1
|
Duran-Romaña R, Houben B, De Vleeschouwer M, Louros N, Wilson MP, Matthijs G, Schymkowitz J, Rousseau F. N-glycosylation as a eukaryotic protective mechanism against protein aggregation. SCIENCE ADVANCES 2024; 10:eadk8173. [PMID: 38295165 PMCID: PMC10830103 DOI: 10.1126/sciadv.adk8173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/28/2023] [Indexed: 02/02/2024]
Abstract
The tendency for proteins to form aggregates is an inherent part of every proteome and arises from the self-assembly of short protein segments called aggregation-prone regions (APRs). While posttranslational modifications (PTMs) have been implicated in modulating protein aggregation, their direct role in APRs remains poorly understood. In this study, we used a combination of proteome-wide computational analyses and biophysical techniques to investigate the potential involvement of PTMs in aggregation regulation. Our findings reveal that while most PTM types are disfavored near APRs, N-glycosylation is enriched and evolutionarily selected, especially in proteins prone to misfolding. Experimentally, we show that N-glycosylation inhibits the aggregation of peptides in vitro through steric hindrance. Moreover, mining existing proteomics data, we find that the loss of N-glycans at the flanks of APRs leads to specific protein aggregation in Neuro2a cells. Our findings indicate that, among its many molecular functions, N-glycosylation directly prevents protein aggregation in higher eukaryotes.
Collapse
Affiliation(s)
- Ramon Duran-Romaña
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Bert Houben
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Matthias De Vleeschouwer
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Nikolaos Louros
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Matthew P. Wilson
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Gert Matthijs
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB Center for Brain and Disease Research, 3000 Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
2
|
Dalton HM, Viswanatha R, Brathwaite R, Zuno JS, Berman AR, Rushforth R, Mohr SE, Perrimon N, Chow CY. A genome-wide CRISPR screen identifies DPM1 as a modifier of DPAGT1 deficiency and ER stress. PLoS Genet 2022; 18:e1010430. [PMID: 36166480 PMCID: PMC9543880 DOI: 10.1371/journal.pgen.1010430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/07/2022] [Accepted: 09/14/2022] [Indexed: 11/19/2022] Open
Abstract
Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually causes CDGs. While both in vivo models ostensibly cause cellular stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.
Collapse
Affiliation(s)
- Hans M. Dalton
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Raghuvir Viswanatha
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Roderick Brathwaite
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jae Sophia Zuno
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Alexys R. Berman
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Rebekah Rushforth
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Stephanie E. Mohr
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Clement Y. Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
3
|
Preisendörfer S, Ishikawa Y, Hennen E, Winklmeier S, Schupp JC, Knüppel L, Fernandez IE, Binzenhöfer L, Flatley A, Juan-Guardela BM, Ruppert C, Guenther A, Frankenberger M, Hatz RA, Kneidinger N, Behr J, Feederle R, Schepers A, Hilgendorff A, Kaminski N, Meinl E, Bächinger HP, Eickelberg O, Staab-Weijnitz CA. FK506-Binding Protein 11 Is a Novel Plasma Cell-Specific Antibody Folding Catalyst with Increased Expression in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:1341. [PMID: 35456020 PMCID: PMC9027113 DOI: 10.3390/cells11081341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Antibodies are central effectors of the adaptive immune response, widespread used therapeutics, but also potentially disease-causing biomolecules. Antibody folding catalysts in the plasma cell are incompletely defined. Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease with increasingly recognized autoimmune features. We found elevated expression of FK506-binding protein 11 (FKBP11) in IPF lungs where FKBP11 specifically localized to antibody-producing plasma cells. Suggesting a general role in plasma cells, plasma cell-specific FKBP11 expression was equally observed in lymphatic tissues, and in vitro B cell to plasma cell differentiation was accompanied by induction of FKBP11 expression. Recombinant human FKBP11 was able to refold IgG antibody in vitro and inhibited by FK506, strongly supporting a function as antibody peptidyl-prolyl cis-trans isomerase. Induction of ER stress in cell lines demonstrated induction of FKBP11 in the context of the unfolded protein response in an X-box-binding protein 1 (XBP1)-dependent manner. While deficiency of FKBP11 increased susceptibility to ER stress-mediated cell death in an alveolar epithelial cell line, FKBP11 knockdown in an antibody-producing hybridoma cell line neither induced cell death nor decreased expression or secretion of IgG antibody. Similarly, antibody secretion by the same hybridoma cell line was not affected by knockdown of the established antibody peptidyl-prolyl isomerase cyclophilin B. The results are consistent with FKBP11 as a novel XBP1-regulated antibody peptidyl-prolyl cis-trans isomerase and indicate significant redundancy in the ER-resident folding machinery of antibody-producing hybridoma cells.
Collapse
Affiliation(s)
- Stefan Preisendörfer
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; (Y.I.); (H.P.B.)
| | - Elisabeth Hennen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, Biomedical Center and LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (S.W.); (E.M.)
| | - Jonas C. Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Larissa Knüppel
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Isis E. Fernandez
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Leonhard Binzenhöfer
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Brenda M. Juan-Guardela
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
| | - Clemens Ruppert
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), 35392 Giessen, Germany; (C.R.); (A.G.)
| | - Andreas Guenther
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), 35392 Giessen, Germany; (C.R.); (A.G.)
| | - Marion Frankenberger
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Rudolf A. Hatz
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany;
- Asklepios Fachkliniken München-Gauting, 82131 Gauting, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Jürgen Behr
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (S.W.); (E.M.)
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; (Y.I.); (H.P.B.)
| | - Oliver Eickelberg
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| |
Collapse
|
4
|
Di Patria L, Annibalini G, Morrone A, Ferri L, Saltarelli R, Galluzzi L, Diotallevi A, Bocconcelli M, Donati MA, Barone R, Guerrini R, Jaeken J, Stocchi V, Barbieri E. Defective IGF-1 prohormone N-glycosylation and reduced IGF-1 receptor signaling activation in congenital disorders of glycosylation. Cell Mol Life Sci 2022; 79:150. [PMID: 35211808 PMCID: PMC8873121 DOI: 10.1007/s00018-022-04180-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
The insulin-like growth factor-1 (IGF-1) signaling pathway is crucial for the regulation of growth and development. The correct processing of the IGF-1Ea prohormone (proIGF-1Ea) and the IGF-1 receptor (IGF-1R) peptide precursor requires proper N-glycosylation. Deficiencies of N-linked glycosylation lead to a clinically heterogeneous group of inherited diseases called Congenital Disorders of Glycosylation (CDG). The impact of N-glycosylation defects on IGF-1/IGF-1R signaling components is largely unknown. In this study, using dermal fibroblasts from patients with different CDG [PMM2-CDG (n = 7); ALG3-CDG (n = 2); ALG8-CDG (n = 1); GMPPB-CDG (n = 1)], we analyzed the glycosylation pattern of the proIGF-1Ea, IGF-1 secretion efficiency and IGF-1R signaling activity. ALG3-CDG, ALG8-CDG, GMPPB-CDG and some PMM2-CDG fibroblasts showed hypoglycosylation of the proIGF-1Ea and lower IGF-1 secretion when compared with control (CTR). Lower IGF-1 serum concentration was observed in ALG3-CDG, ALG8-CDG and in some patients with PMM2-CDG, supporting our in vitro data. Furthermore, reduced IGF-1R expression level was observed in ALG3-CDG, ALG8-CDG and in some PMM2-CDG fibroblasts. IGF-1-induced IGF-1R activation was lower in most PMM2-CDG fibroblasts and was associated with decreased ERK1/2 phosphorylation as compared to CTR. In general, CDG fibroblasts showed a slight upregulation of Endoplasmic Reticulum (ER) stress genes compared with CTR, uncovering mild ER stress in CDG cells. ER-stress-related gene expression negatively correlated with fibroblasts IGF-1 secretion. This study provides new evidence of a direct link between N-glycosylation defects found in CDG and the impairment of IGF-1/IGF-1R signaling components. Further studies are warranted to determine the clinical consequences of reduced systemic IGF-1 availability and local activity in patients with CDG.
Collapse
Affiliation(s)
- Laura Di Patria
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy.
