1
|
Bartlett MF, Fitzgerald LF, Nagarajan R, Kent JA. Measurements of in vivo skeletal muscle oxidative capacity are lower following sustained isometric compared with dynamic contractions. Appl Physiol Nutr Metab 2024; 49:250-264. [PMID: 37906958 DOI: 10.1139/apnm-2023-0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Human skeletal muscle oxidative capacity can be quantified non-invasively using 31-phosphorus magnetic resonance spectroscopy (31P-MRS) to measure the rate constant of phosphocreatine (PCr) recovery (kPCr) following contractions. In the quadricep muscles, several studies have quantified kPCr following 24-30 s of sustained maximal voluntary isometric contraction (MVIC). This approach has the advantage of simplicity but is potentially problematic because sustained MVICs inhibit perfusion, which may limit muscle oxygen availability or increase the intracellular metabolic perturbation, and thus affect kPCr. Alternatively, dynamic contractions allow reperfusion between contractions, which may avoid limitations in oxygen delivery. To determine whether dynamic contraction protocols elicit greater kPCr than sustained MVIC protocols, we used a cross-sectional design to compare quadriceps kPCr in 22 young and 11 older healthy adults following 24 s of maximal voluntary: (1) sustained MVIC and (2) dynamic (MVDC; 120°·s-1, 1 every 2 s) contractions. Muscle kPCr was ∼20% lower following the MVIC protocol compared with the MVDC protocol (p ≤ 0.001), though this was less evident in older adults (p = 0.073). Changes in skeletal muscle pH (p ≤ 0.001) and PME accumulation (p ≤ 0.001) were greater following the sustained MVIC protocol, and pH (p ≤ 0.001) and PME (p ≤ 0.001) recovery were slower. These results demonstrate that (i) a brief, sustained MVIC yields a lower value for skeletal muscle oxidative capacity than an MVDC protocol of similar duration and (ii) this difference may not be consistent across populations (e.g., young vs. old). Thus, the potential effect of contraction protocol on comparisons of kPCr in different study groups requires careful consideration in the future.
Collapse
Affiliation(s)
- Miles F Bartlett
- Department of KinesiologyMuscle Physiology Laboratory, University of Massachusetts Amherst, MA 01003, USA
| | - Liam F Fitzgerald
- Department of KinesiologyMuscle Physiology Laboratory, University of Massachusetts Amherst, MA 01003, USA
| | - Rajakumar Nagarajan
- Human Magnetic Resonance Center, Institute for Applied Life Sciences (IALS), University of Massachusetts Amherst, MA 01003, USA
| | - Jane A Kent
- Department of KinesiologyMuscle Physiology Laboratory, University of Massachusetts Amherst, MA 01003, USA
| |
Collapse
|
2
|
Meyerspeer M, Boesch C, Cameron D, Dezortová M, Forbes SC, Heerschap A, Jeneson JA, Kan HE, Kent J, Layec G, Prompers JJ, Reyngoudt H, Sleigh A, Valkovič L, Kemp GJ. 31 P magnetic resonance spectroscopy in skeletal muscle: Experts' consensus recommendations. NMR IN BIOMEDICINE 2020; 34:e4246. [PMID: 32037688 PMCID: PMC8243949 DOI: 10.1002/nbm.4246] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 05/07/2023]
Abstract
Skeletal muscle phosphorus-31 31 P MRS is the oldest MRS methodology to be applied to in vivo metabolic research. The technical requirements of 31 P MRS in skeletal muscle depend on the research question, and to assess those questions requires understanding both the relevant muscle physiology, and how 31 P MRS methods can probe it. Here we consider basic signal-acquisition parameters related to radio frequency excitation, TR, TE, spectral resolution, shim and localisation. We make specific recommendations for studies of resting and exercising muscle, including magnetisation transfer, and for data processing. We summarise the metabolic information that can be quantitatively assessed with 31 P MRS, either measured directly or derived by calculations that depend on particular metabolic models, and we give advice on potential problems of interpretation. We give expected values and tolerable ranges for some measured quantities, and minimum requirements for reporting acquisition parameters and experimental results in publications. Reliable examination depends on a reproducible setup, standardised preconditioning of the subject, and careful control of potential difficulties, and we summarise some important considerations and potential confounders. Our recommendations include the quantification and standardisation of contraction intensity, and how best to account for heterogeneous muscle recruitment. We highlight some pitfalls in the assessment of mitochondrial function by analysis of phosphocreatine (PCr) recovery kinetics. Finally, we outline how complementary techniques (near-infrared spectroscopy, arterial spin labelling, BOLD and various other MRI and 1 H MRS measurements) can help in the physiological/metabolic interpretation of 31 P MRS studies by providing information about blood flow and oxygen delivery/utilisation. Our recommendations will assist in achieving the fullest possible reliable picture of muscle physiology and pathophysiology.
