1
|
Ataya A, Knight V, Carey BC, Lee E, Tarling EJ, Wang T. The Role of GM-CSF Autoantibodies in Infection and Autoimmune Pulmonary Alveolar Proteinosis: A Concise Review. Front Immunol 2021; 12:752856. [PMID: 34880857 PMCID: PMC8647160 DOI: 10.3389/fimmu.2021.752856] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Autoantibodies to multiple cytokines have been identified and some, including antibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF), have been associated with increased susceptibility to infection. High levels of GM-CSF autoantibodies that neutralize signaling cause autoimmune pulmonary alveolar proteinosis (aPAP), an ultrarare autoimmune disease characterized by accumulation of excess surfactant in the alveoli, leading to pulmonary insufficiency. Defective GM-CSF signaling leads to functional deficits in multiple cell types, including macrophages and neutrophils, with impaired phagocytosis and host immune responses against pulmonary and systemic infections. In this article, we review the role of GM-CSF in aPAP pathogenesis and pulmonary homeostasis along with the increased incidence of infections (particularly opportunistic infections). Therefore, recombinant human GM-CSF products may have potential for treatment of aPAP and possibly other infectious and pulmonary diseases due to its pleotropic immunomodulatory actions.
Collapse
Affiliation(s)
- Ali Ataya
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine and Children's Hospital, Aurora, CO, United States
| | - Brenna C Carey
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Elinor Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Elizabeth J Tarling
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Tisha Wang
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
2
|
Pamir N, Liu NC, Irwin A, Becker L, Peng Y, Ronsein GE, Bornfeldt KE, Duffield JS, Heinecke JW. Granulocyte/Macrophage Colony-stimulating Factor-dependent Dendritic Cells Restrain Lean Adipose Tissue Expansion. J Biol Chem 2015; 290:14656-67. [PMID: 25931125 DOI: 10.1074/jbc.m115.645820] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 12/21/2022] Open
Abstract
The physiological roles of macrophages and dendritic cells (DCs) in lean white adipose tissue homeostasis have received little attention. Because DCs are generated from bone marrow progenitors in the presence of granulocyte/macrophage colony-stimulating factor (GM-CSF), we used GM-CSF-deficient (Csf2(-/-)) mice fed a low fat diet to test the hypothesis that adipose tissue DCs regulate the development of adipose tissue. At 4 weeks of age, Csf2(-/-) mice had 75% fewer CD45(+)Cd11b(+)Cd11c(+)MHCII(+) F4/80(-) DCs in white adipose tissue than did wild-type controls. Furthermore, the Csf2(-/-) mice showed a 30% increase in whole body adiposity, which persisted to adulthood. Adipocytes from Csf2(-/-) mice were 50% larger by volume and contained higher levels of adipogenesis gene transcripts, indicating enhanced adipocyte differentiation. In contrast, adipogenesis/adipocyte lipid accumulation was inhibited when preadipocytes were co-cultured with CD45(+)Cd11b(+)Cd11c(+)MHCII(+)F4/80(-) DCs. Medium conditioned by DCs, but not by macrophages, also inhibited adipocyte lipid accumulation. Proteomic analysis revealed that matrix metalloproteinase 12 and fibronectin 1 were greatly enriched in the medium conditioned by DCs compared with that conditioned by macrophages. Silencing fibronectin or genetic deletion of matrix metalloproteinase 12 in DCs partially reversed the inhibition of adipocyte lipid accumulation. Our observations indicate that DCs residing in adipose tissue play a critical role in suppressing normal adipose tissue expansion.
