ca(2+) levels following stimulation with P2X-selective agonists indicated the presence of functional receptors. To investigate whether P2X receptors might also regulate bone formation, osteoblasts were cultured for 14days with P2X receptor agonists. The P2X1 and P2X3 receptor agonists, α,β-meATP and β,γ-meATP inhibited bone mineralisation by 70% and 90%, respectively at 1μM, with complete abolition at ≥25μM; collagen production was unaffected. Bz-ATP, a P2X7 receptor agonist, reduced bone mineralisation by 70% and 99% at 10μM and 100μM, respectively. Osteoblast alkaline phosphatase activity was similarly inhibited by these agonists, whilst ecto-nucleotide pyrophosphatase/phosphodiesterase activity was increased. The effects of α,β-meATP and Bz-ATP were attenuated by antagonists selective for the P2X1 and P2X7 receptors, respectively. Our results show that normal osteoblasts express functional P2X receptors and that the P2X1 and P2X7 receptors negatively regulate bone mineralisation.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
25
|
Takedachi M, Oohara H, Smith BJ, Iyama M, Kobashi M, Maeda K, Long CL, Humphrey MB, Stoecker BJ, Toyosawa S, Thompson LF, Murakami S. CD73-generated adenosine promotes osteoblast differentiation. J Cell Physiol 2012; 227:2622-31. [PMID: 21882189 DOI: 10.1002/jcp.23001] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CD731 is a GPI-anchored cell surface protein with ecto-5'-nucleotidase enzyme activity that plays a crucial role in adenosine production. While the roles of adenosine receptors (AR) on osteoblasts and osteoclasts have been unveiled to some extent, the roles of CD73 and CD73-generated adenosine in bone tissue are largely unknown. To address this issue, we first analyzed the bone phenotype of CD73-deficient (cd73(-/-)) mice. The mutant male mice showed osteopenia, with significant decreases of osteoblastic markers. Levels of osteoclastic markers were, however, comparable to those of wild-type mice. A series of in vitro studies revealed that CD73 deficiency resulted in impairment in osteoblast differentiation but not in the number of osteoblast progenitors. In addition, over expression of CD73 on MC3T3-E1 cells resulted in enhanced osteoblastic differentiation. Moreover, MC3T3-E1 cells expressed adenosine A(2A) receptors (A(2A)AR) and A(2B) receptors (A(2B)AR) and expression of these receptors increased with osteoblastic differentiation. Enhanced expression of osteocalcin (OC) and bone sialoprotein (BSP) observed in MC3T3-E1 cells over expressing CD73 were suppressed by treatment with an A(2B)AR antagonist but not with an A(2A) AR antagonist. Collectively, our results indicate that CD73 generated adenosine positively regulates osteoblast differentiation via A(2B)AR signaling.
Collapse
Affiliation(s)
- Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Noronha-Matos JB, Costa MA, Magalhães-Cardoso MT, Ferreirinha F, Pelletier J, Freitas R, Neves JM, Sévigny J, Correia-de-Sá P. Role of ecto-NTPDases on UDP-sensitive P2Y(6) receptor activation during osteogenic differentiation of primary bone marrow stromal cells from postmenopausal women. J Cell Physiol 2012; 227:2694-709. [PMID: 21898410 DOI: 10.1002/jcp.23014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study aimed at investigating the expression and function of uracil nucleotide-sensitive receptors (P2Y(2), P2Y(4), and P2Y(6)) on osteogenic differentiation of human bone marrow stromal cells (BMSCs) in culture. Bone marrow specimens were obtained from postmenopausal female patients (68 ± 5 years old, n = 18) undergoing total hip arthroplasty. UTP and UDP (100 µM) facilitated osteogenic differentiation of the cells measured as increases in alkaline phosphatase (ALP) activity, without affecting cell proliferation. Uracil nucleotides concentration-dependently increased [Ca(2+)](i) in BMSCs; their effects became less evident with time (7 > 21 days) of the cells in culture. Selective activation of P2Y(6) receptors with the stable UDP analog, PSB 0474, mimicked the effects of both UTP and UDP, whereas UTPγS was devoid of effect. Selective blockade of P2Y(6) receptors with MRS 2578 prevented [Ca(2+)](i) rises and osteogenic differentiation caused by UDP at all culture time points. BMSCs are immunoreactive against P2Y(2), P2Y(4), and P2Y(6) receptors. While the expression of P2Y(6) receptors remained fairly constant (7∼21 days), P2Y(2) and P2Y(4) became evident only in less proliferative and more differentiated cultures (7 < 21 days). The rate of extracellular UTP and UDP inactivation was higher in less proliferative and more differentiated cell populations. Immunoreactivity against NTPDase1, -2, and -3 rises as cells differentiate (7 < 21 days). Data show that uracil nucleotides are important regulators of osteogenic cells differentiation predominantly through the activation of UDP-sensitive P2Y(6) receptors coupled to increases in [Ca(2+)](i) . Endogenous actions of uracil nucleotides may be balanced through specific NTPDases determining whether osteoblast progenitors are driven into proliferation or differentiation.
Collapse
Affiliation(s)
- J B Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Polymorphisms in the P2X7 receptor gene are associated with low lumbar spine bone mineral density and accelerated bone loss in post-menopausal women. Eur J Hum Genet 2012; 20:559-64. [PMID: 22234152 PMCID: PMC3330223 DOI: 10.1038/ejhg.2011.245] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The P2X7 receptor gene (P2RX7) is highly polymorphic with five previously described loss-of-function (LOF) single-nucleotide polymorphisms (SNP; c.151+1G>T, c.946G>A, c.1096C>G, c.1513A>C and c.1729T>A) and one gain-of-function SNP (c.489C>T). The purpose of this study was to determine whether the functional P2RX7 SNPs are associated with lumbar spine (LS) bone mineral density (BMD), a key determinant of vertebral fracture risk, in post-menopausal women. We genotyped 506 post-menopausal women from the Aberdeen Prospective Osteoporosis Screening Study (APOSS) for the above SNPs. Lumbar spine BMD was measured at baseline and at 6–7 year follow-up. P2RX7 genotyping was performed by homogeneous mass extension. We found association of c.946A (p.Arg307Gln) with lower LS-BMD at baseline (P=0.004, β=−0.12) and follow-up (P=0.002, β=−0.13). Further analysis showed that a combined group of subjects who had LOF SNPs (n=48) had nearly ninefold greater annualised percent change in LS-BMD than subjects who were wild type at the six SNP positions (n=84; rate of loss=−0.94%/year and −0.11%/year, respectively, P=0.0005, unpaired t-test). This is the first report that describes association of the c.946A (p.Arg307Gln) LOF SNP with low LS-BMD, and that other LOF SNPs, which result in reduced or no function of the P2X7 receptor, may contribute to accelerated bone loss. Certain polymorphic variants of P2RX7 may identify women at greater risk of developing osteoporosis.