Collapse
Affiliation(s)
- Martin Meyerspeer
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaViennaAustria
- High Field MR CenterMedical University of ViennaViennaAustria
| | - Chris Boesch
- DBMR and DIPRUniversity and InselspitalBernSwitzerland
| | - Donnie Cameron
- Norwich Medical SchoolUniversity of East AngliaNorwichUK
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CentreLeidenthe Netherlands
| | - Monika Dezortová
- MR‐Unit, Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Sean C. Forbes
- Department of Physical TherapyUniversity of FloridaGainesvilleFloridaUSA
| | - Arend Heerschap
- Department of Radiology and Nuclear MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Jeroen A.L. Jeneson
- Department of RadiologyAmsterdam University Medical Center|site AMCAmsterdamthe Netherlands
- Cognitive Neuroscience CenterUniversity Medical Center GroningenGroningenthe Netherlands
- Center for Child Development and Exercise, Wilhelmina Children's HospitalUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Hermien E. Kan
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CentreLeidenthe Netherlands
- Duchenne CenterThe Netherlands
| | - Jane Kent
- Department of KinesiologyUniversity of Massachusetts AmherstMAUSA
| | - Gwenaël Layec
- Department of KinesiologyUniversity of Massachusetts AmherstMAUSA
- Institute for Applied Life SciencesUniversity of MassachusettsAmherstMAUSA
| | | | - Harmen Reyngoudt
- NMR Laboratory, Neuromuscular Investigation CenterInstitute of Myology AIM‐CEAParisFrance
| | - Alison Sleigh
- Wolfson Brain Imaging CentreUniversity of CambridgeCambridgeUK
- Wellcome Trust‐MRC Institute of Metabolic ScienceUniversity of CambridgeCambridgeUK
- NIHR/Wellcome Trust Clinical Research FacilityCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Ladislav Valkovič
- Oxford Centre for Clinical Magnetic Resonance Research (OCMR), RDM Cardiovascular Medicine, BHF Centre of Research ExcellenceUniversity of OxfordOxfordUK
- Department of Imaging MethodsInstitute of Measurement Science, Slovak Academy of SciencesBratislavaSlovakia
| | - Graham J. Kemp
- Department of Musculoskeletal Biology and Liverpool Magnetic Resonance Imaging Centre (LiMRIC)University of LiverpoolLiverpoolUK
| | | |
Collapse
|
3
|
Abstract
Animals possess a remarkable ability to perform physical activity over a wide range of workloads and durations, reflecting both the inherent efficiency and large reserve capacity of energy transfer systems. Deciphering how different organ/physiological systems respond to the acute and chronic demands of exercise depends on a foundational understanding of the redox and bioenergetic principles that underlie the flow of electrons in living systems and its coupling to ATP synthesis. The purpose of this review is to set the stage to cover (1) the thermodynamic driving forces responsible for generating and maintaining the energy charge that establishes and sustains life for cells, and (2) how cellular energy transfer systems respond to changes in energy demand to ensure energy charge is preserved.
Collapse
Affiliation(s)
- P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, Departments of Physiology and Kinesiology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| |
Collapse
|
4
|
Valkovič L, Chmelík M, Krššák M. In-vivo 31P-MRS of skeletal muscle and liver: A way for non-invasive assessment of their metabolism. Anal Biochem 2017; 529:193-215. [PMID: 28119063 PMCID: PMC5478074 DOI: 10.1016/j.ab.2017.01.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/18/2023]
Abstract
In addition to direct assessment of high energy phosphorus containing metabolite content within tissues, phosphorus magnetic resonance spectroscopy (31P-MRS) provides options to measure phospholipid metabolites and cellular pH, as well as the kinetics of chemical reactions of energy metabolism in vivo. Even though the great potential of 31P-MR was recognized over 30 years ago, modern MR systems, as well as new, dedicated hardware and measurement techniques provide further opportunities for research of human biochemistry. This paper presents a methodological overview of the 31P-MR techniques that can be used for basic, physiological, or clinical research of human skeletal muscle and liver in vivo. Practical issues of 31P-MRS experiments and examples of potential applications are also provided. As signal localization is essential for liver 31P-MRS and is important for dynamic muscle examinations as well, typical localization strategies for 31P-MR are also described.