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Lorenzo Ferri
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy
| | - Roberta Saltarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Matteo Bocconcelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy
| | - Maria Alice Donati
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Rita Barone
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.,Reseach Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
| | - Renzo Guerrini
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital, Florence, Italy.,Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Jaak Jaeken
- Center for Metabolic Diseases, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Vilberto Stocchi
- Department of Human Sciences for the Promotion of Quality of Life, University San Raffaele, Roma, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via I Maggetti, 26/2, 61029, Urbino, Italy.,IIM, Interuniversity Institute of Myology, Perugia, Italy
| |
Collapse
|
5
|
Lebedeva IV, Wagner MV, Sahdeo S, Lu YF, Anyanwu-Ofili A, Harms MB, Wadia JS, Rajagopal G, Boland MJ, Goldstein DB. Precision genetic cellular models identify therapies protective against ER stress. Cell Death Dis 2021; 12:770. [PMID: 34354042 PMCID: PMC8342410 DOI: 10.1038/s41419-021-04045-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/08/2022]
Abstract
Rare monogenic disorders often share molecular etiologies involved in the pathogenesis of common diseases. Congenital disorders of glycosylation (CDG) and deglycosylation (CDDG) are rare pediatric disorders with symptoms that range from mild to life threatening. A biological mechanism shared among CDG and CDDG as well as more common neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis, is endoplasmic reticulum (ER) stress. We developed isogenic human cellular models of two types of CDG and the only known CDDG to discover drugs that can alleviate ER stress. Systematic phenotyping confirmed ER stress and identified elevated autophagy among other phenotypes in each model. We screened 1049 compounds and scored their ability to correct aberrant morphology in each model using an agnostic cell-painting assay based on >300 cellular features. This primary screen identified multiple compounds able to correct morphological phenotypes. Independent validation shows they also correct cellular phenotypes and alleviate each of the ER stress markers identified in each model. Many of the active compounds are associated with microtubule dynamics, which points to new therapeutic opportunities for both rare and more common disorders presenting with ER stress, such as Alzheimer's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Irina V Lebedeva
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Michelle V Wagner
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | - Sunil Sahdeo
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | - Yi-Fan Lu
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Matthew B Harms
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jehangir S Wadia
- Janssen Prevention Center, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
- Janssen R&D US, San Diego, CA, USA
| | | | - Michael J Boland
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA.
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Polla DL, Edmondson AC, Duvet S, March ME, Sousa AB, Lehman A, Niyazov D, van Dijk F, Demirdas S, van Slegtenhorst MA, Kievit AJA, Schulz C, Armstrong L, Bi X, Rader DJ, Izumi K, Zackai EH, de Franco E, Jorge P, Huffels SC, Hommersom M, Ellard S, Lefeber DJ, Santani A, Hand NJ, van Bokhoven H, He M, de Brouwer APM. Bi-allelic variants in the ER quality-control mannosidase gene EDEM3 cause a congenital disorder of glycosylation. Am J Hum Genet 2021; 108:1342-1349. [PMID: 34143952 PMCID: PMC8322938 DOI: 10.1016/j.ajhg.2021.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/19/2021] [Indexed: 01/10/2023] Open
Abstract
EDEM3 encodes a protein that converts Man8GlcNAc2 isomer B to Man7-5GlcNAc2. It is involved in the endoplasmic reticulum-associated degradation pathway, responsible for the recognition of misfolded proteins that will be targeted and translocated to the cytosol and degraded by the proteasome. In this study, through a combination of exome sequencing and gene matching, we have identified seven independent families with 11 individuals with bi-allelic protein-truncating variants and one individual with a compound heterozygous missense variant in EDEM3. The affected individuals present with an inherited congenital disorder of glycosylation (CDG) consisting of neurodevelopmental delay and variable facial dysmorphisms. Experiments in human fibroblast cell lines, human plasma, and mouse plasma and brain tissue demonstrated decreased trimming of Man8GlcNAc2 isomer B to Man7GlcNAc2, consistent with loss of EDEM3 enzymatic activity. In human cells, Man5GlcNAc2 to Man4GlcNAc2 conversion is also diminished with an increase of Glc1Man5GlcNAc2. Furthermore, analysis of the unfolded protein response showed a reduced increase in EIF2AK3 (PERK) expression upon stimulation with tunicamycin as compared to controls, suggesting an impaired unfolded protein response. The aberrant plasma N-glycan profile provides a quick, clinically available test for validating variants of uncertain significance that may be identified by molecular genetic testing. We propose to call this deficiency EDEM3-CDG.
Collapse
Affiliation(s)
- Daniel L Polla
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands; CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Andrew C Edmondson
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sandrine Duvet
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Michael E March
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ana Berta Sousa
- Serviço de Genética Médica, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 649-035 Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Dmitriy Niyazov
- Tulane School of Medicine, University of Queensland, 1315 Jefferson Highway, New Orleans, LA 70121, USA
| | - Fleur van Dijk
- North West Thames Regional Genetics Service, London North West University Healthcare NHS Trust, Watford Road, Harrow, HA1 3UJ London, UK
| | - Serwet Demirdas
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 Rotterdam, the Netherlands
| | | | - Anneke J A Kievit
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 Rotterdam, the Netherlands
| | - Celine Schulz
- Université de Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Linlea Armstrong
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Xin Bi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Rader
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kosuke Izumi
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elaine H Zackai
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elisa de Franco
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, EX2 5DW Exeter, UK
| | - Paula Jorge
- Centro de Genética Médica Jacinto de Magalhães, Centro Hospitalar do Porto, CHP, E.P.E., 4099-028 Porto, Portugal; Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto, 4099-028 Porto, Portugal
| | - Sophie C Huffels
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Marina Hommersom
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Sian Ellard
- Department of Molecular Genetics, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, EX2 5DW Exeter, UK; College of Medicine and Health, University of Exeter, Barrack Road, EX2 5DW Exeter, UK
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Avni Santani
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J Hand
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Miao He
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Arjan P M de Brouwer
- Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Ondruskova N, Honzik T, Vondrackova A, Stranecky V, Tesarova M, Zeman J, Hansikova H. Severe phenotype of ATP6AP1-CDG in two siblings with a novel mutation leading to a differential tissue-specific ATP6AP1 protein pattern, cellular oxidative stress and hepatic copper accumulation. J Inherit Metab Dis 2020; 43:694-700. [PMID: 32216104 PMCID: PMC7383996 DOI: 10.1002/jimd.12237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
Congenital disorders of glycosylation (CDG) represent a wide range of >140 inherited metabolic diseases, continually expanding not only with regards to the number of newly identified causative genes, but also the heterogeneity of the clinical and molecular presentations within each subtype. The deficiency of ATP6AP1, an accessory subunit of the vacuolar H+ -ATPase, is a recently characterised N- and O-glycosylation defect manifesting with immunodeficiency, hepatopathy and cognitive impairment. At the cellular level, the latest studies demonstrate a complex disturbance of metabolomics involving peroxisomal function and lipid homeostasis in the patients. Our study delineates a case of two severely affected siblings with a new hemizygous variant c.221T>C (p.L74P) in ATP6AP1 gene, who both died due to liver failure before reaching 1 year of age. We bring novel pathobiochemical observations including the finding of increased reactive oxygen species in the cultured fibroblasts from the older boy, a striking copper accumulation in his liver, as well as describe the impact of the mutation on the protein in different organs, showing a tissue-specific pattern of ATP6AP1 level and its posttranslational modification.