Collapse
Affiliation(s)
| | | | | | - Lev Becker
- the Department of Pediatrics, University of Chicago, Chicago, Illinois 60637
| | | | | | | | - Jeremy S Duffield
- the Division of Nephrology and Lung Biology, University of Washington, Seattle, Washington 98109-8050 and
| | | |
Collapse
|
3
|
Salari S, Seibert T, Chen YX, Hu T, Shi C, Zhao X, Cuerrier CM, Raizman JE, O’Brien ER. Extracellular HSP27 acts as a signaling molecule to activate NF-κB in macrophages. Cell Stress Chaperones 2013; 18:53-63. [PMID: 22851137 PMCID: PMC3508120 DOI: 10.1007/s12192-012-0356-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 12/29/2022] Open
Abstract
Heat shock protein 27 (HSP27) shows attenuated expression in human coronary arteries as the extent of atherosclerosis progresses. In mice, overexpression of HSP27 reduces atherogenesis, yet the precise mechanism(s) are incompletely understood. Inflammation plays a central role in atherogenesis, and of particular interest is the balance of pro- and anti-inflammatory factors produced by macrophages. As nuclear factor-kappa B (NF-κB) is a key immune signaling modulator in atherogenesis, and macrophages are known to secrete HSP27, we sought to determine if recombinant HSP27 (rHSP27) alters NF-κB signaling in macrophages. Treatment of THP-1 macrophages with rHSP27 resulted in the degradation of an inhibitor of NF-κB, IκBα, nuclear translocation of the NF-κB p65 subunit, and increased NF-κB transcriptional activity. Treatment of THP-1 macrophages with rHSP27 yielded increased expression of a variety of genes, including the pro-inflammatory factors, IL-1β, and TNF-α. However, rHSP27 also increased the expression of the anti-inflammatory factors IL-10 and GM-CSF both at the mRNA and protein levels. Our study suggests that in macrophages, activation of NF-κB signaling by rHSP27 is associated with upregulated expression and secretion of key pro- and anti-inflammatory cytokines. Moreover, we surmise that it is the balance in expression of these mediators and antagonists of inflammation, and hence atherogenesis, that yields a favorable net effect of HSP27 on the vessel wall.
Collapse
Affiliation(s)
- Samira Salari
- University of Ottawa Heart Institute, Ottawa, ON Canada
| | - Tara Seibert
- University of Ottawa Heart Institute, Ottawa, ON Canada
| | | | - Tieqiang Hu
- University of Ottawa Heart Institute, Ottawa, ON Canada
| | - Chunhua Shi
- University of Ottawa Heart Institute, Ottawa, ON Canada
| | - Xiaoling Zhao
- University of Ottawa Heart Institute, Ottawa, ON Canada
| | | | | | - Edward R. O’Brien
- University of Ottawa Heart Institute, Ottawa, ON Canada
- Division of Cardiology, Libin Cardiovascular Institute of Alberta, Room C823, Foothills Medical Centre, 1403—29th Street NW, Calgary, AB T2N 2T9 Canada
| |
Collapse
|
4
|
Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunol Cell Biol 2011; 90:429-40. [PMID: 21727904 DOI: 10.1038/icb.2011.58] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There is recent interest in the role of monocyte/macrophage subpopulations in pathology. How the hemopoietic growth factors, macrophage-colony stimulating factor (M-CSF or CSF-1) and granulocyte macrophage (GM)-CSF, regulate their in vivo development and function is unclear. A comparison is made here on the effect of CSF-1 receptor (CSF-1R) and GM-CSF blockade/depletion on such subpopulations, both in the steady state and during inflammation. In the steady state, administration of neutralizing anti-CSF-1R monoclonal antibody (mAb) rapidly (within 3-4 days) lowered, specifically, the number of the more mature Ly6C(lo) peripheral blood murine monocyte population and resident peritoneal macrophages; it also reduced the accumulation of murine exudate (Ly6C(lo)) macrophages in two peritonitis models and alveolar macrophages in lung inflammation, consistent with a non-redundant role for CSF-1 (or interleukin-34) in certain inflammatory reactions. A neutralizing mAb to GM-CSF also reduced inflammatory macrophage numbers during antigen-induced peritonitis and lung inflammation. In GM-CSF gene-deficient mice, a detailed kinetic analysis of monocyte/macrophage and neutrophil dynamics in antigen-induced peritonitis suggested that GM-CSF was acting, in part, systemically to maintain the inflammatory reaction. A model is proposed in which CSF-1R signaling controls the development of the macrophage lineage at a relatively late stage under steady state conditions and during certain inflammatory reactions, whereas in inflammation, GM-CSF can be required to maintain the response by contributing to the prolonged extravasation of immature monocytes and neutrophils. A correlation has been observed between macrophage numbers and the severity of certain inflammatory conditions, and it could be that CSF-1 and GM-CSF contribute to the control of these numbers in the ways proposed.
