1
|
Maines LW, Keller SN, Smith CD. Opaganib (ABC294640) Induces Immunogenic Tumor Cell Death and Enhances Checkpoint Antibody Therapy. Int J Mol Sci 2023; 24:16901. [PMID: 38069222 PMCID: PMC10706694 DOI: 10.3390/ijms242316901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Antibody-based cancer drugs that target the checkpoint proteins CTLA-4, PD-1 and PD-L1 provide marked improvement in some patients with deadly diseases such as lung cancer and melanoma. However, most patients are either unresponsive or relapse following an initial response, underscoring the need for further improvement in immunotherapy. Certain drugs induce immunogenic cell death (ICD) in tumor cells in which the dying cells promote immunologic responses in the host that may enhance the in vivo activity of checkpoint antibodies. Sphingolipid metabolism is a key pathway in cancer biology, in which ceramides and sphingosine 1-phosphate (S1P) regulate tumor cell death, proliferation and drug resistance, as well as host inflammation and immunity. In particular, sphingosine kinases are key sites for manipulation of the ceramide/S1P balance that regulates tumor cell proliferation and sensitivity to radiation and chemotherapy. We and others have demonstrated that inhibition of sphingosine kinase-2 by the small-molecule investigational drug opaganib (formerly ABC294640) kills tumor cells and increases their sensitivities to other drugs and radiation. Because sphingolipids have been shown to regulate ICD, opaganib may induce ICD and improve the efficacy of checkpoint antibodies for cancer therapy. This was demonstrated by showing that in vitro treatment with opaganib increases the surface expression of the ICD marker calreticulin on a variety of tumor cell types. In vivo confirmation was achieved using the gold standard immunization assay in which B16 melanoma, Lewis lung carcinoma (LLC) or Neuro-2a neuroblastoma cells were treated with opaganib in vitro and then injected subcutaneously into syngeneic mice, followed by implantation of untreated tumor cells 7 days later. In all cases, immunization with opaganib-treated cells strongly suppressed the growth of subsequently injected tumor cells. Interestingly, opaganib treatment induced crossover immunity in that opaganib-treated B16 cells suppressed the growth of both untreated B16 and LLC cells and opaganib-treated LLC cells inhibited the growth of both untreated LLC and B16 cells. Next, the effects of opaganib in combination with a checkpoint antibody on tumor growth in vivo were assessed. Opaganib and anti-PD-1 antibody each slowed the growth of B16 tumors and improved mouse survival, while the combination of opaganib plus anti-PD-1 strongly suppressed tumor growth and improved survival (p < 0.0001). Individually, opaganib and anti-CTLA-4 antibody had modest effects on the growth of LLC tumors and mouse survival, whereas the combination of opaganib with anti-CTLA-4 substantially inhibited tumor growth and increased survival (p < 0.001). Finally, the survival of mice bearing B16 tumors was only marginally improved by opaganib or anti-PD-L1 antibody alone but was nearly doubled by the drugs in combination (p < 0.005). Overall, these studies demonstrate the ability of opaganib to induce ICD in tumor cells, which improves the antitumor activity of checkpoint antibodies.
Collapse
Affiliation(s)
| | | | - Charles D. Smith
- Apogee Biotechnology Corporation, 1214 Research Blvd, Suite 2015, Hummelstown, PA 17036, USA; (L.W.M.)
| |
Collapse
|
2
|
Li S, Jia H, Liu Z, Wang N, Guo X, Cao M, Fang F, Yang J, Li J, He Q, Guo R, Zhang T, Kang K, Wang Z, Liu S, Cao Y, Jiang X, Ren G, Wang K, Yu B, Xiao W, Li D. Fibroblast growth factor-21 as a novel metabolic factor for regulating thrombotic homeostasis. Sci Rep 2022; 12:400. [PMID: 35013379 PMCID: PMC8748457 DOI: 10.1038/s41598-021-00906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 10/12/2021] [Indexed: 11/24/2022] Open
Abstract
Fibroblast growth factor-21 (FGF-21) performs a wide range of biological functions in organisms. Here, we report for the first time that FGF-21 suppresses thrombus formation with no notable risk of bleeding. Prophylactic and therapeutic administration of FGF-21 significantly improved the degree of vascular stenosis and reduced the thrombus area, volume and burden. We determined the antithrombotic mechanism of FGF-21, demonstrating that FGF-21 exhibits an anticoagulant effect by inhibiting the expression and activity of factor VII (FVII). FGF-21 exerts an antiplatelet effect by inhibiting platelet activation. FGF-21 enhances fibrinolysis by promoting tissue plasminogen activator (tPA) expression and activation, while inhibiting plasminogen activator inhibitor 1 (PAI-1) expression and activation. We further found that FGF-21 mediated the expression and activation of tPA and PAI-1 by regulating the ERK1/2 and TGF-β/Smad2 pathways, respectively. In addition, we found that FGF-21 inhibits the expression of inflammatory factors in thrombosis by regulating the NF-κB pathway.
Collapse
Affiliation(s)
- Shuai Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, People's Republic of China
| | - Haibo Jia
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Zhihang Liu
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Nan Wang
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaochen Guo
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Muhua Cao
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China
| | - Fang Fang
- Molecular Imaging Research Center, Harbin Medical University, TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, 150028, People's Republic of China
| | - Jiarui Yang
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Junyan Li
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Qi He
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Rui Guo
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Teng Zhang
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kai Kang
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zongbao Wang
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Shijie Liu
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yukai Cao
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xinghao Jiang
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Guiping Ren
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Kai Wang
- Molecular Imaging Research Center, Harbin Medical University, TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, 150028, People's Republic of China.
| | - Bo Yu
- Department of Cardiology, The 2nd Affiliated Hospital of Harbin Medical University, The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, 246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, People's Republic of China.
| | - Wei Xiao
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang, 222001, People's Republic of China.
| | - Deshan Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang, 222001, People's Republic of China.
- Bio-Pharmaceutical Lab, Life Science College, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
3
|
Sarkar J, Chakraborti T, Chowdhury A, Bhuyan R, Chakraborti S. Protective role of epigallocatechin-3-gallate in NADPH oxidase-MMP2-Spm-Cer-S1P signalling axis mediated ET-1 induced pulmonary artery smooth muscle cell proliferation. J Cell Commun Signal 2019; 13:473-489. [PMID: 30661173 DOI: 10.1007/s12079-018-00501-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
The signalling pathway involving MMP-2 and sphingosine-1-phosphate (S1P) in endothelin-1 (ET-1) induced pulmonary artery smooth muscle cell (PASMC) proliferation is not clearly known. We, therefore, investigated the role of NADPH oxidase derived O2.--mediated modulation of MMP2-sphingomyeline-ceramide-S1P signalling axis in ET-1 induced increase in proliferation of PASMCs. Additionally, protective role of the tea cathechin, epigallocatechin-3-gallate (EGCG), if any, in this scenario has also been explored. ET-1 markedly increased NADPH oxidase and MMP-2 activities and proliferation of bovine pulmonary artery smooth muscle cells (BPASMCs). ET-1 also caused significant increase in sphingomyelinase (SMase) activity, ERK1/2 and sphingosine kinase (SPHK) phosphorylations, and S1P level in the cells. EGCG inhibited ET-1 induced increase in SMase activity, ERK1/2 and SPHK phosphorylations, S1P level and the SMC proliferation. EGCG also attenuated ET-1 induced activation of MMP-2 by inhibiting NADPH oxidase activity upon inhibiting the association of the NADPH oxidase components, p47phox and p67phox in the cell membrane. Molecular docking study revealed a marked binding affinity of p47phox with the galloyl group of EGCG. Overall, our study suggest that ET-1 induced proliferation of the PASMCs occurs via NADPH oxidase-MMP2- Spm- Cer-S1P signalling axis, and EGCG attenuates ET-1 induced increase in proliferation of the cells by inhibiting NADPH oxidase activity.
Collapse
Affiliation(s)
- Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Rajabrata Bhuyan
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
4
|
Activation of neutral sphingomyelinase 2 by starvation induces cell-protective autophagy via an increase in Golgi-localized ceramide. Cell Death Dis 2018; 9:670. [PMID: 29867196 PMCID: PMC5986760 DOI: 10.1038/s41419-018-0709-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/18/2018] [Accepted: 05/02/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is essential for optimal cell function and survival, and the entire process accompanies membrane dynamics. Ceramides are produced by different enzymes at different cellular membrane sites and mediate differential signaling. However, it remains unclear which ceramide-producing pathways/enzymes participate in autophagy regulation under physiological conditions such as nutrient starvation, and what the underlying mechanisms are. In this study, we demonstrate that among ceramide-producing enzymes, neutral sphingomyelinase 2 (nSMase2) plays a key role in autophagy during nutrient starvation. nSMase2 was rapidly and stably activated upon starvation, and the enzymatic reaction in the Golgi apparatus facilitated autophagy through the activation of p38 MAPK and inhibition of mTOR. Moreover, nSMase2 played a protective role against cellular damage depending on autophagy. These findings suggest that nSMase2 is a novel regulator of autophagy and provide evidence that Golgi-localized ceramides participate in cytoprotective autophagy against starvation.
