1
|
Birla RK. State of the art in Purkinje bioengineering. Tissue Cell 2024; 90:102467. [PMID: 39053130 DOI: 10.1016/j.tice.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
This review article will cover the recent developments in the new evolving field of Purkinje bioengineering and the development of human Purkinje networks. Recent work has progressed to the point of a methodological and systematic process to bioengineer Purkinje networks. This involves the development of 3D models based on human anatomy, followed by the development of tunable biomaterials, and strategies to reprogram stem cells to Purkinje cells. Subsequently, the reprogrammed cells and the biomaterials are coupled to bioengineer Purkinje networks, which are then tested using a small animal injury model. In this article, we discuss this process as a whole and then each step separately. We then describe potential applications of bioengineered Purkinje networks and challenges in the field that need to be overcome to move this field forward. Although the field of Purkinje bioengineering is new and in a state of infancy, it holds tremendous potential, both for therapeutic applications and to develop tools that can be used for disease modeling.
Collapse
Affiliation(s)
- Ravi K Birla
- Laboratory for Regenerative Tissue Repair, Texas Children's Hospital, Houston, TX, USA; Center for Congenital Cardiac Research, Texas Children's Hospital, Houston, TX, USA; Division of Congenital Heart Surgery, Texas Children's Hospital, Houston, TX, USA; Department of Surgery, Baylor College of Medicine, Houston, TX, USA; Division of Pediatric Surgery, Department of Surgery, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
2
|
Saorin G, Caligiuri I, Rizzolio F. Microfluidic organoids-on-a-chip: The future of human models. Semin Cell Dev Biol 2023; 144:41-54. [PMID: 36241560 DOI: 10.1016/j.semcdb.2022.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Microfluidics opened the possibility to model the physiological environment by controlling fluids flows, and therefore nutrients supply. It allows to integrate external stimuli such as electricals or mechanicals and in situ monitoring important parameters such as pH, oxygen and metabolite concentrations. Organoids are self-organized 3D organ-like clusters, which allow to closely model original organ functionalities. Applying microfluidics to organoids allows to generate powerful human models for studying organ development, diseases, and drug testing. In this review, after a brief introduction on microfluidics, organoids and organoids-on-a-chip are described by organs (brain, heart, gastrointestinal tract, liver, pancreas) highlighting the microfluidic approaches since this point of view was overlooked in previously published reviews. Indeed, the review aims to discuss from a different point of view, primary microfluidics, the available literature on organoids-on-a-chip, standing out from the published literature by focusing on each specific organ.
Collapse
Affiliation(s)
- Gloria Saorin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30123 Venezia, Italy
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Flavio Rizzolio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30123 Venezia, Italy; Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy.
| |
Collapse
|
3
|
Osowski A, Hetmaniuk I, Fedchyshyn O, Sas M, Lomakina Y, Tkachuk N, Budarna O, Fik V, Fedoniuk L, Wojtkiewicz J. The Role of Lyophilized Xenodermotransplants in Repairing the Atria's Structure and the Peculiarities of Regenerative Processes after Thermal Trauma in an Experiment. Life (Basel) 2023; 13:1470. [PMID: 37511845 PMCID: PMC10381269 DOI: 10.3390/life13071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/15/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
The effects of severe burn injuries on the cardiovascular system, specifically the atria and auricles of the heart, were investigated. The potential benefits of using lyophilized xenodermotransplants as a treatment option were also evaluated. The experiments were conducted on adult guinea pigs divided into three groups: intact animals, animals with burns, and animals with burns who underwent early necrectomy followed by wound closure with lyophilized xenodermotransplants. Third-degree burns caused significant ultrastructural changes in atrial cardiomyocytes, leading to long-term destructive changes in the structural components of the atria. However, the use of lyophilized xenodermotransplants had a positive effect on the atrial ultrastructure over time. This study highlights the complex and varied effects of burn injuries on the body and the potential benefits of lyophilized xenodermotransplants in treating severe burn injuries. By preventing destructive changes in the heart and activating regenerative processes, lyophilized xenodermotransplants can improve the condition of the heart after thermal injury. Further research and development in this area are necessary for understanding the potential of lyophilized xenodermotransplants in tissue repair and regeneration.
Collapse
Affiliation(s)
- Adam Osowski
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, 2 Oczapowskiego Street, 10-719 Olsztyn, Poland
| | - Iryna Hetmaniuk
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Olena Fedchyshyn
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Mykhailo Sas
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Yuliia Lomakina
- Department of Medical Biology and Genetics, Bukovinian State Medical University, 15 Yu. Fedkovich Street, 58000 Chernivtsi, Ukraine
| | - Nataliia Tkachuk
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Olena Budarna
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Volodymyr Fik
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Larisa Fedoniuk
- Medical Biology Department, Horbachevsky Ternopil National Medical University, 2 Yu. Slovatskyi Street, 46001 Ternopil, Ukraine
| | - Joanna Wojtkiewicz
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury in Olsztyn, 2 Oczapowskiego Street, 10-719 Olsztyn, Poland
| |
Collapse
|
4
|
Brimmer S, Ji P, Birla AK, Keswani SG, Caldarone CA, Birla RK. Recent advances in biological pumps as a building block for bioartificial hearts. Front Bioeng Biotechnol 2023; 11:1061622. [PMID: 36741765 PMCID: PMC9895798 DOI: 10.3389/fbioe.2023.1061622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023] Open
Abstract
The field of biological pumps is a subset of cardiac tissue engineering and focused on the development of tubular grafts that are designed generate intraluminal pressure. In the simplest embodiment, biological pumps are tubular grafts with contractile cardiomyocytes on the external surface. The rationale for biological pumps is a transition from planar 3D cardiac patches to functional biological pumps, on the way to complete bioartificial hearts. Biological pumps also have applications as a standalone device, for example, to support the Fontan circulation in pediatric patients. In recent years, there has been a lot of progress in the field of biological pumps, with innovative fabrication technologies. Examples include the use of cell sheet engineering, self-organized heart muscle, bioprinting and in vivo bio chambers for vascularization. Several materials have been tested for biological pumps and included resected aortic segments from rodents, type I collagen, and fibrin hydrogel, to name a few. Multiple bioreactors have been tested to condition biological pumps and replicate the complex in vivo environment during controlled in vitro culture. The purpose of this article is to provide an overview of the field of the biological pumps, outlining progress in the field over the past several years. In particular, different fabrication methods, biomaterial platforms for tubular grafts and examples of bioreactors will be presented. In addition, we present an overview of some of the challenges that need to be overcome for the field of biological pumps to move forward.
Collapse
Affiliation(s)
- Sunita Brimmer
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Pengfei Ji
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Aditya K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States
| | - Sundeep G. Keswani
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Christopher A. Caldarone
- Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States
| | - Ravi K. Birla
- Laboratory for Regenerative Tissue Repair, Texas Children’s Hospital, Houston, TX, United States,Center for Congenital Cardiac Research, Texas Children’s Hospital, Houston, TX, United States,Division of Congenital Heart Surgery, Texas Children’s Hospital, Houston, TX, United States,Department of Surgery, Baylor College of Medicine, Houston, TX, United States,Division of Pediatric Surgery, Department of Surgery, Texas Children’s Hospital, Houston, TX, United States,*Correspondence: Ravi K. Birla,
| |
Collapse
|
5
|
Scherba JC, Karra R, Turek JW, Bursac N. Toward improved understanding of cardiac development and congenital heart disease: The advent of cardiac organoids. J Thorac Cardiovasc Surg 2022; 164:2013-2018. [PMID: 35307217 PMCID: PMC9395547 DOI: 10.1016/j.jtcvs.2022.02.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Human cardiac organoid systems hold significant promise for mechanistic studies of early heart morphogenesis and an improved understanding of congenital cardiac disease. During the past decade, we have witnessed remarkable progress in genome editing technology, stem cell research, and bioengineering. The fundamental basic research discoveries accelerate rapidly into clinical translation, paving the way for myocardial regeneration, better understanding of the structural heart disease, and bioengineering of heart structures and even entire hearts. The new horizon is vast and diverse, ranging from creating universal stem cell biobanking to genome edited heart xenotransplantation. Herein, a group of experts from Duke University discuss the state of the art and the possible influence of cardiac organoids on our understanding of structural heart disease. It may not be immediately clear now in what practical ways this technology will be translated into our daily work, yet the current progress in bioengineering will likely have a very significant influence on our surgical practice. Igor E. Konstantinov, MD, PhD, FRACS
Collapse
Affiliation(s)
- Jacob C Scherba
- Department of Biomedical Engineering, Duke University, Durham, NC; Duke University School of Medicine, Duke University, Durham, NC
| | - Ravi Karra
- Department of Medicine, Duke University Medical Center, Durham, NC; Department of Pathology, Duke University Medical Center, Durham, NC
| | - Joseph W Turek
- Duke University School of Medicine, Duke University, Durham, NC; Division of Cardiovascular and Thoracic Surgery, Duke University Medical Center, Durham, NC
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC.
| |
Collapse
|
6
|
Ronzoni FL, Aliberti F, Scocozza F, Benedetti L, Auricchio F, Sampaolesi M, Cusella G, Redwan IN, Ceccarelli G, Conti M. Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation. J Tissue Eng Regen Med 2022; 16:484-495. [PMID: 35246958 PMCID: PMC9311434 DOI: 10.1002/term.3293] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/28/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
Abstract
Skeletal muscle regeneration is one of the major areas of interest in sport medicine as well as trauma centers. Three-dimensional (3D) bioprinting (BioP) is nowadays widely adopted to manufacture 3D constructs for regenerative medicine but a comparison between the available biomaterial-based inks (bioinks) is missing. The present study aims to assess the impact of different hydrogels on the viability, proliferation, and differentiation of murine myoblasts (C2C12) encapsulated in 3D bioprinted constructs aided to muscle regeneration. We tested three different commercially available hydrogels bioinks based on: (1) gelatin methacrylate and alginate crosslinked by UV light; (2) gelatin methacrylate, xanthan gum, and alginate-fibrinogen; (3) nanofibrillated cellulose (NFC)/alginate-fibrinogen crosslinked with calcium chloride and thrombin. Constructs embedding the cells were manufactured by extrusion-based BioP and C2C12 viability, proliferation, and differentiation were assessed after 24 h, 7, 14, 21, and 28 days in culture. Although viability, proliferation, and differentiation were observed in all the constructs, among the investigated bioinks, the best results were obtained by using NFC/alginate-fibrinogen-based hydrogel from 7 to 14 days in culture, when the embedded myoblasts started fusing, forming at day 21 and day 28 multinucleated myotubes within the 3D bioprinted structures. The results revealed an extensive myotube alignment all over the linear structure of the hydrogel, demonstrating cell maturation, and enhanced myogenesis. The bioprinting strategies that we describe here denote a strong and endorsed approach for the creation of in vitro artificial muscle to improve skeletal muscle tissue engineering for future therapeutic applications.