Collapse
|
28
|
Brandao-Burch A, Key ML, Patel JJ, Arnett TR, Orriss IR. The P2X7 Receptor is an Important Regulator of Extracellular ATP Levels. Front Endocrinol (Lausanne) 2012; 3:41. [PMID: 22654865 PMCID: PMC3355863 DOI: 10.3389/fendo.2012.00041] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/29/2012] [Indexed: 11/17/2022] Open
Abstract
Controlled ATP release has been demonstrated from many neuronal and non-neuronal cell types. Once released, extracellular ATP acts on cells in a paracrine manner via purinergic receptors. Considerable evidence now suggests that extracellular nucleotides, signaling via P2 receptors, play important roles in bone homeostasis modulating both osteoblast and osteoclast function. In this study, we demonstrate that mouse osteoclasts and their precursors constitutively release ATP into their extracellular environment. Levels were highest at day 2 (precursor cells), possibly reflecting the high number of red blood cells and accessory cells present. Mature osteoclasts constitutively released ATP in the range 0.05-0.5 pmol/ml/cell. Both osteoclasts and osteoblasts express mRNA and protein for the P2X7 receptor. We found that in osteoclasts, expression levels are fourfold higher in mature cells relative to precursors, whilst in osteoblasts expression remains relatively constant during differentiation. Selective antagonists (0.1-100 μM AZ10606120, A438079, and KN-62) were used to determine whether this release was mediated via P2X7 receptors. AZ10606120, A438079, and KN-62, at 0.1-10 μM, decreased ATP release by mature osteoclasts by up to 70, 60, and 80%, respectively. No differences in cell viability were observed. ATP release also occurs via vesicular exocytosis; inhibitors of this process (1-100 μM NEM or brefeldin A) had no effect on ATP release from osteoclasts. P2X7 receptor antagonists (0.1-10 μM) also decreased ATP release from primary rat osteoblasts by up to 80%. These data show that ATP release via the P2X7 receptor contributes to extracellular ATP levels in osteoclast and osteoblast cultures, suggesting an important additional role for this receptor in autocrine/paracrine purinergic signaling in bone.
Collapse
Affiliation(s)
- Andrea Brandao-Burch
- Department of Cell and Developmental Biology, University College LondonLondon, UK
| | - Michelle L. Key
- Department of Cell and Developmental Biology, University College LondonLondon, UK
| | - Jessal J. Patel
- Department of Cell and Developmental Biology, University College LondonLondon, UK
| | - Timothy R. Arnett
- Department of Cell and Developmental Biology, University College LondonLondon, UK
| | - Isabel R. Orriss
- Department of Cell and Developmental Biology, University College LondonLondon, UK
- *Correspondence: Isabel R. Orriss, Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK. e-mail:
| |
Collapse
|
29
|
Modulating P2X7 Receptor Signaling during Rheumatoid Arthritis: New Therapeutic Approaches for Bisphosphonates. J Osteoporos 2012; 2012:408242. [PMID: 22830074 PMCID: PMC3399340 DOI: 10.1155/2012/408242] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 05/28/2012] [Accepted: 05/30/2012] [Indexed: 11/17/2022] Open
Abstract
P2X7 receptor-mediated purinergic signaling is a well-known mechanism involved in bone remodeling. The P2X7 receptor has been implicated in the pathophysiology of various bone and cartilage diseases, including rheumatoid arthritis (RA), a widespread and complex chronic inflammatory disorder. The P2X7 receptor induces the release into the synovial fluid of the proinflammatory factors (e.g., interleukin-1β, prostaglandins, and proteases) responsible for the clinical symptoms of RA. Thus, the P2X7 receptor is emerging as a novel anti-inflammatory therapeutic target, and various selective P2X7 receptor antagonists are under clinical trials. Extracellular ATP signaling acting through the P2X7 receptor is a complex and dynamic scenario, which varies over the course of inflammation. This signaling is partially modulated by the activity of ectonucleotidases, which degrade extracellular ATP to generate other active molecules such as adenosine or pyrophosphates. Recent evidence suggests differential extracellular metabolism of ATP during the resolution of inflammation to generate pyrophosphates. Extracellular pyrophosphate dampens proinflammatory signaling by promoting alternative macrophage activation. Our paper shows that bisphosphonates are metabolically stable pyrophosphate analogues that are able to mimic the anti-inflammatory function of pyrophosphates. Bisphosphonates are arising per se as promising anti-inflammatory drugs to treat RA, and this therapy could be improved when administrated in combination with P2X7 receptor antagonists.
Collapse
|
30
|
Genetic Background Strongly Influences the Bone Phenotype of P2X7 Receptor Knockout Mice. J Osteoporos 2012; 2012:391097. [PMID: 22934234 PMCID: PMC3425798 DOI: 10.1155/2012/391097] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 06/28/2012] [Accepted: 07/02/2012] [Indexed: 11/25/2022] Open
Abstract
The purinergic P2X7 receptor is expressed by bone cells and has been shown to be important in both bone formation and bone resorption. In this study we investigated the importance of the genetic background of the mouse strains on which the P2X7 knock-out models were based by comparing bone status of a new BALB/cJ P2X7(-/-) strain with a previous one based on the C57BL/6 strain. Female four-month-old mice from both strains were DXA scanned on a PIXImus densitometer; femurs were collected for bone strength measurements and serum for bone marker analysis. Bone-related parameters that were altered only slightly in the B6 P2X7(-/-) became significantly altered in the BALB/cJ P2X7(-/-) when compared to their wild type littermates. The BALB/cJ P2X7(-/-) showed reduced levels of serum C-telopeptide fragment (s-CTX), higher bone mineral density, and increased bone strength compared to the wild type littermates. In conclusion, we have shown that the genetic background of P2X7(-/-) mice strongly influences the bone phenotype of the P2X7(-/-) mice and that P2X7 has a more significant regulatory role in bone remodeling than found in previous studies.