Collapse
Affiliation(s)
- Ladislav Valkovič
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Oxford Centre for Clinical Magnetic Resonance Research (OCMR), University of Oxford, Oxford, United Kingdom; Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Marek Chmelík
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Institute for Clinical Molecular MRI in Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Martin Krššák
- High-field MR Centre, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria; Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria; Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Vinnakota KC, Cha CY, Rorsman P, Balaban RS, La Gerche A, Wade-Martins R, Beard DA, Jeneson JAL. Improving the physiological realism of experimental models. Interface Focus 2016; 6:20150076. [PMID: 27051507 PMCID: PMC4759746 DOI: 10.1098/rsfs.2015.0076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Virtual Physiological Human (VPH) project aims to develop integrative, explanatory and predictive computational models (C-Models) as numerical investigational tools to study disease, identify and design effective therapies and provide an in silico platform for drug screening. Ultimately, these models rely on the analysis and integration of experimental data. As such, the success of VPH depends on the availability of physiologically realistic experimental models (E-Models) of human organ function that can be parametrized to test the numerical models. Here, the current state of suitable E-models, ranging from in vitro non-human cell organelles to in vivo human organ systems, is discussed. Specifically, challenges and recent progress in improving the physiological realism of E-models that may benefit the VPH project are highlighted and discussed using examples from the field of research on cardiovascular disease, musculoskeletal disorders, diabetes and Parkinson's disease.
Collapse
Affiliation(s)
- Kalyan C. Vinnakota
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Chae Y. Cha
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Robert S. Balaban
- Laboratory of Cardiac Energetics, National Heart Lung Blood Institute, Bethesda, MD, USA
| | - Andre La Gerche
- Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Richard Wade-Martins
- Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Daniel A. Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Jeroen A. L. Jeneson
- Neuroimaging Centre, Division of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands
- Department of Radiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Werkman M, Jeneson J, Helders P, Arets B, van der Ent K, Velthuis B, Nievelstein R, Takken T, Hulzebos E. Exercise oxidative skeletal muscle metabolism in adolescents with cystic fibrosis. Exp Physiol 2016; 101:421-31. [PMID: 26707538 PMCID: PMC4925307 DOI: 10.1113/ep085425] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do intrinsic abnormalities in oxygenation and/or muscle oxidative metabolism contribute to exercise intolerance in adolescents with mild cystic fibrosis? What is the main finding and its importance? This study found no evidence that in adolescents with mild cystic fibrosis in a stable clinical state intrinsic abnormalities in skeletal muscle oxidative metabolism seem to play a clinical significant role. Based on these results, we concluded that there is no metabolic constraint to benefit from exercise training. Patients with cystic fibrosis (CF) are reported to have limited exercise capacity. There is no consensus about a possible abnormality in skeletal muscle oxidative metabolism in CF. Our aim was to test the hypothesis that abnormalities in oxygenation and/or muscle oxidative metabolism contribute to exercise intolerance in adolescents with mild CF. Ten adolescents with CF (12-18 years of age; forced expiratory volume in 1 s >80% of predicted; and resting oxygen saturation >94%) and 10 healthy age-matched control (HC) subjects were tested with supine cycle ergometry using near-infrared spectroscopy and (31)P magnetic resonance spectroscopy to study skeletal muscle oxygenation and oxidative metabolism during rest, exercise and recovery. No statistically significant (P > 0.1) differences in peak workload and peak oxygen uptake per kilogram lean body mass were found between CF and HC subjects. No differences were found between CF and HC subjects in bulk changes of quadriceps phosphocreatine (P = 0.550) and inorganic phosphate (P = 0.896) content and pH (P = 0.512) during symptom-limited exercise. Furthermore, we found statistically identical kinetics for phosphocreatine resynthesis during recovery for CF and HC subjects (P = 0.53). No statistically significant difference in peak exercise arbitrary units for total haemoglobin content was found between CF and HC subjects (P = 0.66). The results of this study provide evidence that in patients with mild CF and a stable clinical status (without signs of systemic inflammation and/or chronic Pseudomonas aeruginosa colonization), no intrinsic metabolic constraints and/or abnormalities in oxygenation and/or muscle oxidative metabolism contribute to exercise intolerance.
Collapse
Affiliation(s)
- Maarten Werkman
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen Jeneson
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul Helders
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bert Arets
- Cystic Fibrosis Center and Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kors van der Ent
- Cystic Fibrosis Center and Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Birgitta Velthuis
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Rutger Nievelstein
- Department of Radiology, University Medical Center Utrecht, The Netherlands
| | - Tim Takken
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
- Partner of Shared Utrecht Pediatric Exercise Research (SUPER) Laboratory, Utrecht, The Netherlands
| | - Erik Hulzebos
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
van Brussel M, van Oorschot JWM, Schmitz JPJ, Nicolay K, van Royen-Kerkhof A, Takken T, Jeneson JAL. Muscle Metabolic Responses During Dynamic In-Magnet Exercise Testing: A Pilot Study in Children with an Idiopathic Inflammatory Myopathy. Acad Radiol 2015; 22:1443-8. [PMID: 26259546 DOI: 10.1016/j.acra.2015.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 11/18/2022]
Abstract
RATIONALE AND OBJECTIVES The clinical utility of supine in-magnet bicycling in combination with phosphorus magnetic resonance spectroscopy ((31)P MRS) to evaluate quadriceps muscle metabolism was examined in four children with juvenile dermatomyositis (JDM) in remission and healthy age- and gender-matched controls. MATERIALS AND METHODS Two identical maximal supine bicycling tests were performed using a magnetic resonance-compatible ergometer. During the first test, cardiopulmonary performance was established in the exercise laboratory. During the second test, quadriceps energy balance and acid/base balance during incremental exercise and phosphocreatine recovery were determined using (31)P MRS. RESULTS During the first test, no significant differences were found between patients with JDM and their healthy peers regarding cardiopulmonary performance. The outcomes of the first test indicate that both groups attained maximal performance. During the second test, quadriceps phosphocreatine and pH time courses were similar in all but one patient experiencing idiopathic postexercise pain. This patient demonstrated faster phosphocreatine depletion and acidification during exercise, yet postexercise mitochondrial adenosine triphosphate synthesis rate measured by phosphocreatine recovery kinetics was approximately twofold faster than control (time constant 23 seconds vs 43 ± 7 seconds, respectively). CONCLUSIONS These results highlight the utility of in-magnet cycle ergometry in combination with (31)P MRS to assess and monitor muscle energetic patterns in pediatric patients with inflammatory myopathies.