Collapse
Affiliation(s)
- Flavio L. Ronzoni
- Department of Public Health, Experimental and Forensic MedicineHuman Anatomy UnitUniversity of PaviaPaviaItaly
- Department of Biomedical SciencesHumanitas UniversityPieve EmanueleItaly
| | - Flaminia Aliberti
- Department of Public Health, Experimental and Forensic MedicineHuman Anatomy UnitUniversity of PaviaPaviaItaly
- Fondazione IRCCS Policlinico San MatteoCenter for Inherited Cardiovascular DiseasesTransplant Research AreaPaviaItaly
| | - Franca Scocozza
- Department of Civil EngineeringUniversity of PaviaPaviaItaly
| | - Laura Benedetti
- Department of Public Health, Experimental and Forensic MedicineHuman Anatomy UnitUniversity of PaviaPaviaItaly
| | | | - Maurilio Sampaolesi
- Department of Public Health, Experimental and Forensic MedicineHuman Anatomy UnitUniversity of PaviaPaviaItaly
- Department of Development and RegenerationTranslational CardiomyologyKU LeuvenLeuvenBelgium
| | - Gabriella Cusella
- Department of Public Health, Experimental and Forensic MedicineHuman Anatomy UnitUniversity of PaviaPaviaItaly
| | | | - Gabriele Ceccarelli
- Department of Public Health, Experimental and Forensic MedicineHuman Anatomy UnitUniversity of PaviaPaviaItaly
| | - Michele Conti
- Department of Civil EngineeringUniversity of PaviaPaviaItaly
| |
Collapse
|
7
|
Dou W, Malhi M, Zhao Q, Wang L, Huang Z, Law J, Liu N, Simmons CA, Maynes JT, Sun Y. Microengineered platforms for characterizing the contractile function of in vitro cardiac models. MICROSYSTEMS & NANOENGINEERING 2022; 8:26. [PMID: 35299653 PMCID: PMC8882466 DOI: 10.1038/s41378-021-00344-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 05/08/2023]
Abstract
Emerging heart-on-a-chip platforms are promising approaches to establish cardiac cell/tissue models in vitro for research on cardiac physiology, disease modeling and drug cardiotoxicity as well as for therapeutic discovery. Challenges still exist in obtaining the complete capability of in situ sensing to fully evaluate the complex functional properties of cardiac cell/tissue models. Changes to contractile strength (contractility) and beating regularity (rhythm) are particularly important to generate accurate, predictive models. Developing new platforms and technologies to assess the contractile functions of in vitro cardiac models is essential to provide information on cell/tissue physiologies, drug-induced inotropic responses, and the mechanisms of cardiac diseases. In this review, we discuss recent advances in biosensing platforms for the measurement of contractile functions of in vitro cardiac models, including single cardiomyocytes, 2D monolayers of cardiomyocytes, and 3D cardiac tissues. The characteristics and performance of current platforms are reviewed in terms of sensing principles, measured parameters, performance, cell sources, cell/tissue model configurations, advantages, and limitations. In addition, we highlight applications of these platforms and relevant discoveries in fundamental investigations, drug testing, and disease modeling. Furthermore, challenges and future outlooks of heart-on-a-chip platforms for in vitro measurement of cardiac functional properties are discussed.
Collapse
Affiliation(s)
- Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
| | - Manpreet Malhi
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Qili Zhao
- Institute of Robotics and Automatic Information System and the Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin, 300350 China
| | - Li Wang
- School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353 China
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Junhui Law
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
| | - Na Liu
- School of Mechatronics Engineering and Automation, Shanghai University, Shanghai, 200444 China
| | - Craig A. Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada
- Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON M5G 1M1 Canada
| | - Jason T. Maynes
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8 Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8 Canada
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8 Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9 Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4 Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1 Canada
| |
Collapse
|
8
|
Chu X, Wang M, Qiu X, Huang Y, Li T, Otieno E, Li N, Luo L, Xiao X. Strategies for constructing pluripotent stem cell- and progenitor cell-derived three-dimensional cardiac micro-tissues. J Biomed Mater Res A 2021; 110:488-503. [PMID: 34397148 DOI: 10.1002/jbm.a.37298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/31/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) cardiac micro-tissue is a promising model for simulating the structural and functional features of heart in vitro. This scientific achievement provides a platform for exploration about the mechanisms on the development, damage, and regeneration of tissue, hence, paving a way toward development of novel therapies for heart diseases. However, 3D micro-tissue technology is still in its infant stages faced with many challenges such as incompleteness of the tissue microarchitecture, loss of the resident immune cells, poor reproducibility, and deficiencies in continuously feeding the nutrients and removing wastes during micro-tissue culturing. There is an urgent need to optimize the construction of 3D cardiac micro-tissue and improve functions of the involved cells. Therefore, scaffolds and cell resources for building 3D cardiac micro-tissues, strategies for inducing the maturation and functionalization of pluripotent stem cell- or cardiac progenitor cell-derived cardiomyocytes, and the major challenges were reviewed in this writing to enable future fabrication of 3D cardiac micro-tissues or organoids for drug screening, disease modeling, regeneration treatment, and so on.
Collapse
Affiliation(s)
- Xinyue Chu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Mingyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China.,Institute of Laboratory Animals Science, Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Xiaoyan Qiu
- Department of Animal Husbandry Engineering, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yun Huang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Tong Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Edward Otieno
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Na Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Li Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Xiong Xiao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Southwest University, Chongqing, China
| |
Collapse
|
9
|
Yu H, Del Nido PJ, Geva T, Yang C, Wu Z, Rathod RH, Huang X, Billiar KL, Tang D. A Novel Pulmonary Valve Replacement Surgery Strategy Using Contracting Band for Patients With Repaired Tetralogy of Fallot: An MRI-Based Multipatient Modeling Study. Front Bioeng Biotechnol 2021; 9:638934. [PMID: 34095094 PMCID: PMC8170134 DOI: 10.3389/fbioe.2021.638934] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/08/2021] [Indexed: 11/21/2022] Open
Abstract
Patients with repaired Tetralogy of Fallot (ToF), a congenital heart defect which includes a ventricular septal defect and severe right ventricular outflow obstruction, account for the majority of cases with late-onset right ventricle (RV) failure. Current surgery procedures, including pulmonary valve replacement (PVR) with right ventricle remodeling, yield mixed results. PVR with active band insertion was hypothesized to be of clinical usage on improving RV function measured by ejection fraction (EF). In lieu of risky open-heart surgeries and experiments on animal and human, computational biomechanical models were adapted to study the impact of PVR with five band insertion options. Cardiac magnetic resonance (CMR) images were acquired from seven TOF patients before PVR surgery for model construction. For each patient, five different surgery plans combined with passive and active contraction band with contraction ratio of 20, 15, and 10% were studied. Those five plans include three single-band plans with different band locations; one plan with two bands, and one plan with three bands. Including the seven no-band models, 147 computational bi-ventricle models were constructed to simulate RV cardiac functions and identify optimal band plans. Patient variations with different band plans were investigated. Surgery plan with three active contraction bands and band active contraction ratio of 20% had the best performance on improving RV function. The mean ± SD RV ejection fraction value from the seven patients was 42.90 ± 5.68%, presenting a 4.19% absolute improvement or a 10.82% relative improvement, when compared with the baseline models (38.71 ± 5.73%, p = 0.016). The EF improvements from the seven patients varied from 2.87 to 6.01%. Surgical procedures using active contraction bands have great potential to improve RV function measured by ejection fraction for patients with repaired ToF. It is possible to have higher right ventricle ejection fraction improvement with more bands and higher band active contraction ratio. Our findings with computational models need to be further validated by animal experiments before clinical trial could become possible.
Collapse
Affiliation(s)
- Han Yu
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, United States.,Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Tal Geva
- Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Chun Yang
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Zheyang Wu
- Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Rahul H Rathod
- Department of Cardiology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Xueying Huang
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Kristen L Billiar
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, United States
| | - Dalin Tang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China.,Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, United States
| |
Collapse
|
10
|
Sharma P, Wang X, Ming CLC, Vettori L, Figtree G, Boyle A, Gentile C. Considerations for the Bioengineering of Advanced Cardiac In Vitro Models of Myocardial Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003765. [PMID: 33464713 DOI: 10.1002/smll.202003765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Despite the latest advances in cardiovascular biology and medicine, myocardial infarction (MI) remains one of the major causes of deaths worldwide. While reperfusion of the myocardium is critical to limit the ischemic damage typical of a MI event, it causes detrimental morphological and functional changes known as "reperfusion injury." This complex scenario is poorly represented in currently available models of ischemia/reperfusion injury, leading to a poor translation of findings from the bench to the bedside. However, more recent bioengineered in vitro models of the human heart represent more clinically relevant tools to prevent and treat MI in patients. These include 3D cultures of cardiac cells, the use of patient-derived stem cells, and 3D bioprinting technology. This review aims at highlighting the major features typical of a heart attack while comparing current in vitro, ex vivo, and in vivo models. This information has the potential to further guide in developing novel advanced in vitro cardiac models of ischemia/reperfusion injury. It may pave the way for the generation of advanced pathophysiological cardiac models with the potential to develop personalized therapies.