Collapse
|
31
|
Lenertz LY, Gavala ML, Zhu Y, Bertics PJ. Transcriptional control mechanisms associated with the nucleotide receptor P2X7, a critical regulator of immunologic, osteogenic, and neurologic functions. Immunol Res 2011; 50:22-38. [PMID: 21298493 PMCID: PMC3203638 DOI: 10.1007/s12026-011-8203-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The nucleotide receptor P2X(7) is an attractive therapeutic target and potential biomarker for multiple inflammatory and neurologic disorders, and it is expressed in several immune, osteogenic, and neurologic cell types. Aside from its role in the nervous system, it is activated by ATP released at sites of tissue damage, inflammation, and infection. Ligand binding to P2X(7) stimulates many cell responses, including calcium fluxes, MAPK activation, inflammatory mediator release, and apoptosis. Much work has centered on P2X(7) action in cell death and mediator processing (e.g., pro-interleukin-1 cleavage by the inflammasome), but the contribution of P2X(7) to transcriptional regulation is less well defined. This review will focus on the growing evidence for the importance of nucleotide-mediated gene expression, highlight several animal models, human genetic, and clinical studies that support P2X(7) as a therapeutic target, and discuss the latest developments in anti-P2X(7) clinical trials.
Collapse
Affiliation(s)
- Lisa Y. Lenertz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Monica L. Gavala
- Department of Biomolecular Chemistry, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Yiming Zhu
- Department of Biomolecular Chemistry, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Paul J. Bertics
- Department of Biomolecular Chemistry, School of Medicine and Public Health, The University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
32
|
Costa MA, Barbosa A, Neto E, Sá-e-Sousa A, Freitas R, Neves JM, Magalhães-Cardoso T, Ferreirinha F, Correia-de-Sá P. On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells. J Cell Physiol 2011; 226:1353-66. [PMID: 20945394 DOI: 10.1002/jcp.22458] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Purines are important modulators of bone cell biology. ATP is metabolized into adenosine by human primary osteoblast cells (HPOC); due to very low activity of adenosine deaminase, the nucleoside is the end product of the ecto-nucleotidase cascade. We, therefore, investigated the expression and function of adenosine receptor subtypes (A(1) , A(2A) , A(2B) , and A(3) ) during proliferation and osteogenic differentiation of HPOC. Adenosine A(1) (CPA), A(2A) (CGS21680C), A(2B) (NECA), and A(3) (2-Cl-IB-MECA) receptor agonists concentration-dependently increased HPOC proliferation. Agonist-induced HPOC proliferation was prevented by their selective antagonists, DPCPX, SCH442416, PSB603, and MRS1191. CPA and NECA facilitated osteogenic differentiation measured by increases in alkaline phosphatase (ALP) activity. This contrasts with the effect of CGS21680C which delayed HPOC differentiation; 2-Cl-IB-MECA was devoid of effect. Blockade of the A(2B) receptor with PSB603 prevented osteogenic differentiation by NECA. In the presence of the A(1) antagonist, DPCPX, CPA reduced ALP activity at 21 and 28 days in culture. At the same time points, blockade of A(2A) receptors with SCH442416 transformed the inhibitory effect of CGS21680C into facilitation. Inhibition of adenosine uptake with dipyridamole caused a net increase in osteogenic differentiation. The presence of all subtypes of adenosine receptors on HPOC was confirmed by immunocytochemistry. Data show that adenosine is an important regulator of osteogenic cell differentiation through the activation of subtype-specific receptors. The most abundant A(2B) receptor seems to have a consistent role in cell differentiation, which may be balanced through the relative strengths of A(1) or A(2A) receptors determining whether osteoblasts are driven into proliferation or differentiation.
Collapse
Affiliation(s)
- M Adelina Costa
- Laboratório de Farmacologia e Neurobiologia, UMIB, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Use of the oral platelet inhibitors dipyridamole and acetylsalicylic acid is associated with increased risk of fracture. Int J Cardiol 2011; 160:36-40. [PMID: 21463909 DOI: 10.1016/j.ijcard.2011.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 03/08/2011] [Accepted: 03/11/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Platelet inhibitors are widely used in the treatment and prevention of coronary artery disease. In addition to acetylsalicylic acid, two major groups of platelet inhibitors are used; phosphodiesterase inhibitors including dipyridamole, and thienopyridines (ticlopidine and clopidogrel). Clopidogrel is the most widely used, and in combination with acetylsalicylic acid it is the standard of care for acute coronary syndromes and percutaneous coronary interventions. However, the modes of action involve pathways that are involved in the metabolic activity in bone cells and pharmacologic modulation of these pathways may therefore have effects on bone. METHODS In the current study, we assessed the association between platelet inhibitor use and fracture incidence in a population-based epidemiological study performed within the Danish population consisting of approximately 5.3 million individuals, where all patients sustaining a fracture during the year of 2000 were included (124,655 cases). The hypotheses were to investigate if use of thienopyridines or phosphodiesterase inhibitors were associated with increased risk of fractures after adjustment for potential confounders. RESULTS We found that treatment with dipyridamole is associated with increased overall fracture risk, but not to the risk of osteoporotic fractures. In contrast, low-dose acetylsalicylic acid is associated to increased risk of overall fractures and fractures of the hip. Finally, in the current study clopidogrel is not associated with increased fracture risk. CONCLUSIONS Use of some oral platelet inhibitors is associated with increased risk of fractures, and more studies are warranted to determine the potential effect of platelet inhibitors on bone metabolism in vivo.