Collapse
Affiliation(s)
- Marco van Brussel
- Division of Pediatrics, Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Rm KB.02.056.0, P.O. Box 85090, NL-3508 AB Utrecht, The Netherlands.
| | - Joep W M van Oorschot
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Joep P J Schmitz
- Biomodeling and Bioinformatics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Annet van Royen-Kerkhof
- Department of Pediatric Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tim Takken
- Division of Pediatrics, Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Rm KB.02.056.0, P.O. Box 85090, NL-3508 AB Utrecht, The Netherlands
| | - Jeroen A L Jeneson
- Division of Pediatrics, Child Development and Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Rm KB.02.056.0, P.O. Box 85090, NL-3508 AB Utrecht, The Netherlands; Neuroimaging Center, Department of Neuroscience, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Kemp GJ, Ahmad RE, Nicolay K, Prompers JJ. Quantification of skeletal muscle mitochondrial function by 31P magnetic resonance spectroscopy techniques: a quantitative review. Acta Physiol (Oxf) 2015; 213:107-44. [PMID: 24773619 DOI: 10.1111/apha.12307] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/30/2013] [Accepted: 04/23/2014] [Indexed: 12/16/2022]
Abstract
Magnetic resonance spectroscopy (MRS) can give information about cellular metabolism in vivo which is difficult to obtain in other ways. In skeletal muscle, non-invasive (31) P MRS measurements of the post-exercise recovery kinetics of pH, [PCr], [Pi] and [ADP] contain valuable information about muscle mitochondrial function and cellular pH homeostasis in vivo, but quantitative interpretation depends on understanding the underlying physiology. Here, by giving examples of the analysis of (31) P MRS recovery data, by some simple computational simulation, and by extensively comparing data from published studies using both (31) P MRS and invasive direct measurements of muscle O2 consumption in a common analytical framework, we consider what can be learnt quantitatively about mitochondrial metabolism in skeletal muscle using MRS-based methodology. We explore some technical and conceptual limitations of current methods, and point out some aspects of the physiology which are still incompletely understood.
Collapse
Affiliation(s)
- G. J. Kemp
- Department of Musculoskeletal Biology, and Magnetic Resonance and Image Analysis Research Centre; University of Liverpool; Liverpool UK
| | - R. E. Ahmad
- Department of Musculoskeletal Biology, and Magnetic Resonance and Image Analysis Research Centre; University of Liverpool; Liverpool UK
| | - K. Nicolay
- Biomedical NMR; Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven the Netherlands
| | - J. J. Prompers
- Biomedical NMR; Department of Biomedical Engineering; Eindhoven University of Technology; Eindhoven the Netherlands
| |
Collapse
|
9
|
Layec G, Malucelli E, Le Fur Y, Manners D, Yashiro K, Testa C, Cozzone PJ, Iotti S, Bendahan D. Effects of exercise-induced intracellular acidosis on the phosphocreatine recovery kinetics: a 31P MRS study in three muscle groups in humans. NMR IN BIOMEDICINE 2013; 26:1403-1411. [PMID: 23703831 DOI: 10.1002/nbm.2966] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 06/02/2023]
Abstract
Little is known about the metabolic differences that exist among different muscle groups within the same subjects. Therefore, we used (31)P-magnetic resonance spectroscopy ((31)P-MRS) to investigate muscle oxidative capacity and the potential effects of pH on PCr recovery kinetics between muscles of different phenotypes (quadriceps (Q), finger (FF) and plantar flexors (PF)) in the same cohort of 16 untrained adults. The estimated muscle oxidative capacity was lower in Q (29 ± 12 mM min(-1), CV(inter-subject) = 42%) as compared with PF (46 ± 20 mM min(-1), CV(inter-subject) = 44%) and tended to be higher in FF (43 ± 35 mM min(-1), CV(inter-subject) = 80%). The coefficient of variation (CV) of oxidative capacity between muscles within the group was 59 ± 24%. PCr recovery time constant was correlated with end-exercise pH in Q (p < 0.01), FF (p < 0.05) and PF (p < 0.05) as well as proton efflux rate in FF (p < 0.01), PF (p < 0.01) and Q (p = 0.12). We also observed a steeper slope of the relationship between end-exercise acidosis and PCr recovery kinetics in FF compared with either PF or Q muscles. Overall, this study supports the concept of skeletal muscle heterogeneity by revealing a comparable inter- and intra-individual variability in oxidative capacity across three skeletal muscles in untrained individuals. These findings also indicate that the sensitivity of mitochondrial respiration to the inhibition associated with cytosolic acidosis is greater in the finger flexor muscles compared with locomotor muscles, which might be related to differences in permeability in the mitochondrial membrane and, to some extent, to proton efflux rates.
