1
|
Naoi M, Maruyama W, Shamoto-Nagai M. Neuroprotective Function of Rasagiline and Selegiline, Inhibitors of Type B Monoamine Oxidase, and Role of Monoamine Oxidases in Synucleinopathies. Int J Mol Sci 2022; 23:ijms231911059. [PMID: 36232361 PMCID: PMC9570229 DOI: 10.3390/ijms231911059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and “disease-modifying or neuroprotective” therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Collapse
Affiliation(s)
- Makoto Naoi
- Correspondence: ; Tel.: +81-05-6173-1111 (ext. 3494); Fax: +81-561-731-142
| | | | | |
Collapse
|
2
|
Bachurin SS, Kletskii ME, Burov ON, Bibov MY, Dobaeva NM, Berezovskiy DP. Oligonucleotides-transformers for molecular biology and nanoengineering. Gene X 2022; 820:146277. [PMID: 35149154 DOI: 10.1016/j.gene.2022.146277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/14/2022] [Accepted: 02/03/2022] [Indexed: 11/04/2022] Open
Abstract
In the present review, numerous experimental and theoretical data describing the properties of non-canonical DNA structures (NSs) are analyzed. NSs (G-quadruplex, i-motif, hairpin, and triplex) play an important role in epigenetic processes (including the genetic variability of viruses), are prone to energetically low-cost conformational transformations and can very effectively be used in the design of nanoscale devices. Numerous experimental data have been analyzed in connection with the so-called oligonucleotides-transformers (nucleotide sequences that able to fold not only into one, but also into several NSs). These sequences were recently predicted by our calculations using automata and graph theories ("Dafna" algorithm). Possible applications of the oligonucleotides-transformers in nanoengineering and genetic editing of organisms are considered.
Collapse
Affiliation(s)
- Stanislav S Bachurin
- Rostov State Medical University, 29 Nakhichevanskiy Lane, Rostov-on-Don 344022, Russian Federation.
| | - Mikhail E Kletskii
- Chemical Department of Southern Federal University, 7 Zorge Str, Rostov-on-Don 344090, Russian Federation
| | - Oleg N Burov
- Chemical Department of Southern Federal University, 7 Zorge Str, Rostov-on-Don 344090, Russian Federation
| | - Mikhail Yu Bibov
- Rostov State Medical University, 29 Nakhichevanskiy Lane, Rostov-on-Don 344022, Russian Federation
| | - Natalya M Dobaeva
- Rostov State Medical University, 29 Nakhichevanskiy Lane, Rostov-on-Don 344022, Russian Federation
| | - Dmitriy P Berezovskiy
- I.M. Sechenov First Moscow State Medical University (Sechenov University), build. 4, 2 Bolshaya Pirogovskaya Str, Moscow 119435, Russian Federation
| |
Collapse
|
3
|
Munakata H, Ishikawa R, Saitoh T, Kambe T, Chiba T, Taguchi K, Abe K. Preventative effects of 1-methyl-1,2,3,4-tetrahydroisoquinoline derivatives (N-functional group loading) on MPTP-induced parkinsonism in mice. Can J Physiol Pharmacol 2022; 100:594-611. [PMID: 35413210 DOI: 10.1139/cjpp-2021-0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
1,2,3,4-Tetrahydroisoquinoline (TIQ) is endogenously present in human brain, and some of its derivatives are thought to contribute to the induction of Parkinson's disease (PD)-like signs in rodents and primates. In contrast, the endogenous TIQ derivative 1-methyl-TIQ (1-MeTIQ) is reported to be neuroprotective. In the present study, we compared the effects of artificially modified 1-MeTIQ derivatives (loading an N-propyl, N-propenyl, N-propargyl, or N-butynyl group) on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD-like signs in mice. In a behavioral study, MPTP-induced bradykinesia was significantly decreased by all compounds. However, only 1-Me-N-propargyl-TIQ showed an inhibitory effect by blocking the MPTP-induced reduction in striatal dopamine content and the number of nigral tyrosine hydroxylase-positive cells. Western blot analysis showed that 1-Me-N-propargyl-TIQ and 1-Me-N-butynyl-TIQ potently prevented the MPTP-induced decrease in dopamine transporter expression, whereas 1-MeTIQ and 1-Me-N-propyl-TIQ did not. These results suggest that although loading an N-propargyl group on 1-MeTIQ clearly enhanced neuroprotective effects, other N-functional groups showed distinct pharmacological properties characteristic of their functional groups. Thus, the number of bonds and length of the N-functional group may contribute to the observed differences in effect.
Collapse
Affiliation(s)
- Hiroko Munakata
- Ohu University, 13233, Department of Pharmacology, Koriyama, Fukushima, Japan;
| | - Risa Ishikawa
- Ohu University, 13233, Department of Pharmacology, Koriyama, Fukushima, Japan;
| | - Toshiaki Saitoh
- Nihon Pharmaceutical University, 47734, Fukiage-gun, Saitama, Japan;
| | - Toshie Kambe
- Showa Pharmaceutical University, 26391, Machida, Tokyo, Japan;
| | - Terumasa Chiba
- Nihon Pharmaceutical University, 47734, Kitaadachi-gun, Saitama, Japan;
| | - Kyoji Taguchi
- Showa Pharmaceutical University, 26391, Department of Medicinal Pharmacology, Machida, Tokyo, Japan;
| | - Kenji Abe
- Ohu University, 13233, Department of Pharmacology, Koriyama, Fukushima, Japan.,Nihon Pharmaceutical University, 47734, Kitaadachi-gun, Saitama, Japan;
| |
Collapse
|
4
|
Youdim MBH. Site-activated multi target iron chelators with acetylcholinesterase (AChE) and monoamine oxidase (MAO) inhibitory activities for Alzheimer's disease therapy. J Neural Transm (Vienna) 2022; 129:715-721. [PMID: 35190910 DOI: 10.1007/s00702-022-02462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022]
Abstract
The first class of site-activated chelators with dual inhibition of acetyl-cholinesterase (AChE) and monoamine oxidase (MAO), rationally designed for simultaneously targeting the multiple pathogenic processes in Alzheimer's disease (AD) without significantly disrupting healthy metal metabolism in the body are discussed. It is demonstrated that the novel prochelator 2 was a selective and potent MAO-A inhibitor in vitro (IC50: 0.0077 ± 0.0007 μM) with moderate inhibition of MAO-B (IC50: 7.90 ± 1.34 μM). In vitro prochelator 2 also selectively inhibited AChE in a time-dependent manner and reach maximum inhibition of AChE after 2 h preincubation (IC50: 0.52 ± 0.07 μM for AChE, versus 44.90 ± 6.10 μM for BuChE). Prochelator 2 showed little affinity for metal (Fe, Cu, and Zn) ions until it bound to and was activated by AChE that is located predominately in the brain, releasing an active iron chelator M30. M30 is an efficient chelator for metal (Fe, Cu, and Zn) ions with the capabilities to suppress oxidative stress, to selectively inhibit MAO-A and B in the brain, and to regulate cerebral biometals dyshomeostasis in vivo; M30 is also a neuroprotective-neurorestorative chelator with a broad spectrum of activities against β-amyloid (Aβ) generation, amyloid plaques and neurofibrillary tangles (NFT) formation, and Aβ aggregation induced by metal (Cu and Zn) ions. Both M30 and prochelator 2 were not toxic to Human SH-SY5Y neuroblastoma cells at low concentrations, but prochelator 2 shows limited cytotoxicity, at high concentrations. Together, these data suggest that prochelator 2 is a promise lead for simultaneously modulating multiple targets in AD.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Youdim Pharmaceutical, New Northern Industrial Park, 1 Ha- Tsmika St. Stern Building, Fl-3, P.O. Box 72, 2069207, Yokneam, Israel.