Collapse
|
34
|
Ebselen is a potent non-competitive inhibitor of extracellular nucleoside diphosphokinase. Purinergic Signal 2010; 6:383-91. [PMID: 21437009 DOI: 10.1007/s11302-010-9203-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/18/2010] [Indexed: 12/12/2022] Open
Abstract
Nucleoside di- and triphosphates and adenosine regulate several components of the mucocilairy clearance process (MCC) that protects the lung against infections, via activation of epithelial purinergic receptors. However, assessing the contribution of individual nucleotides to MCC functions remains difficult due to the complexity of the mechanisms of nucleotide release and metabolism. Enzymatic activities involved in the metabolism of extracellular nucleotides include ecto-ATPases and secreted nucleoside diphosphokinase (NDPK) and adenyl kinase, but potent and selective inhibitors of these activities are sparse. In the present study, we discovered that ebselen markedly reduced NDPK activity while having negligible effect on ecto-ATPase and adenyl kinase activities. Addition of radiotracer [γ(32)P]ATP to human bronchial epithelial (HBE) cells resulted in rapid and robust accumulation of [(32)P]-inorganic phosphate ((32)Pi). Inclusion of UDP in the incubation medium resulted in conversion of [γ(32)P]ATP to [(32)P]UTP, while inclusion of AMP resulted in conversion of [γ(32)P]ATP to [(32)P]ADP. Ebselen markedly reduced [(32)P]UTP formation but displayed negligible effect on (32)Pi or [(32)P]ADP accumulations. Incubation of HBE cells with unlabeled UTP and ADP resulted in robust ebselen-sensitive formation of ATP (IC(50) = 6.9 ± 2 μM). This NDPK activity was largely recovered in HBE cell secretions and supernatants from lung epithelial A549 cells. Kinetic analysis of NDPK activity indicated that ebselen reduced the V(max) of the reaction (K(i) = 7.6 ± 3 μM), having negligible effect on K(M) values. Our study demonstrates that ebselen is a potent non-competitive inhibitor of extracellular NDPK.
Collapse
|
35
|
Gavala ML, Hill LM, Lenertz LY, Karta MR, Bertics PJ. Activation of the transcription factor FosB/activating protein-1 (AP-1) is a prominent downstream signal of the extracellular nucleotide receptor P2RX7 in monocytic and osteoblastic cells. J Biol Chem 2010; 285:34288-98. [PMID: 20813842 PMCID: PMC2962527 DOI: 10.1074/jbc.m110.142091] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 08/30/2010] [Indexed: 01/25/2023] Open
Abstract
Activation of the ionotropic P2RX7 nucleotide receptor by extracellular ATP has been implicated in modulating inflammatory disease progression. Continuous exposure of P2RX7 to ligand can result in apoptosis in many cell types, including monocytic cells, whereas transient activation of P2RX7 is linked to inflammatory mediator production and the promotion of cell growth. Given the rapid hydrolysis of ATP in the circulation and interstitial space, transient activation of P2RX7 appears critically important for its action, yet its effects on gene expression are unclear. The present study demonstrates that short-term stimulation of human and mouse monocytic cells as well as mouse osteoblasts with P2RX7 agonists substantially induces the expression of several activating protein-1 (AP-1) members, particularly FosB. The potent activation of FosB after P2RX7 stimulation is especially noteworthy considering that little is known concerning the role of FosB in immunological regulation. Interestingly, the magnitude of FosB activation induced by P2RX7 stimulation appears greater than that observed with other known inducers of FosB expression. In addition, we have identified a previously unrecognized role for FosB in osteoblasts with respect to nucleotide-induced expression of cyclooxygenase-2 (COX-2), which is the rate-limiting enzyme in prostaglandin biosynthesis from arachidonic acid and is critical for osteoblastic differentiation and immune behavior. The present studies are the first to link P2RX7 action to FosB/AP-1 regulation in multiple cell types, including a role in nucleotide-induced COX-2 expression, and support a role for FosB in the control of immune and osteogenic function by P2RX7.
Collapse
Affiliation(s)
- Monica L. Gavala
- From the Program in Molecular and Cellular Pharmacology and
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| | - Lindsay M. Hill
- From the Program in Molecular and Cellular Pharmacology and
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| | - Lisa Y. Lenertz
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| | - Maya R. Karta
- From the Program in Molecular and Cellular Pharmacology and
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| | - Paul J. Bertics
- From the Program in Molecular and Cellular Pharmacology and
- the Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, Wisconsin 53706
| |
Collapse
|
36
|
Muscarinic acetylcholine receptors present in human osteoblast and bone tissue. Eur J Pharmacol 2010; 650:34-40. [PMID: 20888332 DOI: 10.1016/j.ejphar.2010.09.031] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 07/29/2010] [Accepted: 09/14/2010] [Indexed: 01/27/2023]
Abstract
Acetylcholine is the predominant neurotransmitter in the neuromuscular junction, and a role in bone has been postulated. The expression of nicotinic receptors has been reported in osteoblasts, but the expression and function of muscarinic receptor in bone remain obscure. In this study, we investigated the expression and functional activities of muscarinic receptor subtypes in human osteoblast cell lines and animal and human bone tissue. The mRNA levels of muscarinic receptor subtypes were detected by reverse-transcription polymerase chain reaction. We found that muscarinic subtypes m1, m2, m3, m4, and m5 were expressed at different levels in human osteosarcoma HOS cells, rat femur, and human rib bone tissue; m1, m4, m5 were in cultured mouse femur bone cells and cultured mouse calvarial bone cells; m2, m3, m4 were in bovine bone. The mRNA of neuronal markers, light-, medium- and heavy-neurofilament, was not found in human bone tissues to exclude the possible contamination from neuronal tissue. Methacholine induced an elevation in cytosolic calcium concentration and proliferation in HOS cells. Both effects were blocked by atropine. We conclude that muscarinic receptor is present in bone tissue to evoke calcium signaling and modulate cell proliferation. Different muscarinic receptor subtypes are distributed in various parts of the animal skeletal system including the different species and bone portions. Bone remodeling involving osteoblast proliferation leads the possibilities that muscarinic receptor may play roles in bone remodeling.