Collapse
Affiliation(s)
- Gwenael Layec
- Centre de Resonance Magnetique Biologique et Medicale, UMR CNRS 6612, Faculté de Médecine de Marseille, Marseille, France; Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Rossman MJ, Venturelli M, McDaniel J, Amann M, Richardson RS. Muscle mass and peripheral fatigue: a potential role for afferent feedback? Acta Physiol (Oxf) 2012; 206:242-50. [PMID: 22762286 DOI: 10.1111/j.1748-1716.2012.02471.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 04/25/2012] [Indexed: 01/01/2023]
Abstract
AIM The voluntary termination of exercise has been hypothesized to occur at a sensory tolerance limit, which is affected by feedback from group III and IV muscle afferents, and is associated with a specific level of peripheral quadriceps fatigue during whole body cycling. Therefore, the purpose of this study was to reduce the amount of muscle mass engaged during dynamic leg exercise to constrain the source of muscle afferent feedback to the central nervous system (CNS) and examine the effect on peripheral quadriceps fatigue. METHOD Eight young males performed exhaustive large (cycling - BIKE) and small (knee extensor - KE) muscle mass dynamic exercise at 85% of the modality-specific maximal workload. Pre- vs. post-exercise maximal voluntary contractions (MVC) and supramaximal magnetic femoral nerve stimulation (Q(tw,pot)) were used to quantify peripheral quadriceps fatigue. RESULT Significant quadriceps fatigue was evident following both exercise trials; however, the exercise-induced changes in MVC (-28 ± 1% vs. -16 ± 2%) and Q(tw,pot) (-53 ± 2% vs. -34 ± 2%) were far greater following KE compared to BIKE exercise, respectively. The greater degree of quadriceps fatigue following KE exercise was in proportion to the greater exercise time (9.1 ± 0.4 vs. 6.3 ± 0.5 min, P < 0.05), suggestive of a similar rate of peripheral fatigue development. CONCLUSION These data suggest that when the source of skeletal muscle afferent feedback is confined to a small muscle mass, the CNS tolerates a greater magnitude of peripheral fatigue and likely a greater intramuscular metabolic disturbance. An important implication of this finding is that the adoption of small muscle mass exercise may facilitate greater exercise-induced muscular adaptation.
Collapse
Affiliation(s)
- M J Rossman
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | | | | | | | | |
Collapse
|
11
|
Schmitz JPJ, van Dijk JP, Hilbers PAJ, Nicolay K, Jeneson JAL, Stegeman DF. Unchanged muscle fiber conduction velocity relates to mild acidosis during exhaustive bicycling. Eur J Appl Physiol 2011; 112:1593-602. [PMID: 21861110 PMCID: PMC3324688 DOI: 10.1007/s00421-011-2119-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 08/05/2011] [Indexed: 11/27/2022]
Abstract
Muscle fiber conduction velocity (MFCV) has often been shown to decrease during standardized fatiguing isometric contractions. However, several studies have indicated that the MFCV may remain constant during fatiguing dynamic exercise. It was investigated if these observations can be related to the absence of a large decrease in pH and if MFCV can be considered as a good indicator of acidosis, also during dynamic bicycle exercise. High-density surface electromyography (HDsEMG) was combined with read-outs of muscle energetics recorded by in vivo 31P magnetic resonance spectroscopy (MRS). Measurements were performed during serial exhausting bouts of bicycle exercise at three different workloads. The HDsEMG recordings revealed a small and incoherent variation of MFCV during all high-intensity exercise bouts. 31P MRS spectra revealed a moderate decrease in pH at the end of exercise (~0.3 units down to 6.8) and a rapid ancillary drop to pH 6.5 during recovery 30 s post-exercise. This additional degree of acidification caused a significant decrease in MFCV during cycling immediately after the rest period. From the data a significant correlation between MFCV and [H+] ([H+] = 10−pH) was calculated (p < 0.001, Pearson’s R = −0.87). Our results confirmed the previous observations of MFCV remaining constant during fatiguing dynamic exercise. A constant MFCV is in line with a low degree of acidification, considering the presence of a correlation between pH and MFCV after further increasing acidification.