Collapse
Affiliation(s)
- Nina Ondruskova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Alzbeta Vondrackova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Viktor Stranecky
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Marketa Tesarova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Jiri Zeman
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Hana Hansikova
- Department of Pediatrics and Adolescent Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| |
Collapse
|
8
|
Geoghegan D, Arnall C, Hatton D, Noble-Longster J, Sellick C, Senussi T, James DC. Control of amino acid transport into Chinese hamster ovary cells. Biotechnol Bioeng 2018; 115:2908-2929. [PMID: 29987891 DOI: 10.1002/bit.26794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/06/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
Amino acid transporters (AATs) represent a key interface between the cell and its environment, critical for all cellular processes: Energy generation, redox control, and synthesis of cell and product biomass. However, very little is known about the activity of different functional classes of AATs in Chinese hamster ovary (CHO) cells, how they support cell growth and productivity, and the potential for engineering their activity and/or the composition of amino acids in growth media to improve CHO cell performance in vitro. In this study, we have comparatively characterized AAT expression in untransfected and monoclonal antibody (MAb)-producing CHO cells using transcriptome analysis by RNA-seq, and mechanistically dissected AAT function using a variety of transporter-specific chemical inhibitors, comparing their effect on cell proliferation, recombinant protein production, and amino acid transport. Of a possible 56 mammalian plasma membrane AATs, 16 AAT messenger RNAs (mRNAs) were relatively abundant across all CHO cell populations. Of these, a subset of nine AAT mRNAs were more abundant in CHO cells engineered to produce a recombinant MAb. Together, upregulated AATs provide additional supply of specific amino acids overrepresented in MAb biomass compared to CHO host cell biomass, enable transport of synthetic substrates for glutathione synthesis, facilitate transport of essential amino acids to maintain active protein synthesis, and provide amino acid substrates for coordinated antiport systems to maintain supplies of proteinogenic and essential amino acids.
Collapse
Affiliation(s)
- Darren Geoghegan
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Claire Arnall
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | - Joanne Noble-Longster
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | | | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Wang W, Oguz G, Lee PL, Bao Y, Wang P, Terp MG, Ditzel HJ, Yu Q. KDM4B-regulated unfolded protein response as a therapeutic vulnerability in PTEN-deficient breast cancer. J Exp Med 2018; 215:2833-2849. [PMID: 30266800 PMCID: PMC6219741 DOI: 10.1084/jem.20180439] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/23/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022] Open
Abstract
Wang et al. report an unexpected role of demethylase KDM4B in regulating unfolded protein response (UPR). A stepwise hyperactivation of UPR by co-targeting the KDM4B and PI3K pathway uncovers a therapeutic vulnerability of PTEN-deficient TNBC that otherwise would be resistant to PI3K inhibition. PTEN deficiency in breast cancer leads to resistance to PI3K–AKT inhibitor treatment despite aberrant activation of this signaling pathway. Here, we report that genetic depletion or small molecule inhibition of KDM4B histone demethylase activates the unfolded protein response (UPR) pathway and results in preferential apoptosis in PTEN-deficient triple-negative breast cancers (TNBCs). Intriguingly, this function of KDM4B on UPR requires its demethylase activity but is independent of its canonical role in histone modification, and acts through its cytoplasmic interaction with eIF2α, a crucial component of UPR signaling, resulting in reduced phosphorylation of this component. Targeting KDM4B in combination with PI3K inhibition induces further activation of UPR, leading to robust synergy in apoptosis. These findings identify KDM4B as a therapeutic vulnerability in PTEN-deficient TNBC that otherwise would be resistant to PI3K inhibition.
Collapse
Affiliation(s)
- Wenyu Wang
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Gokce Oguz
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Puay Leng Lee
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Yi Bao
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore
| | - Panpan Wang
- Cancer Research Institute and School of Pharmacy, Jinan University, Guangzhou, China
| | - Mikkel Green Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Qiang Yu
- Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology and Research, Biopolis, Singapore .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School of Singapore, Singapore
| |
Collapse
|
10
|
Nrf2 activation attenuates genetic endoplasmic reticulum stress induced by a mutation in the phosphomannomutase 2 gene in zebrafish. Proc Natl Acad Sci U S A 2018; 115:2758-2763. [PMID: 29472449 DOI: 10.1073/pnas.1714056115] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nrf2 plays critical roles in animals' defense against electrophiles and oxidative stress by orchestrating the induction of cytoprotective genes. We previously isolated the zebrafish mutant it768, which displays up-regulated expression of Nrf2 target genes in an uninduced state. In this paper, we determine that the gene responsible for it768 was the zebrafish homolog of phosphomannomutase 2 (Pmm2), which is a key enzyme in the initial steps of N-glycosylation, and its mutation in humans leads to PMM2-CDG (congenital disorders of glycosylation), the most frequent type of CDG. The pmm2it768 larvae exhibited mild defects in N-glycosylation, indicating that the pmm2it768 mutation is a hypomorph, as in human PMM2-CDG patients. A gene expression analysis showed that pmm2it768 larvae display up-regulation of endoplasmic reticulum (ER) stress, suggesting that the activation of Nrf2 was induced by the ER stress. Indeed, the treatment with the ER stress-inducing compounds up-regulated the gstp1 expression in an Nrf2-dependent manner. Furthermore, the up-regulation of gstp1 by the pmm2 inactivation was diminished by knocking down or out double-stranded RNA-activated protein kinase (PKR)-like ER kinase (PERK), one of the main ER stress sensors, suggesting that Nrf2 was activated in response to the ER stress via the PERK pathway. ER stress-induced activation of Nrf2 was reported previously, but the results have been controversial. Our present study clearly demonstrated that ER stress can indeed activate Nrf2 and this regulation is evolutionarily conserved among vertebrates. Moreover, ER stress induced in pmm2it768 mutants was ameliorated by the treatment of the Nrf2-activator sulforaphane, indicating that Nrf2 plays significant roles in the reduction of ER stress.
Collapse
|
11
|
DPAGT1-CDG: Functional analysis of disease-causing pathogenic mutations and role of endoplasmic reticulum stress. PLoS One 2017; 12:e0179456. [PMID: 28662078 PMCID: PMC5491010 DOI: 10.1371/journal.pone.0179456] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/29/2017] [Indexed: 11/23/2022] Open
Abstract
Pathogenic mutations in DPAGT1 are manifested as two possible phenotypes: congenital disorder of glycosylation DPAGT1-CDG (also known as CDG-Ij), and limb-girdle congenital myasthenic syndrome (CMS) with tubular aggregates. UDP-N-acetylglucosamine-dolichyl-phosphate N-acetylglucosamine phosphotransferase (GPT), the protein encoded by DPAGT1, is an endoplasmic reticulum (ER)-resident protein involved in an initial step in the N-glycosylation pathway. The aim of the present study was to examine the effect of six variants in DPAGT1 detected in patients with DPAGT1-CDG, and the role of endoplasmic reticulum stress, as part of the search for therapeutic strategies to use against DPAGT1-CDG. The effect of the six mutations, i.e., c.358C>A (p.Leu120Met), c.791T>G (p.Val264Gly), c.901C>T (p.Arg301Cys), c.902G>A (p.Arg301His), c.1154T>G (p.Leu385Arg), and of the novel mutation c.329T>C (p.Phe110Ser), were examined via the analysis of DPAGT1 transcriptional profiles and GTP levels in patient-derived fibroblasts. In addition, the transient expression of different mutations was analysed in COS-7 cells. The results obtained, together with those of bioinformatic studies, revealed these mutations to affect the splicing process, the stability of GTP, or the ability of this protein to correctly localise in the ER membrane. The unfolded protein response (UPR; the response to ER stress) was found not to be active in patient-derived fibroblasts, unlike that seen in cells from patients with PMM2-CDG or DPM1-CDG. Even so, the fibroblasts of patients with DPAGT1-CDG seemed to be more sensitive to the stressor tunicamycin. The present work improves our knowledge of DPAGT1-CDG and provides bases for developing tailored splicing and folding therapies.