Collapse
|
5
|
High-Resolution Expression Profiling of Peripheral Blood CD8 + Cells in Patients with Multiple Sclerosis Displays Fingolimod-Induced Immune Cell Redistribution. Mol Neurobiol 2016; 54:5511-5525. [PMID: 27631876 DOI: 10.1007/s12035-016-0075-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022]
Abstract
Fingolimod, a sphingosine-1-phosphate (S1P) receptor modulator, is an oral drug approved for the treatment of active relapsing-remitting multiple sclerosis (RRMS). It selectively inhibits the egress of lymphocytes from lymph nodes. We studied the changes in the transcriptome of peripheral blood CD8+ cells to unravel the effects at the molecular level during fingolimod therapy. We separated CD8+ cells from the blood of RRMS patients before the first dose of fingolimod as well as 24 h and 3 months after the start of therapy. Changes in the expression of coding and non-coding genes were measured with high-density Affymetrix Human Transcriptome Array (HTA) 2.0 microarrays. Differentially expressed genes in response to therapy were identified by t test and fold change and analyzed for their functions and molecular interactions. No gene was expressed at significantly higher or lower levels 24 h after the first administration of fingolimod compared to baseline. However, after 3 months of therapy, 861 transcripts were found to be differentially expressed, including interleukin and chemokine receptors. Some of the genes are associated to the S1P pathway, such as the receptor S1P5 and the kinase MAPK1, which were significantly increased in expression. The fingolimod-induced transcriptome changes reflect a shift in the proportions of CD8+ T cell subsets, with CCR7- effector memory T cells being relatively increased in frequency in the blood of fingolimod-treated patients. In consequence, CCR7 mRNA levels were reduced by >80 % and genes involved in T cell activation and lymphocyte cytotoxicity were increased in expression. Gene regulatory programs caused by downstream S1P signaling had only minor effects.
Collapse
|
6
|
Cross talk between MMP2-Spm-Cer-S1P and ERK1/2 in proliferation of pulmonary artery smooth muscle cells under angiotensin II stimulation. Arch Biochem Biophys 2016; 603:91-101. [PMID: 27210740 DOI: 10.1016/j.abb.2016.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/14/2016] [Accepted: 05/17/2016] [Indexed: 11/20/2022]
Abstract
The aim of the present study is to establish the mechanism associated with the proliferation of PASMCs under ANG II stimulation. The results showed that treatment of PASMCs with ANG II induces an increase in cell proliferation and 100 nM was the optimum concentration for maximum increase in proliferation of the cells. Pretreatment of the cells with AT1, but not AT2, receptor antagonist inhibited ANG II induced cell proliferation. Pretreatment with pharmacological and genetic inhibitors of sphingomyelinase (SMase) and sphingosine kinase (SPHK) prevented ANG II-induced cell proliferation. ANG II has also been shown to induce SMase activity, SPHK phosphorylation and S1P production. In addition, ANG II caused an increase in proMMP-2 expression and activation, ERK1/2 phosphorylation and NADPH oxidase activation. Upon inhibition of MMP-2, SMase activity and S1P level were curbed leading to inhibition of cell proliferation. SPHK was phosphorylated by ERK1/2 during ET-1 stimulation of the cells. ANG II-induced ERK1/2 phosphorylation and proMMP-2 expression and activation in the cells were abrogated upon inhibition of NADPH oxidase activity. Overall, NADPH oxidase plays an important role in proMMP-2 expression and activation and that MMP-2 mediated SMC proliferation occurs through the involvement of Spm-Cer-S1P signaling axis under ANG II stimulation of PASMCs.
Collapse
|
7
|
Liang C, Ding M, Du F, Cang J, Xue Z. Tissue plasminogen activator (tPA) attenuates propofol-induced apoptosis in developing hippocampal neurons. SPRINGERPLUS 2016; 5:475. [PMID: 27217990 PMCID: PMC4835406 DOI: 10.1186/s40064-016-2091-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/02/2016] [Indexed: 12/17/2022]
Abstract
Background We investigated the effect of propofol on the tissue plasminogen activator (tPA) release in developing hippocampal neurons, and explored the effects of exogenous tPA on the propofol-induced neuron apoptosis. Methods Primary hippocampal neurons isolated from neonatal Sprague-Dawley rats were exposed to propofol (20, 50, and 100 μM) for 6 h either one time or three times. Finally, neurons were pretreated with exogenous tPA (5 µg/ml), followed by propofol exposure (100 μM, 6 h). The neuron apoptosis was detected by terminal transferase deoxyuridine triphosphate-biotin nick-end labeling (TUNEL) and the protein expression of cleaved caspase-3 (Cl-Csp3) was analyzed by western blot, the tPA in media was tested by enzyme-linked immunosorbent assay. Results Propofol exposure significantly increased the number of TUNEL-positive neurons and Cl-Csp3 expression in developing hippocampal neurons. Propofol decreased tPA level in the media of developing hippocampal neurons. The neuron appotosis induced by propofol was attenuated by pretreatment of tPA. Conclusion Propofol exposure decreased tPA release in developing hippocampal neurons. The addition of tPA could partially reverse the apoptotic effect of propofol.
Collapse
Affiliation(s)
- Chao Liang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai, 200032 China
| | - Ming Ding
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai, 200032 China
| | - Fang Du
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai, 200032 China
| | - Jing Cang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai, 200032 China
| | - Zhanggang Xue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai, 200032 China
| |
Collapse
|
8
|
Chowdhury A, Sarkar J, Chakraborti T, Chakraborti S. Role of Spm-Cer-S1P signalling pathway in MMP-2 mediated U46619-induced proliferation of pulmonary artery smooth muscle cells: protective role of epigallocatechin-3-gallate. Cell Biochem Funct 2015; 33:463-77. [PMID: 26486270 DOI: 10.1002/cbf.3136] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/16/2015] [Accepted: 08/18/2015] [Indexed: 11/11/2022]
Abstract
During remodelling of pulmonary artery, marked proliferation of pulmonary artery smooth muscle cells (PASMCs) occurs, which contributes to pulmonary hypertension. Thromboxane A2 (TxA2) has been shown to produce pulmonary hypertension. The present study investigates the inhibitory effect of epigallocatechin-3-gallate (EGCG) on the TxA2 mimetic, U46619-induced proliferation of PASMCs. U46619 at a concentration of 10 nM induces maximum proliferation of bovine PASMCs. Both pharmacological and genetic inhibitors of p(38)MAPK, NF-κB and MMP-2 significantly inhibit U46619-induced cell proliferation. EGCG markedly abrogate U46619-induced p(38)MAPK phosphorylation, NF-κB activation, proMMP-2 expression and activation, and also the cell proliferation. U46619 causes an increase in the activation of sphingomyelinase (SMase) and sphingosine kinase (SPHK) and also increase sphingosine 1 phosphate (S1P) level. U46619 also induces phosphorylation of ERK1/2, which phosphorylates SPHK leading to an increase in S1P level. Both pharmacological and genetic inhibitors of SMase and SPHK markedly inhibit U46619-induced cell proliferation. Additionally, pharmacological and genetic inhibitors of MMP-2 markedly abrogate U46619-induced SMase activity and S1P level. EGCG markedly inhibit U46619-induced SMase activity, ERK1/2 and SPHK phosphorylation and S1P level in the cells. Overall, Sphingomyeline-Ceramide-Sphingosine-1-phosphate (Spm-Cer-S1P) signalling axis plays an important role in MMP-2 mediated U46619-induced proliferation of PASMCs. Importantly, EGCG inhibits U46619 induced increase in MMP-2 activation by modulating p(38)MAPK-NFκB pathway and subsequently prevents the cell proliferation.