| |
Collapse
|
5
|
Lin B, Youdim MBH. The protective, rescue and therapeutic potential of multi-target iron-chelators for retinitis pigmentosa. Free Radic Biol Med 2021; 174:1-11. [PMID: 34324978 DOI: 10.1016/j.freeradbiomed.2021.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited diseases in which mutations result in the initial loss of night vision, followed by complete blindness. There is currently no effective therapeutic option for RP patients. Given the extremely heterogeneous nature of RP, any causative gene-specific therapy would be practical in a small fraction of patients with RP. Non-gene-specific therapeutics that is applicable to the majority of RP patients regardless of causative mutations may have an enormous impact on RP treatment. Several theories including apoptosis, oxidative stress and neuroinflammation have been proposed as possible underlying mechanisms for photoreceptor death in RP. We have designed and synthesized a series of iron-chelating compounds that possess diverse pharmacological properties and can act in a non-gene-specific manner on multiple pathological features ascribed to Alzheimer's disease, Parkinson's disease and RP. In this review, we discuss the multiple effects of several brain-permeable multi target iron-chelating compounds on photoreceptor degeneration in a mouse model of human RP. Specifically, we focus on the anti-apototic, neuroprotective and neurorescue effects of the compound VK28, M30 and VAR10303 on the histologic and functional preservation of photoreceptors in a mouse model of RP. We consider such drugs as potential therapeutic agents for RP patients.
Collapse
Affiliation(s)
- Bin Lin
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| | - Moussa B H Youdim
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
6
|
Rehman IU, Ahmad R, Khan I, Lee HJ, Park J, Ullah R, Choi MJ, Kang HY, Kim MO. Nicotinamide Ameliorates Amyloid Beta-Induced Oxidative Stress-Mediated Neuroinflammation and Neurodegeneration in Adult Mouse Brain. Biomedicines 2021; 9:biomedicines9040408. [PMID: 33920212 PMCID: PMC8070416 DOI: 10.3390/biomedicines9040408] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) is the most predominant age-related neurodegenerative disease, pathologically characterized by the accumulation of aggregates of amyloid beta Aβ1–42 and tau hyperphosphorylation in the brain. It is considered to be the primary cause of cognitive dysfunction. The aggregation of Aβ1–42 leads to neuronal inflammation and apoptosis. Since vitamins are basic dietary nutrients that organisms need for their growth, survival, and other metabolic functions, in this study, the underlying neuroprotective mechanism of nicotinamide (NAM) Vitamin B3 against Aβ1–42 -induced neurotoxicity was investigated in mouse brains. Intracerebroventricular (i.c.v.) Aβ1–42 injection elicited neuronal dysfunctions that led to memory impairment and neurodegeneration in mouse brains. After 24 h after Aβ1–42 injection, the mice were treated with NAM (250 mg/kg intraperitoneally) for 1 week. For biochemical and Western blot studies, the mice were directly sacrificed, while for confocal and “immunohistochemical staining”, mice were perfused transcardially with 4% paraformaldehyde. Our biochemical, immunofluorescence, and immunohistochemical results showed that NAM can ameliorate neuronal inflammation and apoptosis by reducing oxidative stress through lowering malondialdehyde and 2,7-dichlorofluorescein levels in an Aβ1–42-injected mouse brains, where the regulation of p-JNK further regulated inflammatory marker proteins (TNF-α, IL-1β, transcription factor NF-kB) and apoptotic marker proteins (Bax, caspase 3, PARP1). Furthermore, NAM + Aβ treatment for 1 week increased the amount of survival neurons and reduced neuronal cell death in Nissl staining. We also analyzed memory dysfunction via behavioral studies and the analysis showed that NAM could prevent Aβ1–42 -induced memory deficits. Collectively, the results of this study suggest that NAM may be a potential preventive and therapeutic candidate for Aβ1–42 -induced reactive oxygen species (ROS)-mediated neuroinflammation, neurodegeneration, and neurotoxicity in an adult mouse model.
Collapse
Affiliation(s)
- Inayat Ur Rehman
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Riaz Ahmad
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Ibrahim Khan
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Hyeon Jin Lee
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Jungsung Park
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Rahat Ullah
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
| | - Myeong Jun Choi
- Research and Development Center, Axceso Bio-pharma co, Anyang 14056, Korea;
| | - Hee Young Kang
- Department of Neurology, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52828, Korea;
| | - Myeong Ok Kim
- Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Korea; (I.U.R.); (R.A.); (I.K.); (H.J.L.); (J.P.); (R.U.)