Collapse
|
12
|
Beriault DR, Dang VT, Zhong LH, Petlura CI, McAlpine CS, Shi Y, Werstuck GH. Glucosamine induces ER stress by disrupting lipid-linked oligosaccharide biosynthesis and N-linked protein glycosylation. Am J Physiol Endocrinol Metab 2017; 312:E48-E57. [PMID: 27879249 DOI: 10.1152/ajpendo.00275.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/28/2016] [Accepted: 11/15/2016] [Indexed: 11/22/2022]
Abstract
Glucosamine is an essential substrate for N-linked protein glycosylation. However, elevated levels of glucosamine can induce endoplasmic reticulum (ER) stress. Glucosamine-induced ER stress has been implicated in the development of diabetic complications, including atherosclerosis and hepatic steatosis. In this study, we investigate the potential relationship between the effects of glucosamine on lipid-linked oligosaccharide (LLO) biosynthesis, N-linked glycosylation, and ER homeostasis. Mouse embryonic fibroblasts (MEFs) were cultured in the presence of 0-5 mM glucosamine for up to 18 h, and LLO biosynthesis was monitored by fluorescence-assisted carbohydrate electrophoresis. ER stress was determined by quantification of unfolded protein response (UPR) gene expression. We found that exposure of MEFs to ≥1 mM glucosamine significantly impaired the biosynthesis of mature (Glc3Man9GlcNAc2) LLOs before the activation of the UPR, which resulted in the accumulation of an LLO intermediate (Man3GlcNAc2). The addition of 4-phenylbutyric acid (4-PBA), a chemical chaperone, was able to alleviate ER stress but did not rescue LLO biosynthesis. Other ER stress-inducing agents, including dithiothreitol and thapsigargin, had no effect on LLO levels. Together, these data suggest that elevated concentrations of glucosamine induce ER stress by interfering with lipid-linked oligosaccharide biosynthesis and N-linked glycosylation. We hypothesize that this pathway represents a causative link between hyperglycemia and the development of diabetic complications.
Collapse
Affiliation(s)
- Daniel R Beriault
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Vi T Dang
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Lexy H Zhong
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Christina I Petlura
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Cameron S McAlpine
- Department of Medicine McMaster University, Hamilton, Ontario, Canada; and
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Yuanyuan Shi
- Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
13
|
Abstract
Simple and complex carbohydrates (glycans) have long been known to play major metabolic, structural and physical roles in biological systems. Targeted microbial binding to host glycans has also been studied for decades. But such biological roles can only explain some of the remarkable complexity and organismal diversity of glycans in nature. Reviewing the subject about two decades ago, one could find very few clear-cut instances of glycan-recognition-specific biological roles of glycans that were of intrinsic value to the organism expressing them. In striking contrast there is now a profusion of examples, such that this updated review cannot be comprehensive. Instead, a historical overview is presented, broad principles outlined and a few examples cited, representing diverse types of roles, mediated by various glycan classes, in different evolutionary lineages. What remains unchanged is the fact that while all theories regarding biological roles of glycans are supported by compelling evidence, exceptions to each can be found. In retrospect, this is not surprising. Complex and diverse glycans appear to be ubiquitous to all cells in nature, and essential to all life forms. Thus, >3 billion years of evolution consistently generated organisms that use these molecules for many key biological roles, even while sometimes coopting them for minor functions. In this respect, glycans are no different from other major macromolecular building blocks of life (nucleic acids, proteins and lipids), simply more rapidly evolving and complex. It is time for the diverse functional roles of glycans to be fully incorporated into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Ajit Varki
- Departments of Medicine and Cellular & Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, CA 92093-0687, USA
| |
Collapse
|
14
|
Sabry S, Vuillaumier-Barrot S, Mintet E, Fasseu M, Valayannopoulos V, Héron D, Dorison N, Mignot C, Seta N, Chantret I, Dupré T, Moore SEH. A case of fatal Type I congenital disorders of glycosylation (CDG I) associated with low dehydrodolichol diphosphate synthase (DHDDS) activity. Orphanet J Rare Dis 2016; 11:84. [PMID: 27343064 PMCID: PMC4919849 DOI: 10.1186/s13023-016-0468-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Type I congenital disorders of glycosylation (CDG-I) are mostly complex multisystemic diseases associated with hypoglycosylated serum glycoproteins. A subgroup harbour mutations in genes necessary for the biosynthesis of the dolichol-linked oligosaccharide (DLO) precursor that is essential for protein N-glycosylation. Here, our objective was to identify the molecular origins of disease in such a CDG-Ix patient presenting with axial hypotonia, peripheral hypertonia, enlarged liver, micropenis, cryptorchidism and sensorineural deafness associated with hypo glycosylated serum glycoproteins. RESULTS Targeted sequencing of DNA revealed a splice site mutation in intron 5 and a non-sense mutation in exon 4 of the dehydrodolichol diphosphate synthase gene (DHDDS). Skin biopsy fibroblasts derived from the patient revealed ~20 % residual DHDDS mRNA, ~35 % residual DHDDS activity, reduced dolichol-phosphate, truncated DLO and N-glycans, and an increased ratio of [2-(3)H]mannose labeled glycoprotein to [2-(3)H]mannose labeled DLO. Predicted truncated DHDDS transcripts did not complement rer2-deficient yeast. SiRNA-mediated down-regulation of DHDDS in human hepatocellular carcinoma HepG2 cells largely mirrored the biochemical phenotype of cells from the patient. The patient also harboured the homozygous ALG6(F304S) variant, which does not cause CDG but has been reported to be more frequent in PMM2-CDG patients with severe/fatal disease than in those with moderate presentations. WES did not reveal other strong candidate causal genes. CONCLUSIONS We describe a patient presenting with severe multisystem disease associated with DHDDS deficiency. As retinitis pigmentosa is the only clinical sign in previously reported cases, this report broadens the spectrum of phenotypes associated with this condition.
Collapse
Affiliation(s)
- S Sabry
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France.,Université Pierre et Marie Curie, Paris 6, Paris, France.,Biochemical Genetics Department, Human Genetics Division, National Research Center NRC, Cairo, Egypt
| | - S Vuillaumier-Barrot
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Biochimie, Paris, France
| | - E Mintet
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France
| | - M Fasseu
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France
| | - V Valayannopoulos
- Département de Pédiatrie, AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - D Héron
- Département de Génétique & Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital Pitié Salpétrière, Paris, France.,Groupe de Recherche Clinique « Déficience Intellectuelle et Autisme » UPMC, Paris, France
| | - N Dorison
- Groupe de Recherche Clinique « Déficience Intellectuelle et Autisme » UPMC, Paris, France
| | - C Mignot
- Département de Génétique & Centre de Référence Déficiences Intellectuelles de Causes Rares, Hôpital Pitié Salpétrière, Paris, France.,Groupe de Recherche Clinique « Déficience Intellectuelle et Autisme » UPMC, Paris, France.,Neuropédiatrie, Hôpital Trousseau, Paris, France
| | - N Seta
- AP-HP, Hôpital Bichat-Claude Bernard, Biochimie, Paris, France.,Université Paris Descartes, Paris, France
| | - I Chantret
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France
| | - T Dupré
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France.,Université Denis Diderot, Paris 7, Paris, France.,AP-HP, Hôpital Bichat-Claude Bernard, Biochimie, Paris, France
| | - S E H Moore
- INSERM U1149, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, Paris, France. .,Université Denis Diderot, Paris 7, Paris, France.
| |
Collapse
|
15
|
Juchimiuk M, Orłowski J, Gawarecka K, Świeżewska E, Ernst JF, Palamarczyk G. Candida albicans cis-prenyltransferase Rer2 is required for protein glycosylation, cell wall integrity and hypha formation. Fungal Genet Biol 2014; 69:1-12. [DOI: 10.1016/j.fgb.2014.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/30/2014] [Accepted: 05/04/2014] [Indexed: 11/28/2022]
|
16
|
Godbole AM, Ramalingam S, Ramamurthy VP, Khandelwal A, Bruno RD, Upreti VV, Gediya LK, Purushottamachar P, Mbatia HW, Addya S, Ambulos N, Njar VCO. VN/14-1 induces ER stress and autophagy in HP-LTLC human breast cancer cells and has excellent oral pharmacokinetic profile in female Sprague Dawley rats. Eur J Pharmacol 2014; 734:98-104. [PMID: 24726842 DOI: 10.1016/j.ejphar.2014.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/19/2022]
Abstract
Resistance to aromatase inhibitors is a major concern in the treatment of breast cancer. Long-term letrozole cultured (LTLC) cells represent a model of resistance to aromatase inhibitors. The LTLC cells were earlier generated by culturing MCF-7Ca, the MCF-7 human breast cancer cell line stably transfected with human placental aromatase gene for a prolonged period in the presence of letrozole. In the present study the effect of RAMBA, VN/14-1 on the sensitivity of LTLC cells upon multiple passaging and the mechanisms of action of VN/14-1 in such high passage LTLC (HP-LTLC) cells was investigated. We report that multiple passaging of LTLC cells (HP-LTLC cell clones) led to profound decrease in their sensitivity to VN/14-1. Additionally, microarray studies and protein analysis revealed that VN/14-1 induced marked endoplasmic reticulum (ER) stress and autophagy in HP-LTLC cells. We further report that VN/14-1 in combination with thapsigargin exhibited synergistic anti-cancer effect in HP-LTLC cells. Preliminary pharmacokinetics in rats revealed that VN/14-1 reached a peak plasma concentration (Cmax) within 0.17h after oral dosing. Its absolute oral bioavailability was >100%. Overall these results indicate potential of VN/14-1 for further clinical development as a potential oral agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Abhijit M Godbole
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Senthilmurugan Ramalingam
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Vidya P Ramamurthy
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Aakanksha Khandelwal
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Robert D Bruno
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Vijay V Upreti
- Department of Pharmaceutical sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Lalji K Gediya
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Puranik Purushottamachar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Hannah W Mbatia
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Sankar Addya
- Department of Cancer Biology, Kimmel Cancer Center, Jefferson Medical College, Thomas Jefferson University, PA 19107, USA
| | - Nicholas Ambulos
- Genomic Core Facility, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA
| | - Vincent C O Njar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA; Marlene Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201-1559, USA.