Collapse
Affiliation(s)
- Animesh Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, India
| | - Jaganmay Sarkar
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, India
| | - Sajal Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, West Bengal, India
| |
Collapse
|
9
|
Kawao N, Tamura Y, Okumoto K, Yano M, Okada K, Matsuo O, Kaji H. Tissue-type plasminogen activator deficiency delays bone repair: roles of osteoblastic proliferation and vascular endothelial growth factor. Am J Physiol Endocrinol Metab 2014; 307:E278-88. [PMID: 24918201 DOI: 10.1152/ajpendo.00129.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Further development in research of bone regeneration is necessary to meet the clinical demand for bone reconstruction. Recently, we reported that plasminogen is crucial for bone repair through enhancement of vessel formation. However, the details of the role of tissue-type plasminogen activator (tPA) and urokinase-type plasminogen activator (uPA) in the bone repair process still remain unknown. Herein, we examined the effects of plasminogen activators on bone repair after a femoral bone defect using tPA-deficient (tPA(-/-)) and uPA-deficient (uPA(-/-)) mice. Bone repair of the femur was delayed in tPA(-/-) mice, unlike that in wild-type (tPA(+/+)) mice. Conversely, the bone repair was comparable between wild-type (uPA(+/+)) and uPA(-/-) mice. The number of proliferative osteoblasts was decreased at the site of bone damage in tPA(-/-) mice. Moreover, the proliferation of primary calvarial osteoblasts was reduced in tPA(-/-) mice. Recombinant tPA facilitated the proliferation of mouse osteoblastic MC3T3-E1 cells. The proliferation enhanced by tPA was antagonized by the inhibition of endogenous annexin 2 by siRNA and by the inhibition of extracellular signal-regulated kinase (ERK)1/2 phosphorylation in MC3T3-E1 cells. Vessel formation as well as the levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1α (HIF-1α) were decreased at the damaged site in tPA(-/-) mice. Our results provide novel evidence that tPA is crucial for bone repair through the facilitation of osteoblast proliferation related to annexin 2 and ERK1/2 as well as enhancement of vessel formation related to VEGF and HIF-1α at the site of bone damage.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan; and
| | - Yukinori Tamura
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan; and
| | - Katsumi Okumoto
- Life Science Research Institute, Kinki University, Osakasayama, Osaka, Japan
| | - Masato Yano
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan; and
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan; and
| | - Osamu Matsuo
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan; and
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osakasayama, Osaka, Japan; and
| |
Collapse
|
10
|
Ceramide mediates Ox-LDL-induced human vascular smooth muscle cell calcification via p38 mitogen-activated protein kinase signaling. PLoS One 2013; 8:e82379. [PMID: 24358176 PMCID: PMC3865066 DOI: 10.1371/journal.pone.0082379] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/30/2013] [Indexed: 01/19/2023] Open
Abstract
Vascular calcification is associated with significant cardiovascular morbidity and mortality, and has been demonstrated as an actively regulated process resembling bone formation. Oxidized low density lipoprotein (Ox-LDL) has been identified as a regulatory factor involved in calcification of vascular smooth muscle cells (VSMCs). Additionally, over-expression of recombinant human neutral sphingomyelinase (N-SMase) has been shown to stimulate VSMC apoptosis, which plays an important role in the progression of vascular calcification. The aim of this study is to investigate whether ceramide regulates Ox-LDL-induced calcification of VSMCs via activation of p38 mitogen-activated protein kinase (MAPK) pathway. Ox-LDL increased the activity of N-SMase and the level of ceramide in cultured VSMCs. Calcification and the osteogenic transcription factor, Msx2 mRNA expression were reduced by N-SMase inhibitor, GW4869 in the presence of Ox-LDL. Usage of GW4869 inhibited Ox-LDL-induced apoptosis in VSMCs, an effect which was reversed by C2-ceramide. Additionally, C2-ceramide treatment accelerated VSMC calcification, with a concomitant increase in ALP activity. Furthermore, C2-ceramide treatment enhanced Ox-LDL-induced VSMC calcification. Addition of caspase inhibitor, ZVAD-fmk attenuated Ox-LDL-induced calcification. Both Ox-LDL and C2-ceramide treatment increased the phosphorylation of p38 MAPK. Inhibition of p38 MAPK by SB203580 attenuated Ox-LDL-induced calcification of VSMCs. These data suggest that Ox-LDL activates N-SMase-ceramide signaling pathway, and stimulates phosphorylation of p38 MAPK, leading to apoptosis in VSMCs, which initiates VSMC calcification.
Collapse
|
11
|
Shin YJ, Kim YB, Kim JH. Protein kinase CK2 phosphorylates and activates p21-activated kinase 1. Mol Biol Cell 2013; 24:2990-9. [PMID: 23885116 PMCID: PMC3771959 DOI: 10.1091/mbc.e13-04-0204] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Activation of the p21-activated kinase 1 (PAK1) is achieved through a conformational change that converts an inactive PAK1 dimer to an active monomer. In this paper, we show that this change is necessary but not sufficient to activate PAK1 and that it is, rather, required for CK2-dependent PAK1(S223) phosphorylation that converts a monomeric PAK1 into a catalytically active form. This phosphorylation appears to be essential for autophosphorylation at specific residues and overall activity of PAK1. A phosphomimetic mutation (S223E) bypasses the requirement for GTPases in PAK1 activation, whereas the constitutive activity of the PAK1 mutant (PAK1(H83,86L)), postulated to mimic GTPase-induced structural changes, is abolished by inhibition of S223 phosphorylation. Thus, S223 is likely accessible to CK2 upon conformational changes of PAK1 induced by GTPase-dependent and GTPase-independent stimuli, suggesting that S223 phosphorylation may play a key role in the final step of the PAK1 activation process. The physiological significance of this phosphorylation is reinforced by the observations that CK2 is responsible for epidermal growth factor-induced PAK1 activation and that inhibition of S223 phosphorylation abrogates PAK1-mediated malignant transformation of prostate epithelial cells. Taken together, these findings identify CK2 as an upstream activating kinase of PAK1, providing a novel mechanism for PAK1 activation.
Collapse
Affiliation(s)
- Yong Jae Shin
- Department of Biochemistry and Molecular Medicine, George Washington University Medical Center, Washington, DC 20037
| | | | | |
Collapse
|
12
|
Hwang YJ, Park SM, Yim CB, Im C. Cytotoxic activity and quantitative structure activity relationships of arylpropyl sulfonamides. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:237-43. [PMID: 23776401 PMCID: PMC3682085 DOI: 10.4196/kjpp.2013.17.3.237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 02/22/2013] [Accepted: 03/06/2013] [Indexed: 12/31/2022]
Abstract
B13 is a ceramide analogue and apoptosis inducer with potent cytotoxic activity. A series of arylpropyl sulfonamide analogues of B13 were evaluated for their cytotoxicity using MTT assays in prostate cancer PC-3 and leukemia HL-60 cell lines. Some compounds (4, 9, 13, 14, 15, and 20) showed stronger activities than B13 in both tumor cell lines, and compound (15) gave the most potent activity with IC50 values of 29.2 and 20.7 µM, for PC-3and HL-60 cells, respectively. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis was performed to build highly reliable and predictive CoMSIA models with cross-validated q2 values of 0.816 and 0.702, respectively. Our results suggest that long alkyl chains and a 1R, 2R configuration of the propyl group are important for the cytotoxic activities of arylpropyl sulfonamides. Moreover, the introduction of small hydrophobic groups in the phenyl ring and sulfonamide group could increase biological activity.
Collapse
Affiliation(s)
- Yu Jin Hwang
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | |
Collapse
|
13
|
Kwak DH, Jin JW, Ryu JS, Ko K, Lee SD, Lee JW, Kim JS, Jung KY, Ko K, Ma JY, Hwang KA, Chang KT, Choo YK. Regulatory roles of ganglioside GQ1b in neuronal cell differentiation of mouse embryonic stem cells. BMB Rep 2011; 44:799-804. [PMID: 22189683 DOI: 10.5483/bmbrep.2011.44.12.799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gangliosides play an important role in neuronal differentiation processes. The regulation of ganglioside levels is related to the induction of neuronal cell differentiation. In this study, the ST8Sia5 gene was transfected into mESCs and then differentiated into neuronal cells. Interestingly, ST8Sia5 gene transfected mESCs expressed GQ1b by HPTLC and immunofluorescence analysis. To investigate the effects of GQ1b over-expression in neurogenesis, neuronal cells were differentiated from GQ1b expressing mESCs in the presence of retinoic acid. In GQ1b expressing mESCs, increased EBs formation was observed. After 4 days, EBs were co-localized with GQ1b and nestin, and GFAP. Moreover, GQ1b co-localized with MAP-2 expressing cells in GQ1b expressing mESCs in 7-day-old EBs. Furthermore, GQ1b expressing mESCs increased the ERK1/2 MAP kinase pathway. These results suggest that the ST8Sia5 gene increases ganglioside GQ1b and improves neuronal differentiation via the ERK1/2 MAP kinase pathway.