Collapse
|
37
|
Orriss IR, Knight GE, Utting JC, Taylor SEB, Burnstock G, Arnett TR. Hypoxia stimulates vesicular ATP release from rat osteoblasts. J Cell Physiol 2009; 220:155-62. [PMID: 19259945 DOI: 10.1002/jcp.21745] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Many neuronal and non-neuronal cell types release ATP in a controlled manner. After release, extracellular ATP (or, following hydrolysis, ADP) acts on cells in a paracrine manner via P2 receptors. Extracellular nucleotides are now thought to play an important role in the regulation of bone cell function. ATP (and ADP), acting via the P2Y(1) receptor, stimulate osteoclast formation and activity, whilst P2Y(2) receptor stimulation by ATP (or UTP) inhibits bone mineralization by osteoblasts. We found that rat calvarial osteoblasts released ATP constitutively, in a differentiation-dependent manner, with mature, bone-forming osteoblasts releasing up to sevenfold more ATP than undifferentiated, proliferating cells. The inhibitors of vesicular exocytosis, monensin, and N-ethylmaleimide (1-1,000 microM) inhibited basal ATP release by up to 99%. The presence of granular ATP-filled vesicles within the osteoblast cytoplasm was demonstrated by quinacrine staining. Exposure to hypoxia (2% O(2)) for up to 3 min increased ATP release from osteoblasts up to 2.5-fold without affecting cell viability. Peak concentrations of ATP released into culture medium were >1 microM, which equates with concentrations known to exert significant effects on osteoblast and osteoclast function. Monensin and N-ethylmaleimide (100 microM) attenuated the hypoxia-induced ATP release by up to 80%. Depletion of quinacrine-stained vesicles was also apparent after hypoxic stimulation, indicating that ATP release had taken place. These data suggest that vesicular exocytosis is a key mediator of ATP release from osteoblasts, in biologically significant amounts. Moreover, increased extracellular ATP levels following acute exposure to low O(2) could influence local purinergic signaling and affect the balance between bone formation and bone resorption.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Cell and Developmental Biology, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
38
|
Kim HD, Youn B, Kim TS, Kim SH, Shin HS, Kim J. Regulators affecting the metastasis suppressor activity of Nm23-H1. Mol Cell Biochem 2009. [PMID: 19377884 DOI: 10.1007/s11010-] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nm23-H1 encodes nucleoside diphosphate kinase A (NDPK-A) and is known to have a metastasis suppressive activity in many tumor cells. However, it has many other functions as well. Recent studies have shown that the interacting proteins with Nm23-H1 which mediate the cell proliferation, may act as modulators of the metastasis suppressor activity. The interacting proteins with Nm23-H1 can be classified into 3 groups. The first group of proteins can be classified as upstream kinases of Nm23-H1 such as CKI and Aurora-A/STK15. The second group of proteins acts as downstream effectors for the regulation of specific gene transcriptions, GTP-binding protein functions, and signal transduction in Erk signal cascade. The third group of proteins can be classified as bi-directionally influencing binding partners of Nm23-H1. As a result, the interactions with Nm23-H1 and binding partners have implications in the biochemical characterization involved in metastasis and tumorigenesis.
Collapse
Affiliation(s)
- Hag Dong Kim
- School of Life Sciences & Biotechnology, and BioInstitute, Korea University, Seoul 136-713, Korea
| | | | | | | | | | | |
Collapse
|
39
|
Kim HD, Youn B, Kim TS, Kim SH, Shin HS, Kim J. Regulators affecting the metastasis suppressor activity of Nm23-H1. Mol Cell Biochem 2009; 329:167-73. [PMID: 19377884 DOI: 10.1007/s11010-009-0109-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 04/02/2009] [Indexed: 10/20/2022]
Abstract
Nm23-H1 encodes nucleoside diphosphate kinase A (NDPK-A) and is known to have a metastasis suppressive activity in many tumor cells. However, it has many other functions as well. Recent studies have shown that the interacting proteins with Nm23-H1 which mediate the cell proliferation, may act as modulators of the metastasis suppressor activity. The interacting proteins with Nm23-H1 can be classified into 3 groups. The first group of proteins can be classified as upstream kinases of Nm23-H1 such as CKI and Aurora-A/STK15. The second group of proteins acts as downstream effectors for the regulation of specific gene transcriptions, GTP-binding protein functions, and signal transduction in Erk signal cascade. The third group of proteins can be classified as bi-directionally influencing binding partners of Nm23-H1. As a result, the interactions with Nm23-H1 and binding partners have implications in the biochemical characterization involved in metastasis and tumorigenesis.
Collapse
Affiliation(s)
- Hag Dong Kim
- School of Life Sciences & Biotechnology, and BioInstitute, Korea University, Seoul 136-713, Korea
| | | | | | | | | | | |
Collapse
|
40
|
Curran JM, Tang Z, Hunt JA. PLGA doping of PCL affects the plastic potential of human mesenchymal stem cells, both in the presence and absence of biological stimuli. J Biomed Mater Res A 2009; 89:1-12. [PMID: 18404713 DOI: 10.1002/jbm.a.31966] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A range of poly epsilon-caprolactone (PCL) films mixed/doped with poly(lactide-co-glycolide) (PLGA) (65:35) in 0, 10, 20, and 30 wt % were produced, sterilized using ethylene oxide, and analyzed using FTIR. Characterized human mesenchymal stem cells (hMSCs) were cultured in contact with the materials in basal, chondrogenic, and osteogenic medium for time periods up to 28 days, to determine if the materials could induce differentiation of MSC both in the presence and absence of biological stimuli. Viable cell adhesion was analyzed under all conditions. Collagen I, collagen II, sox-9, osteocalcin, osteopontin, osteonectin, and CBFA1 were evaluated at both the mRNA (real-time PCR) and protein production levels (fluorescent immunohistochemistry) and used to identify cell differentiation. Pure PCL and PCL mixed with PLGA demonstrated a chondrogenic potential. Only PCL 8 (80 wt % PCL, 20 wt % PLGA) facilitated osteogenic differentiation of MSCs under osteogenic conditions. This was attributed to the increased hydrophilic nature of the surface allowing sufficient homogeneous cell attachment and the formation of filamentous F-actin in the cells, allowing osteogenic differentiation. Of all materials tested, PCL 7 (70 wt % PCL, 30 wt % PLGA) demonstrated the greatest chondrogenic differentiation potential under basal and stimulated conditions at both the mRNA and protein production level.