- Correspondence: ; Tel.: +82-55-772-1345; Fax: +82-55-772-2656
| |
Collapse
|
7
|
Cuesta CM, Ibañez F, Lopez-Hidalgo R, Ureña J, Duro-Castano A, Armiñán A, Vicent MJ, Pascual M, Guerri C. A targeted polypeptide-based nanoconjugate as a nanotherapeutic for alcohol-induced neuroinflammation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102376. [PMID: 33667725 DOI: 10.1016/j.nano.2021.102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Alcohol abuse induces the expression of inflammatory mediators by activating the immune receptors to trigger neuroinflammation and brain damage; however, therapies that reduce neuroimmune system activation may protect against alcohol's damaging effects. Curcuminoids possess anti-inflammatory properties but suffer from low bioavailability; therefore, we designed a new receptor-targeted biodegradable star-shaped crosslinked polypeptide polymer that bears propargylamine moieties and bisdemethoxycurcumin (StClPr-BDMC-ANG) as an enhanced anti-inflammatory therapeutic that penetrates the blood-brain-barrier and ameliorates alcohol-induced neuroinflammation. StClPr-BDMC-ANG administration maintains the viability of primary glia and inhibits the ethanol-induced upregulation of crucial inflammatory mediators in the prefrontal and medial cortex in a mouse model of chronic ethanol consumption. StClPr-BDMC-ANG treatment also suppresses the ethanol-mediated downregulation of microRNAs known to negatively modulate neuroinflammation in the brain cortex (miRs 146a-5p and let-7b-5p). In summary, our results demonstrate the attenuation of alcohol-induced neuroinflammation by an optimized and targeted polypeptide-based nanoconjugate of a curcuminoid.
Collapse
Affiliation(s)
- Carlos Manuel Cuesta
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Valencia, Spain
| | - Francisco Ibañez
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Valencia, Spain
| | - Rosa Lopez-Hidalgo
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Valencia, Spain
| | - Juan Ureña
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Valencia, Spain
| | - Aroa Duro-Castano
- Polymer Therapeutics Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Maria Jesus Vicent
- Polymer Therapeutics Laboratory, Prince Felipe Research Center, Valencia, Spain
| | - Maria Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Center, Valencia, Spain.
| |
Collapse
|
8
|
Duro-Castano A, Borrás C, Herranz-Pérez V, Blanco-Gandía MC, Conejos-Sánchez I, Armiñán A, Mas-Bargues C, Inglés M, Miñarro J, Rodríguez-Arias M, García-Verdugo JM, Viña J, Vicent MJ. Targeting Alzheimer's disease with multimodal polypeptide-based nanoconjugates. SCIENCE ADVANCES 2021; 7:7/13/eabf9180. [PMID: 33771874 PMCID: PMC7997513 DOI: 10.1126/sciadv.abf9180] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, remains incurable mainly due to our failings in the search for effective pharmacological strategies. Here, we describe the development of targeted multimodal polypeptide-based nanoconjugates as potential AD treatments. Treatment with polypeptide nanoconjugates bearing propargylamine moieties and bisdemethoxycurcumin or genistein afforded neuroprotection and displayed neurotrophic effects, as evidenced by an increase in dendritic density of pyramidal neurons in organotypic hippocampal culture. The additional conjugation of the Angiopep-2 targeting moiety enhanced nanoconjugate passage through the blood-brain barrier and modulated brain distribution with nanoconjugate accumulation in neurogenic areas, including the olfactory bulb. Nanoconjugate treatment effectively reduced neurotoxic β amyloid aggregate levels and rescued impairments to olfactory memory and object recognition in APP/PS1 transgenic AD model mice. Overall, this study provides a description of a targeted multimodal polyglutamate-based nanoconjugate with neuroprotective and neurotrophic potential for AD treatment.
Collapse
Affiliation(s)
- A Duro-Castano
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - C Borrás
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - V Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, Univ. València, CIBERNED, 46980 Valencia, Spain
- Predepartamental Unit of Medicine, Faculty of Health Sciences, Univ. Jaume I, 12071 Castelló de la Plana, Spain
| | - M C Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Univ. Zaragoza, Teruel, Spain
| | - I Conejos-Sánchez
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - A Armiñán
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - C Mas-Bargues
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - M Inglés
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - J Miñarro
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - M Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Univ. Valencia, Valencia, Spain
| | - J M García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, Univ. València, CIBERNED, 46980 Valencia, Spain
| | - J Viña
- Grupo de Investigación FRESHAGE, Departamento de Fisiología, Facultad de Medicina, Univ.. Valencia, CIBERFES-ISCIII, INCLIVA, Av. Blasco Ibáñez 15, 46010 Valencia, Spain
| | - M J Vicent
- Polymer Therapeutics Lab., Centro de Investigación Príncipe Felipe (CIPF), Av. Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
9
|
Müller T. Pharmacokinetics and pharmacodynamics of levodopa/carbidopa cotherapies for Parkinson’s disease. Expert Opin Drug Metab Toxicol 2020; 16:403-414. [DOI: 10.1080/17425255.2020.1750596] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weißensee, Berlin, Germany
| |
Collapse
|
10
|
Uddin MS, Kabir MT, Rahman MM, Mathew B, Shah MA, Ashraf GM. TV 3326 for Alzheimer's dementia: a novel multimodal ChE and MAO inhibitors to mitigate Alzheimer's-like neuropathology. ACTA ACUST UNITED AC 2020; 72:1001-1012. [PMID: 32149402 DOI: 10.1111/jphp.13244] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/30/2020] [Accepted: 02/09/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Alzheimer's disease (AD) is one of the most prevalent neurodegenerative disorders and a well-recognized cause of dementia with ageing. In this review, we have represented the ChE and MAO inhibitory potential of TV 3326 against AD based on current scientific evidence. KEY FINDINGS The aetiology of AD is quite complex and not completely understood. However, it has been observed that AD involves the deposition of abnormal amyloid beta (Aβ), along with hyperphosphorylation of tau, oxidative stress, low acetylcholine (ACh) level and biometal dyshomeostasis. Due to the complex nature of AD aetiology, active research is required in the areas of development of multitarget drugs with 2 or more complementary biological functions, as they might represent significant progress in the AD treatment. Interestingly, it has been found that TV 3326 (i.e. ladostigil) is regarded as a novel therapeutic agent since it has the potential to cause inhibition of monoamine oxidase (MAO) A and B, and acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) in the brain. Furthermore, it has the capacity to reverse memory impairments, which further suggests the ability of this drug to elevate cholinergic activity in the brain. SUMMARY TV 3326 can avert oxidative-nitrative stress and gliosis. It has also been confirmed that TV 3326 contains neuroprotective and anti-apoptotic properties. Therefore, this distinctive combined inhibition of ChE and MAO along with its neuroprotective property makes TV 3326 a useful drug in the treatment of AD.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh.,Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Md Motiar Rahman