| |
Collapse
|
17
|
Insufficient ER-stress response causes selective mouse cerebellar granule cell degeneration resembling that seen in congenital disorders of glycosylation. Mol Brain 2013; 6:52. [PMID: 24305089 PMCID: PMC3907076 DOI: 10.1186/1756-6606-6-52] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 11/15/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Congenital disorders of glycosylation (CDGs) are inherited diseases caused by glycosylation defects. Incorrectly glycosylated proteins induce protein misfolding and endoplasmic reticulum (ER) stress. The most common form of CDG, PMM2-CDG, is caused by deficiency in the cytosolic enzyme phosphomannomutase 2 (PMM2). Patients with PMM2-CDG exhibit a significantly reduced number of cerebellar Purkinje cells and granule cells. The molecular mechanism underlying the specific cerebellar neurodegeneration in PMM2-CDG, however, remains elusive. RESULTS Herein, we report that cerebellar granule cells (CGCs) are more sensitive to tunicamycin (TM)-induced inhibition of total N-glycan synthesis than cortical neurons (CNs). When glycan synthesis was inhibited to a comparable degree, CGCs exhibited more cell death than CNs. Furthermore, downregulation of PMM2 caused more CGCs to die than CNs. Importantly, we found that upon PMM2 downregulation or TM treatment, ER-stress response proteins were elevated less significantly in CGCs than in CNs, with the GRP78/BiP level showing the most significant difference. We further demonstrate that overexpression of GRP78/BiP rescues the death of CGCs resulting from either TM-treatment or PMM2 downregulation. CONCLUSIONS Our results indicate that the selective susceptibility of cerebellar neurons to N-glycosylation defects is due to these neurons' inefficient response to ER stress, providing important insight into the mechanisms of selective neurodegeneration observed in CDG patients.
Collapse
|
18
|
Progesterone regulates the expression and activity of two mouse isoforms of the glycoprotein folding sensor UDP-Glc: glycoprotein glucosyltransferase (UGGT). BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3368-3374. [PMID: 24140206 DOI: 10.1016/j.bbamcr.2013.09.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/27/2013] [Accepted: 09/29/2013] [Indexed: 01/26/2023]
Abstract
UDP-Glucose:glycoprotein glucosyltransferase (UGGT) is a central component of the endoplasmic reticulum (ER) glycoprotein-folding quality control system, which prevents the exit of partially folded species. UGGT activity can be regulated by the accumulation of misfolded proteins in the ER, a stimulus that triggers a complex signaling pathway known as unfolded protein response (UPR) which is closely associated with inflammation and disease. In this work, we investigated the effect of progesterone (P4) on the expression and activity of UGGT in a mouse hybridoma. We detected the expression of two UGGT isoforms, UGGT1 and UGGT2, and demonstrated that both isoforms are active in these cells. Interestingly, the expression of each isoform is regulated by high physiological P4 concentrations. This work provides the first evidence of a hormonal regulation of UGGT isoform expression and activity, which might influence the glycoprotein quality control mechanism. These findings could contribute to the study of pathologies triggered by the accumulation of misfolded proteins.
Collapse
|
19
|
Ezgu F, Krejci P, Li S, de Sousa C, Graham JM, Hansmann I, He W, Porpora K, Wand D, Wertelecki W, Schneider A, Wilcox WR. Phenotype-genotype correlations in patients with Marinesco-Sjögren syndrome. Clin Genet 2013; 86:74-84. [PMID: 23829326 DOI: 10.1111/cge.12230] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 12/17/2022]
Abstract
Marinesco-Sjögren syndrome (MSS; MIM 248800) is an autosomal recessive disorder characterized by congenital cerebellar ataxia, early cataracts, developmental delay, myopathy and short stature. Alterations in the gene SIL1 cause MSS in some patients with typical findings. In this study, molecular investigations including sequencing of the SIL1 gene, western blotting and microscopic investigations in fibroblast cultures were carried out in a cohort of 15 patients from 14 unrelated families, including the large, inbred family reported by Superneau et al., having the clinical features of MSS to provide insights into the pathophysiology of the disorder. A total of seven different mutations were found in eight of the patients from seven families. The mutations caused loss of the BIP-associated protein (BAP) protein in four patients by western blot. Novel clinical features such as dental abnormalities, iris coloboma, eczema and hormonal abnormalities were noticed in some patients, but there was no clear way to distinguish those with and without SIL1 mutations. Cultured fibroblasts contained numerous cytoplasmic inclusion bodies, similar to those identified in the brain of the whoozy mouse in five unrelated patients, three with and two without SIL1 mutations, suggesting some SIL1 negative patients share a common cellular pathogenesis with those who are SIL1 positive.
Collapse
Affiliation(s)
- F Ezgu
- Medical Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pediatric Metabolic Disorders and Pediatric Genetics, Gazi University Faculty of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lecca MR, Maag C, Berger EG, Hennet T. Fibrotic response in fibroblasts from congenital disorders of glycosylation. J Cell Mol Med 2012; 15:1788-96. [PMID: 21029365 PMCID: PMC4373368 DOI: 10.1111/j.1582-4934.2010.01187.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) are characterized by a generalized underglycosylation of proteins. CDG is associated with multiple symptoms such as psychomotor retardation, hypotonia, hormonal disturbances, liver fibrosis and coagulopathies. The molecular basis of these symptoms is poorly understood considering the large extent of affected glycoproteins. To better understand the cellular responses to protein underglycosylation in CDG, we have investigated the differences in gene expression between healthy control and CDG fibroblasts by transcriptome comparison. This analysis revealed a strong induction of several genes encoding components of the extracellular matrix, such as collagens, COMP, IGFBP5 and biglycan. The extent of this response was confirmed at the protein level by showing increased production of collagen type-I for example. This fibrotic response of CDG fibroblasts was not paralleled by a differentiation to myofibroblasts and by increased TGF-β signalling. We could show that the addition of recombinant IGFBP5, one of the induced proteins in CDG, to healthy control fibroblasts increased the production of collagen type-I to levels similar to those found in CDG fibroblasts. The fibrotic response identified in CDG fibroblasts may account for the elevated tissue fibrosis, which is often encountered in CDG patients.