Collapse
|
5
|
Weissen-Plenz G, Sezer O, Vahlhaus C, Robenek H, Hoffmeier A, Tjan TDT, Scheld HH, Sindermann JR. Aortic dissection associated with Cogans's syndrome: deleterious loss of vascular structural integrity is associated with GM-CSF overstimulation in macrophages and smooth muscle cells. J Cardiothorac Surg 2010; 5:66. [PMID: 20727201 PMCID: PMC2933604 DOI: 10.1186/1749-8090-5-66] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 08/21/2010] [Indexed: 11/13/2022] Open
Abstract
Background Cogan's syndrome is a rare disorder of unknown origin characterized by inflammatory ocular disease and vestibuloauditory symptoms. Systemic vasculitis is found in about 10% of cases. Case presentation A 46-year-old female with Cogans's syndrome and a history of arterial hypertension presented with severe chest pain caused by an aneurysm of the ascending aorta with a dissection membrane located a few centimeters distal from the aortic root. After surgery, histopathological analysis revealed that vascular matrix integrity and expression of the major matrix molecules was characterized by elastolysis and collagenolysis and thus a dramatic loss of structural integrity. Remarkably, exceeding matrix deterioration was associated with massively increased levels of granulocyte macrophage colony stimulating factor (GM-CSF). Conclusion Our data suggest that the persistently increased secretion of the inflammatory mediator GM-CSF by resident inflammatory cells but also by SMC may be the trigger of aortic wall structural deterioration.
Collapse
Affiliation(s)
- Gabriele Weissen-Plenz
- Department of Thoracic and Cardiovascular Surgery, University Hospital of Muenster, Albert-Schweitzer-Strasse 33, 48149 Muenster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Weissen-Plenz G, Sindermann JR. Letter to the editor: “Looking for molecular mechanisms underlying aberrant elastin deposition in hypertension”. Am J Physiol Heart Circ Physiol 2009; 296:H900; author reply H901. [DOI: 10.1152/ajpheart.01168.2008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Burgess JK. The role of the extracellular matrix and specific growth factors in the regulation of inflammation and remodelling in asthma. Pharmacol Ther 2009; 122:19-29. [PMID: 19141302 DOI: 10.1016/j.pharmthera.2008.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 12/17/2008] [Indexed: 12/12/2022]
Abstract
Asthma is a disease characterised by persistent inflammation and structural changes in the airways, referred to as airway remodelling. The mechanisms underlying these processes may be interdependent or they may be separate processes that are driven by common factors. The levels of a variety of growth factors (including transforming growth factor beta, granulocyte macrophage colony stimulating factor, and vascular endothelial growth factor) are known to be changed in the asthmatic airway. These and other growth factors can contribute to the development and persistence of inflammation and remodelling. One of the prominent features of the structural changes of the airways is the increased deposition and alterations in the composition of the extracellular matrix proteins. These proteins include fibronectin, many different collagen types and hyaluronan. There is a dynamic relationship between the extracellular matrix proteins and the airway mesenchymal cells such that the changes in the extracellular matrix proteins can also contribute to the persistence of inflammation and the airway remodelling. This review aims to summarise the role growth factors and extracellular matrix proteins play in the regulation of inflammation and airway remodelling in the asthmatic airway.
Collapse
Affiliation(s)
- Janette K Burgess
- Discipline of Pharmacology, The University of Sydney, Woolcock Institute of Medical Research and the Cooperative Research Centre for Asthma and Airways, Sydney, NSW Australia.