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bijo Mathew
- Division of Drug Design and Medicinal Chemistry Research Lab, Department of Pharmaceutical Chemistry, Ahalia School of Pharmacy, Palakkad, India
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
11
|
Rasagiline and selegiline modulate mitochondrial homeostasis, intervene apoptosis system and mitigate α-synuclein cytotoxicity in disease-modifying therapy for Parkinson's disease. J Neural Transm (Vienna) 2020; 127:131-147. [PMID: 31993732 DOI: 10.1007/s00702-020-02150-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease has been considered as a motor neuron disease with dopamine (DA) deficit caused by neuronal loss in the substantia nigra, but now proposed as a multi-system disorder associated with α-synuclein accumulation in neuronal and non-neuronal systems. Neuroprotection in Parkinson's disease has intended to halt or reverse cell death of nigro-striatal DA neurons and prevent the disease progression, but clinical studies have not presented enough beneficial results, except the trial of rasagiline by delayed start design at low dose of 1 mg/day only. Now strategy of disease-modifying therapy should be reconsidered taking consideration of accumulation and toxicity of α-synuclein preceding the manifest of motor symptoms. Hitherto neuroprotective therapy has been aimed to mitigate non-specific risk factors; oxidative stress, mitochondrial dysfunction, apoptosis, deficits of neurotrophic factors (NTFs), inflammation and accumulation of pathogenic protein. Future disease-modify therapy should target more specified pathogenic factors, including deregulated mitochondrial homeostasis, deficit of NTFs and α-synuclein toxicity. Selegiline and rasagiline, inhibitors of type B monoamine oxidase, have been proved to exhibit potent neuroprotective function: regulation of mitochondrial apoptosis system, maintenance of mitochondrial function, increased expression of genes coding antioxidant enzymes, anti-apoptotic Bcl-2 and pro-survival NTFs, and suppression of oligomerization and aggregation of α-synuclein and the toxicity in cellular and animal experiments. However, the present available pharmacological therapy starts too late to reverse disease progression, and future disease-modifying therapy should include also non-pharmacological complementary therapy during the prodromal stage.
Collapse
|
12
|
Paul S, Hossain SS, Samanta A. Insights into the Folding Pathway of a c-MYC-Promoter-Based i-Motif DNA in Crowded Environments at the Single-Molecule Level. J Phys Chem B 2020; 124:763-770. [DOI: 10.1021/acs.jpcb.9b10633] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Sneha Paul
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Sk Saddam Hossain
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Anunay Samanta
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
13
|
Propargylamine-derived multi-target directed ligands for Alzheimer's disease therapy. Bioorg Med Chem Lett 2019; 30:126880. [PMID: 31864798 DOI: 10.1016/j.bmcl.2019.126880] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/22/2022]
Abstract
Current options for the treatment of Alzheimeŕs disease have been restricted to prescription of acetylcholinesterase inhibitors or N-methyl-d-aspartate receptor antagonist, memantine. Propargylamine-derived multi-target directed ligands, such as ladostigil, M30, ASS234 and contilisant, involve different pathways. Apart from acting as inhibitors of both cholinesterases and monoamine oxidases, they show improvement of cognitive impairment, antioxidant activities, enhancement of iron-chelating activities, protect against tau hyperphosphorylation, block metal-associated oxidative stress, regulate APP and Aβ expression processing by the non-amyloidogenic α-secretase pathway, suppress mitochondrial permeability transition pore opening, and coordinate protein kinase C signaling and Bcl-2 family proteins. Other hybrid propargylamine derivatives are also reported.
Collapse
|
14
|
Pages BJ, Gurung SP, McQuaid K, Hall JP, Cardin CJ, Brazier JA. Stabilization of Long-Looped i-Motif DNA by Polypyridyl Ruthenium Complexes. Front Chem 2019; 7:744. [PMID: 31750292 PMCID: PMC6848161 DOI: 10.3389/fchem.2019.00744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022] Open
Abstract
A spectroscopic study of the interactions of Λ- and Δ-[Ru(phen)2(dppz)]2+ with i-motif DNA containing thymine loops of various lengths. In the presence of i-motifs, the luminescence of the Λ enantiomer was enhanced much more than the Δ. Despite this, the effect of each enantiomer on i-motif thermal stability was comparable. The sequences most affected by [Ru(phen)2(dppz)]2+ were those with long thymine loops; this suggests that long-looped i-motifs are attractive targets for potential transition metal complex drugs and should be explored further in drug design.
Collapse
Affiliation(s)
- Benjamin J Pages
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Sarah P Gurung
- Department of Chemistry, University of Reading, Reading, United Kingdom.,Diamond Light Source, Didcot, United Kingdom
| | - Kane McQuaid
- Department of Chemistry, University of Reading, Reading, United Kingdom.,Diamond Light Source, Didcot, United Kingdom
| | - James P Hall
- School of Pharmacy, University of Reading, Reading, United Kingdom.,Diamond Light Source, Didcot, United Kingdom
| | | | - John A Brazier
- School of Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
15
|
Hu J, Qin L, Liu Z, Liu P, Wei H, Wang H, Zhao C, Ge Z. miR‐15a regulates oxygen glucose deprivation/reperfusion (OGD/R)‐induced neuronal injury by targeting BDNF. Kaohsiung J Med Sci 2019; 36:27-34. [PMID: 31631531 DOI: 10.1002/kjm2.12136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/15/2019] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jie‐Jie Hu
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Li‐Jun Qin
- Department of cardiologyLanzhou University Second Hospital Lanzhou China
| | - Zhi‐Yan Liu
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Pei Liu
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Hai‐Ping Wei
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Hao‐Yue Wang
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Chong‐Chong Zhao
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| | - Zhao‐Ming Ge
- Department of neurologyLanzhou University Second Hospital Lanzhou China
| |
Collapse
|
16
|
Abou Assi H, Garavís M, González C, Damha MJ. i-Motif DNA: structural features and significance to cell biology. Nucleic Acids Res 2019; 46:8038-8056. [PMID: 30124962 PMCID: PMC6144788 DOI: 10.1093/nar/gky735] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/13/2018] [Indexed: 12/20/2022] Open
Abstract
The i-motif represents a paradigmatic example of the wide structural versatility of nucleic acids. In remarkable contrast to duplex DNA, i-motifs are four-stranded DNA structures held together by hemi- protonated and intercalated cytosine base pairs (C:C+). First observed 25 years ago, and considered by many as a mere structural oddity, interest in and discussion on the biological role of i-motifs have grown dramatically in recent years. In this review we focus on structural aspects of i-motif formation, the factors leading to its stabilization and recent studies describing the possible role of i-motifs in fundamental biological processes.