Collapse
Affiliation(s)
- M Rita Lecca
- Institute of Physiology and Zürich Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | | | | | | |
Collapse
|
21
|
Arroyo J, Hutzler J, Bermejo C, Ragni E, García-Cantalejo J, Botías P, Piberger H, Schott A, Sanz AB, Strahl S. Functional and genomic analyses of blocked protein O-mannosylation in baker's yeast. Mol Microbiol 2011; 79:1529-46. [DOI: 10.1111/j.1365-2958.2011.07537.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Hossler P. Protein glycosylation control in mammalian cell culture: past precedents and contemporary prospects. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2011; 127:187-219. [PMID: 22015728 DOI: 10.1007/10_2011_113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein glycosylation is a post-translational modification of paramount importance for the function, immunogenicity, and efficacy of recombinant glycoprotein therapeutics. Within the repertoire of post-translational modifications, glycosylation stands out as having the most significant proven role towards affecting pharmacokinetics and protein physiochemical characteristics. In mammalian cell culture, the understanding and controllability of the glycosylation metabolic pathway has achieved numerous successes. However, there is still much that we do not know about the regulation of the pathway. One of the frequent conclusions regarding protein glycosylation control is that it needs to be studied on a case-by-case basis since there are often conflicting results with respect to a control variable and the resulting glycosylation. In attempts to obtain a more multivariate interpretation of these potentially controlling variables, gene expression analysis and systems biology have been used to study protein glycosylation in mammalian cell culture. Gene expression analysis has provided information on how glycosylation pathway genes both respond to culture environmental cues, and potentially facilitate changes in the final glycoform profile. Systems biology has allowed researchers to model the pathway as well-defined, inter-connected systems, allowing for the in silico testing of pathway parameters that would be difficult to test experimentally. Both approaches have facilitated a macroscopic and microscopic perspective on protein glycosylation control. These tools have and will continue to enhance our understanding and capability of producing optimal glycoform profiles on a consistent basis.
Collapse
Affiliation(s)
- Patrick Hossler
- Abbott Laboratories, Abbott Bioresearch Center, Worcester, MA, 01605, USA,
| |
Collapse
|
23
|
Groenendyk J, Sreenivasaiah PK, Kim DH, Agellon LB, Michalak M. Biology of endoplasmic reticulum stress in the heart. Circ Res 2010; 107:1185-97. [PMID: 21071716 DOI: 10.1161/circresaha.110.227033] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The endoplasmic reticulum (ER) is a multifunctional intracellular organelle supporting many processes required by virtually every mammalian cell, including cardiomyocytes. It performs diverse functions, including protein synthesis, translocation across the membrane, integration into the membrane, folding, posttranslational modification including N-linked glycosylation, and synthesis of phospholipids and steroids on the cytoplasmic side of the ER membrane, and regulation of Ca(2+) homeostasis. Perturbation of ER-associated functions results in ER stress via the activation of complex cytoplasmic and nuclear signaling pathways, collectively termed the unfolded protein response (UPR) (also known as misfolded protein response), leading to upregulation of expression of ER resident chaperones, inhibition of protein synthesis and activation of protein degradation. The UPR has been associated with numerous human pathologies, and it may play an important role in the pathophysiology of the heart. ER stress responses, ER Ca(2+) buffering, and protein and lipid turnover impact many cardiac functions, including energy metabolism, cardiogenesis, ischemic/reperfusion, cardiomyopathies, and heart failure. ER proteins and ER stress-associated pathways may play a role in the development of novel UPR-targeted therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Jody Groenendyk
- Department of Biochemistry, School of Molecular and Systems Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
24
|
Long-term temozolomide treatment induces marked amino metabolism modifications and an increase in TMZ sensitivity in Hs683 oligodendroglioma cells. Neoplasia 2010; 12:69-79. [PMID: 20072655 DOI: 10.1593/neo.91360] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/20/2009] [Accepted: 09/22/2009] [Indexed: 12/17/2022] Open
Abstract
Gliomas account for more than 50% of all primary brain tumors. The worst prognosis is associated with gliomas of astrocytic origin, whereas gliomas with an oligodendroglial origin offer higher sensitivity to chemotherapy, especially when oligodendroglioma cells display 1p19q deletions. Temozolomide (TMZ) provides therapeutic benefits and is commonly used with radiotherapy in highly malignant astrocytic tumors, including glioblastomas. The actual benefits of TMZ during long-term treatment in oligodendroglioma patients have not yet been clearly defined. In this study, we have investigated the effects of such a long-term TMZ treatment in the unique Hs683 oligodendroglioma model. We have observed increased TMZ sensitivity of Hs683 orthotopic tumors that were previously treated in vitro with months of progressive exposure to increasing TMZ concentrations before being xenografted into the brains of immunocompromised mice. Whole-genome and proteomic analyses have revealed that this increased TMZ sensitivity of Hs683 oligodendroglioma cells previously treated for long periods with TMZ can be explained, at least partly, by a TMZ-induced p38-dependant dormancy state, which in turn resulted in changes in amino acid metabolism balance, in growth delay, and in a decrease in Hs683 oligodendroglioma cell-invasive properties. Thus, long-term TMZ treatment seems beneficial in this Hs683 oligodendroglioma model, which revealed itself unable to develop resistance against TMZ.
Collapse
|
25
|
Fujikawa T, Munakata T, Kondo SI, Satoh N, Wada S. Stress response in the ascidian Ciona intestinalis: transcriptional profiling of genes for the heat shock protein 70 chaperone system under heat stress and endoplasmic reticulum stress. Cell Stress Chaperones 2010; 15:193-204. [PMID: 19629754 PMCID: PMC2866982 DOI: 10.1007/s12192-009-0133-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 10/20/2022] Open
Abstract
The genome of Ciona intestinalis contains eight genes for HSP70 superfamily proteins, 36 genes for J-proteins, a gene for a J-like protein, and three genes for BAG family proteins. To understand the stress responses of genes in the HSP70 chaperone system comprehensively, the transcriptional profiles of these 48 genes under heat stress and endoplasmic reticulum (ER) stress were studied using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. Heat stress treatment increased the messenger RNA (mRNA) levels of six HSP70 superfamily genes, eight J-protein family genes, and two BAG family genes. In the cytoplasmic group of the DnaK subfamily of the HSP70 family, Ci-HSPA1/6/7-like was the only heat-inducible gene and Ci-HSPA2/8 was the only constitutively active gene which showed striking simplicity in comparison with other animals that have been examined genome-wide so far. Analyses of the time course and temperature dependency of the heat stress responses showed that the induction of Ci-HSPA1/6/7-like expression rises to a peak after heat stress treatment at 28 degrees C (10 degrees C upshift from control temperature) for 1 h. ER stress treatment with Brefeldin A, a drug that is known to act as ER stress inducer, increased the mRNA levels of four HSP70 superfamily genes and four J-protein family genes. Most stress-inducible genes are conserved between Ciona and vertebrates, as expected from a close evolutionary relationship between them. The present study characterized the stress responses of HSP70 chaperone system genes in Ciona for the first time and provides essential data for comprehensive understanding of the functions of the HSP70 chaperone system.
Collapse
Affiliation(s)
- Tetsuya Fujikawa
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 Japan
| | - Takeo Munakata
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 Japan
| | - Shin-ichi Kondo
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 Japan
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Promotion Corporation, Uruma, Okinawa 904-2234 Japan
| | - Shuichi Wada
- Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829 Japan
| |
Collapse
|
26
|
Guan D, Wang H, Li VE, Xu Y, Yang M, Shen Z. N-glycosylation of ATF6beta is essential for its proteolytic cleavage and transcriptional repressor function to ATF6alpha. J Cell Biochem 2010; 108:825-31. [PMID: 19693772 DOI: 10.1002/jcb.22310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activating transcription factor 6 (ATF6), a member of the ATF/CREB family of transcription factors, has two isoforms of 90-kDa (p90ATF6alpha) and 110-kDa (p110 ATF6beta) as endoplasmic reticulum (ER) transmembrane glycoprotein. ATF6beta contains five evolutionarily conserved N-linked glycosylation sites and is a key transcriptional repressor of ATF6alpha, which contribute to regulating the strength and duration of ATF6-dependent ER stress response (ERSR) gene induction. Although it is well established that p110ATF6beta can be cleaved and generate a nuclear form of 60-kDa (p60ATF6beta) that inhibits ATF6alpha-mediated ERSR genes activation, the functional significance of p110 ATF6beta N-linked glycosylation is unknown. Herein, we found that the fully unglycosylated ATF6beta cannot be proteolytic cleaved, be detectable in nucleus after dithiothreitol treatment, and repress the transcriptional activity of ATF6alpha. These results provide the first evidence that unglycosylated ATF6beta may directly facilitate the expression of ERSR genes by losing its repressor function to ATF6alpha.