Collapse
Affiliation(s)
- Dong Hoon Kwak
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 570-749 Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pineda D, AmpurdanÉS C, Medina MG, Serratosa J, Tusell JM, Saura J, Planas AM, Navarro P. Tissue plasminogen activator induces microglial inflammation via a noncatalytic molecular mechanism involving activation of mitogen-activated protein kinases and Akt signaling pathways and AnnexinA2 and Galectin-1 receptors. Glia 2011; 60:526-40. [DOI: 10.1002/glia.22284] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 11/22/2011] [Indexed: 01/03/2023]
|
15
|
Canals D, Perry DM, Jenkins RW, Hannun YA. Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 2011; 163:694-712. [PMID: 21615386 DOI: 10.1111/j.1476-5381.2011.01279.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sphingolipids represent a class of diverse bioactive lipid molecules that are increasingly appreciated as key modulators of diverse physiologic and pathophysiologic processes that include cell growth, cell death, autophagy, angiogenesis, and stress and inflammatory responses. Sphingomyelinases and ceramidases are key enzymes of sphingolipid metabolism that regulate the formation and degradation of ceramide, one of the most intensely studied classes of sphingolipids. Improved understanding of these enzymes that control not only the levels of ceramide but also the complex interconversion of sphingolipid metabolites has provided the foundation for the functional analysis of the roles of sphingolipids. Our current understanding of the roles of various sphingolipids in the regulation of different cellular processes has come from loss-of-function/gain-of-function studies utilizing genetic deletion/downregulation/overexpression of enzymes of sphingolipid metabolism (e.g. knockout animals, RNA interference) and from the use of pharmacologic inhibitors of these same enzymes. While genetic approaches to evaluate the functional roles of sphingolipid enzymes have been instrumental in advancing the field, the use of pharmacologic inhibitors has been equally important in identifying new roles for sphingolipids in important cellular processes.The latter also promises the development of novel therapeutic targets with implications for cancer therapy, inflammation, diabetes, and neurodegeneration. In this review, we focus on the status and use of pharmacologic compounds that inhibit sphingomyelinases and ceramidases, and we will review the history, current uses and future directions for various small molecule inhibitors, and will highlight studies in which inhibitors of sphingolipid metabolizing enzymes have been used to effectively treat models of human disease.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | |
Collapse
|
16
|
Lim HK, Ryoo S. Native low-density lipoprotein-dependent interleukin-8 production through pertussis toxin-sensitive G-protein coupled receptors and hydrogen peroxide generation contributes to migration of human aortic smooth muscle cells. Yonsei Med J 2011; 52:413-9. [PMID: 21488183 PMCID: PMC3101039 DOI: 10.3349/ymj.2011.52.3.413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Stimulation of human aortic smooth muscle cells (hAoSMCs) with native low-density lipoprotein (nLDL) induced the production of interleukin-8 (IL-8) that is involved in the pathogenesis of cardiovascular diseases. However, the process of signal transduction of nLDL was currently uncharacterized. Therefore, the aim of this study was to investigate the signal transduction pathway of nLDL-dependent IL-8 production and the effect of IL-8 on hAoSMCs migration. MATERIALS AND METHODS nLDL was prepared by ultracentrifugation with density-adjusted human serum of normocholesterolemia. In hAoSMCs, IL-8 secreted to medium was measured using ELISA assay, and Western blot analysis was performed to detect p38 MAPK activation as a key regulator of IL-8 production. nLDL-dependent H₂O₂ generation was determined by microscopic analysis using 2',7'-dichlorofluoroscein diacetate (DCF-DA). IL-8-induced migration of hAoSMCs was evaluated by counting the cell numbers moved to lower chamber using Transwell plates. RESULTS nLDL-induced IL-8 production was completely blocked by preincubation of hAoSMCs with pertussis toxin (PTX), which inhibited nLDL-dependent p38 MAPK phosphorylation. PTX-sensitive G-protein coupled receptor was responsible for nLDL-dependent H₂O₂ generation that was abrogated with preincubation of the cells with of polyethylene glycol-conjugated catalase (PEG-Cat). Pretreatment of PEG-Cat prevented nLDL-induced p38 MAPK phosphorylation and IL-8 production, which was partly mimicked by treatment with exogenous H₂O₂2. Finally, IL-8 increased hAoSMCs migration that was completely blocked by incubation with IL-8 neutralizing antibody. CONCLUSION PTX-sensitive G-protein coupled receptor-dependent H₂O₂ generation by nLDL plays a critical role in IL-8 production in hAoSMC, and IL-8 may contribute to atherogenesis through increased migration of hAoSMCs.
Collapse
Affiliation(s)
- Hyun Kyo Lim
- Department of Anesthesiology and Pain Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Sungwoo Ryoo
- Department of Biology, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
17
|
Jung JU, Ko K, Lee DH, Ko K, Chang KT, Choo YK. The roles of glycosphingolipids in the proliferation and neural differentiation of mouse embryonic stem cells. Exp Mol Med 2010; 41:935-45. [PMID: 19745600 DOI: 10.3858/emm.2009.41.12.099] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glycosphingolipids including gangliosides play important regulatory roles in cell proliferation and differentiation. UDP-glucose:ceramide glucosyltransferase (Ugcg) catalyze the initial step in glycosphingolipids biosynthesis pathway. In this study, Ugcg expression was reduced to approximately 80% by short hairpin RNAs (shRNAs) to evaluate the roles of glycosphingolipids in proliferation and neural differentiation of mouse embryonic stem cells (mESCs). HPTLC/immunofluorescence analyses of shRNA- transfected mESCs revealed that treatment with Ugcg-shRNA decreased expression of major gangliosides, GM3 and GD3. Furthermore, MTT and Western blot/immunofluorescence analyses demonstrated that inhibition of the Ugcg expression in mESCs resulted in decrease of cell proliferation (P<0.05) and decrease of activation of the ERK1/2 (P<0.05), respectively. To further investigate the role of glycosphingolipids in neural differentiation, the embryoid bodies formed from Ugcg-shRNA transfected mESCs were differentiated into neural cells by treatment with retinoic acid. We found that inhibition of Ugcg expression did not affect embryoid body (EB) differentiation, as judged by morphological comparison and expression of early neural precursor cell marker, nestin, in differentiated EBs. However, RT-PCR/immunofluorescence analyses showed that expression of microtubule-associated protein 2 (MAP-2) for neurons and glial fibrillary acidic protein (GFAP) for glial cells was decreased in neural cells differentiated from the shRNA-transfected mESCs. These results suggest that glycosphingolipids are involved in the proliferation of mESCs through ERK1/2 activation, and that glycosphingolipids play roles in differentiation of neural precursor cells derived from mESCs.
Collapse
Affiliation(s)
- Ji-Ung Jung
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | |
Collapse
|
18
|
Tissue plasminogen activator and urokinase plasminogen activator in human epileptogenic pathologies. Neuroscience 2010; 167:929-45. [PMID: 20219643 DOI: 10.1016/j.neuroscience.2010.02.047] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Revised: 02/03/2010] [Accepted: 02/19/2010] [Indexed: 11/21/2022]
Abstract
A growing body of evidence demonstrates the involvement of plasminogen activators (PAs) in a number of physiologic and pathologic events in the CNS. Induction of both tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) has been observed in different experimental models of epilepsy and tPA has been implicated in the mechanisms underlying seizure activity. We investigated the expression and the cellular distribution of tPA and uPA in several epileptogenic pathologies, including hippocampal sclerosis (HS; n=6), and developmental glioneuronal lesions, such as focal cortical dysplasia (FCD, n=6), cortical tubers in patients with the tuberous sclerosis complex (TSC; n=6) and in gangliogliomas (GG; n=6), using immuno-cytochemical, western blot and real-time quantitative PCR analysis. TPA and uPA immunostaining showed increased expression within the epileptogenic lesions compared to control specimens in both glial and neuronal cells (hippocampal neurons in HS and dysplastic neurons in FCD, TSC and GG specimens). Confocal laser scanning microscopy confirmed expression of both proteins in astrocytes and microglia, as well as in microvascular endothelium. Immunoblot demonstrated also up-regulation of the uPA receptor (uPAR; P<0.05). Increased expression of tPA, uPA, uPAR and tissue PA inhibitor type mRNA levels was also detected by PCR analysis in different epileptogenic pathologies (P<0.05). Our data support the role of PA system components in different human focal epileptogenic pathologies, which may critically influence neuronal activity, inflammatory response, as well as contributing to the complex remodeling of the neuronal networks occurring in epileptogenic lesions.