Collapse
Affiliation(s)
- Poonam Sharma
- Faculty of Medicine and Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Clara Liu Chung Ming
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Laura Vettori
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Gemma Figtree
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Andrew Boyle
- Faculty of Medicine and Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Carmine Gentile
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
11
|
Birla RK. A methodological nine-step process to bioengineer heart muscle tissue. Tissue Cell 2020; 67:101425. [PMID: 32853859 DOI: 10.1016/j.tice.2020.101425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 08/12/2020] [Indexed: 01/15/2023]
Abstract
Research in the field of heart muscle tissue engineering is focused on the fabrication of heart muscle tissue which can be utilized to repair, replace and/or augment functionality of damaged and/or diseased tissue. In the simplest embodiment, bioengineering heart muscle tissue constructs involves culture of cardiomyocytes within natural or synthetic scaffolds. Functional integration of the cells with the scaffold and subsequent remodeling lead to the formation of 3D heart muscle tissue and physiological cues like mechanical stretch, electrical stimulation and perfusion are necessary to guide tissue maturation and development. Potential applications for bioengineered heart muscle include use as grafts to repair or replace damaged tissue, as models for basic research and as tools for high-throughput screening of pharmacological agents. In this article, we provide a methodological process to bioengineer functional 3D heart muscle tissue and discuss state of the art and potential challenges in each of the nine-step tissue fabrication process.
Collapse
Affiliation(s)
- Ravi K Birla
- BIOLIFE4D, 2450 Holcombe Blvd; Houston, TX, 77204, United States.
| |
Collapse
|
12
|
Williams SK, Birla RK. Tissue engineering solutions to replace contractile function during pediatric heart surgery. Tissue Cell 2020; 67:101452. [PMID: 33137707 DOI: 10.1016/j.tice.2020.101452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/25/2022]
Abstract
Pediatric heart surgery remains challenging due to the small size of the pediatric heart, the severity of congenital abnormalities and the unique characteristics of each case. New tools and technologies are needed to tackle this enormous challenge. Tissue engineering strategies are focused on fabricating contractile heart muscle, ventricles, Fontan pumps and whole hearts, and a transplantable tissue equivalent has tremendous implications in pediatric heart surgery to provide functional cardiac tissue. This technology will prove to be a game-changer in the field of pediatric heart surgery and provide a novel toolkit for pediatric heart surgeons. This review will provide insight into the potential applications of tissue engineering technologies to replace lost contractile function in pediatric patients with heart abnormalities.
Collapse
Affiliation(s)
- Stuart K Williams
- Bioficial Organs Program, University of Louisville, Louisville, KY, United States
| | | |
Collapse
|
13
|
Majid QA, Fricker ATR, Gregory DA, Davidenko N, Hernandez Cruz O, Jabbour RJ, Owen TJ, Basnett P, Lukasiewicz B, Stevens M, Best S, Cameron R, Sinha S, Harding SE, Roy I. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Front Cardiovasc Med 2020; 7:554597. [PMID: 33195451 PMCID: PMC7644890 DOI: 10.3389/fcvm.2020.554597] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) constitute a major fraction of the current major global diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac Tissue Engineering (CTE) aims to address these conditions, the overall goal being the efficient regeneration of diseased cardiac tissue using an ideal combination of biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies for CTE. These include adult stem cell populations (mesenchymal stem cells) and pluripotent stem cells (including autologous human induced pluripotent stem cells or allogenic human embryonic stem cells) with the latter undergoing differentiation to form functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to have suitable material properties with the ability to support efficient attachment, growth, and differentiation of the cardiac cells, leading to the formation of functional cardiac tissue. In this review, we have focused on the use of biomaterials of natural origin for CTE. Natural biomaterials are generally known to be highly biocompatible and in addition are sustainable in nature. We have focused on those that have been widely explored in CTE and describe the original work and the current state of art. These include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate, silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate, and silk are isolated from natural sources whereas PHAs are produced via bacterial fermentation. Overall, these biomaterials have proven to be highly promising, displaying robust biocompatibility and, when combined with cells, an ability to enhance post-MI cardiac function in pre-clinical models. As such, CTE has great potential for future clinical solutions and hence can lead to a considerable reduction in mortality rates due to CVD.
Collapse
Affiliation(s)
- Qasim A. Majid
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Annabelle T. R. Fricker
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - David A. Gregory
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Natalia Davidenko
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Olivia Hernandez Cruz
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Richard J. Jabbour
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas J. Owen
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pooja Basnett
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Barbara Lukasiewicz
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Molly Stevens
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Serena Best
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sian E. Harding
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ipsita Roy
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Onwuka E, King N, Heuer E, Breuer C. The Heart and Great Vessels. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031922. [PMID: 28289246 DOI: 10.1101/cshperspect.a031922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cardiovascular disease is the leading cause of mortality worldwide. We have made large strides over the past few decades in management, but definitive therapeutic options to address this health-care burden are still limited. Given the ever-increasing need, much effort has been spent creating engineered tissue to replaced diseased tissue. This article gives a general overview of this work as it pertains to the development of great vessels, myocardium, and heart valves. In each area, we focus on currently studied methods, limitations, and areas for future study.
Collapse
Affiliation(s)
- Ekene Onwuka
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205.,College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Nakesha King
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205.,College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Eric Heuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205
| | - Christopher Breuer
- Tissue Engineering and Surgical Research, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43205.,College of Medicine, The Ohio State University, Columbus, Ohio 43210.,Department of Pediatric Surgery, Nationwide Children's Hospital, Columbus, Ohio 43205
| |
Collapse
|
15
|
Salazar BH, Hoffman KA, Reddy AK, Madala S, Birla RK. 16-Channel Flexible System to Measure Electrophysiological Properties of Bioengineered Hearts. Cardiovasc Eng Technol 2017; 9:94-104. [PMID: 29150791 DOI: 10.1007/s13239-017-0336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 11/13/2017] [Indexed: 11/30/2022]
Abstract
As tissue engineering continues to mature, it is necessary to develop new technologies that bring insight into current paradigms and guide improvements for future experiments. To this end, we have developed a system to characterize our bioartificial heart model and compare them to functional native structures. In the present study, the hearts of adult Sprague-Dawley were decellularized resulting in a natural three-dimensional cardiac scaffold. Neonatal rat primary cardiac cells were then cultured within a complex 3D fibrin gel, forming a 3-dimensional cardiac construct, which was sutured to the acellular scaffold and suspended in media for 24-48 h. The resulting bioartificial hearts (BAHs) were then affixed with 16 electrodes, in different configurations to evaluate not only the electrocardiographic characteristics of the cultured tissues, but to also test the system's consistency. Histological evaluation showed cellularization and cardiac tissue formation. The BAHs and native hearts were then evaluated with our 16-channel flexible system to acquire the metrics associated with their respective electrophysiological properties. Time delays between the native signals were in the range of 0-95 ms. As well, color maps revealed a trend in impulse propagation throughout the native hearts. After evaluation of the normal rat QRS complex we found the average amplitude of the R-wave to be 5351.48 ± 44.92 μV and the average QRS duration was found to be 10.61 ± 0.18 ms. In contrast, BAHs exhibited more erratic and non-uniform activity that garnered no appreciable quantification. The data collected in this study proves our system's efficacy for EKG data procurement.
Collapse
Affiliation(s)
- Betsy H Salazar
- Biomedical Engineering Department, University of Houston, Houston, TX, 77204, USA.
| | | | - Anilkumar K Reddy
- Baylor College of Medicine, Houston, TX, 77030, USA.,Indus Instruments, Webster, TX, 77598, USA
| | | | - Ravi K Birla
- Biomedical Engineering Department, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
16
|
Weinberger F, Mannhardt I, Eschenhagen T. Engineering Cardiac Muscle Tissue: A Maturating Field of Research. Circ Res 2017; 120:1487-1500. [PMID: 28450366 DOI: 10.1161/circresaha.117.310738] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Twenty years after the initial description of a tissue engineered construct, 3-dimensional human cardiac tissues of different kinds are now generated routinely in many laboratories. Advances in stem cell biology and engineering allow for the generation of constructs that come close to recapitulating the complex structure of heart muscle and might, therefore, be amenable to industrial (eg, drug screening) and clinical (eg, cardiac repair) applications. Whether the more physiological structure of 3-dimensional constructs provides a relevant advantage over standard 2-dimensional cell culture has yet to be shown in head-to-head-comparisons. The present article gives an overview on current strategies of cardiac tissue engineering with a focus on different hydrogel methods and discusses perspectives and challenges for necessary steps toward the real-life application of cardiac tissue engineering for disease modeling, drug development, and cardiac repair.
Collapse
Affiliation(s)
- Florian Weinberger
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Ingra Mannhardt
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany
| | - Thomas Eschenhagen
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Germany; and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Germany.
| |
Collapse
|
17
|
Mozetic P, Giannitelli SM, Gori M, Trombetta M, Rainer A. Engineering muscle cell alignment through 3D bioprinting. J Biomed Mater Res A 2017; 105:2582-2588. [PMID: 28544472 DOI: 10.1002/jbm.a.36117] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/08/2017] [Accepted: 05/15/2017] [Indexed: 11/10/2022]
Abstract
Processing of hydrogels represents a main challenge for the prospective application of additive manufacturing (AM) to soft tissue engineering. Furthermore, direct manufacturing of tissue precursors with a cell density similar to native tissues has the potential to overcome the extensive in vitro culture required for conventional cell-seeded scaffolds seeking to fabricate constructs with tailored structural and functional properties. In this work, we present a simple AM methodology that exploits the thermoresponsive behavior of a block copolymer (Pluronic® ) as a means to obtain good shape retention at physiological conditions and to induce cellular alignment. Pluronic/alginate blends have been investigated as a model system for the processing of C2C12 murine myoblast cell line. Interestingly, C2C12 cell model demonstrated cell alignment along the deposition direction, potentially representing a new avenue to tailor the resulting cell histoarchitecture during AM process. Furthermore, the fabricated constructs exhibited high cell viability, as well as a significantly improved expression of myogenic genes vs. conventional 2D cultures. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2582-2588, 2017.