Collapse
Affiliation(s)
- J P J Schmitz
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, PO box 513, 5600MB Eindhoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
12
|
Layec G, Bringard A, Le Fur Y, Vilmen C, Micallef JP, Perrey S, Cozzone PJ, Bendahan D. Comparative determination of energy production rates and mitochondrial function using different 31P MRS quantitative methods in sedentary and trained subjects. NMR IN BIOMEDICINE 2011; 24:425-438. [PMID: 20963767 DOI: 10.1002/nbm.1607] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 06/02/2010] [Accepted: 07/23/2010] [Indexed: 05/30/2023]
Abstract
Muscle energetics has been largely and quantitatively investigated using (31)P MRS. Various methods have been used to estimate the corresponding rate of oxidative ATP synthesis (ATP(ox)); however, potential differences among methods have not been investigated. In this study, we aimed to compare the rates of ATP production and energy cost in two groups of subjects with different training status using four different methods: indirect method (method 1), ADP control model (method 2) and phosphate potential control model (method 3). Method 4 was a modified version of method 3 with the introduction of a correction factor allowing for similar values to be obtained for the end-exercise oxidative ATP synthesis rate inferred from exercise measurements and the initial recovery phosphocreatine resynthesis rate. Seven sedentary and seven endurance-trained subjects performed a dynamic standardised rest-exercise-recovery protocol. We quantified the rates of ATP(ox) and anaerobic ATP synthesis (ATP(ana)) using (31)P MRS data recorded at 1.5 T. The rates of ATP(ox) over the entire exercise session were independent of the method used, except for method 4 which provided significantly higher values in both groups (p < 0.01). In addition, methods 1-3 were cross-correlated, thereby confirming their statistical agreement. The rate of ATP(ana) was significantly higher with method 1 (p < 0.01) and lower with method 4 (p < 0.01). As a result of the higher rate of ATP(ox), EC (method 4) calculated over the entire exercise session was higher and initial EC (method 1) was lower in both groups compared with the other methods. We showed in this study that the rate of ATP(ox) was independent of the calculation method, as long as no corrections (method 4) were performed. In contrast, results related to the rates of ATP(ana) were strongly affected by the calculation method and, more exactly, by the estimation of protons generated by ATP(ox). Although the absolute EC values differed between the methods, within- or between-subject comparisons are still valid given the tight relationships between them.
Collapse
Affiliation(s)
- Gwenael Layec
- Centre de Resonance Magnetique Biologique et Medicale, Faculté de Médecine de Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Jeneson JA, Schmitz JPJ, Dijk JH, Stegeman DF, Nicolay K. Exercise ability is determined by muscle ATP buffer content, not Pi or pH. FASEB J 2010. [DOI: 10.1096/fasebj.24.1_supplement.801.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Joep PJ Schmitz
- Biomedical EngineeringEindhoven University of TechnologyEindhovenNetherlands
| | - Johannes H Dijk
- Clinical NeurophysiologyUniversity Medical Center St RadboudNijmegenNetherlands
| | - Dick F Stegeman
- Clinical NeurophysiologyUniversity Medical Center St RadboudNijmegenNetherlands
| | - Klaas Nicolay
- Biomedical EngineeringEindhoven University of TechnologyEindhovenNetherlands
| |
Collapse
|
14
|
Jeneson JAL, Schmitz JPJ, Hilbers PAJ, Nicolay K. An MR-compatible bicycle ergometer for in-magnet whole-body human exercise testing. Magn Reson Med 2009; 63:257-61. [DOI: 10.1002/mrm.22179] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
15
|
Schmitz JPJ, van Riel NAW, Nicolay K, Hilbers PAJ, Jeneson JAL. Silencing of glycolysis in muscle: experimental observation and numerical analysis. Exp Physiol 2009; 95:380-97. [PMID: 19801387 DOI: 10.1113/expphysiol.2009.049841] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The longstanding problem of rapid inactivation of the glycolytic pathway in skeletal muscle after contraction was investigated using (31)P NMR spectroscopy and computational modelling. Accumulation of phosphorylated glycolytic intermediates (hexose monophosphates) during cyclic contraction and subsequent turnover during metabolic recovery was measured in vivo in human quadriceps muscle using dynamic (31)P NMR spectroscopy. The concentration of hexose monophosphates in muscle peaked 40 s into metabolic recovery from maximal contractile work at 6.9 +/- 1.3 mm (mean +/- s.d.; n = 8) and subsequently declined at a rate of 0.009 +/- 0.001 mm s(1). It was next tested whether the current knowledge of the kinetic controls in the glycolytic pathway in muscle integrated in the Lambeth and Kushmerick computational model of skeletal muscle glycolysis explained the experimental data. It was found that the model underestimated the magnitude of deactivation of the glycolytic pathway in resting muscle, resulting in depletion of glycolytic intermediates and substrate for oxidative ATP synthesis. Numerical analysis of the model identified phosphofructokinase and pyruvate kinase as the kinetic control sites involved in deactivation of the glycolytic pathway. Ancillary 100-fold inhibition of both phosphofructokinase and pyruvate kinase was found necessary to predict glycolytic intermediate and ADP concentrations correctly in resting human muscle. Incorporation of this information into the model resulted in highly improved agreement between predicted and measured in vivo dynamics of hexose monophosphates in muscle following contraction. We concluded that silencing of the glycolytic pathway in muscle following contraction is most likely to be mediated by phosphofructokinase and pyruvate kinase inactivation on a time scale of seconds and minutes, respectively, and is necessary to prevent depletion of vital cellular substrates.