Collapse
|
19
|
Maupas-Schwalm F, Bedel A, Augé N, Grazide MH, Mucher E, Thiers JC, Salvayre R, Nègre-Salvayre A. Integrin alpha(v)beta(3), metalloproteinases, and sphingomyelinase-2 mediate urokinase mitogenic effect. Cell Signal 2009; 21:1925-34. [PMID: 19735728 DOI: 10.1016/j.cellsig.2009.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 08/25/2009] [Accepted: 08/27/2009] [Indexed: 12/27/2022]
Abstract
Plasminogen activators are implicated in the pathogenesis of several diseases such as inflammatory diseases and cancer. Beside their serine-protease activity, these agents trigger signaling pathways involved in cell migration, adhesion and proliferation. We previously reported a role for the sphingolipid pathway in the mitogenic effect of plasminogen activators, but the signaling mechanisms involved in neutral sphingomyelinase-2 (NSMase-2) activation (the first step of the sphingolipid pathway) are poorly known. This study was carried out to investigate how urokinase plasminogen activator (uPA) activates NSMase-2. We report that uPA, as well as its catalytically inactive N-amino fragment ATF, triggers the sequential activation of MMP-2, NSMase-2 and ERK1/2 in ECV304 cells that are required for uPA-induced ECV304 proliferation, as assessed by the inhibitory effect of Marimastat (a MMP inhibitor), MMP-2-specific siRNA, MMP-2 defect, and NSMase-specific siRNA. Moreover, upon uPA stimulation, uPAR, MT1-MMP, MMP-2 and NSMase-2 interacted with integrin alpha(v)beta(3), evidenced by co-immunoprecipitation and immunocytochemistry experiments. Moreover, the alpha(v)beta(3) blocking antibody inhibited the uPA-triggered MMPs/uPAR/integrin alpha(v)beta(3) interaction, NSMase-2 activation, Ki67 expression and DNA synthesis in ECV304. In conclusion, uPA triggers interaction between integrin alpha(v)beta(3), uPAR and MMPs that leads to NSMase-2 and ERK1/2 activation and cell proliferation. These findings highlight a new signaling mechanism for uPA, and suggest that, upon uPA stimulation, uPAR, MMPs, integrin alpha(v)beta(3) and NSMase-2 form a signaling complex that take part in mitogenic signaling in ECV304 cells.
Collapse
Affiliation(s)
- Françoise Maupas-Schwalm
- Inserm U858 Team 10, Dept of Biochemistry and Molecular Biology, Faculty of Medicine-Rangueil, University Paul Sabatier Toulouse-3, IFR-150, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Issuree PDA, Pushparaj PN, Pervaiz S, Melendez AJ. Resveratrol attenuates C5a‐induced inflammatory responses
in vitro
and
in vivo
by inhibiting phospholipase D and sphingosine kinase activities. FASEB J 2009; 23:2412-24. [DOI: 10.1096/fj.09-130542] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Peter N. Pushparaj
- Department of PhysiologyYong Loo Lin School of MedicineSingapore
- Medicine‐Immunology, Infection, and InflammationGlasgow Biomedical Research CentreUniversity of GlasgowGlasgowUK
| | - Shazib Pervaiz
- Department of PhysiologyYong Loo Lin School of MedicineSingapore
- NUS Graduate School for Integrative Sciences and EngineeringSingapore
- Duke‐NUS Graduate Medical SchoolNational University of SingaporeSingapore
- Singapore‐Massachusetts Institute of Technology AllianceSingapore
| | - Alirio J. Melendez
- Department of PhysiologyYong Loo Lin School of MedicineSingapore
- NUS Graduate School for Integrative Sciences and EngineeringSingapore
- Medicine‐Immunology, Infection, and InflammationGlasgow Biomedical Research CentreUniversity of GlasgowGlasgowUK
| |
Collapse
|
21
|
Head BP, Patel HH, Niesman IR, Drummond JC, Roth DM, Patel PM. Inhibition of p75 neurotrophin receptor attenuates isoflurane-mediated neuronal apoptosis in the neonatal central nervous system. Anesthesiology 2009; 110:813-25. [PMID: 19293698 PMCID: PMC2767332 DOI: 10.1097/aln.0b013e31819b602b] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Exposure to anesthetics during synaptogenesis results in apoptosis and subsequent cognitive dysfunction in adulthood. Probrain-derived neurotrophic factor (proBDNF) is involved in synaptogenesis and can induce neuronal apoptosis via p75 neurotrophic receptors (p75). proBDNF is cleaved into mature BDNF (mBDNF) by plasmin, a protease converted from plasminogen by tissue plasminogen activator (tPA) that is released with neuronal activity; mBDNF supports survival and stabilizes synapses through tropomyosin receptor kinase B. The authors hypothesized that anesthetics suppress tPA release from neurons, enhance p75 signaling, and reduce synapses, resulting in apoptosis. METHODS Primary neurons (DIV5) and postnatal day 5-7 (PND5-7) mice were exposed to isoflurane (1.4%, 4 h) in 5% CO2, 95% air. Apoptosis was assessed by cleaved caspase-3 (Cl-Csp3) immunoblot and immunofluorescence microscopy. Dendritic spine changes were evaluated with the neuronal spine marker, drebrin. Changes in synapses in PND5-7 mouse hippocampi were assessed by electron microscopy. Primary neurons were exposed to tPA, plasmin, or pharmacologic inhibitors of p75 (Fc-p75 or TAT-Pep5) 15 min before isoflurane. TAT-Pep5 was administered by intraperitoneal injection to PND5-7 mice 15 min before isoflurane. RESULTS Exposure of neurons in vitro (DIV5) to isoflurane decreased tPA in the culture medium, reduced drebrin expression (marker of dendritic filopodial spines), and enhanced Cl-Csp3. tPA, plasmin, or TAT-Pep5 stabilized dendritic filopodial spines and decreased Cl-Csp3 in neurons. TAT-Pep5 blocked isoflurane-mediated increase in Cl-Csp3 and reduced synapses in PND5-7 mouse hippocampi. CONCLUSION tPA, plasmin, or p75 inhibition blocked isoflurane-mediated reduction in dendritic filopodial spines and neuronal apoptosis in vitro. Isoflurane reduced synapses and enhanced Cl-Csp3 in the hippocampus of PND5-7 mice, the latter effect being mitigated by p75 inhibition in vivo. These data support the hypothesis that isoflurane neurotoxicity in the developing rodent brain is mediated by reduced synaptic tPA release and enhanced proBDNF/p75-mediated apoptosis.
Collapse
Affiliation(s)
- Brian P. Head
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093
| | - Hemal H. Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093
| | - Ingrid R. Niesman
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093
| | - John C. Drummond
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - David M. Roth
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| | - Piyush M. Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California 92093
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
| |
Collapse
|
22
|
Young N, Pearl DK, Van Brocklyn JR. Sphingosine-1-phosphate regulates glioblastoma cell invasiveness through the urokinase plasminogen activator system and CCN1/Cyr61. Mol Cancer Res 2009; 7:23-32. [PMID: 19147534 DOI: 10.1158/1541-7786.mcr-08-0061] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glioblastoma multiforme (GBM) is an aggressively invasive brain neoplasm with poor patient prognosis. We have previously shown that the bioactive lipid sphingosine-1-phosphate (S1P) stimulates in vitro invasiveness of GBM cells and that high expression levels of the enzyme that forms S1P, sphingosine kinase-1 (SphK1), correlate with shorter survival time of GBM patients. We also recently showed that S1P induces expression of CCN1 (also known as Cyr61), a matricellular protein known to correlate with poor patient prognosis, in GBM cells. In this study, we further explored the role of CCN1 as well as the urokinase plasminogen activator (uPA), a protein known to stimulate GBM cell invasiveness, in S1P-induced invasion using a spheroid invasion assay. We also investigated the roles of various S1P receptors in stimulating invasiveness through these pathways. S1P induced expression of uPA and its receptor, uPAR, in GBM cells. Whereas S1P(1), S1P(2), and S1P(3) receptors all contribute, at least partially, S1P(1) overexpression led to the most dramatic induction of the uPA system and of spheroid invasion, even in the absence of added S1P. Furthermore, neutralizing antibodies directed against uPA or CCN1 significantly decreased both basal and S1P-stimulated GBM cell invasiveness. Inhibition of SphK blocked basal expression of uPA and uPAR, as well as glioma cell invasion; however, overexpression of SphK did not augment S1P receptor-mediated enhancement of uPA activity or invasion. Thus, SphK is necessary for basal activity of the uPA system and glioma cell invasion, whereas S1P receptor signaling enhances invasion, partially through uPA and CCN1.