Collapse
Affiliation(s)
- Hala Abou Assi
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| | - Miguel Garavís
- Instituto de Química Física 'Rocasolano', CSIC, C/Serrano 119, 28006 Madrid, Spain
| | - Carlos González
- Instituto de Química Física 'Rocasolano', CSIC, C/Serrano 119, 28006 Madrid, Spain
| | - Masad J Damha
- Department of Chemistry, McGill University, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
17
|
Müller T, Möhr JD. Pharmacokinetics of monoamine oxidase B inhibitors in Parkinson’s disease: current status. Expert Opin Drug Metab Toxicol 2019; 15:429-435. [DOI: 10.1080/17425255.2019.1607292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Thomas Müller
- Department of Neurology, St. Joseph Hospital Berlin-Weißensee, Berlin, Germany
| | - Jan-Dominique Möhr
- Department of Neurology, St. Joseph Hospital Berlin-Weißensee, Berlin, Germany
| |
Collapse
|
18
|
Zhao Y, Yang Q, Wang X, Ma W, Tian H, Liang X, Li X. AnnexinA7 down-regulation might suppress the proliferation and metastasis of human hepatocellular carcinoma cells via MAPK/ ERK pathway. Cancer Biomark 2019; 23:527-537. [PMID: 30347600 DOI: 10.3233/cbm-181651] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Hepatocellular carcinoma is one of the most fatal malignancies worldwide with high lethality. However, the exact mechanism of liver tumorigenesis is still unclear. AnnexinA7 (ANXA7) is a Ca2+-binding protein which is involved in membrane organization and dynamics and indicated a role of ANXA7 in cancer. However, the action of ANXA7 in hepatocellular carcinoma and the relative mechanism is still indistinct. OBJECTIVE To gain more insight into the biological function of ANXA7 and assess its possible influence on proliferation and metastasis capacity of human hepatocellular carcinoma cells with the relative mechanism. METHODS ANXA7 was down-regulated by RNA interference in both HepG2 and smmc-7721 cells. The decreased cell proliferation was detected by MTT method and colony formation assay. To confirm the result of cell proliferation, Ki-67 and cyclinD1 expression was examined by Western Blot. The increased apoptosis capacity of the cells was detected with cell cytometry and PI staining respectively. Bcl-2 and Bax expression was further investigated by Western blot and the decreased ration of Bcl-2/Bax might explain the increased apoptosis. RESULTS Cell metastasis showed significantly limited ability which was tested by wound healing assay and Transwell assay. Meanwhile, the key biomarkers of cell metastasis E-cadherin expression increased while MMP-9 decreased. Furthermore, we found that ANXA7 played its role via MAPK/ERK pathway. CONCLUSIONS ANXA7 might involve in the development of hepatocellular carcinoma and act as an oncogene which might be a potential therapeutic target for treatment.
Collapse
Affiliation(s)
- Yina Zhao
- Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China.,Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| | - Qiang Yang
- Central Hospital of Chengde City, Department of Surgery, Chengde 067000, Hebei, China.,Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| | - Xiaojie Wang
- Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| | - Wenyi Ma
- Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| | - Huanna Tian
- Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| | - Xiujun Liang
- Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| | - Xin Li
- Histology and Embryology Department, Chengde Medical University, Chengde 067000, Hebei, China
| |
Collapse
|
19
|
Berrichi A, Bachir R, Bedrane S, Choukchou-Braham N, Belkacemi K. Heterogeneous bimetallic Au–Co nanoparticles as new efficient catalysts for the three-component coupling reactions of amines, alkynes and CH2Cl2. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03803-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Youdim MBH. Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases. J Neural Transm (Vienna) 2018; 125:1719-1733. [PMID: 30341696 DOI: 10.1007/s00702-018-1942-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/11/2018] [Indexed: 12/11/2022]
Abstract
In early 1920s, tyramine oxidase was discovered that metabolized tyramine and in 1933 Blaschko demonstrated that this enzyme also metabolized adrenaline, noradrenaline and dopamine. Zeller gave it the name monoamine oxidase (MAO) to distinguish it from the enzyme that oxidatively deaminated diamines. MAO was recognized as an enzyme of crucial interest to pharmacologists because it catalyzed the major inactivation pathway for the catecholamines (and, later, 5-hydroxytryptamine, as well). Within the few decade, the inhibitors of MAO were discovered and introduced for the treatment of depressive illness which was established clinically. However, the first clinical use exposed serious side effects, pharmacological interest in, and investigation of, MAO continued, resulting in the characterization of two forms, distinct forms, MAO-A and -B, and selective inhibitors for them. Selective inhibitors of MAO-B (selegiline, rasagiline and safinamide) have found a therapeutic role in the treatment of Parkinson's disease and reversible inhibitors of MAO-A offered antidepressant activity without the serious side effects of the earlier nonselective MAO inhibitors. Subsequent molecular pharmacological have also generated the concept of neuroprotection, reflecting the possibility of slowing, halting and maybe reversing, neurodegeneration in Parkinson's or Alzheimer's diseases. Increased levels of oxidative stress through the accumulation of iron in the Parkinsonian and Alzheimer brains has been suggested to be critical for the initiation and progress of neurodegeneration. Selective inhibition of brain MAO could contribute importantly to lowering such stress, preventing the formation of hydrogen peroxide. Interaction of Iron with hydrogen peroxide and lead to Fenton reaction and production of the most reactive radical, namely hydroxyl radical. There are complex interactions between free iron levels in brain and MAO, and cascade of neurotoxic events may have practical outcomes for depressive disorders and neurodegenerative diseases. As consequence recent novel therapeutic drugs for neurodegenerative diseases has led to the development of multi target drugs, that possess selective brain MAO A and B inhibitory moiety, iron chelating and antioxidant activities and the ability to increase brain levels of endogenous neurotrophins, such as BDNF, GDNF VEGF and erythropoietin and induce mitochondrial biogenesis.