| |
Collapse
|
8
|
Harris AK, Shen J, Radford J, Bao S, Hambly BD. GM‐CSF deficiency delays neointima formation in a normolipidemic mouse model of endoluminal endothelial damage. Immunol Cell Biol 2008; 87:122-30. [DOI: 10.1038/icb.2008.73] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Angie K Harris
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, University of Sydney Sydney New South Wales Australia
| | - Jie Shen
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, University of Sydney Sydney New South Wales Australia
| | - Jane Radford
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, University of Sydney Sydney New South Wales Australia
| | - Shisan Bao
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, University of Sydney Sydney New South Wales Australia
| | - Brett D Hambly
- Discipline of Pathology, School of Medical Sciences and Bosch Institute, University of Sydney Sydney New South Wales Australia
| |
Collapse
|
9
|
Sindermann JR, Köbbert C, Voss R, Ebbing J, March KL, Breithardt G, Weissen-Plenz G. Transgenic model of smooth muscle cell cycle reentry: expression pattern of the collageneous matrix. Cardiovasc Pathol 2008; 17:72-80. [DOI: 10.1016/j.carpath.2007.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Revised: 06/10/2007] [Accepted: 07/10/2007] [Indexed: 10/22/2022] Open
|
10
|
Lysyl Oxidase Inhibition Is Responsible for the Vascular Elastic Fiber Phenotype. Hypertension 2008; 51:e13; author reply e14. [DOI: 10.1161/hypertensionaha.107.103739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Weissen-Plenz G, Eschert H, Völker W, Sindermann JR, Beissert S, Robenek H, Scheld HH, Breithardt G. Granulocyte Macrophage Colony-Stimulating Factor Deficiency Affects Vascular Elastin Production and Integrity of Elastic Lamellae. J Vasc Res 2007; 45:103-10. [DOI: 10.1159/000109819] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 07/31/2007] [Indexed: 11/19/2022] Open
|
12
|
Shaposhnik Z, Wang X, Weinstein M, Bennett BJ, Lusis AJ. Granulocyte macrophage colony-stimulating factor regulates dendritic cell content of atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2006; 27:621-7. [PMID: 17158354 PMCID: PMC3014056 DOI: 10.1161/01.atv.0000254673.55431.e6] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Recent evidence suggests that dendritic cells may play an important role in atherosclerosis. Based primarily on previous in vitro studies, we hypothesized that granulocyte macrophage colony-stimulating factor (GM-CSF)-deficient mice would have decreased dendritic cells in lesions. METHODS AND RESULTS To test this, we characterized gene targeted GM-CSF(-/-) mice crossed to hypercholesterolemic low-density lipoprotein receptor null mice. Our results provide conclusive evidence that GM-CSF is a major regulator of dendritic cell formation in vivo. Aortic lesion sections in GM-CSF(-/-) low-density lipoprotein receptor null animals showed a dramatic 60% decrease in the content of dendritic cells as judged by CD11c staining but no change in the overall content of monocyte-derived cells. The GM-CSF-deficient mice exhibited a significant 20% to 50% decrease in the size of aortic lesions, depending on the location of the lesions. Other prominent changes in GM-CSF(-/-) mice were decreased lesional T cell content, decreased autoantibodies to oxidized lipids, and striking disruptions of the elastin fibers adjacent to the lesion. CONCLUSION Given that GM-CSF is dramatically induced by oxidized lipids in endothelial cells, our data suggest that GM-CSF serves to regulate dendritic cell formation in lesions and that this, in turn, influences inflammation, plaque growth and possibly plaque stability.
Collapse
Affiliation(s)
- Zory Shaposhnik
- Department of Molecular and Medical Pharmacology, UCLA School of Medicine, Los Angeles, Calif
| | - Xuping Wang
- Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, Calif
| | - Michael Weinstein
- Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, Calif
| | - Brian J. Bennett
- Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, Calif
| | - Aldons J. Lusis
- Department of Medicine, Department of Microbiology, Immunology, and Molecular Genetics, Department of Human Genetics, and Molecular Biology Institute, UCLA School of Medicine, Los Angeles, Calif
| |
Collapse
|
13
|
Ditiatkovski M, Toh BH, Bobik A. GM-CSF Deficiency Reduces Macrophage PPAR-γ Expression and Aggravates Atherosclerosis in ApoE-Deficient Mice. Arterioscler Thromb Vasc Biol 2006; 26:2337-44. [PMID: 16873730 DOI: 10.1161/01.atv.0000238357.60338.90] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is expressed in atherosclerotic lesions but its significance for lesion development is unknown. Consequently, we investigated the significance of GM-CSF expression for development of atherosclerotic lesions in apolipoprotein E-deficient (apoE
−/−
) mice.