Collapse
Affiliation(s)
- J M Curran
- Division of Clinical Engineering (UK CTE), UK BioTEC, University of Liverpool, Liverpool, United Kingdom.
| | | | | |
Collapse
|
41
|
Expression, signaling, and function of P2X7 receptors in bone. Purinergic Signal 2009; 5:205-21. [PMID: 19224395 DOI: 10.1007/s11302-009-9139-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 09/16/2008] [Indexed: 01/01/2023] Open
Abstract
Nucleotides released from cells in response to mechanical stimulation or injury may serve as paracrine regulators of bone cell function. Extracellular nucleotides bind to multiple subtypes of P2 receptors on osteoblasts (the cells responsible for bone formation) and osteoclasts (cells with the unique ability to resorb mineralized tissues). Both cell lineages express the P2X7 receptor subtype. The skeletal phenotype of mice with targeted disruption of P2rx7 points to interesting roles for this receptor in the regulation of bone formation and resorption, as well as the response of the skeleton to mechanical stimulation. This paper reviews recent work on the expression of P2X7 receptors in bone, their associated signal transduction mechanisms and roles in regulating bone formation and resorption. Areas for future research in this field are also discussed.
Collapse
|
42
|
Kaunitz JD, Yamaguchi DT. TNAP, TrAP, ecto-purinergic signaling, and bone remodeling. J Cell Biochem 2008; 105:655-62. [PMID: 18773425 DOI: 10.1002/jcb.21885] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bone remodeling is a process of continuous resorption and formation/mineralization carried out by osteoclasts and osteoblasts, which, along with osteocytes, comprise the bone multicellular unit (BMU). A key component of the BMU is the bone remodeling compartment (BRC), isolated from the marrow by a canopy of osteoblast-like lining cells. Although much progress has been made regarding the cytokine-dependent and hormonal regulation of bone remodeling, less attention has been placed on the role of extracellular pH (pH(e)). Osteoclastic bone resorption occurs at acidic pH(e). Furthermore, osteoclasts can be regarded as epithelial-like cells, due to their polarized structure and ability to form a seal against bone, isolating the lacunar space. The major ecto-phosphatases of osteoclasts and osteoblasts, acid and alkaline phosphatases, both have ATPase activity with pH optima several units different from neutrality. Furthermore, osteoclasts and osteoblasts express plasma membrane purinergic P2 receptors that, upon activation by ATP, accelerate bone osteoclast resorption and impair osteoblast mineralization. We hypothesize that these ecto-phosphatases help regulate [ATP](e) and localized pH(e) at the sites of bone resorption and mineralization by pH-dependent ATP hydrolysis coupled with P2Y-dependent regulation of osteoclast and osteoblast function. Furthermore, osteoclast cellular HCO3(-), formed as a product of lacunar V-ATPase H(+) secretion, is secreted into the BRC, which could elevate BRC pH(e), in turn affecting osteoblast function. We will review the existing data addressing regulation of BRC pH(e), present a hypothesis regarding its regulation, and discuss the hypothesis in the context of the function of proteins that regulate pH(e).
Collapse
Affiliation(s)
- Jonathan D Kaunitz
- Department of Medicine, Division of Gastroenterology, UCLA School of Medicine, Los Angeles, California 90073, USA.
| | | |
Collapse
|
43
|
Lu H, Qin L, Lee K, Cheung W, Chan K, Leung K. Identification of genes responsive to low-intensity pulsed ultrasound stimulations. Biochem Biophys Res Commun 2008; 378:569-73. [PMID: 19056340 DOI: 10.1016/j.bbrc.2008.11.074] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2008] [Accepted: 11/18/2008] [Indexed: 11/24/2022]
Abstract
This study was designed to compare the temporal changes of gene expression profile in osteoblastic cell lines (SaOS-2) treated with low-intensity pulsed ultrasound stimulation (LIPUS) using complementary DNA (cDNA) microarrays. SaOS-2 cells were treated with LIPUS for 20min. Thereafter, cells were harvested and RNA was extracted twice at 4 and 24h, respectively. Using cDNA microarrays, 7488 genes with changes in expression in SaOS-2 cells were identified for comparison. Microarray analysis revealed a total of 165 genes in SaOS-2 cells were regulated at 4 and 24h after LIPUS treatment. Except for 30 known LIPUS-regulated genes, our study demonstrated for the first time that over 100 genes were related to the underlying molecular mechanism of LIPUS and suggested that LIPUS might regulate a transient expression of numerous critical genes in osteoblastic cells. These results provide further understanding of the role of LIPUS in the regulation of osteoblastic gene expression potentially involved in the molecular mechanism of osteogenesis in fracture repair.
Collapse
Affiliation(s)
- Hongbin Lu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | | | | | | | | | | |
Collapse
|
44
|
Zal B, Kaski JC, Akiyu JP, Cole D, Arno G, Poloniecki J, Madrigal A, Dodi A, Baboonian C. Differential pathways govern CD4+ CD28- T cell proinflammatory and effector responses in patients with coronary artery disease. THE JOURNAL OF IMMUNOLOGY 2008; 181:5233-41. [PMID: 18832677 DOI: 10.4049/jimmunol.181.8.5233] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Patients with acute coronary syndromes experience circulatory and intraplaque expansion of an aggressive and unusual CD4(+) lymphocyte subpopulation lacking the CD28 receptor. These CD4(+)CD28(-) cells produce IFN-gamma and perforin, and are thought to play an important role in coronary atheromatous plaque destabilization. Aberrant expression of killer Ig-like receptors (KIRs) in CD4(+)CD28(-) cells is broadly thought to be responsible for their cytotoxicity, but the mechanisms involved remain poorly defined. We therefore sought to investigate the mechanism and regulation of CD4(+)CD28(-) cell functionality using T cell clones (n = 536) established from patients with coronary artery disease (n = 12) and healthy volunteers (n = 3). Our functional studies demonstrated that KIR2DS2 specifically interacted with MHC class I-presenting human heat shock protein 60 (hHSP60) inducing cytotoxicity. Further investigations revealed the novel finding that hHSP60 stimulation of TCR alone could not induce a cytotoxic response, and that this response was specific and KIR dependent. Analysis of CD4(+)CD28(-)2DS2(+) clones (n = 162) showed that not all were hHSP60 cytotoxic; albeit, their prevalence correlated with coronary disease status (p = 0.017). A higher proportion of clones responded to hHSP60 by IFN-gamma compared with perforin (p = 0.008). In this study, for the first time, we define the differential regulatory pathways involved in CD4(+)CD28(-) cell proinflammatory and effector responses. We describe in this study that, contrary to previous reports, CD4(+)CD28(-) cell recognition and killing can be specific and discriminate. These results, in addition to contributing to the understanding of CD4(+)CD28(-) cell functionality, may have implications for the monitoring and management of coronary artery disease progression.