Collapse
Affiliation(s)
- Moussa B H Youdim
- Technion-Bruce Rappaport Faculty of Medicine, Rappaport Family Research Institute, Haifa, Israel. .,, Yokneam, Israel.
| |
Collapse
|
21
|
Zuo Y, Xu Q, Lu Y, Sun D, Wang K, Lei Y, Liang X, Li Y. Dihydromyricetin induces apoptosis in a human choriocarcinoma cell line. Oncol Lett 2018; 16:4229-4234. [PMID: 30214558 PMCID: PMC6126223 DOI: 10.3892/ol.2018.9220] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/23/2018] [Indexed: 01/11/2023] Open
Abstract
Choriocarcinoma is a malignant trophoblastic tumor. The development of novel drugs is required to reduce the toxicity of current multi-agent chemotherapy and to successfully treat chemoresistant cases of the disease. The purpose of the present study was to investigate the effect of dihydromyricetin (DMY) on the human choriocarcinoma cell line, JAr, to identify a novel drug for the treatment of choriocarcinoma. An MTT assay was performed to determine the effects of DMY at different concentrations and for different exposure durations. Flow cytometry and TUNEL assays were performed to detect apoptosis, and western blotting was utilized to investigate the underlying mechanism. The results revealed that DMY significantly inhibited JAr cell viability in a time- and dose-dependent manner. The flow cytometry and TUNEL assays demonstrated that DMY inhibited proliferation by inducing apoptosis. Further analysis by western blotting indicated that the protein expression level of BCL-2 associated X, associated protein increased, while the protein expression levels of BCL-2 and pro-caspase-3 decreased. These findings suggest that DMY induced apoptosis in human choriocarcinoma JAr cells, through a mitochondrially mediated apoptotic pathway.
Collapse
Affiliation(s)
- Yanzhen Zuo
- Department of Pharmacology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Qian Xu
- Research Laboratory, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yanjie Lu
- Department of Pathology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Dayong Sun
- Department of Tumor Radiation and Chemotherapy Center, The Chengde Central Hospital, Chengde, Hebei 067000, P.R. China
| | - Kang Wang
- Department of Pathology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuntao Lei
- Department of Pathology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Xiujun Liang
- Research Laboratory, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| | - Yuhong Li
- Department of Pathology, Chengde Medical University, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
22
|
Effect of Allicin against Ischemia/Hypoxia-Induced H9c2 Myoblast Apoptosis via eNOS/NO Pathway-Mediated Antioxidant Activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3207973. [PMID: 29849702 PMCID: PMC5926492 DOI: 10.1155/2018/3207973] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/28/2018] [Accepted: 03/11/2018] [Indexed: 12/15/2022]
Abstract
Allicin (2-propene-1-sulfinothioic acid S-2-propenyl ester, diallyl thiosulfinate) is the main biologically active ingredient in garlic. The present study investigated the protective effect of allicin against cardiomyocyte apoptosis that was induced by ischemia in vitro and the potential molecular mechanisms that were involved in this antiapoptotic effect. The results indicated that allicin increased H9c2 cell activity and attenuated the rate of apoptosis that was induced by ischemia/hypoxia. Intracellular calcium concentrations significantly decreased in the allicin-treated groups. Bax expression significantly decreased, and Bcl-2 expression increased in allicin-treated rats. Nitric oxide blockade significantly inhibited these effects. Allicin also increased the activity of SOD and NO release and decreased MDA levels. Allicin significantly increased the expression of eNOS, Nrf2, and HO-1 proteins. Collectively, these findings demonstrate that allicin protects H9c2 cells against apoptosis, and this protective effect appears to occur via eNOS/NO pathway-mediated antioxidant activity.
Collapse
|
23
|
Tipton KF. 90 years of monoamine oxidase: some progress and some confusion. J Neural Transm (Vienna) 2018; 125:1519-1551. [PMID: 29637260 DOI: 10.1007/s00702-018-1881-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/02/2018] [Indexed: 01/01/2023]
Abstract
It would not be practical to attempt to deal with all the advances that have informed our understanding of the behavior and functions of this enzyme over the past 90 years. This account concentrates key advances that explain why the monoamine oxidases remain of pharmacological and biochemical interest and on some areas of continuing uncertainty. Some issues that remain to be understood or are in need of further clarification are highlighted.
Collapse
Affiliation(s)
- Keith F Tipton
- School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
24
|
Garcia-Delgado AB, Valdés-Sánchez L, Calado SM, Diaz-Corrales FJ, Bhattacharya SS. Rasagiline delays retinal degeneration in a mouse model of retinitis pigmentosa via modulation of Bax/Bcl-2 expression. CNS Neurosci Ther 2018; 24:448-455. [PMID: 29372592 DOI: 10.1111/cns.12805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/26/2017] [Accepted: 12/26/2017] [Indexed: 12/15/2022] Open
Abstract
AIMS Retinitis pigmentosa (RP) is an inherited disease characterized by a progressive degeneration of rod photoreceptors. An imbalance between pro- and antiapoptotic factors, such as Bax/Bcl-2, has been involved in retinal degeneration. To date, no cure or effective treatments are available for RP. Rasagiline is an antiparkinsonian drug that has shown neuroprotective effects in part attributed to a modulation of Bax/Bcl-2 expression. In this study, we have evaluated the use of rasagiline as a potential treatment for RP. METHODS Newborn rd10 mice, a RP model, were treated with oral rasagiline during 30 days followed by a functional and morphological characterization of their mouse retinas. RESULTS Treated animals showed a significant improvement in visual acuity and in the electrical responses of photoreceptors to light stimuli. Rasagiline delayed photoreceptor degeneration, which was confirmed not only by a high photoreceptor nuclei counting, but also by a sustained expression of photoreceptor-specific markers. In addition, the expression of proapoptotic Bax decreased, whereas the antiapoptotic factor Bcl-2 increased after rasagiline treatment. CONCLUSION This study provides new evidences regarding the neuroprotective effect of rasagiline in the retina, and it brings new insight into the development of future clinical trials using this well-established antiparkinsonian drug to treat RP.