Collapse
Affiliation(s)
- Pamela Mozetic
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Sara Maria Giannitelli
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Manuele Gori
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Marcella Trombetta
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy
| | - Alberto Rainer
- Department of Engineering, Tissue Engineering Laboratory, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy
| |
Collapse
|
18
|
Deddens JC, Sadeghi AH, Hjortnaes J, van Laake LW, Buijsrogge M, Doevendans PA, Khademhosseini A, Sluijter JPG. Modeling the Human Scarred Heart In Vitro: Toward New Tissue Engineered Models. Adv Healthc Mater 2017; 6. [PMID: 27906521 DOI: 10.1002/adhm.201600571] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Cardiac remodeling is critical for effective tissue healing, however, excessive production and deposition of extracellular matrix components contribute to scarring and failing of the heart. Despite the fact that novel therapies have emerged, there are still no lifelong solutions for this problem. An urgent need exists to improve the understanding of adverse cardiac remodeling in order to develop new therapeutic interventions that will prevent, reverse, or regenerate the fibrotic changes in the failing heart. With recent advances in both disease biology and cardiac tissue engineering, the translation of fundamental laboratory research toward the treatment of chronic heart failure patients becomes a more realistic option. Here, the current understanding of cardiac fibrosis and the great potential of tissue engineering are presented. Approaches using hydrogel-based tissue engineered heart constructs are discussed to contemplate key challenges for modeling tissue engineered cardiac fibrosis and to provide a future outlook for preclinical and clinical applications.
Collapse
Affiliation(s)
- Janine C. Deddens
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
| | - Amir Hossein Sadeghi
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Biomaterials Innovation Research Center; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Harvard-MIT Division of Health Sciences & Technology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
| | - Jesper Hjortnaes
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Linda W. van Laake
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Marc Buijsrogge
- Department of Cardiothoracic Surgery; Division Heart and Lungs; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
| | - Pieter A. Doevendans
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Cambridge MA 02139 USA
- Harvard-MIT Division of Health Sciences & Technology; Massachusetts Institute of Technology; Cambridge MA 02139 USA
- Wyss Institute for Biologically Inspired Engineering; Harvard University; Boston MA 02115 USA
- Department of Physics; King Abdulaziz University; Jeddah 21569 Saudi Arabia
| | - Joost P. G. Sluijter
- Department of Cardiology; University Medical Center Utrecht; 3584CX Utrecht The Netherlands
- Netherlands Heart Institute (ICIN); 3584CX Utrecht The Netherlands
- UMC Utrecht Regenerative Medicine Center; University Medical Center Utrecht; 3584CT Utrecht The Netherlands
| |
Collapse
|
19
|
Shadrin IY, Khodabukus A, Bursac N. Striated muscle function, regeneration, and repair. Cell Mol Life Sci 2016; 73:4175-4202. [PMID: 27271751 PMCID: PMC5056123 DOI: 10.1007/s00018-016-2285-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 05/26/2016] [Indexed: 12/18/2022]
Abstract
As the only striated muscle tissues in the body, skeletal and cardiac muscle share numerous structural and functional characteristics, while exhibiting vastly different size and regenerative potential. Healthy skeletal muscle harbors a robust regenerative response that becomes inadequate after large muscle loss or in degenerative pathologies and aging. In contrast, the mammalian heart loses its regenerative capacity shortly after birth, leaving it susceptible to permanent damage by acute injury or chronic disease. In this review, we compare and contrast the physiology and regenerative potential of native skeletal and cardiac muscles, mechanisms underlying striated muscle dysfunction, and bioengineering strategies to treat muscle disorders. We focus on different sources for cellular therapy, biomaterials to augment the endogenous regenerative response, and progress in engineering and application of mature striated muscle tissues in vitro and in vivo. Finally, we discuss the challenges and perspectives in translating muscle bioengineering strategies to clinical practice.
Collapse
Affiliation(s)
- I Y Shadrin
- Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC, 27708-90281, USA
| | - A Khodabukus
- Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC, 27708-90281, USA
| | - N Bursac
- Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC, 27708-90281, USA.
| |
Collapse
|
20
|
Balagué N, Torrents C, Hristovski R, Kelso JAS. Sport science integration: An evolutionary synthesis. Eur J Sport Sci 2016; 17:51-62. [PMID: 27685425 DOI: 10.1080/17461391.2016.1198422] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of the paper is to point out one way of integrating the supposedly incommensurate disciplines investigated in sports science. General, common principles can be found among apparently unrelated disciplines when the focus is put on the dynamics of sports-related phenomena. Dynamical systems approaches that have recently changed research in biological and social sciences among others, offer key concepts to create a common pluricontextual language in sport science. This common language, far from being homogenising, offers key synthesis between diverse fields, respecting and enabling the theoretical and experimental pluralism. It forms a softly integrated sports science characterised by a basic dynamic explanatory backbone as well as context-dependent theoretical flexibility. After defining the dynamic integration in living systems, unable to be captured by structural static approaches, we show the commonalities between the diversity of processes existing on different levels and time scales in biological and social entities. We justify our interpretation by drawing on some recent scientific contributions that use the same general principles and concepts, and diverse methods and techniques of data analysis, to study different types of phenomena in diverse disciplines. We show how the introduction of the dynamic framework in sport science has started to blur the boundaries between physiology, biomechanics, psychology, phenomenology and sociology. The advantages and difficulties of sport science integration and its consequences in research are also discussed.
Collapse
Affiliation(s)
- N Balagué
- a Institut Nacional d'Educació Física de Catalunya, Complex Systems in Sport Research Group , University of Barcelona , Barcelona , Spain
| | - C Torrents
- b Institut Nacional d'Educació Física de Catalunya, Complex Systems in Sport Research Group , University of Lleida , Lleida , Spain
| | - R Hristovski
- c Faculty of Physical Education, Sports and Health, Complex Systems in Sport Research Group , University Ss. Cyril and Methodius , Skopje , Republic of Macedonia
| | - J A S Kelso
- d Center for Complex Systems and Brain Sciences , Florida Atlantic University , Boca Raton , USA
| |
Collapse
|
21
|
Abstract
There is a chronic shortage of donor hearts. The ability to fabricate complete bioartificial hearts (BAHs) may be an alternative solution. The current study describes a method to support the fabrication and culture of BAHs. Rat hearts were isolated and subjected to a detergent based decellularization protocol to remove all cellular components, leaving behind an intact extracellular matrix. Primary cardiac cells were isolated from neonatal rat hearts, and direct cell transplantation was used to populate the acellular scaffolds. Bioartificial hearts were maintained in a custom fabrication gravity fed perfusion culture system to support media delivery. The functional performance of BAHs was assessed based on left ventricle pressure and on electrocardiogram. Furthermore, BAHs were sectioned and stained for the whole heart cardiac tissue distribution and for cardiac molecules, such as α-actinin, cardiac troponin I, collagen type I, connexin 43, von Willebrand factor, and ki67. Bioartificial hearts replicated a partial subset of properties of natural rat hearts. The current study provided a method for fabrication of a BAH and revealed challenges toward BAH fabrication with functional performance metrics of natural mammalian hearts.
Collapse
|
22
|
Aung A, Bhullar IS, Theprungsirikul J, Davey SK, Lim HL, Chiu YJ, Ma X, Dewan S, Lo YH, McCulloch A, Varghese S. 3D cardiac μtissues within a microfluidic device with real-time contractile stress readout. LAB ON A CHIP 2016; 16:153-62. [PMID: 26588203 PMCID: PMC4681661 DOI: 10.1039/c5lc00820d] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We present the development of three-dimensional (3D) cardiac microtissues within a microfluidic device with the ability to quantify real-time contractile stress measurements in situ. Using a 3D patterning technology that allows for the precise spatial distribution of cells within the device, we created an array of 3D cardiac microtissues from neonatal mouse cardiomyocytes. We integrated the 3D micropatterning technology with microfluidics to achieve perfused cell-laden structures. The cells were encapsulated within a degradable gelatin methacrylate hydrogel, which was sandwiched between two polyacrylamide hydrogels. The polyacrylamide hydrogels were used as "stress sensors" to acquire the contractile stresses generated by the beating cardiac cells. The cardiac-specific response of the engineered 3D system was examined by exposing it to epinephrine, an adrenergic neurotransmitter known to increase the magnitude and frequency of cardiac contractions. In response to exogenous epinephrine the engineered cardiac tissues exhibited an increased beating frequency and stress magnitude. Such cost-effective and easy-to-adapt 3D cardiac systems with real-time functional readout could be an attractive technological platform for drug discovery and development.
Collapse
Affiliation(s)
- Aereas Aung
- Department of Bioengineering, University of California-San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The development of safe, effective and patient-acceptable drug products is an expensive and lengthy process and the risk of failure at different stages of the development life-cycle is high. Improved biopharmaceutical tools which are robust, easy to use and accurately predict the in vivo response are urgently required to help address these issues. In this review the advantages and challenges of in vitro 3D versus 2D cell culture models will be discussed in terms of evaluating new drug products at the pre-clinical development stage. Examples of models with a 3D architecture including scaffolds, cell-derived matrices, multicellular spheroids and biochips will be described. The ability to simulate the microenvironment of tumours and vital organs including the liver, kidney, heart and intestine which have major impact on drug absorption, distribution, metabolism and toxicity will be evaluated. Examples of the application of 3D models including a role in formulation development, pharmacokinetic profiling and toxicity testing will be critically assessed. Although utilisation of 3D cell culture models in the field of drug delivery is still in its infancy, the area is attracting high levels of interest and is likely to become a significant in vitro tool to assist in drug product development thus reducing the requirement for unnecessary animal studies.