Collapse
Affiliation(s)
- Nicholas Young
- Division of Neuropathology, Department of Pathology, The Ohio State University, 4164 Graves Hall, 333 West 10th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
23
|
Barakat S, Turcotte S, Demeule M, Lachambre MP, Régina A, Baggetto LG, Béliveau R. Regulation of brain endothelial cells migration and angiogenesis by P-glycoprotein/caveolin-1 interaction. Biochem Biophys Res Commun 2008; 372:440-6. [PMID: 18485890 DOI: 10.1016/j.bbrc.2008.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 05/05/2008] [Indexed: 12/22/2022]
Abstract
We have investigated the involvement of P-glycoprotein (P-gp)/caveolin-1 interaction in the regulation of brain endothelial cells (EC) migration and tubulogenesis. P-gp overexpression in MDCK-MDR cells was correlated with enhanced cell migration whereas treatment with P-gp inhibitors CsA or PSC833 reduced it. Transfection of RBE4 rat brain endothelial cells with mutated versions of MDR1, in the caveolin-1 interaction motif, decreased the interaction between P-gp and caveolin-1, enhanced P-gp transport activity and cell migration. Moreover, down-regulation of caveolin-1 in RBE4 cells by siRNA against caveolin-1 stimulated cell migration. Interestingly, the inhibition of P-gp/caveolin-1 interaction increased also EC tubulogenesis. Furthermore, decrease of P-gp expression by siRNA inhibited EC tubulogenesis. These data indicate that the level of P-gp/caveolin-1 interaction can modulate brain endothelial angiogenesis and P-gp dependent cell migration.
Collapse
Affiliation(s)
- Stéphane Barakat
- Departement de Chimie-Biochimie, Laboratoire de Médecine Moléculaire, Université du Québec à Montréal, CP 8888, Succursale Centre-Ville, Montréal, QC, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
It is known that phospholipids represent a minor component of chromatin. It has been highlighted recently that these lipids are metabolized directly inside the nucleus, thanks to the presence of enzymes related to their metabolism, such as neutral sphingomyelinase, sphingomyelin synthase, reverse sphingomyelin synthase and phosphatidylcholine-specific phospholipase C. The chromatin enzymatic activities change during cell proliferation, differentiation and/or apoptosis, independently from the enzyme activities present in nuclear membrane, microsomes or cell membranes. This present study aimed to investigate crosstalk in lipid metabolism in nuclear membrane and chromatin isolated from rat liver in vitro and in vivo. The effect of neutral sphingomyelinase activity on phosphatidylcholine-specific phospholipase C and sphingomyelin synthase, which enrich the intranuclear diacylglycerol pool, and the effect of phosphatidylcholine-specific phospholipase C activity on neutral sphingomyelinase and reverse sphingomyelin synthase, which enrich the intranuclear ceramide pool, was investigated. The results show that in chromatin, there exists a phosphatidylcholine/sphingomyelin metabolism crosstalk which regulates the intranuclear ceramide/diacylglycerol pool. The enzyme activities were inhibited by D609, which demonstrated the specificity of this crosstalk. Chromatin lipid metabolism is activated in vivo during cell proliferation, indicating that it could play a role in cell function. The possible mechanism of crosstalk is discussed here, with consideration to recent advances in the field.
Collapse
|
25
|
Activation of PKCβII and PKCθ is essential for LDL-induced cell proliferation of human aortic smooth muscle cells via Gi-mediated Erk1/2 activation and Egr-1 upregulation. Biochem Biophys Res Commun 2008; 368:126-31. [DOI: 10.1016/j.bbrc.2008.01.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 01/13/2008] [Indexed: 11/23/2022]
|
26
|
Roztocil E, Nicholl SM, Davies MG. Sphingosine-1-phosphate-induced oxygen free radical generation in smooth muscle cell migration requires Galpha12/13 protein-mediated phospholipase C activation. J Vasc Surg 2008; 46:1253-1259. [PMID: 18155002 DOI: 10.1016/j.jvs.2007.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/28/2007] [Accepted: 08/05/2007] [Indexed: 10/22/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S-1-P) is a bioactive sphingolipid that stimulates the migration of vascular smooth muscle cell (VSMC) through G-protein coupled receptors; it has been shown to activate reduced nicotinamide dinucleotide phosphate hydrogen (NAD[P]H) oxidase. The role of phospholipase C (PLC) in oxygen free radical generation, and the regulation of VSMC migration in response to S-1-P, are poorly understood. METHODS Rat arterial VSMC were cultured in vitro. Oxygen free radical generation was measured by fluorescent redox indicator assays in response to S-1-P (0.1microM) in the presence and absence of the active PLC inhibitor (U73122; U7, 10nM) or its inactive analog U73343 (InactiveU7, 10nM). Activation of PLC was assessed by immunoprecipitation and Western blotting for the phosphorylated isozymes (beta and gamma). Small interfering (si) RNA to the G-proteins Galphai, Galphaq, and Galpha12/13 was used to downregulate specific proteins. Statistics were by one-way analysis of variance (n = 6). RESULTS S-1-P induced time-dependent activation of PLC-beta and PLC-gamma; PLC-beta but not PLC-gamma activation was blocked by U7 but not by InactiveU7. PLC-beta activation was Galphai-independent (not blocked by pertussis toxin, a Galphai inhibitor, or Galphai2 and Galphai3 siRNA) and Galphaq-independent (not blocked by glycoprotein [GP] 2A, a Galphaq inhibitor, or Galphaq siRNA). PLC-beta activation and cell migration was blocked by siRNA to Galpha12/13. Oxygen free radical generation induced by S-1-P, as measured by dihydroethidium staining, was significantly inhibited by U7 but not by InactiveU7. Inhibition of oxygen free radicals with the inhibitor diphenyleneiodonium resulted in decreased cell migration to S-1-P. VSMC mitogen-activated protein kinase activation and VSMC migration in response to S-1-P was inhibited by PLC- inhibition. CONCLUSION S-1-P induces oxygen free radical generation through a Galpha12/13, PLC-beta-mediated mechanism that facilitates VSMC migration. To our knowledge, this is the first description of PLC-mediated oxygen free radical generation as a mediator of S-1-P VSMC migration and illustrates the need for the definition of cell signaling to allow targeted strategies in molecular therapeutics for restenosis.
Collapse
Affiliation(s)
- Eliza Roztocil
- Vascular Biology and Therapeutics Program, Department of Surgery, University of Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|
27
|
Guo Q, Li QF, Liu HJ, Li R, Wu CT, Wang LS. Sphingosine kinase 1 gene transfer reduces postoperative peritoneal adhesion in an experimental model. Br J Surg 2008; 95:252-8. [PMID: 18064593 DOI: 10.1002/bjs.5890] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Recovery of the surgically damaged mesothelial cell layer is a major process in reducing postoperative peritoneal adhesions. Sphingosine kinase (SPK) 1 is a signalling molecule involved in the regulation of proliferation and migration of various cell types. This study determined the effect of SPK-1 gene transfer on the recovery of damaged mesothelial cells and on peritoneal adhesion formation after surgery. METHODS Rat mesothelial cells were isolated and characterized by their expression of cytokeratin and vimentin. Their migration was determined by scratch wound motility assay. Cellular SPK-1 activity was measured by [gamma-32P]adenosine 5'-triphosphate incorporation. Wistar rats underwent laparotomy with subsequent caecum or uterine horn abrasion. Rats were randomized to either SPK-1 gene (Ad-SPK-1) transfer or control groups. The animals were killed 14 days after operation and peritoneal adhesions were graded. RESULTS Adenovirus-mediated SPK-1 gene transfer increased the cellular SPK-1 activity of mesothelial cells, leading to enhanced migration. Median adhesion scores were significantly lower in the Ad-SPK-1 group than in controls in both rat caecum (0.98 versus 2.60; P < 0.001) and rat uterine horn (0.28 versus 1.83; P < 0.001) models. CONCLUSION Adenovirus-mediated SPK-1 gene transfer promotes recovery of the surgically damaged mesothelial cell layer and prevents postoperative peritoneal adhesion formation.