Collapse
Affiliation(s)
- Dongyin Guan
- Department of Biochemistry, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai 200032, People's Republic of China
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Genetic information flows from DNA to macromolecular structures-the dominant force in the molecular organization of life. However, recent work suggests that metabolite availability to the hexosamine and Golgi N-glycosylation pathways exerts control over the assembly of macromolecular complexes on the cell surface and, in this capacity, acts upstream of signaling and gene expression. The structure and number of N-glycans per protein molecule cooperate to regulate lectin binding and thereby the distribution of glycoproteins at the cell surface. Congenital disorders of glycosylation provide insight as extreme hypomorphisms, whereas milder deficiencies may encompass many common chronic conditions, including autoimmunity, metabolic syndrome, and aging.
Collapse
Affiliation(s)
- James W Dennis
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | | | | |
Collapse
|
28
|
Dang Do AN, Kimball SR, Cavener DR, Jefferson LS. eIF2alpha kinases GCN2 and PERK modulate transcription and translation of distinct sets of mRNAs in mouse liver. Physiol Genomics 2009; 38:328-41. [PMID: 19509078 DOI: 10.1152/physiolgenomics.90396.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In eukaryotes, selective derepression of mRNA translation through altered utilization of upstream open reading frames (uORF) or internal ribosomal entry sites (IRES) regulatory motifs following exposure to stress is regulated at the initiation stage through the increased phosphorylation of eukaryotic initiation factor 2 on its alpha-subunit (eIF2alpha). While there is only one known eIF2alpha kinase in yeast, general control nonderepressible 2 (GCN2), mammals have evolved to express at least four: GCN2, heme-regulated inhibitor kinase (HRI), double-stranded RNA-activated protein kinase (PKR), and PKR-like endoplasmic reticulum-resident kinase (PERK). So far, the main known distinction among these four kinases is their activation in response to different acute stressors. In the present study, we used the in situ perfused mouse liver model and hybridization array analyses to assess the general translational response to stress regulated by two of these kinases, GCN2 and PERK, and to differentiate between the downstream effects of activating GCN2 versus PERK. The resulting data showed that at least 2.5% of mouse liver mRNAs are subject to derepressed translation following stress. In addition, the data demonstrated that eIF2alpha kinases GCN2 and PERK differentially regulate mRNA transcription and translation, which in the latter case suggests that increased eIF2alpha phosphorylation is not sufficient for derepression of translation. These findings open an avenue for more focused future research toward groups of mRNAs that code for the early cellular stress response proteins.
Collapse
Affiliation(s)
- An N Dang Do
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, USA
| | | | | | | |
Collapse
|
29
|
Bruno RD, Gover TD, Burger AM, Brodie AM, Njar VCO. 17alpha-Hydroxylase/17,20 lyase inhibitor VN/124-1 inhibits growth of androgen-independent prostate cancer cells via induction of the endoplasmic reticulum stress response. Mol Cancer Ther 2008; 7:2828-36. [PMID: 18790763 DOI: 10.1158/1535-7163.mct-08-0336] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibitors of the enzyme 17alpha-hydroxylase/17,20 lyase are a new class of anti-prostate cancer agents currently undergoing preclinical and clinical development. We have previously reported the superior anticancer activity of our novel 17alpha-hydroxylase/17,20 lyase inhibitor, VN/124-1, against androgen-dependent cancer models. Here, we examined the effect of VN/124-1 on the growth of the androgen-independent cell lines PC-3 and DU-145 and found that the compound inhibits their growth in a dose-dependent manner in vitro (GI50, 7.82 micromol/L and 7.55 micromol/L, respectively). We explored the mechanism of action of VN/124-1 in PC-3 cells through microarray analysis and found that VN/124-1 up-regulated genes involved in stress response and protein metabolism, as well as down-regulated genes involved in cell cycle progression. Follow-up real-time PCR and Western blot analyses revealed that VN/124-1 induces the endoplasmic reticulum stress response resulting in down-regulation of cyclin D1 protein expression and cyclin E2 mRNA. Cell cycle analysis confirmed G1-G0 phase arrest. Measurements of intracellular calcium levels ([Ca2+]i) showed that 20 micromol/L VN/124-1 caused a release of Ca2+ from endoplasmic reticulum stores resulting in a sustained increase in [Ca2+]i. Finally, cotreatment of PC-3 cells with 5, 10, and 20 micromol/L VN/124-1 with 10 nmol/L thapsigargin revealed a synergistic relationship between the compounds in inhibiting PC-3 cell growth. Taken together, these findings show VN/124-1 is endowed with multiple anticancer properties that may contribute to its utility as a prostate cancer therapeutic.
Collapse
Affiliation(s)
- Robert D Bruno
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA
| | | | | | | | | |
Collapse
|
30
|
Lehrman MA. Stimulation of N-Linked Glycosylation and Lipid-Linked Oligosaccharide Synthesis by Stress Responses in Metazoan Cells. Crit Rev Biochem Mol Biol 2008; 41:51-75. [PMID: 16595294 DOI: 10.1080/10409230500542575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Endoplasmic reticulum (ER) stress responses comprising the unfolded protein response (UPR) are activated by conditions that disrupt folding and assembly of proteins inside the ER lumenal compartment. Conditions known to be proximal triggers of the UPR include saturation of chaperones with misfolded protein, redox imbalance, disruption of Ca2+ levels, interference with N-linked glycosylation, and failure to dispose of terminally misfolded proteins. Potentially, ER stress responses can reprogram cells to correct all of these problems and thereby restore ER function to normal. This article will review literature on stimulation of N-linked glycosylation by ER stress responses, focusing on metazoan systems. The mechanisms involved will be contrasted with those mediating stimulation of N-linked glycosylation by cytoplasmic stress responses. This information will interest readers who study the biological roles of stress responses, the functions of N-linked glycans, and potential strategies for treatment of genetic disorders of N-linked glycosylation.
Collapse
Affiliation(s)
- Mark A Lehrman
- Department of Pharmacology, UT-Southwestern Medical Center, Dallas, TX 75390-9041, USA.
| |
Collapse
|
31
|
Cattaneo M, Otsu M, Fagioli C, Martino S, Lotti LV, Sitia R, Biunno I. SEL1L and HRD1 are involved in the degradation of unassembled secretory Ig-µ chains. J Cell Physiol 2008; 215:794-802. [DOI: 10.1002/jcp.21364] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
32
|
Abstract
Over the last decade, it has become clear that the accumulation of misfolded proteins contributes to a number of neurodegenerative, immune, and endocrine pathologies, as well as other age-related illnesses. Recent interest has focused on the possibility that the accumulation of misfolded proteins can also contribute to vascular and cardiac diseases. In large part, the misfolding of proteins takes place during synthesis on free ribosomes in the cytoplasm or on endoplasmic reticulum ribosomes. In fact, even under optimal conditions, approximately 30% of all newly synthesized proteins are rapidly degraded, most likely because of improper folding. Accordingly, stresses that perturb the folding of proteins during or soon after synthesis can lead to the accumulation of misfolded proteins and to potential cellular dysfunction and pathological consequences. To avert such outcomes, cells have developed elaborate protein quality-control systems for detecting misfolded proteins and making appropriate adjustments to the machinery responsible for protein synthesis and/or degradation. Important contributors to protein quality control include cytosolic and organelle-targeted molecular chaperones, which help fold and stabilize proteins from unfolding, and the ubiquitin proteasome system, which degrades terminally misfolded proteins. Both of these systems play important roles in cardiovascular biology. The focus of this review is the endoplasmic reticulum stress response, a protein quality-control and signal-transduction system that has not been well studied in the context of cardiovascular biology but that could be important for vascular and cardiac health and disease.