Collapse
Affiliation(s)
- Ana B Garcia-Delgado
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Lourdes Valdés-Sánchez
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Sofia M Calado
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Francisco J Diaz-Corrales
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| | - Shom S Bhattacharya
- Department of Regeneration and Cell Therapy, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Seville, Spain
| |
Collapse
|
25
|
Denya I, Malan SF, Enogieru AB, Omoruyi SI, Ekpo OE, Kapp E, Zindo FT, Joubert J. Design, synthesis and evaluation of indole derivatives as multifunctional agents against Alzheimer's disease. MEDCHEMCOMM 2018; 9:357-370. [PMID: 30108930 DOI: 10.1039/c7md00569e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/14/2018] [Indexed: 12/25/2022]
Abstract
A series of indole derivatives was designed and synthesised to improve on activity and circumvent pharmacokinetic limitations experienced with the structurally related compound, ladostigil. The compounds consisted of a propargylamine moiety (a known MAO inhibitor and neuroprotector) at the N1 position and a ChE inhibiting diethyl-carbamate/urea moiety at the 5 or 6 position of the indole ring. In order to prevent or slow down the in vivo hydrolysis and deactivation associated with the carbamate function of ladostigil, a urea moeity was incorporated into selected compounds to obtain more metabolically stable structures. The majority of the synthesised compounds showed improved MAO-A inhibitory activity compared to ladostigil. The compounds possessing the propargylamine moiety showed good MAO-B inhibitory activity with 6 and 8 portraying IC50 values between 14-20 fold better than ladostigil. The ChE assay results indicated that the compounds have non-selective inhibitory activities on eeAChE and eqBuChE regardless of the type or position of substitution (IC50: 2-5 μM). MAO-A and MAO-B docking results showed that the propargylamine moiety was positioned in close proximity to the FAD cofactor suggesting that the good inhibitory activity may be attributed to the propargylamine moiety and irreversible inhibition as confirmed in the reversibility studies. Docking results also indicated that the compounds have interactions with important amino acids in the AChE and BuChE catalytic sites. Compound 6 was the most potent multifunctional agent showing better inhibitory activity than ladostigil in vitro on all enzymes tested (hMAO-A IC50 = 4.31 μM, hMAO-B IC50 = 2.62 μM, eeAChE IC50 = 3.70 μM, eqBuChE IC50 = 2.82 μM). Chemical stability tests confirmed the diethyl-urea containing compound 6 to be more stable than its diethyl-carbamate containing counterpart compound 8. Compound 6 also exerted significant neuroprotection (52.62% at 1 μM) against MPP+ insult to SH-SY5Y neural cells and has good in silico predicted ADMET properties. The favourable neuronal enzyme inhibitory activity, likely improved pharmacokinetic properties in vivo and the potent neuroprotective ability of compound 6 make it a promising compound for further development.
Collapse
Affiliation(s)
- Ireen Denya
- Pharmaceutical Chemistry , School of Pharmacy , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa . ; Tel: +27 21 959 2195
| | - Sarel F Malan
- Pharmaceutical Chemistry , School of Pharmacy , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa . ; Tel: +27 21 959 2195
| | - Adaze B Enogieru
- Department of Medical Biosciences , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa
| | - Sylvester I Omoruyi
- Department of Medical Biosciences , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa
| | - Okobi E Ekpo
- Department of Medical Biosciences , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa
| | - Erika Kapp
- Pharmaceutical Chemistry , School of Pharmacy , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa . ; Tel: +27 21 959 2195
| | - Frank T Zindo
- Pharmaceutical Chemistry , School of Pharmacy , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa . ; Tel: +27 21 959 2195
| | - Jacques Joubert
- Pharmaceutical Chemistry , School of Pharmacy , University of the Western Cape , Private Bag X17 , Bellville 7535 , South Africa . ; Tel: +27 21 959 2195
| |
Collapse
|
26
|
DADLE enhances viability and anti-inflammatory effect of human MSCs subjected to ‘serum free’ apoptotic condition in part via the DOR/PI3K/AKT pathway. Life Sci 2017; 191:195-204. [DOI: 10.1016/j.lfs.2017.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/29/2023]
|
27
|
Wang CY, Sun ZN, Wang MX, Zhang C. SIRT1 mediates salidroside-elicited protective effects against MPP + -induced apoptosis and oxidative stress in SH-SY5Y cells: involvement in suppressing MAPK pathways. Cell Biol Int 2017; 42:84-94. [PMID: 28851138 DOI: 10.1002/cbin.10864] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/26/2017] [Indexed: 12/31/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease, leading to tremor, rigidity, bradykinesia, and gait impairment. Salidroside has been reported to exhibit antioxidative and neuroprotective properties in PD. However, the underlying neuroprotective mechanisms effects of salidroside are poorly understood. Recently, a growing body of evidences suggest that silent information regulator 1 (SIRT1) plays important roles in the pathophysiology of PD. Hence, the present study investigated the roles of SIRT1 in neuroprotective effect of salidroside against N-methyl-4-phenylpyridinium (MPP+ )-induced SH-SY5Y cell injury. Our findings revealed that salidroside attenuates MPP+ -induced neurotoxicity as evidenced by the increase in cell viability, and the decreases in the caspase-3 activity and apoptosis ratio. Simultaneously, salidroside pretreatment remarkably increased SIRT1 activity, SIRT1 mRNA and protein levels in MPP+ -treated SH-SY5Y cell. However, sirtinol, a SIRT1 activation inhibitor, significantly blocked the inhibitory effects of salidroside on MPP+ -induced cytotoxicity and apoptosis. In addition, salidroside abolished MPP+ -induced the production of reactive oxygen species (ROS), the up-regulation of NADPH oxidase 2 (NOX2) expression, the down-regulations of superoxide dismutase (SOD) activity and glutathione (GSH) level in SH-SY5Y cells, while these effects were also blocked by sirtinol. Finally, we found that the inhibition of salidroside on MPP+ -induced phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-Jun NH2-terminal kinase (JNK) were also reversed by sirtinol in SH-SY5Y cells. Taken together, these results indicated that SIRT1 contributes to the neuroprotection of salidroside against MPP+ -induced apoptosis and oxidative stress, in part through suppressing of mitogen-activated protein kinase (MAPK) pathways.