Collapse
Affiliation(s)
- Joep P J Schmitz
- BioModeling and BioInformatics Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Forbes SC, Slade JM, Meyer RA. Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans. Appl Physiol Nutr Metab 2008; 33:1124-31. [DOI: 10.1139/h08-099] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant (τ) of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 ± 4 years; body mass, 69 ± 11 kg) performed 6 sessions of 4–6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 ± 5 years; body mass, 80 ± 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (31P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the τ of PCr recovery. The τ of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 ± 14 s vs. post-training, 37 ± 15 s; p < 0.05) with no change in the control group (44 ± 12 s vs. 43 ± 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.
Collapse
Affiliation(s)
- Sean C. Forbes
- Department of Physiology, Michigan State University, 3105 Biomedical Physical Sciences Building, East Lansing, MI 48824, USA
- Departments of Osteopathic Manipulative Medicine and Radiology, Michigan State University, 184 Radiology, East Lansing, MI 48824, USA
- Departments of Physiology and Radiology, Michigan State University, 3196 Biomedical Physical Sciences Building, East Lansing, MI 48824, USA
| | - Jill M. Slade
- Department of Physiology, Michigan State University, 3105 Biomedical Physical Sciences Building, East Lansing, MI 48824, USA
- Departments of Osteopathic Manipulative Medicine and Radiology, Michigan State University, 184 Radiology, East Lansing, MI 48824, USA
- Departments of Physiology and Radiology, Michigan State University, 3196 Biomedical Physical Sciences Building, East Lansing, MI 48824, USA
| | - Ronald A. Meyer
- Department of Physiology, Michigan State University, 3105 Biomedical Physical Sciences Building, East Lansing, MI 48824, USA
- Departments of Osteopathic Manipulative Medicine and Radiology, Michigan State University, 184 Radiology, East Lansing, MI 48824, USA
- Departments of Physiology and Radiology, Michigan State University, 3196 Biomedical Physical Sciences Building, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Accurate work-rate measurements during in vivo MRS studies of exercising human quadriceps. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2008; 21:227-35. [PMID: 18483819 DOI: 10.1007/s10334-008-0117-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 04/01/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Given that we have reached a point in the field of muscle energetics where absolute measurements are warranted to take the area forward, we designed an ergometer, including two force and two displacement transducers, allowing dynamic and isometric knee extension within a MR system and accurate measurements of power output. METHODS On the basis of repeated measurements, the force and displacement transducers accuracy was 1% for values ranging from 0 to 394 N and 4% for values ranging from 0 to 20 cm. In addition, measurements were not affected by magnetic field. MRS experiments in exercising muscle were conducted in eight subjects. They performed two standardized dynamic alternate leg extension exercises (25 and 35% of MVC) while the corresponding metabolic changes were measured using (31)P-MRS. RESULTS The mean power output produced during both exercises were 63 +/- 16 and 81 +/- 15 W while the eccentric work was reduced i.e. 12 +/- 14 and 21 +/- 6 W for the moderate and heavy exercise respectively. The corresponding metabolic changes were significant with a 20-40% PCr depletion and an end of exercise pH ranging from 0.02 to 0.70 pH units. CONCLUSION Overall, the present ergometer allows quadriceps exercise in a MR system and should be useful for future metabolic studies for which reliable and absolute quantification of power output is warranted.