Collapse
Affiliation(s)
- Q Guo
- Department of General Surgery, General Hospital of People's Liberation Army, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | |
Collapse
|
28
|
Szulc ZM, Mayroo N, Bai A, Bielawski J, Liu X, Norris JS, Hannun YA, Bielawska A. Novel analogs of D-e-MAPP and B13. Part 1: synthesis and evaluation as potential anticancer agents. Bioorg Med Chem 2008; 16:1015-31. [PMID: 17869115 PMCID: PMC2287182 DOI: 10.1016/j.bmc.2007.08.033] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/16/2007] [Accepted: 08/20/2007] [Indexed: 12/31/2022]
Abstract
A series of novel isosteric analogs of the ceramidase inhibitors, (1S,2R)-N-myristoylamino-phenylpropanol-1 (d-e-MAPP) and (1R,2R)-N-myristoylamino-4'-nitro-phenylpropandiol-1,3 (B13), with modified targeting and physicochemical properties were designed, synthesized, and evaluated as potential anticancer agents. When MCF7 cells were treated with the analogs, results indicated that the new analogs were of equal or greater potency compared to the parent compounds. Their activity was predominantly defined by the nature of the modification of the N-acyl hydrophobic interfaces: N-acyl analogs (class A), urea analogs (class B), N-alkyl analogs (class C, lysosomotropic agents), and omega-cationic-N-acyl analogs (class D, mitochondriotropic agents). The most potent compounds belonged to either class D, the aromatic ceramidoids, or to class C, the aromatic N-alkylaminoalcohols. Representative analogs selected from this study were also evaluated by the National Cancer Institute In Vitro Anticancer Drug Discovery Screen. Again, results showed a similar class-dependent activity. In general, the active analogs were non-selectively broad spectrum and had promising activity against all cancer cell lines. However, some active analogs of the d-e-MAPP family were selective against different types of cancer. Compounds LCL85, LCL120, LCL385, LCL284, and LCL204 were identified to be promising lead compounds for therapeutic development.
Collapse
Affiliation(s)
- Zdzislaw M. Szulc
- Departments of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Nalini Mayroo
- Departments of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - AiPing Bai
- Departments of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Jacek Bielawski
- Departments of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Xiang Liu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - James S. Norris
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC 29425
| | - Yusuf A. Hannun
- Departments of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| | - Alicja Bielawska
- Departments of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425
| |
Collapse
|
29
|
Bielawska A, Bielawski J, Szulc ZM, Mayroo N, Liu X, Bai A, Elojeimy S, Rembiesa B, Pierce J, Norris JS, Hannun YA. Novel analogs of D-e-MAPP and B13. Part 2: signature effects on bioactive sphingolipids. Bioorg Med Chem 2008; 16:1032-45. [PMID: 17881234 PMCID: PMC2268750 DOI: 10.1016/j.bmc.2007.08.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/16/2007] [Accepted: 08/20/2007] [Indexed: 11/30/2022]
Abstract
Novel isosteric analogs of the ceramidase inhibitors (1S,2R)-N-myristoylamino-phenylpropanol-1 (d-e-MAPP) and (1R,2R)-N-myristoylamino-4'-nitro-phenylpropandiol-1,3 (B13) with modified targeting and physicochemical properties were developed and evaluated for their effects on endogenous bioactive sphingolipids: ceramide, sphingosine, and sphingosine 1-phosphate (Cer, Sph, and S1P) in MCF7 cells as determined by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS). Time- and dose-response studies on the effects of these compounds on Cer species and Sph levels, combined with structure-activity relationship (SAR) data, revealed 4 distinct classes of analogs which were predominantly defined by modifications of the N-acyl-hydrophobic interfaces: N-acyl-analogs (class A), urea-analogs (class B), N-alkyl-analogs (class C), and omega-cationic-N-acyl analogs (class D). Signature patterns recognized for two of the classes correspond to the cellular compartment of action of the new analogs, with class D acting as mitochondriotropic agents and class C compounds acting as lysosomotropic agents. The neutral agents, classes A and B, do not have this compartmental preference. Moreover, we observed a close correlation between the selective increase of C(16)-, C(14)-, and C(18)-Cers and inhibitory effects on MCF7 cell growth. The results are discussed in the context of compartmentally targeted regulators of Sph, Cer species, and S1P in cancer cell death, emphasizing the role of C(16)-Cer. These novel analogs should be useful in cell-based studies as specific regulators of Cer-Sph-S1P inter-metabolism, in vitro enzymatic studies, and for therapeutic development.
Collapse
Affiliation(s)
- Alicja Bielawska
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, PO Box 250509, Charleston, SC 29425, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Cho JY. Effect of L-cycloserine on cellular responses mediated by macrophages and T cells. Biol Pharm Bull 2007; 30:2105-12. [PMID: 17978484 DOI: 10.1248/bpb.30.2105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined the immunoregulatory roles of L-cycloserine (L-CS), a sphingolipid metabolism regulator with inhibitory activity of serine palmitoyltransferase (SPT), on immune responses mediated by monocytes/macrophages and T cells. Mitogenic responses of splenic lymphocytes induced by LPS, PHA, and Con A were very strongly suppressed by L-CS with IC(50) values ranging from 0.5 to 1 muM. In contrast, this compound less strongly blocked IL-2-induced CD8+ CTLL-2 cell proliferation with an IC(50) value of 540 muM. Interestingly, L-CS enhanced the number of IL-4-producing helper T cells, indicating the favored induction of Th2 condition. Although tumor necrosis factor (TNF)-alpha and nitric oxide (NO) production was not altered under 10% FCS condition, U937 cell-cell adhesion as well as the surface level of adhesion molecules (CD29 and CD98) were significantly suppressed by L-CS. In particular, reduced serum level (5%) under L-CS treatment strongly enhanced the production of TNF-alpha and the inhibitory potency of NO production and cell adhesion. Finally, sphingolipids (D-sphingosine and DL-dihydrosphingosine) did not remarkably abrogate L-CS-mediated T cell proliferation. Therefore our data suggest that de novo sphingolipid metabolism may represent an important aspect of immunomodulatory activities mediated by T cells and macrophages/monocytes, depending on serum level.
Collapse
Affiliation(s)
- Jae Youl Cho
- School of Bioscience and Biotechnology and Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, Korea.
| |
Collapse
|
31
|
Wu J, Bohanan CS, Neumann JC, Lingrel JB. KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration. J Biol Chem 2007; 283:3942-50. [PMID: 18063572 DOI: 10.1074/jbc.m707882200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vasculogenesis, angiogenesis, and maturation are three major phases of the development of blood vessels. Although many receptors required for blood vessel formation have been defined, the intracellular signal transduction pathways involved in vascular maturation remain unclear. KLF2(-/-) embryos fail to develop beyond 13.5 days because of a lack of blood vessel stabilization. The molecular mechanism of KLF2 function in embryonic vascular vessels is still largely unknown. Here we show a normal development pattern of endothelial cells in KLF2(-/-) embryos but a defect of smooth muscle cells at the dorsal side of the aorta. This phenotype results from arrested vascular maturation characterized by the failure of mural cells to migrate around endothelial cells. This migration defect is also observed when platelet-derived growth factor-B (PDGF) controlled migration is studied in murine embryonic fibroblast (MEF) cells from KLF2(-/-) animals. In addition, KLF2(-/-) MEFs exhibit a significant growth defect, indicating that KLF2 is required to maintain the viability of MEF cells. The PDGF signal is mediated through the Src signaling pathway, and a downstream target of KLF2 is sphingosine 1-phosphate receptor 1. These studies demonstrate that KLF2 is required for smooth muscle cell migration and elucidate a novel mechanism involving communication between PDGF and KLF2 in vascular maturation.
Collapse
Affiliation(s)
- Jinghai Wu
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | |
Collapse
|
32
|
Ortiz-Zapater E, Peiró S, Roda O, Corominas JM, Aguilar S, Ampurdanés C, Real FX, Navarro P. Tissue plasminogen activator induces pancreatic cancer cell proliferation by a non-catalytic mechanism that requires extracellular signal-regulated kinase 1/2 activation through epidermal growth factor receptor and annexin A2. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1573-84. [PMID: 17456763 PMCID: PMC1854952 DOI: 10.2353/ajpath.2007.060850] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue plasminogen activator (tPA) is overexpressed in pancreatic ductal carcinoma and is involved in tumor progression. This effect is probably mediated through the activation of angiogenesis, cell invasion, and cell proliferation. Previous studies support the notion that the effects of tPA on cell invasion require its proteolytic activity. Here, we report the molecular mechanism responsible for the proliferative effects of tPA on pancreatic tumor cells. tPA activates the extracellular signal-regulated kinase 1/2 signaling pathway in a manner that is independent of its catalytic activity. We also show that at least two membrane receptors, epidermal growth factor receptor and annexin A2, which are overexpressed in pancreatic cancer, are involved in the transduction of tPA signaling in pancreatic tumors. This observation suggests the establishment of an amplification loop in tumor cell proliferation. Double immunofluorescence experiments showed co-localization of tPA/epidermal growth factor receptor and tPA/annexin A2 in pancreas cancer cells. These results add novel insights into the non-catalytic functions of tPA in cancer and the molecular mechanisms behind the effects of this protease on cell proliferation, including a role for epidermal growth factor receptor.