Collapse
|
24
|
Salazar BH, Cashion AT, Dennis RG, Birla RK. Development of a Cyclic Strain Bioreactor for Mechanical Enhancement and Assessment of Bioengineered Myocardial Constructs. Cardiovasc Eng Technol 2015; 6:533-45. [PMID: 26577484 DOI: 10.1007/s13239-015-0236-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/14/2015] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to develop enabling bioreactor technologies using a novel voice coil actuator system for investigating the effects of periodic strain on cardiac patches fabricated with rat cardiomyocytes. The bioengineered muscle constructs used in this study were formed by culturing rat neonatal primary cardiac cells on a fibrin gel. The physical design of the bioreactor was initially conceived using Solidworks to test clearances and perform structural strain analysis. Once the software design phase was completed the bioreactor was assembled using a combination of commercially available, custom machined, and 3-D printed parts. We utilized the bioreactor to evaluate the effect of a 4-h stretch protocol on the contractile properties of the tissue after which immunohistological assessment of the tissue was also performed. An increase in contractile force was observed after the strain protocol of 10% stretch at 1 Hz, with no significant increase observed in the control group. Additionally, an increase in cardiac myofibril alignment, connexin 43 expression, and collagen type I distribution were noted. In this study we demonstrated the effectiveness of a new bioreactor design to improve contractility of engineered cardiac muscle tissue.
Collapse
Affiliation(s)
- Betsy H Salazar
- Department of Biomedical Engineering, Science and Engineering Research Center (SERC), Cullen College of Engineering, University of Houston, 3605 Cullen Blvd, Rm. 2021, Houston, TX, 77204, USA.
| | - Avery T Cashion
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Chapel Hill, NC, USA
| | - Robert G Dennis
- Joint Department of Biomedical Engineering, University of North Carolina/North Carolina State University, Chapel Hill, NC, USA
| | - Ravi K Birla
- Department of Biomedical Engineering, Science and Engineering Research Center (SERC), Cullen College of Engineering, University of Houston, 3605 Cullen Blvd, Rm. 2021, Houston, TX, 77204, USA.
| |
Collapse
|
25
|
32-Channel System to Measure the Electrophysiological Properties of Bioengineered Cardiac Muscle. IEEE Trans Biomed Eng 2015; 62:1614-22. [DOI: 10.1109/tbme.2015.2399437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Huyer LD, Montgomery M, Zhao Y, Xiao Y, Conant G, Korolj A, Radisic M. Biomaterial based cardiac tissue engineering and its applications. Biomed Mater 2015; 10:034004. [PMID: 25989939 PMCID: PMC4464787 DOI: 10.1088/1748-6041/10/3/034004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide, necessitating the development of effective treatment strategies. A myocardial infarction involves the blockage of a coronary artery leading to depletion of nutrient and oxygen supply to cardiomyocytes and massive cell death in a region of the myocardium. Cardiac tissue engineering is the growth of functional cardiac tissue in vitro on biomaterial scaffolds for regenerative medicine application. This strategy relies on the optimization of the complex relationship between cell networks and biomaterial properties. In this review, we discuss important biomaterial properties for cardiac tissue engineering applications, such as elasticity, degradation, and induced host response, and their relationship to engineered cardiac cell environments. With these properties in mind, we also emphasize in vitro use of cardiac tissues for high-throughput drug screening and disease modelling.
Collapse
Affiliation(s)
- Locke Davenport Huyer
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Miles Montgomery
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Yun Xiao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Genevieve Conant
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Anastasia Korolj
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Toronto General Research Institute, University Health Network and IBBME, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Cao H, Kang BJ, Lee CA, Shung KK, Hsiai TK. Electrical and Mechanical Strategies to Enable Cardiac Repair and Regeneration. IEEE Rev Biomed Eng 2015; 8:114-24. [PMID: 25974948 DOI: 10.1109/rbme.2015.2431681] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inadequate replacement of lost ventricular myocardium from myocardial infarction leads to heart failure. Investigating the regenerative capacity of mammalian hearts represents an emerging direction for tissue engineering and cell-based therapy. Recent advances in stem cells hold promise to restore cardiac functions. However, embryonic or induced pluripotent stem cell-derived cardiomyocytes lack functional phenotypes of the native myocardium, and transplanted tissues are not fully integrated for synchronized electrical and mechanical coupling with the host. In this context, this review highlights the mechanical and electrical strategies to promote cardiomyocyte maturation and integration, and to assess the functional phenotypes of regenerating myocardium. Simultaneous microelectrocardiogram and high-frequency ultrasound techniques will also be introduced to assess electrical and mechanical coupling for small animal models of heart regeneration.
Collapse
|
28
|
Hogan M, Mohamed M, Tao ZW, Gutierrez L, Birla R. Establishing the Framework to Support Bioartificial Heart Fabrication Using Fibrin-Based Three-Dimensional Artificial Heart Muscle. Artif Organs 2014; 39:165-71. [DOI: 10.1111/aor.12318] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew Hogan
- Department of Biomedical Engineering; Cullen College of Engineering; University of Houston; Houston TX USA
| | - Mohamed Mohamed
- Department of Biomedical Engineering; Cullen College of Engineering; University of Houston; Houston TX USA
| | - Ze-Wei Tao
- Department of Biomedical Engineering; Cullen College of Engineering; University of Houston; Houston TX USA
| | - Laura Gutierrez
- Department of Biomedical Engineering; Cullen College of Engineering; University of Houston; Houston TX USA
| | - Ravi Birla
- Department of Biomedical Engineering; Cullen College of Engineering; University of Houston; Houston TX USA
| |
Collapse
|
29
|
Tao ZW, Mohamed M, Hogan M, Gutierrez L, Birla RK. Optimizing a spontaneously contracting heart tissue patch with rat neonatal cardiac cells on fibrin gel. J Tissue Eng Regen Med 2014; 11:153-163. [PMID: 24771636 DOI: 10.1002/term.1895] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 02/17/2014] [Accepted: 03/10/2014] [Indexed: 11/06/2022]
Abstract
Engineered cardiac tissues have been constructed with primary or stem cell-derived cardiac cells on natural or synthetic scaffolds. They represent a tremendous potential for the treatment of injured areas through the addition of tensional support and delivery of sufficient cells. In this study, 1-6 million (M) neonatal cardiac cells were seeded on fibrin gels to fabricate cardiac tissue patches, and the effects of culture time and cell density on spontaneous contraction rates, twitch forces and paced response frequencies were measured. Electrocardiograms and signal volume index of connexin 43 were also analysed. Patches of 1-6 M cell densities exhibited maximal contraction rates in the range 305-410 beats/min (bpm) within the first 4 days after plating; low cell density (1-3 M) patches sustained rhythmic contraction longer than high cell density patches (4-6 M). Patches with 1-6 M cell densities generated contractile forces in the range 2.245-14.065 mN/mm3 on days 4-6. Upon patch formation, a paced response frequency of approximately 6 Hz was obtained, and decreased to approximately 3 Hz after 6 days of culture. High cell density patches contained a thicker real cardiac tissue layer, which generated higher R-wave amplitudes; however, low-density patches had a greater signal volume index of connexin 43. In addition, all patches manifested endothelial cell growth and robust nuclear division. The present study demonstrates that the proper time for in vivo implantation of this cardiac construct is just at patch formation, and patches with 3-4 M cell densities are the best candidates. Copyright © 2014 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ze-Wei Tao
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, TX, USA
| | - Mohamed Mohamed
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, TX, USA
| | - Matthew Hogan
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, TX, USA
| | - Laura Gutierrez
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, TX, USA
| | - Ravi K Birla
- Department of Biomedical Engineering, Cullen College of Engineering, University of Houston, TX, USA
| |
Collapse
|
30
|
Xiao Y, Zhang B, Liu H, Miklas JW, Gagliardi M, Pahnke A, Thavandiran N, Sun Y, Simmons C, Keller G, Radisic M. Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle. LAB ON A CHIP 2014; 14:869-82. [PMID: 24352498 PMCID: PMC3969269 DOI: 10.1039/c3lc51123e] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tissue engineering enables the generation of three-dimensional (3D) functional cardiac tissue for pre-clinical testing in vitro, which is critical for new drug development. However, current tissue engineering methods poorly recapitulate the architecture of oriented cardiac bundles with supporting capillaries. In this study, we designed a microfabricated bioreactor to generate 3D micro-tissues, termed biowires, using both primary neonatal rat cardiomyocytes and human embryonic stem cell (hESC) derived cardiomyocytes. Perfusable cardiac biowires were generated with polytetrafluoroethylene (PTFE) tubing template, and were integrated with electrical field stimulation using carbon rod electrodes. To demonstrate the feasibility of this platform for pharmaceutical testing, nitric oxide (NO) was released from perfused sodium nitroprusside (SNP) solution and diffused through the tubing. The NO treatment slowed down the spontaneous beating of cardiac biowires based on hESC derived cardiomyocytes and degraded the myofibrillar cytoskeleton of the cardiomyocytes within the biowires. The biowires were also integrated with electrical stimulation using carbon rod electrodes to further improve phenotype of cardiomyocytes, as indicated by organized contractile apparatus, higher Young's modulus, and improved electrical properties. This microfabricated platform provides a unique opportunity to assess pharmacological effects on cardiac tissue in vitro by perfusion in a cardiac bundle model, which could provide improved physiological relevance.