Collapse
|
18
|
Prompers JJ, Jeneson JAL, Drost MR, Oomens CCW, Strijkers GJ, Nicolay K. Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR IN BIOMEDICINE 2006; 19:927-53. [PMID: 17075956 DOI: 10.1002/nbm.1095] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
MR is a powerful technique for studying the biomechanical and functional properties of skeletal muscle in vivo in health and disease. This review focuses on 31P, 1H and 13C MR spectroscopy for assessment of the dynamics of muscle metabolism and on dynamic 1H MRI methods for non-invasive measurement of the biomechanical and functional properties of skeletal muscle. The information thus obtained ranges from the microscopic level of the metabolism of the myocyte to the macroscopic level of the contractile function of muscle complexes. The MR technology presented plays a vital role in achieving a better understanding of many basic aspects of muscle function, including the regulation of mitochondrial activity and the intricate interplay between muscle fiber organization and contractile function. In addition, these tools are increasingly being employed to establish novel diagnostic procedures as well as to monitor the effects of therapeutic and lifestyle interventions for muscle disorders that have an increasing impact in modern society.
Collapse
Affiliation(s)
- Jeanine J Prompers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Hug F, Bendahan D, Le Fur Y, Cozzone PJ, Grélot L. Metabolic Recovery in Professional Road Cyclists: A 31P-MRS Study. Med Sci Sports Exerc 2005; 37:846-52. [PMID: 15870640 DOI: 10.1249/01.mss.0000162616.20085.b4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Aerobic training of professional road cyclists is linked to tremendous aerobic capacities that have never been clearly related to what occur in skeletal muscles submitted to a specific exercise. The aim of the present study was to examine specifically metabolic recovery after an incremental cycling exercise performed until exhaustion in professional road cyclists as compared with moderately trained subjects and so using 31P- MRS. METHODS Subjects performed a progressive cycling exercise on a cycloergometer until exhaustion, then they were positioned back in the magnet (delay lower than 45 s) for recovery scanning. 31P spectra of thigh muscles were time averaged in 2-s blocks at rest and for 15 min throughout the recovery period. RESULTS For a significantly more intense exercise (477 +/- 28 vs 334 +/- 24 W in controls; P < 0.001), professional road cyclists displayed similar end-of-exercise extrapolated pH values (6.43 +/- 0.16 vs. 6.34 +/- 0.05 in controls) and a significantly higher PCr concentration (20.1 +/- 0.8 vs. 13.3 +/- 0.5 mM in controls, P < 0.001). The pH recovery kinetics provided the evidence of metabolic adaptations related to a specific training in professional cyclists with a significantly faster rate (P < 0.01) of pH return toward basal values (32.8 +/- 18.9 vs 10.8 +/- 6.7 mM x min(-1)). On the contrary, no significant difference was measured for the PCr recovery kinetics. At rest, PDE concentration was significantly higher in professional cyclists (2.50 +/- 0.80 vs 1.76 +/- 0.42 mM), likely indicating a difference regarding fiber-type composition. DISCUSSION The present data demonstrated for the first time that the tremendous aerobic capacity in professional cyclists is linked to faster pH recovery kinetics after a specific cycling exercise.
Collapse
Affiliation(s)
- François Hug
- Department of Sport Physiology, Faculty of Sport Sciences, IFR Marey, University of the Mediteranean (Aix-Marseille II), Marseille, France.
| | | | | | | | | |
Collapse
|
20
|
Longo LD, Pearce WJ. Fetal cerebrovascular acclimatization responses to high-altitude, long-term hypoxia: a model for prenatal programming of adult disease? Am J Physiol Regul Integr Comp Physiol 2005; 288:R16-24. [PMID: 15590993 DOI: 10.1152/ajpregu.00462.2004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the past several decades, many risk factors for cerebrovascular and cardiovascular disease have been identified. More recently, it has been appreciated that inadequate nutrition and/or other intrauterine factors during fetal development may play an important role in the genesis of these conditions. An additional stress factor that may "program" the fetus for disease later in life is chronic hypoxia. In studies originally designed to examine the function of developing cerebral arterial function in response to long-term hypoxia (LTH), it has become clear that many cellular and subcellular changes may have important implications for later life. Here we review some of the significant alterations in fetal cerebral artery structure and function induced by high-altitude (3,820 m, 12,470 ft) LTH ( approximately 110 days). LTH is associated with augmentation or upregulation of presynaptic functions, including responses to perivascular (i.e., sympathetic) nerve stimulation, and structural maturational changes. In contrast, many postsynaptic functions related to the Ca(2+)-dependent contractile pathway tend to be downregulated, whereas elements of the Ca(2+)-independent contraction pathway are upregulated. The results emphasize the role of high-altitude LTH in modulating many aspects of electromechanical and pharmacomechanical coupling in the developing cerebral vasculature. A complicating factor is that the regulation of cerebrovascular tone by Ca(2+)-dependent and Ca(2+)-independent pathways changes significantly as a function of maturational age. In addition to highlighting independent regulation of various elements of the signal transduction cascade, the studies demonstrate the potential for LTH to program the fetus for cerebrovascular and other disease as an adult.
Collapse
Affiliation(s)
- Lawrence D Longo
- Center for Perinatal Biology, Department of Physiology, Loma Linda University, School of Medicine, Loma Linda, CA 92350, USA.
| | | |
Collapse
|