Collapse
Affiliation(s)
- Christopher C Glembotski
- SDSU Heart Institute and the Department of Biology, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, USA.
| |
Collapse
|
33
|
Cantero PD, Lengsfeld C, Prill SKH, Subanović M, Román E, Pla J, Ernst JF. Transcriptional and physiological adaptation to defective protein-O-mannosylation in Candida albicans. Mol Microbiol 2007; 64:1115-28. [PMID: 17501932 DOI: 10.1111/j.1365-2958.2007.05723.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Five Pmt isoforms O-mannosylate secretory proteins in Candida albicans. Comparisons of genome-wide transcript patterns of each pmt mutant revealed commonly downregulated genes involved in glycolysis and glycerol production. Increased phosphorylation of the Cek1p- but not the Mkc1p-MAP kinase, as well as increased transcript levels for some stress-related genes were detected in the pmt1 strain but not in the other pmt mutants. The transcriptomal pattern after short-term inhibition of Pmt1p activity confirmed stress responses, but did not indicate an alteration of glycolytic flow. Short- but not long-term adaptation to Pmt1p inhibition required signalling components Cek1p, Mkc1p, Efg1p and Tpk1p. Cna1p (calcineurin) but not its downstream effectors Crz1p and Crz2p was generally essential to allow growth during Pmt1p inhibition; accordingly, cyclosporin A strongly inhibited growth of the pmt1 mutant. The lack of Pmt isoforms influenced transcript levels for the remaining isoforms both positively and negatively, suggesting complex cross-regulation among PMT genes. These results confirm individual functions of Pmt isoforms but suggest a common biphasic adaptation response to Pmt deficiency. While known signalling pathways modulate adaptation for a short-term, long-term adaptation requires calcineurin, adjustments of remaining Pmt activities and of glycolytic flow.
Collapse
Affiliation(s)
- Pilar D Cantero
- Institut für Mikrobiologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Congenital disorders of glycosylation (CDG) are a large family of genetic diseases resulting from defects in the synthesis of glycans and in the attachment of glycans to other compounds. These disorders cause a wide range of human diseases, with examples emanating from all medical subspecialties. Since our 2001 review on CDG ( 36 ), this field has seen substantial growth: The number of N-glycosylation defects has doubled (from 6 to 12), five new O-glycosylation defects have been added to the two previously known ones, three combined N- and O-glycosylation defects have been identified, the first lipid glycosylation defects have been discovered, and a new domain, that of the hyperglycosylation defects, has been introduced. A number of CDG are due to defects in enzymes with a putative glycosyltransferase function. There is also a growing group of patients with unidentified defects (CDG-x), some with typical clinical presentations and others with presentations not seen before in CDG. This review focuses on the clinical, biochemical, and genetic characteristics of CDG and on advances expected in their future study and clinical management.
Collapse
Affiliation(s)
- Jaak Jaeken
- Department of Pediatrics, Center for Metabolic Disease, University of Leuven, Leuven, Belgium.
| | | |
Collapse
|
35
|
Cullen PJ, Xu-Friedman R, Delrow J, Sprague GF. Genome-wide analysis of the response to protein glycosylation deficiency in yeast. FEMS Yeast Res 2007; 6:1264-73. [PMID: 17156023 PMCID: PMC4447327 DOI: 10.1111/j.1567-1364.2006.00120.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Protein modification by glycosylation occurs through an essential biochemical pathway that produces mannosyl side chain substrates, which are covalently attached to proteins in the endoplasmic reticulum. We used DNA microarray analysis to characterize the cellular response to a conditional defect (pmi40-101) in the protein glycosylation pathway. Expression profiles were obtained from DNA microarrays containing essentially every gene from Saccharomyces cerevisiae. We validated the microarray analysis by examining the expression patterns of induced genes using transcriptional lacZ fusions. The major class of genes differentially expressed in the glycosylation mutant overlapped significantly with that of a starvation response and included those required for gluconeogenesis, the tricarboxylic acid and glyoxylate cycles, and protein and amino acid biosynthesis. Two mitogen-activated protein (MAP) kinase pathways were also activated in the mutant, the filamentous growth and protein kinase C pathways. Taken together, our results suggest that a checkpoint is activated in response to a protein glycosylation defect, allowing the cell to mount an adaptive response by the activation of multiple MAP kinase pathways.
Collapse
Affiliation(s)
- Paul J Cullen
- Department of Biological Sciences, State University at Buffalo, Buffalo, NY 14260-1300, USA.
| | | | | | | |
Collapse
|
36
|
Biunno I, Cattaneo M, Orlandi R, Canton C, Biagiotti L, Ferrero S, Barberis M, Pupa SM, Scarpa A, Ménard S. SEL1L a multifaceted protein playing a role in tumor progression. J Cell Physiol 2006; 208:23-38. [PMID: 16331677 DOI: 10.1002/jcp.20574] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Since the cloning in 1997 of SEL1L, the human ortholog of the sel-1 gene of C. elegans, most studies have focused on its role in cancer progression and have provided significant evidences to link its increased expression to a decrease in tumor aggressiveness. SEL1L resides on a "Genome Desert area" on chromosome 14q24.3-31 and is highly conserved in evolution. The function of the SEL1L encoded protein is still very elusive although, several evidences from lower organisms indicate that it plays a major role in protein degradation using the ubiquitin-proteosome system. SEL1L has a very complex structure made up of modules: genomically it consists of 21 exons featuring several alternative transcripts encoding for putative protein isoforms. This structural complexity ensures protein flexibility and specificity, indeed the protein was found in different sub-cellular compartments and may turn on a particular transcript in response to specific stimuli. The overall architecture of SEL1L guarantees an exquisite regulation in the expression of the gene.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Chromosome Deletion
- Chromosomes, Human, Pair 14
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Disease Progression
- Exons/genetics
- Fetus/chemistry
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- Humans
- Molecular Sequence Data
- Neoplasm Metastasis
- Neoplasms/genetics
- Neoplasms/pathology
- Neoplasms/physiopathology
- Polymorphism, Genetic/genetics
- Protein Isoforms/analysis
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/physiology
- Proteins/analysis
- Proteins/chemistry
- Proteins/genetics
- Proteins/physiology
- Receptors, Notch/genetics
- Receptors, Notch/physiology
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/physiology
Collapse
Affiliation(s)
- Ida Biunno
- Istituto di Tecnologie Biomediche, CNR, Segrate-Milano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mittl PRE, Schneider-Brachert W. Sel1-like repeat proteins in signal transduction. Cell Signal 2006; 19:20-31. [PMID: 16870393 DOI: 10.1016/j.cellsig.2006.05.034] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Accepted: 05/23/2006] [Indexed: 02/06/2023]
Abstract
Solenoid proteins, which are distinguished from general globular proteins by their modular architectures, are frequently involved in signal transduction pathways. Proteins from the tetratricopeptide repeat (TPR) and Sel1-like repeat (SLR) families share similar alpha-helical conformations but different consensus sequence lengths and superhelical topologies. Both families are characterized by low sequence similarity levels, rendering the identification of functional homologous difficult. Therefore current knowledge of the molecular and cellular functions of the SLR proteins Sel1, Hrd3, Chs4, Nif1, PodJ, ExoR, AlgK, HcpA, Hsp12, EnhC, LpnE, MotX, and MerG has been reviewed. Although SLR proteins possess different cellular functions they all seem to serve as adaptor proteins for the assembly of macromolecular complexes. Sel1, Hrd3, Hsp12 and LpnE are activated under cellular stress. The eukaryotic Sel1 and Hrd3 proteins are involved in the ER-associated protein degradation, whereas the bacterial LpnE, EnhC, HcpA, ExoR, and AlgK proteins mediate the interactions between bacterial and eukaryotic host cells. LpnE and EnhC are responsible for the entry of L. pneumophila into epithelial cells and macrophages. ExoR from the symbiotic microorganism S. melioti and AlgK from the pathogen P. aeruginosa regulate exopolysaccaride synthesis. Nif1 and Chs4 from yeast are responsible for the regulation of mitosis and septum formation during cell division, respectively, and PodJ guides the cellular differentiation during the cell cycle of the bacterium C. crescentus. Taken together the SLR motif establishes a link between signal transduction pathways from eukaryotes and bacteria. The SLR motif is so far absent from archaea. Therefore the SLR could have developed in the last common ancestor between eukaryotes and bacteria.
Collapse
Affiliation(s)
- Peer R E Mittl
- Biochemisches Institut, Universität Zürich, Winterthurer Strasse 190, 8057 Zürich, Switzerland.
| | | |
Collapse
|