Collapse
Affiliation(s)
- Elena Ortiz-Zapater
- Unitat de Biologia Cel.lular i Molecular, Institut Municipal d'Investigació Mèdica, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tellier E, Nègre-Salvayre A, Bocquet B, Itohara S, Hannun YA, Salvayre R, Augé N. Role for furin in tumor necrosis factor alpha-induced activation of the matrix metalloproteinase/sphingolipid mitogenic pathway. Mol Cell Biol 2007; 27:2997-3007. [PMID: 17283058 PMCID: PMC1899924 DOI: 10.1128/mcb.01485-06] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neutral sphingomyelinase (nSMase), the initial enzyme of the sphingolipid signaling pathway, is thought to play a key role in cellular responses to tumor necrosis factor alpha (TNF-alpha), such as inflammation, proliferation, and apoptosis. The mechanism of TNF-alpha-induced nSMase activation is only partly understood. Using biochemical, molecular, and pharmacological approaches, we found that nSMase activation triggered by TNF-alpha is required for TNF-alpha-induced proliferation and in turn requires a proteolytic cascade involving furin, membrane type 1 matrix metalloproteinase (MT1-MMP), and MMP2, and leading finally to extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and DNA synthesis, in smooth muscle cells (SMC) and fibroblasts. Pharmacological and molecular inhibitors of MMPs (batimastat), furin (alpha1-PDX inhibitor-transfected SMC), MT1-MMP (SMC overexpressing a catalytically inactive MT1-MMP), MMP2 (fibroblasts from MMP2(-/-) mice), and small interfering RNA (siRNA) strategies (siRNAs targeting furin, MT1-MMP, MMP2, and nSMase) resulted in near-complete inhibition of the activation of nSMase, sphingosine kinase-1, and ERK1/2 and of subsequent DNA synthesis. Exogenous MT1-MMP activated nSMase and SMC proliferation in normal but not in MMP2(-/-) fibroblasts, whereas exogenous MMP2 was active on both normal and MMP2(-/-) fibroblasts. Altogether these findings highlight a pivotal role for furin, MT1-MMP, and MMP2 in TNF-alpha-induced sphingolipid signaling, and they identify this system as a possible target to inhibit SMC proliferation in vascular diseases.
Collapse
Affiliation(s)
- Edwige Tellier
- INSERM U466, Biochimie, IFR-31, CHU Rangueil, 1, Avenue Jean Poulhès, TSA-50032, 31059 Toulouse Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Bassi R, Anelli V, Giussani P, Tettamanti G, Viani P, Riboni L. Sphingosine-1-phosphate is released by cerebellar astrocytes in response to bFGF and induces astrocyte proliferation through Gi-protein-coupled receptors. Glia 2006; 53:621-30. [PMID: 16470810 DOI: 10.1002/glia.20324] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mitogenic role of sphingosine-1-phosphate (S1P) and its involvement in basic fibroblast growth factor (bFGF)-induced proliferation were examined in primary cultures of cerebellar astrocytes. Exposure to bFGF resulted in a rapid increase of extracellular S1P formation, bFGF inducing astrocytes to release S1P, but not sphingosine kinase, in the extracellular milieu. The SK inhibitor N,N-dimethylsphingosine inhibited S1P release as well as bFGF-induced growth stimulation. S1P application in quiescent astrocytes caused a dose-dependent increase in DNA synthesis. This gliotrophic effect was induced by a brief exposure to low nanomolar S1P, mimicked by the S1P receptor agonist dihydro-S1P, and inhibited by pertussis toxin (PTX), an inactivator of G(i)/G(o)-proteins. S1P also induced activation of extracellular signal-regulated kinase that was inhibited again by PTX. Moreover, the S1P lyase inhibitor 4-deoxypyridoxine induced the cellular accumulation of S1P but did not affect DNA synthesis. These results support the view that S1P exerted a mitogenic effect on cerebellar astrocytes extracellularly, most likely through cell surface S1P receptors. In agreement, mRNAs for S1P1, S1P2, and S1P3 receptors are expressed in cerebellar astrocytes (Anelli et al., 2005. J Neurochem 92:1204-1215). Ceramide, a negative regulator of astrocyte proliferation and down-regulated by bFGF (Riboni et al., 2002. Cerebellum 1:129-135), efficiently inhibited S1P-induced proliferation. The S1P action appears to be part of an autocrine/paracrine cascade stimulated by bFGF and, together with ceramide down-regulation, essential for astrocytes to respond to bFGF. The results suggest that S1P and bFGF/S1P may play an important role in physiopathological glial proliferation, such as brain development, reactive gliosis and brain tumor formation.
Collapse
Affiliation(s)
- Rosaria Bassi
- Department of Medical Chemistry, Biochemistry and Biotechnology, University of Milan, LITA-Segrate, Milan, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Maupas-Schwalm F, Robinet C, Augé N, Thiers JC, Garcia V, Cambus JP, Salvayre R, Nègre-Salvayre A. Activation of the β-Catenin/T-Cell–Specific Transcription Factor/Lymphoid Enhancer Factor-1 Pathway by Plasminogen Activators in ECV304 Carcinoma Cells. Cancer Res 2005. [DOI: 10.1158/0008-5472.526.65.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Besides its involvement in clot lysis, the plasminogen activator (PA) system elicits various cellular responses involved in cell migration, adhesion, and proliferation and plays a key role in the progression of cancers. β-Catenin interacts with E-cadherins and functions as transcriptional coactivator of the Wnt-signaling pathway, which is implicated in tumor formation when aberrantly activated. We report that tissue-type plasminogen activator (tPA) elicited tyrosine phosphorylation and cytosolic accumulation of an active (non–serine-threonin phosphorylated, nonubiquitinated) form of β-catenin in ECV304 carcinoma cells. tPA-dependent β-catenin activation is mediated through epidermal growth factor receptor (EGFR) transactivation (via Src), suggested by the inhibitory effects of AG1478 and PP2 (specific inhibitors of EGFR and Src, respectively) and by the lack of β-catenin activation in EGFR-negative B82 fibroblasts. EGFR phosphorylation and β-catenin activation were inhibited by plasminogen activator inhibitor 1 and pertussis toxin, two inhibitors of the urokinase-type plasminogen activator (uPA)/uPA receptor system. β-Catenin activation was correlated with the phosphorylation of glycogen synthase kinase-3β through a phosphatidylinositol 3-kinase/Akt-dependent mechanism. Gel shift experiments revealed the activation of β-catenin/T-cell–specific transcription factor (Tcf)/lymphoid enhancer factor-1 (Lef) transcriptional complex, evidenced by an increased binding of nuclear extracts to oligonucleotides containing the cyclin D1 Lef/Tcf site. β-Catenin silencing through small interfering RNA and antisense oligonucleotides inhibited both the tPA-mediated cyclin D1 expression and cell proliferation. A similar activation of the β-catenin pathway was triggered by amino-terminal fragment, the NH2-terminal catalytically inactive fragment of tPA, thus suggesting that this effect was independent of the proteolytic activity of plasminogen activators. In conclusion, the β-catenin/Lef/Tcf pathway is activated by tPA and is involved in cell cycle progression and proliferation.
Collapse
Affiliation(s)
- Françoise Maupas-Schwalm
- Institut National de la Santé et de la Recherche Médicale U466, IFR31, Centre Hospitalier Universitaire Rangueil, Toulouse, France
| | - Catherine Robinet
- Institut National de la Santé et de la Recherche Médicale U466, IFR31, Centre Hospitalier Universitaire Rangueil, Toulouse, France
| | - Nathalie Augé
- Institut National de la Santé et de la Recherche Médicale U466, IFR31, Centre Hospitalier Universitaire Rangueil, Toulouse, France
| | - Jean-Claude Thiers
- Institut National de la Santé et de la Recherche Médicale U466, IFR31, Centre Hospitalier Universitaire Rangueil, Toulouse, France
| | - Virginie Garcia
- Institut National de la Santé et de la Recherche Médicale U466, IFR31, Centre Hospitalier Universitaire Rangueil, Toulouse, France
| | - Jean-Pierre Cambus
- Institut National de la Santé et de la Recherche Médicale U466, IFR31, Centre Hospitalier Universitaire Rangueil, Toulouse, France
| | - Robert Salvayre
- Institut National de la Santé et de la Recherche Médicale U466, IFR31, Centre Hospitalier Universitaire Rangueil, Toulouse, France
| | - Anne Nègre-Salvayre
- Institut National de la Santé et de la Recherche Médicale U466, IFR31, Centre Hospitalier Universitaire Rangueil, Toulouse, France
| |
Collapse
|