Collapse
Affiliation(s)
- Behnam Zal
- Division of Cardiac and Vascular Sciences, St. George's University of London, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Panupinthu N, Rogers JT, Zhao L, Solano-Flores LP, Possmayer F, Sims SM, Dixon SJ. P2X7 receptors on osteoblasts couple to production of lysophosphatidic acid: a signaling axis promoting osteogenesis. ACTA ACUST UNITED AC 2008; 181:859-71. [PMID: 18519738 PMCID: PMC2396816 DOI: 10.1083/jcb.200708037] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Nucleotides are released from cells in response to mechanical stimuli and signal in an autocrine/paracrine manner through cell surface P2 receptors. P2rx7−/− mice exhibit diminished appositional growth of long bones and impaired responses to mechanical loading. We find that calvarial sutures are wider in P2rx7−/− mice. Functional P2X7 receptors are expressed on osteoblasts in situ and in vitro. Activation of P2X7 receptors by exogenous nucleotides stimulates expression of osteoblast markers and enhances mineralization in cultures of rat calvarial cells. Moreover, osteogenesis is suppressed in calvarial cell cultures from P2rx7−/− mice compared with the wild type. P2X7 receptors couple to production of the potent lipid mediators lysophosphatidic acid (LPA) and prostaglandin E2. Either an LPA receptor antagonist or cyclooxygenase (COX) inhibitors abolish the stimulatory effects of P2X7 receptor activation on osteogenesis. We conclude that P2X7 receptors enhance osteoblast function through a cell-autonomous mechanism. Furthermore, a novel signaling axis links P2X7 receptors to production of LPA and COX metabolites, which in turn stimulate osteogenesis.
Collapse
Affiliation(s)
- Nattapon Panupinthu
- Canadian Institutes of Health Research Group in Skeletal Development and Remodeling, London, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Sawada T, Kishiya M, Kanemaru K, Seya K, Yokoyama T, Ueyama K, Motomura S, Toh S, Furukawa KI. Possible role of extracellular nucleotides in ectopic ossification of human spinal ligaments. J Pharmacol Sci 2008; 106:152-61. [PMID: 18187932 DOI: 10.1254/jphs.fp0071224] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
To reveal the involvement of extracellular nucleotides in the ossification process in ossification of the posterior longitudinal ligament of the spine (OPLL), the mRNA expression profiles of P2 purinoceptors, mechanical stress-induced ATP release, and ATP-stimulated expression of osteogenic genes were analyzed in ligament cells derived from the spinal ligament of OPLL patients (OPLL cells) and non-OPLL cells derived from the spinal ligaments of cervical spondylotic myelopathy patients as a control. The extracellular ATP concentrations of OPLL cells in static culture were significantly higher than those of non-OPLL cells, and this difference was diminished in the presence of ARL67156, an ecto-nuclease inhibitor. Cyclic stretch markedly increased the extracellular ATP concentrations of both cell types to almost the same level. P2Y1 purinoceptor subtypes were intensively expressed in OPLL cells, but only weakly expressed in non-OPLL cells. Not only ATP addition but also cyclic stretch raised the mRNA levels of alkaline phosphatase and osteopontin in OPLL cells, which were blocked by MRS2179, a selective P2Y1 antagonist. These increases in the expression of osteogenic genes were not observed in non-OPLL cells. These results suggest an important role of P2Y1 and extracellular ATP in the progression of OPLL stimulated by mechanical stress.
Collapse
Affiliation(s)
- Toshitada Sawada
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nakano Y, Addison WN, Kaartinen MT. ATP-mediated mineralization of MC3T3-E1 osteoblast cultures. Bone 2007; 41:549-61. [PMID: 17669706 DOI: 10.1016/j.bone.2007.06.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 04/24/2007] [Accepted: 06/15/2007] [Indexed: 01/10/2023]
Abstract
While bone is hypomineralized in hypophosphatemia patients and in tissue-nonspecific alkaline phosphatase (Tnsalp)-deficient mice, the extensive mineralization that nevertheless occurs suggests involvement of other phosphatases in providing phosphate ions for mineral deposition. Although the source of phosphate liberated by these phosphatases is unknown, pyrophosphate, ATP, pyridoxal-5'-phosphate (PLP) and phoshoethanolamine (PEA) are likely candidates. In this study, we have induced mineralization of MC3T3-E1 osteoblast cultures using ATP, and have investigated potential phosphatases involved in this mineralization process. MC3T3-E1 osteoblasts were cultured for 12 days and treated either with beta-glycerophosphate (betaGP) or ATP. Matrix and mineral deposition was examined by biochemical, cytochemical, ultrastructural and X-ray microanalytical methods. ATP added at levels of 4-5 mM resulted in mineral deposition similar to that following conventional treatment with betaGP. Collagen levels were similarly normal in ATP-mineralized cultures and transmission electron microscopy and X-ray microanalysis confirmed hydroxyapatite mineral deposition along the collagen fibrils in the ECM. Phosphate release from 4 mM ATP into the medium was rapid and resulted in approximately twice the phosphate levels than after release from 10 mM betaGP. ATP treatment did not affect mineralization by altering the expression of mineral-regulating genes such as Enpp1, Ank, and Mgp, nor phosphatase genes indicating that ATP induces mineralization by serving as a phosphate source for mineral deposition. Levamisole, an inhibitor of TNSALP, completely blocked mineralization in betaGP-treated cultures, but had minor effects on ATP-mediated mineralization, indicating that other phosphatases such as plasma membrane Ca2+ transport ATPase 1 (PMCA1) and transglutaminase 2 (TG2) are contributing to ATP hydrolysis. To examine their involvement in ATP-mediated mineralization, the inhibitors cystamine (TG2 inhibitor) and ortho-vanadate (PMCA inhibitor) were added to the cultures - both inhibitors significantly reduced mineralization whereas suppression of the phosphate release by ortho-vanadate was minor comparing to other two inhibitors. The contribution of PMCA1 to mineralization may occur through pumping of calcium towards calcification sites and TG2 can likely act as an ATPase in the ECM. Unlike the GTPase activity of TG2, its ATPase function was resistant to calcium, demonstrating the potential for participation in ATP hydrolysis and mineral deposition within the ECM at elevated calcium concentrations.