Methods and Results—
We generated apoE
−/−
mice deficient in GM-CSF (apoE
−/−
.GM-CSF
−/−
mice), fed them a high-fat diet, and compared lesion development with apoE
−/−
mice. We measured lesion size, macrophage, smooth muscle cell, and collagen accumulation at the aortic sinus, and expression of genes that regulate cholesterol transport and inflammation. No differences in serum cholesterol were found between the 2 groups. Lesion size in hyperlipidemic apoE
−/−
.GM-CSF
−/−
increased by 30% (
P
<0.05), macrophage accumulation doubled, and collagen content reduced by 15% (
P
<0.05); smooth muscle cell accumulation and vascularity were unaffected. Analysis of PPAR-γ, ABCA1, and CD36 in lesions showed reduced expression (50%, 65%, and 55%, respectively), whereas SR-A doubled. In peritoneal macrophages, PPAR-γ and ABCA1 expression was also reduced by 50% and 70%, respectively, as was cholesterol efflux, by 50%. In lesions, pro-inflammatory MCP-1 and tumor necrosis factor (TNF)-α expression increased 2- and 3.5-fold, respectively, vascular cell adhesion molecule (VCAM)-1 expression enhanced and interleukin (IL)-1 receptor antagonist reduced by 50%.
Conclusions—
GM-CSF deficiency increases atherosclerosis under hypercholesterolemic conditions, indicating antiatherogenic role for GM-CSF. We suggest this protective role is mediated by PPAR-γ and ABCA1, molecules that affect cholesterol homeostasis and inflammation.
Collapse
Affiliation(s)
- Michael Ditiatkovski
- Cell Biology Laboratory, Monash University, Melbourne, Victoria, 8008, Australia.
| | | | | |
Collapse
|
14
|
Mann A, Niekisch K, Schirmacher P, Blessing M. Granulocyte-macrophage colony-stimulating factor is essential for normal wound healing. J Investig Dermatol Symp Proc 2006; 11:87-92. [PMID: 17069015 DOI: 10.1038/sj.jidsymp.5650013] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multipotent growth factor, which plays an important role during the process of wound healing. In clinical settings it has occasionally been employed in the treatment of cutaneous wounds of diverse etiologies. In a previous study, we have shown the positive influence of GM-CSF on full thickness excisional wounds in transgenic mice overexpressing GM-CSF in the basal layer of the epidermis. Direct GM-CSF action as well as indirect processes through the induction of secondary cytokines were proposed to contribute towards the beneficial effects. In this study, we analyzed the process of wound healing in transgenic mice overexpressing a GM-CSF antagonist in the epidermis. These mice not only exhibited a delayed scab rejection and reepithelialization but also neovascularization was reduced. The newly formed tissue was of poor quality as exhibited by the presence of extensive fibrosis. We suggest that the presence of GM-CSF in the repair process is of basic importance and its absence leads not only to delayed wound healing but it is also detrimental for the quality of the newly formed tissue.
Collapse
Affiliation(s)
- Amrit Mann
- Center for Biotechnology and Biomedicine, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | | | | | | |
Collapse
|
15
|
Seymour JF. Extra-pulmonary aspects of acquired pulmonary alveolar proteinosis as predicted by granulocyte-macrophage colony-stimulating factor-deficient mice. Respirology 2006; 11 Suppl:S16-22. [PMID: 16423263 DOI: 10.1111/j.1440-1843.2006.00801.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF)-/- mice are an invaluable model for exploring the effects of systemic GM-CSF deficiency. Their lung phenotype exactly reproduces the abnormalities seen in human pulmonary alveolar proteinosis (PAP). However, GM-CSF-/- mice also have significant systemic functional abnormalities. These include immune defects which result in a reduced susceptibility to a range of experimentally induced autoimmune disorders. These immunological defects are also functionally manifest as an impaired ability to resolve a range of infections under certain conditions, usually implicating cellular effectors, including Listeria, Group B streptococcus, adenovirus, Pneumocystis carinii, and malaria. These observations are consistent with the known propensity for patients with PAP to develop a range of opportunistic infections. Conversely, the diminished immunological response to inflammatory stimuli may be beneficial in some settings by limiting inflammatory cell recruitment and pro-inflammatory mediator-release. GM-CSF-/- mice also have distinct fertility defects, manifest as reduced litter size and an increased rate of early fetal loss. These observations may be clinically relevant for women affected by PAP and further support the evaluation of the role of GM-CSF in human reproduction. These observations reinforce the importance of clinicians viewing PAP as a state of systemic functional GM-CSF deficiency, albeit with prominent pulmonary manifestations, rather than purely a 'lung disease'. These systemic manifestations of GM-CSF deficiency should also be considered when deciding on the choice between pulmonary or systemic delivery of GM-CSF as therapy for PAP, as only systemic drug delivery has the potential capacity to correct the systemic manifestations of GM-CSF deficiency in these patients.
Collapse
|