Collapse
Affiliation(s)
- Yun Xiao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 164 College St, Rm 407, Toronto, ON M5S 3G9, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pok S, Benavides OM, Hallal P, Jacot JG. Use of myocardial matrix in a chitosan-based full-thickness heart patch. Tissue Eng Part A 2014; 20:1877-87. [PMID: 24433519 DOI: 10.1089/ten.tea.2013.0620] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel cardiac scaffold comprised of decellularized porcine heart matrix was investigated for use as a biodegradable patch with a potential for surgical reconstruction of the right ventricular outflow tract. Powdered heart matrix solution was blended with chitosan and lyophilized to form three-dimensional scaffolds. For this investigation, we examined the influence of different blending ratios of heart matrix to chitosan on porosity and mechanical properties, then gene expression and electrophysiological function of invading neonatal rat ventricular myocytes (NRVM) compared to type-A gelatin/chitosan composite scaffolds. Heart matrix/chitosan-blended hydrogels (1.6 mg/mL heart matrix) had similar porosity (109±34 μm), and elastic modulus (13.2±4.0 kPa) as previously published gelatin/chitosan scaffolds. Heart matrix/chitosan hydrogels maintained>80% viability and had higher NRVM retention (∼1000 cells/mm(2)) than gelatin/chitosan scaffolds. There was a significant increase in α-myosin heavy chain and connexin-43 expression in NRVM cultured on heart matrix/chitosan scaffolds after 14 days compared with gelatin/chitosan scaffolds. Further, heart matrix/chitosan scaffolds had significantly higher conduction velocity (12.6±4.9 cm/s) and contractile stress (0.79±0.13 mN/mm(2)) than gelatin/chitosan scaffolds. In summary, NRVM cultured on heart matrix scaffold showed improvements in contractile and electrophysiological function.
Collapse
Affiliation(s)
- Seokwon Pok
- 1 Department of Bioengineering, Rice University , Houston, Texas
| | | | | | | |
Collapse
|
32
|
Abstract
The engineering of 3-dimensional (3D) heart muscles has undergone exciting progress for the past decade. Profound advances in human stem cell biology and technology, tissue engineering and material sciences, as well as prevascularization and in vitro assay technologies make the first clinical application of engineered cardiac tissues a realistic option and predict that cardiac tissue engineering techniques will find widespread use in the preclinical research and drug development in the near future. Tasks that need to be solved for this purpose include standardization of human myocyte production protocols, establishment of simple methods for the in vitro vascularization of 3D constructs and better maturation of myocytes, and, finally, thorough definition of the predictive value of these methods for preclinical safety pharmacology. The present article gives an overview of the present state of the art, bottlenecks, and perspectives of cardiac tissue engineering for cardiac repair and in vitro testing.
Collapse
Affiliation(s)
- Marc N. Hirt
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Eschenhagen
- From the Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; and DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
33
|
Abstract
Cardiac muscle engineering has evolved over nearly 20 years from a scientific oddity to a mainstream technology with a wide range of applications. Of the many published methods it appears that hydrogels constitute the preferred scaffolds for myocardial tissue engineering and support of organotypic development. Here we describe a simple and highly robust protocol for the generation of engineered heart muscle using a collagen-based hydrogel method.
Collapse
Affiliation(s)
- Malte Tiburcy
- Institute of Pharmacology, Heart Research Center Göttingen (HRCG), University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
34
|
Feinberg A, Ripplinger C, van der Meer P, Sheehy S, Domian I, Chien K, Parker K. Functional differences in engineered myocardium from embryonic stem cell-derived versus neonatal cardiomyocytes. Stem Cell Reports 2013; 1:387-96. [PMID: 24286027 PMCID: PMC3841251 DOI: 10.1016/j.stemcr.2013.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 11/24/2022] Open
Abstract
Stem cell-derived cardiomyocytes represent unique tools for cell- and tissue-based regenerative therapies, drug discovery and safety, and studies of fundamental heart-failure mechanisms. However, the degree to which stem cell-derived cardiomyocytes compare to mature cardiomyocytes is often debated. We reasoned that physiological metrics of engineered cardiac tissues offer a means of comparison. We built laminar myocardium engineered from cardiomyocytes that were differentiated from mouse embryonic stem cell-derived cardiac progenitors or harvested directly from neonatal mouse ventricles, and compared their anatomy and physiology in vitro. Tissues assembled from progenitor-derived myocytes and neonate myocytes demonstrated similar cytoskeletal architectures but different gap junction organization and electromechanical properties. Progenitor-derived myocardium had significantly less contractile stress and slower longitudinal conduction velocity than neonate-derived myocardium, indicating that the developmental state of the cardiomyocytes affects the electromechanical function of the resultant engineered tissue. These data suggest a need to establish performance metrics for future stem cell applications.
Collapse
Affiliation(s)
- Adam W. Feinberg
- Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Crystal M. Ripplinger
- Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Peter van der Meer
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Cardiology, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Sean P. Sheehy
- Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ibrahim Domian
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kenneth R. Chien
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute of Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
35
|
Annabi N, Tsang K, Mithieux SM, Nikkhah M, Ameri A, Khademhosseini A, Weiss AS. Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue. ADVANCED FUNCTIONAL MATERIALS 2013; 23:10.1002/adfm.201300570. [PMID: 24319406 PMCID: PMC3850066 DOI: 10.1002/adfm.201300570] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Heart failure is a major international health issue. Myocardial mass loss and lack of contractility are precursors to heart failure. Surgical demand for effective myocardial repair is tempered by a paucity of appropriate biological materials. These materials should conveniently replicate natural human tissue components, convey persistent elasticity, promote cell attachment, growth and conformability to direct cell orientation and functional performance. Here, microfabrication techniques are applied to recombinant human tropoelastin, the resilience-imparting protein found in all elastic human tissues, to generate photocrosslinked biological materials containing well-defined micropatterns. These highly elastic substrates are then used to engineer biomimetic cardiac tissue constructs. The micropatterned hydrogels, produced through photocrosslinking of methacrylated tropoelastin (MeTro), promote the attachment, spreading, alignment, function, and intercellular communication of cardiomyocytes by providing an elastic mechanical support that mimics their dynamic mechanical properties in vivo. The fabricated MeTro hydrogels also support the synchronous beating of cardiomyocytes in response to electrical field stimulation. These novel engineered micropatterned elastic gels are designed to be amenable to 3D modular assembly and establish a versatile, adaptable foundation for the modeling and regeneration of functional cardiac tissue with potential for application to other elastic tissues.
Collapse
Affiliation(s)
- Nasim Annabi
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Kelly Tsang
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA, Department of Materials Engineering, Monash University, Melbourne, Victoria, Australia
| | - Suzanne M. Mithieux
- School of Molecular Bioscience, University of Sydney Sydney, 2006, Australia
| | - Mehdi Nikkhah
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Afshin Ameri
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02139, USA, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139 USA, Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Anthony S. Weiss
- School of Molecular Bioscience, University of Sydney Sydney, 2006, Australia, Charles Perkins Centre, University of Sydney, Sydney, 2006, Australia, Bosch Institute, University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
36
|
Annabi N, Selimović Š, Cox JPA, Ribas J, Bakooshli MA, Heintze D, Weiss AS, Cropek D, Khademhosseini A. Hydrogel-coated microfluidic channels for cardiomyocyte culture. LAB ON A CHIP 2013; 13:3569-77. [PMID: 23728018 PMCID: PMC3744594 DOI: 10.1039/c3lc50252j] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The research areas of tissue engineering and drug development have displayed increased interest in organ-on-a-chip studies, in which physiologically or pathologically relevant tissues can be engineered to test pharmaceutical candidates. Microfluidic technologies enable the control of the cellular microenvironment for these applications through the topography, size, and elastic properties of the microscale cell culture environment, while delivering nutrients and chemical cues to the cells through continuous media perfusion. Traditional materials used in the fabrication of microfluidic devices, such as poly(dimethylsiloxane) (PDMS), offer high fidelity and high feature resolution, but do not facilitate cell attachment. To overcome this challenge, we have developed a method for coating microfluidic channels inside a closed PDMS device with a cell-compatible hydrogel layer. We have synthesized photocrosslinkable gelatin and tropoelastin-based hydrogel solutions that were used to coat the surfaces under continuous flow inside 50 μm wide, straight microfluidic channels to generate a hydrogel layer on the channel walls. Our observation of primary cardiomyocytes seeded on these hydrogel layers showed preferred attachment as well as higher spontaneous beating rates on tropoelastin coatings compared to gelatin. In addition, cellular attachment, alignment and beating were stronger on 5% (w/v) than on 10% (w/v) hydrogel-coated channels. Our results demonstrate that cardiomyocytes respond favorably to the elastic, soft tropoelastin culture substrates, indicating that tropoelastin-based hydrogels may be a suitable coating choice for some organ-on-a-chip applications. We anticipate that the proposed hydrogel coating method and tropoelastin as a cell culture substrate may be useful for the generation of elastic tissues, e.g. blood vessels, using microfluidic approaches.
Collapse
Affiliation(s)
- Nasim Annabi
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| | - Šeila Selimović
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - João Ribas
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- PhD Programme in Experimental Biology and Biomedicine, CNC-Center for Neuroscience and Cell Biology and Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
- Biocant - Center of Innovation in Biotechnology, 3060-197 Cantanhede, Portugal
| | - Mohsen Afshar Bakooshli
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Déborah Heintze
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Institute of Bioengineering and School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015, Lausanne, Switzerland
| | - Anthony S. Weiss
- School of Molecular Bioscience, University of Sydney, 2006, Australia
- Bosch Institute, University of Sydney, 2006, Australia
- Charles Perkins Centre, University of Sydney, 2006, Australia
| | - Donald Cropek
- US Army Corps of Engineers Construction Engineering Research Laboratory, Champaign, IL61822, USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
37
|
Tiburcy M, Zimmermann WH. Modeling myocardial growth and hypertrophy in engineered heart muscle. Trends Cardiovasc Med 2013; 24:7-13. [PMID: 23953977 DOI: 10.1016/j.tcm.2013.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/22/2013] [Accepted: 05/22/2013] [Indexed: 12/18/2022]
Abstract
The introduction of biomimetic culture paradigms has advanced myocardial tissue engineering fundamentally, enabling today the provision of engineered rodent and human heart muscle with features characteristically found in postnatal myocardium. This is in marked contrasts to "flat" cardiomyocyte cultures with their typically low degree of organotypic maturation. Here, we discuss the collagen hydrogel-based engineered heart muscle (EHM) technology and provide background information on its use in simulations of myocardial growth and disease.