Collapse
Affiliation(s)
- Yukiko Nakano
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, QC, Canada.
| | | | | |
Collapse
|
48
|
Orriss IR, Utting JC, Brandao-Burch A, Colston K, Grubb BR, Burnstock G, Arnett TR. Extracellular nucleotides block bone mineralization in vitro: evidence for dual inhibitory mechanisms involving both P2Y2 receptors and pyrophosphate. Endocrinology 2007; 148:4208-16. [PMID: 17569759 DOI: 10.1210/en.2007-0066] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Extracellular nucleotides, signaling through P2 receptors, may act as local regulators of bone cell function. We investigated the effects of nucleotide agonists [ATP, ADP, uridine triphosphate (UTP), and uridine diphosphate] and pyrophosphate (PPi, a key physiological inhibitor of mineralization) on the deposition and mineralization of collagenous matrix by primary osteoblasts derived from rat calvariae. Our results show that extracellular ATP, UTP, and PPi strongly and selectively blocked the mineralization of matrix nodules; ADP and uridine diphosphate were without effect. Significant inhibition of mineralization occurred in the presence of relatively low concentrations of ATP, UTP, or PPi (1-10 microm), without affecting production of fibrillar or soluble collagen. In cultures treated with 10 microm ATP or UTP, the expression and activity of alkaline phosphatase, which promotes mineralization by hydrolyzing PPi, was inhibited. The potent inhibitory actions of ATP and UTP on bone mineralization are consistent pharmacologically with mediation by the P2Y(2) receptor, which is strongly expressed by mature osteoblasts. In support of this notion, we found 9-17% increases in bone mineral content of hindlimbs of P2Y(2)-deficient mice. We also found that osteoblasts express ectonucleotide phosphodiesterase/pyrophosphatase-1, an ectonucleotidase that hydrolyzes nucleotide triphosphates to yield PPi, and that addition of 10 microm ATP or UTP to osteoblast cultures generated 2 microm PPi within 10 min. Thus, a component of the profound inhibitory action of ATP and UTP on bone mineralization could be mediated directly by PPi, independently of P2 receptors.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
This review is focused on purinergic neurotransmission, i.e., ATP released from nerves as a transmitter or cotransmitter to act as an extracellular signaling molecule on both pre- and postjunctional membranes at neuroeffector junctions and synapses, as well as acting as a trophic factor during development and regeneration. Emphasis is placed on the physiology and pathophysiology of ATP, but extracellular roles of its breakdown product, adenosine, are also considered because of their intimate interactions. The early history of the involvement of ATP in autonomic and skeletal neuromuscular transmission and in activities in the central nervous system and ganglia is reviewed. Brief background information is given about the identification of receptor subtypes for purines and pyrimidines and about ATP storage, release, and ectoenzymatic breakdown. Evidence that ATP is a cotransmitter in most, if not all, peripheral and central neurons is presented, as well as full accounts of neurotransmission and neuromodulation in autonomic and sensory ganglia and in the brain and spinal cord. There is coverage of neuron-glia interactions and of purinergic neuroeffector transmission to nonmuscular cells. To establish the primitive and widespread nature of purinergic neurotransmission, both the ontogeny and phylogeny of purinergic signaling are considered. Finally, the pathophysiology of purinergic neurotransmission in both peripheral and central nervous systems is reviewed, and speculations are made about future developments.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neurscience Centre, Royal Free and University College Medical School, London, UK.
| |
Collapse
|
50
|
Fabre ACS, Vantourout P, Champagne E, Tercé F, Rolland C, Perret B, Collet X, Barbaras R, Martinez LO. Cell surface adenylate kinase activity regulates the F(1)-ATPase/P2Y (13)-mediated HDL endocytosis pathway on human hepatocytes. Cell Mol Life Sci 2006; 63:2829-37. [PMID: 17103109 PMCID: PMC2020515 DOI: 10.1007/s00018-006-6325-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We have previously demonstrated on human hepatocytes that apolipoprotein A-I binding to an ecto-F(1)-ATPase stimulates the production of extracellular ADP that activates a P2Y(13)-mediated high-density lipoprotein (HDL) endocytosis pathway. Therefore, we investigated the mechanisms controlling the extracellular ATP/ADP level in hepatic cell lines and primary cultures to determine their impact on HDL endocytosis. Here we show that addition of ADP to the cell culture medium induced extracellular ATP production that was due to adenylate kinase [see text] and nucleoside diphosphokinase [see text] activities, but not to ATP synthase activity. We further observed that in vitro modulation of both ecto-NDPK and AK activities could regulate the ADP-dependent HDL endocytosis. But interestingly, only AK appeared to naturally participate in the pathway by consuming the ADP generated by the ecto-F(1)-ATPase. Thus controlling the extracellular ADP level is a potential target for reverse cholesterol transport regulation.
Collapse
Affiliation(s)
- A. C. S. Fabre
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - P. Vantourout
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - E. Champagne
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - F. Tercé
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - C. Rolland
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - B. Perret
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - X. Collet
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - R. Barbaras
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| | - L. O. Martinez
- INSERM U563, Département LML Bat. C, Hôpital Purpan, BP 3048, 31024 Toulouse cedex 03, France
| |
Collapse
|