Collapse
Affiliation(s)
- Malte Tiburcy
- Institute of Pharmacology, Heart Research Center Göttingen, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075 Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner site Göttingen, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology, Heart Research Center Göttingen, University Medical Center Göttingen, Georg-August-University, Robert-Koch-Str. 40, 37075 Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner site Göttingen, Göttingen, Germany.
| |
Collapse
|
38
|
Athanasiou KA, Eswaramoorthy R, Hadidi P, Hu JC. Self-organization and the self-assembling process in tissue engineering. Annu Rev Biomed Eng 2013; 15:115-36. [PMID: 23701238 DOI: 10.1146/annurev-bioeng-071812-152423] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In recent years, the tissue engineering paradigm has shifted to include a new and growing subfield of scaffoldless techniques that generate self-organizing and self-assembling tissues. This review aims to cogently describe this relatively new research area, with special focus on applications toward clinical use and research models. Particular emphasis is placed on providing clear definitions of self-organization and the self-assembling process, as delineated from other scaffoldless techniques in tissue engineering and regenerative medicine. Significantly, during formation, self-organizing and self-assembling tissues display biological processes similar to those that occur in vivo. These processes help lead to the recapitulation of native tissue morphological structure and organization. Notably, functional properties of these engineered tissues, some of which are already in clinical trials, also approach native tissue values. This review endeavors to provide a cohesive summary of work in this field and to highlight the potential of self-organization and the self-assembling process for providing cogent solutions to currently intractable problems in tissue engineering.
Collapse
Affiliation(s)
- Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
39
|
Ahadian S, Ostrovidov S, Hosseini V, Kaji H, Ramalingam M, Bae H, Khademhosseini A. Electrical stimulation as a biomimicry tool for regulating muscle cell behavior. Organogenesis 2013; 9:87-92. [PMID: 23823664 DOI: 10.4161/org.25121] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is a growing need to understand muscle cell behaviors and to engineer muscle tissues to replace defective tissues in the body. Despite a long history of the clinical use of electric fields for muscle tissues in vivo, electrical stimulation (ES) has recently gained significant attention as a powerful tool for regulating muscle cell behaviors in vitro. ES aims to mimic the electrical environment of electroactive muscle cells (e.g., cardiac or skeletal muscle cells) by helping to regulate cell-cell and cell-extracellular matrix (ECM) interactions. As a result, it can be used to enhance the alignment and differentiation of skeletal or cardiac muscle cells and to aid in engineering of functional muscle tissues. Additionally, ES can be used to control and monitor force generation and electrophysiological activity of muscle tissues for bio-actuation and drug-screening applications in a simple, high-throughput, and reproducible manner. In this review paper, we briefly describe the importance of ES in regulating muscle cell behaviors in vitro, as well as the major challenges and prospective potential associated with ES in the context of muscle tissue engineering.
Collapse
Affiliation(s)
- Samad Ahadian
- WPI-Advanced Institute for Materials Research, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S. Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World J Cardiol 2013; 5:28-41. [PMID: 23539543 PMCID: PMC3610004 DOI: 10.4330/wjc.v5.i3.28] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/09/2012] [Accepted: 01/12/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To facilitate engineering of suitable biomaterials to meet the challenges associated with myocardial infarction.
METHODS: Poly (glycerol sebacate)/collagen (PGS/collagen) core/shell fibers were fabricated by core/shell electrospinning technique, with core as PGS and shell as collagen polymer; and the scaffolds were characterized by scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR), contact angle and tensile testing for cardiac tissue engineering. Collagen nanofibers were also fabricated by electrospinning for comparison with core/shell fibers. Studies on cell-scaffold interaction were carried out using cardiac cells and mesenchymal stem cells (MSCs) co-culture system with cardiac cells and MSCs separately serving as positive and negative controls respectively. The co-culture system was characterized for cell proliferation and differentiation of MSCs into cardiomyogenic lineage in the co-culture environment using dual immunocytochemistry. The co-culture cells were stained with cardiac specific marker proteins like actinin and troponin and MSC specific marker protein CD 105 for proving the cardiogenic differentiation of MSCs. Further the morphology of cells was analyzed using SEM.
RESULTS: PGS/collagen core/shell fibers, core is PGS polymer having an elastic modulus related to that of cardiac fibers and shell as collagen, providing natural environment for cellular activities like cell adhesion, proliferation and differentiation. SEM micrographs of electrospun fibrous scaffolds revealed porous, beadless, uniform fibers with a fiber diameter in the range of 380 ± 77 nm and 1192 ± 277 nm for collagen fibers and PGS/collagen core/shell fibers respectively. The obtained PGS/collagen core/shell fibrous scaffolds were hydrophilic having a water contact angle of 17.9 ± 4.6° compared to collagen nanofibers which had a contact angle value of 30 ± 3.2°. The PGS/collagen core/shell fibers had mechanical properties comparable to that of native heart muscle with a young’s modulus of 4.24 ± 0.7 MPa, while that of collagen nanofibers was comparatively higher around 30.11 ± 1.68 MPa. FTIR spectrum was performed to confirm the functional groups present in the electrospun scaffolds. Amide I and amide II of collagen were detected at 1638.95 cm-1 and 1551.64 cm-1 in the electrospun collagen fibers and at 1646.22 cm-1 and 1540.73 cm-1 for PGS/collagen core/shell fibers respectively. Cell culture studies performed using MSCs and cardiac cells co-culture environment, indicated that the cell proliferation significantly increased on PGS/collagen core/shell scaffolds compared to collagen fibers and the cardiac marker proteins actinin and troponin were expressed more on PGS/collagen core/shell scaffolds compared to collagen fibers alone. Dual immunofluorescent staining was performed to further confirm the cardiogenic differentiation of MSCs by employing MSC specific marker protein, CD 105 and cardiac specific marker protein, actinin. SEM observations of cardiac cells showed normal morphology on PGS/collagen fibers and providing adequate tensile strength for the regeneration of myocardial infarction.
CONCLUSION: Combination of PGS/collagen fibers and cardiac cells/MSCs co-culture system providing natural microenvironments to improve cell survival and differentiation, could bring cardiac tissue engineering to clinical application.
Collapse
|
41
|
|
42
|
Neal RA, Jean A, Park H, Wu PB, Hsiao J, Engelmayr GC, Langer R, Freed LE. Three-dimensional elastomeric scaffolds designed with cardiac-mimetic structural and mechanical features. Tissue Eng Part A 2012. [PMID: 23190320 DOI: 10.1089/ten.tea.2012.0330] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tissue-engineered constructs, at the interface of material science, biology, engineering, and medicine, have the capacity to improve outcomes for cardiac patients by providing living cells and degradable biomaterials that can regenerate the native myocardium. With an ultimate goal of both delivering cells and providing mechanical support to the healing heart, we designed three-dimensional (3D) elastomeric scaffolds with (1) stiffnesses and anisotropy mimicking explanted myocardial specimens as predicted by finite-element (FE) modeling, (2) systematically varied combinations of rectangular pore pattern, pore aspect ratio, and strut width, and (3) structural features approaching tissue scale. Based on predicted mechanical properties, three scaffold designs were selected from eight candidates for fabrication from poly(glycerol sebacate) by micromolding from silicon wafers. Large 20×20 mm scaffolds with high aspect ratio features (5:1 strut height:strut width) were reproducibly cast, cured, and demolded at a relatively high throughput. Empirically measured mechanical properties demonstrated that scaffolds were cardiac mimetic and validated FE model predictions. Two-layered scaffolds providing fully interconnected pore networks were fabricated by layer-by-layer assembly. C2C12 myoblasts cultured on one-layered scaffolds exhibited specific patterns of cell elongation and interconnectivity that appeared to be guided by the scaffold pore pattern. Neonatal rat heart cells cultured on two-layered scaffolds for 1 week were contractile, both spontaneously and in response to electrical stimulation, and expressed sarcomeric α-actinin, a cardiac biomarker. This work not only demonstrated several scaffold designs that promoted functional assembly of rat heart cells, but also provided the foundation for further computational and empirical investigations of 3D elastomeric scaffolds for cardiac tissue engineering.
Collapse
Affiliation(s)
- Rebekah A Neal
- Harvard-MIT Division of Health Sciences and Technology, David H. Koch Institute for Integrative Cancer Research, and Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Prevascularization of self-organizing engineered heart tissue by human umbilical vein endothelial cells abrogates contractile performance. Cell Tissue Res 2012; 350:439-44. [DOI: 10.1007/s00441-012-1492-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/17/2012] [Indexed: 11/26/2022]
|
44
|
Hagerty P, Lee A, Calve S, Lee CA, Vidal M, Baar K. The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments. Biomaterials 2012; 33:6355-61. [PMID: 22698725 DOI: 10.1016/j.biomaterials.2012.05.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/20/2012] [Indexed: 10/28/2022]
Abstract
Growth factors play a central role in the development and remodelling of musculoskeletal tissues. To determine which growth factors optimized in vitro ligament formation and mechanics, a Box-Behnken designed array of varying concentrations of growth factors and ascorbic acid were applied to engineered ligaments and the collagen content and mechanics of the grafts were determined. Increasing the amount of transforming growth factor (TGF) β1 and insulin-like growth factor (IGF)-1 led to an additive effect on ligament collagen and maximal tensile load (MTL). In contrast, epidermal growth factor (EGF) had a negative effect on both collagen content and MTL. The predicted optimal growth media (50 μg/ml TGFβ, IGF-1, and GDF-7 and 200 μM ascorbic acid) was then validated in two separate trials: showing a 5.7-fold greater MTL and 5.2-fold more collagen than a minimal media. Notably, the effect of the maximized growth media was scalable such that larger constructs developed the same material properties, but larger MTL. These results show that optimizing the interactions between growth factors and engineered ligament volume results in an engineered ligament of clinically relevant function.
Collapse
Affiliation(s)
- Paul Hagerty
- Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
45
|
Eschenhagen T, Eder A, Vollert I, Hansen A. Physiological aspects of cardiac tissue engineering. Am J Physiol Heart Circ Physiol 2012; 303:H133-43. [PMID: 22582087 DOI: 10.1152/ajpheart.00007.2012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac tissue engineering aims at repairing the diseased heart and developing cardiac tissues for basic research and predictive toxicology applications. Since the first description of engineered heart tissue 15 years ago, major development steps were directed toward these three goals. Technical innovations led to improved three-dimensional cardiac tissue structure and near physiological contractile force development. Automation and standardization allow medium throughput screening. Larger constructs composed of many small engineered heart tissues or stacked cell sheet tissues were tested for cardiac repair and were associated with functional improvements in rats. Whether these approaches can be simply transferred to larger animals or the human patients remains to be tested. The availability of an unrestricted human cardiac myocyte cell source from human embryonic stem cells or human-induced pluripotent stem cells is a major breakthrough. This review summarizes current tissue engineering techniques with their strengths and limitations and possible future applications.
Collapse
Affiliation(s)
- Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center Hamburg, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
| | | | | | | |
Collapse
|
46
|
Desroches BR, Zhang P, Choi BR, King ME, Maldonado AE, Li W, Rago A, Liu G, Nath N, Hartmann KM, Yang B, Koren G, Morgan JR, Mende U. Functional scaffold-free 3-D cardiac microtissues: a novel model for the investigation of heart cells. Am J Physiol Heart Circ Physiol 2012; 302:H2031-42. [PMID: 22427522 DOI: 10.1152/ajpheart.00743.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To bridge the gap between two-dimensional cell culture and tissue, various three-dimensional (3-D) cell culture approaches have been developed for the investigation of cardiac myocytes (CMs) and cardiac fibroblasts (CFs). However, several limitations still exist. This study was designed to develop a cardiac 3-D culture model with a scaffold-free technology that can easily and inexpensively generate large numbers of microtissues with cellular distribution and functional behavior similar to cardiac tissue. Using micromolded nonadhesive agarose hydrogels containing 822 concave recesses (800 μm deep × 400 μm wide), we demonstrated that neonatal rat ventricular CMs and CFs alone or in combination self-assembled into viable (Live/Dead stain) spherical-shaped microtissues. Importantly, when seeded simultaneously or sequentially, CMs and CFs self-sorted to be interspersed, reminiscent of their myocardial distribution, as shown by cell type-specific CellTracker or antibody labeling. Microelectrode recordings and optical mapping revealed characteristic triangular action potentials (APs) with a resting membrane potential of -66 ± 7 mV (n = 4) in spontaneously contracting CM microtissues. Under pacing, optically mapped AP duration at 90% repolarization and conduction velocity were 100 ± 30 ms and 18.0 ± 1.9 cm/s, respectively (n = 5 each). The presence of CFs led to a twofold AP prolongation in heterogenous microtissues (CM-to-CF ratio of 1:1). Importantly, Ba(2+)-sensitive inward rectifier K(+) currents and Ca(2+)-handling proteins, including sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a, were detected in CM-containing microtissues. Furthermore, cell type-specific adenoviral gene transfer was achieved, with no impact on microtissue formation or cell viability. In conclusion, we developed a novel scaffold-free cardiac 3-D culture model with several advancements for the investigation of CM and CF function and cross-regulation.
Collapse
Affiliation(s)
- B R Desroches
- Cardiovascular Research Center, Cardiology Division, Rhode Island Hospital, Providence, RI 02903, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Mathews G, Sondergaard C, Jeffreys A, Childs W, Le BL, Sahota A, Najibi S, Nolta J, Si MS. Computational analysis of contractility in engineered heart tissue. IEEE Trans Biomed Eng 2012; 59:1429-35. [PMID: 22361653 DOI: 10.1109/tbme.2012.2187899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Engineered heart tissue (EHT) is a potential therapy for heart failure and the basis of functional in vitro assays of novel cardiovascular treatments. Self-organizing EHT can be generated in fiber form, which makes the assessment of contractile function convenient with a force transducer. Contractile function is a key parameter of EHT performance. Analysis of EHT force data is often performed manually; however, this approach is time consuming, incomplete and subjective. Therefore, the purpose of this study was to develop a computer algorithm to efficiently and objectively analyze EHT force data. This algorithm incorporates data filtering, individual contraction detection and validation, inter/intracontractile analysis and intersample analysis. We found the algorithm to be accurate in contraction detection, validation and magnitude measurement as compared to human operators. The algorithm was efficient in processing hundreds of data acquisitions and was able to determine force-length curves, force-frequency relationships and compare various contractile parameters such as peak systolic force generation. We conclude that this computer algorithm is a key adjunct to the objective and efficient assessment of EHT contractile function.
Collapse
Affiliation(s)
- Grant Mathews
- University of California Davis School of Medicine, Department of Surgery, Division of Cardiothoracic Surgery, Sacramento, CA 95817, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chan V, Jeong JH, Bajaj P, Collens M, Saif T, Kong H, Bashir R. Multi-material bio-fabrication of hydrogel cantilevers and actuators with stereolithography. LAB ON A CHIP 2012; 12:88-98. [PMID: 22124724 DOI: 10.1039/c1lc20688e] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cell-based biohybrid actuators are integrated systems that use biological components including proteins and cells to power material components by converting chemical energy to mechanical energy. The latest progress in cell-based biohybrid actuators has been limited to rigid materials, such as silicon and PDMS, ranging in elastic moduli on the order of mega (10(6)) to giga (10(9)) Pascals. Recent reports in the literature have established a correlation between substrate rigidity and its influence on the contractile behavior of cardiomyocytes (A. J. Engler, C. Carag-Krieger, C. P. Johnson, M. Raab, H. Y. Tang and D. W. Speicher, et al., J. Cell Sci., 2008, 121(Pt 22), 3794-3802, P. Bajaj, X. Tang, T. A. Saif and R. Bashir, J. Biomed. Mater. Res., Part A, 2010, 95(4), 1261-1269). This study explores the fabrication of a more compliant cantilever, similar to that of the native myocardium, with elasticity on the order of kilo (10(3)) Pascals. 3D stereolithographic technology, a layer-by-layer UV polymerizable rapid prototyping system, was used to rapidly fabricate multi-material cantilevers composed of poly(ethylene glycol) diacrylate (PEGDA) and acrylic-PEG-collagen (PC) mixtures. The incorporation of acrylic-PEG-collagen into PEGDA-based materials enhanced cell adhesion, spreading, and organization without altering the ability to vary the elastic modulus through the molecular weight of PEGDA. Cardiomyocytes derived from neonatal rats were seeded on the cantilevers, and the resulting stresses and contractile forces were calculated using finite element simulations validated with classical beam equations. These cantilevers can be used as a mechanical sensor to measure the contractile forces of cardiomyocyte cell sheets, and as an early prototype for the design of optimal cell-based biohybrid actuators.
Collapse
Affiliation(s)
- Vincent Chan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Turnbull IC, Lieu DK, Li RA, Costa KD. Cardiac tissue engineering using human stem cell-derived cardiomyocytes for disease modeling and drug discovery. ACTA ACUST UNITED AC 2012; 9:e219-e227. [PMID: 33968153 DOI: 10.1016/j.ddmod.2012.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular disease (CVD) is the most prevalent health problem in the world, and the high mortality rate associated with irreversibly injured heart muscle motivates an urgent need for the development of novel therapies to treat damaged myocardium. Recently, human engineered cardiac tissues (hECT) have been created using cardiomyocytes derived from human embryonic stem cells and human induced pluripotent stem cells. Although a healthy adult phenotype remains elusive, such hECT display structural and functional properties that recapitulate key aspects of natural human myocardium, including dose related responses to compounds with known chronotropic, inotropic and arrhythmogenic effects. Thus, hECT offer the advantage over traditional in vitro culture models of providing a biomimetic 3D environment for the study of myocardial physiopathology, and may be used to generate preclinical models for the development and screening of therapies for CVD.
Collapse
Affiliation(s)
- Irene C Turnbull
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY
| | - Deborah K Lieu
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA
| | - Ronald A Li
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY.,Stem Cell & Regenerative Medicine Consortium, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,Department of Medicine, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong.,Department of Physiology, LKS Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Kevin D Costa
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
50
|
Liau B, Christoforou N, Leong KW, Bursac N. Pluripotent stem cell-derived cardiac tissue patch with advanced structure and function. Biomaterials 2011; 32:9180-7. [PMID: 21906802 DOI: 10.1016/j.biomaterials.2011.08.050] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Recent advances in pluripotent stem cell research have provided investigators with potent sources of cardiogenic cells. However, tissue engineering methodologies to assemble cardiac progenitors into aligned, 3-dimensional (3D) myocardial tissues capable of physiologically relevant electrical conduction and force generation are lacking. In this study, we introduced 3D cell alignment cues in a fibrin-based hydrogel matrix to engineer highly functional cardiac tissues from genetically purified mouse embryonic stem cell-derived cardiomyocytes (CMs) and cardiovascular progenitors (CVPs). Procedures for CM and CVP derivation, purification, and functional differentiation in monolayer cultures were first optimized to yield robust intercellular coupling and maximize velocity of action potential propagation. A versatile soft-lithography technique was then applied to reproducibly fabricate engineered cardiac tissues with controllable size and 3D architecture. While purified CMs assembled into a functional 3D syncytium only when supplemented with supporting non-myocytes, purified CVPs differentiated into cardiomyocytes, smooth muscle, and endothelial cells, and autonomously supported the formation of functional cardiac tissues. After a total culture time similar to period of mouse embryonic development (21 days), the engineered cardiac tissues exhibited unprecedented levels of 3D organization and functional differentiation characteristic of native neonatal myocardium, including: 1) dense, uniformly aligned, highly differentiated and electromechanically coupled cardiomyocytes, 2) rapid action potential conduction with velocities between 22 and 25 cm/s, and 3) significant contractile forces of up to 2 mN. These results represent an important advancement in stem cell-based cardiac tissue engineering and provide the foundation for exploiting the exciting progress in pluripotent stem cell research in the future tissue engineering therapies for heart disease.
Collapse
Affiliation(s)
- Brian Liau
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|