Collapse
Affiliation(s)
- Chun-Yang Wang
- Department of Science and Technology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhao-Nan Sun
- Department of General surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ming-Xin Wang
- Department of Otolaryngological, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Chao Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
28
|
Mullick M, Venkatesh K, Sen D. d-Alanine 2, Leucine 5 Enkephaline (DADLE)-mediated DOR activation augments human hUCB-BFs viability subjected to oxidative stress via attenuation of the UPR. Stem Cell Res 2017; 22:20-28. [DOI: 10.1016/j.scr.2017.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/15/2017] [Accepted: 05/21/2017] [Indexed: 01/16/2023] Open
|
29
|
Gao XJ, Xie GN, Liu L, Fu ZJ, Zhang ZW, Teng LZ. Sesamol attenuates oxidative stress, apoptosis and inflammation in focal cerebral ischemia/reperfusion injury. Exp Ther Med 2017; 14:841-847. [PMID: 28673008 DOI: 10.3892/etm.2017.4550] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/21/2016] [Indexed: 01/05/2023] Open
Abstract
The aim of the present study was to evaluate the therapeutic potential of sesamol treatment on focal ischemia/reperfusion (I/R) injury in the rat brain. The results demonstrated that pretreatment with sesamol seven days prior to focal cerebral I/R injury had significant positive effects, including improvements in neurological deficits (P<0.05), and a reduction in malondialdehyde content and elevation of antioxidant levels (superoxide dismutase, glutathione and glutatione peroxidase; both P<0.05). Furthermore, levels of B cell lymphoma-2 (Bcl-2)-associated X protein and caspase-3 were significantly downregulated, whereas the level of Bcl-2 was effectively increased. Conversely, the mRNA expression of proinflammatory cytokines were significantly reduced in focal cerebral I/R injury rats upon sesamol intervention. Therefore, the beneficial effects of sesamol on cerebral I/R injury may be due to the reduction of oxidative stress, inhibition of apoptosis and inflammation. The findings of the present study suggest that sesamol supplementation may serve as potent adjuvant in the treatment of focal cerebral ischemia/reperfusion injury due to its neuroprotective effects.
Collapse
Affiliation(s)
- Xiu-Juan Gao
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Guan-Nan Xie
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Lei Liu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China.,Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Zhi-Jian Fu
- Department of Pain Management, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Zong-Wang Zhang
- Department of Anesthesiology, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| | - Liang-Zhu Teng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
30
|
Amit T, Bar-Am O, Mechlovich D, Kupershmidt L, Youdim MBH, Weinreb O. The novel multitarget iron chelating and propargylamine drug M30 affects APP regulation and processing activities in Alzheimer's disease models. Neuropharmacology 2017; 123:359-367. [PMID: 28571715 DOI: 10.1016/j.neuropharm.2017.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 10/19/2022]
Abstract
In many of the neurodegenerative diseases, such as Alzheimer's disease (AD) and AD-related disorders, as well as in the regular ageing process, excessive generation of oxidative stress (OS) and accumulation of iron levels and deposition have been observed in specific affected-brain regions and thus, regarded as contributing factors to the pathogenesis of the diseases. In AD, iron promotes amyloid β (Aβ) neurotoxicity by producing free radical damage and OS in brain areas affected by neurodegeneration, presumably by facilitating the aggregation of Aβ. In addition, it was shown that iron modulates intracellular levels of the holo amyloid precursor protein (APP) by iron-responsive elements (IRE) RNA stem loops in the 5' untranslated region (5'UTR) of the APP transcript. As a consequence of these observations, iron chelation is one of the major new therapeutic strategies for the treatment of AD. This review describes the benefits and importance of the multimodal brain permeable chimeric iron-chelating/propargylamine drug M30, concerning its neuroprotective/neurorestorative inter-related activities relevant of the pathological features ascribed to AD, with a special focus on the effect of the drug on APP regulation and processing.
Collapse
Affiliation(s)
- Tamar Amit
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Orit Bar-Am
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Danit Mechlovich
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Lana Kupershmidt
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Moussa B H Youdim
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel
| | - Orly Weinreb
- Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 31096, Israel.
| |
Collapse
|
31
|
Dual inhibitors of cholinesterases and monoamine oxidases for Alzheimer’s disease. Future Med Chem 2017; 9:811-832. [DOI: 10.4155/fmc-2017-0036] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates a solid relationship between several enzymes and Alzheimer’s disease. Cholinesterases and monoamine oxidases are closely associated with the disease symptomatology and progression and have been tackled simultaneously using several multifunctional ligands. This design strategy offers great chances to alter the course of Alzheimer’s disease, in addition to alleviation of the symptoms. More than 15 years of research has led to the identification of various dual cholinesterase/monoamine oxidase inhibitors, while some showing positive outcomes in clinical trials, thus giving rise to additional research efforts in the field. The aim of this review is to provide an update on the novel dual inhibitors identified recently and to shed light on their therapeutic potential.
Collapse
|
32
|
Chen Y, Li Y, Xu H, Li G, Ma Y, Pang YJ. MORIN MITIGATES OXIDATIVE STRESS, APOPTOSIS AND INFLAMMATION IN CEREBRAL ISCHEMIC RATS. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2017; 14:348-355. [PMID: 28573251 PMCID: PMC5446461 DOI: 10.21010/ajtcam.v14i2.36] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background: Morin is a flavanoid which exhibits potent antioxidant activity in various oxidative stress related diseases. The current study was attempted to scrutinize the preclinical bio-efficacy of morin on focal ischemia. Methods: The animal model of focal cerebral ischemic injury was done by midbrain carotid artery occlusion (MCAO) method, followed by Morin (30mg/kg) administration for seven days. Results: The outcome of the study showed that treatment with morin displayed positive effects in reducing the focal cerebral ischemia. This effect was evident with the improvements in neurological deficits, reduction in MDA content and elevation of antioxidant levels (SOD, GSH and Gpx). Furthermore, protein expression of Bax and caspase-3 were effectively down-regulated, whilst the expression of Bcl-2 was significantly elevated. On the other hand, the mRNA expression of proinflammatory cytokines was significantly reduced in focal cerebral ischemic rats upon morin intervention. Conclusion: Thus, the beneficial effects of morin on cerebral ischemia assault may result from the reduction of oxidative stress, inhibition of apoptosis and inflammation. The neuroprotective effects of morin supplement may serve as potent adjuvant in the amelioration of ischemic stroke.
Collapse
Affiliation(s)
- Yanrong Chen
- Department of Neurology, Binzhou city central hospital, Binzhou, Shandong 251700, China
| | - Yanke Li
- Department of Neurology, Binzhou city central hospital, Binzhou, Shandong 251700, China
| | - Huali Xu
- Department of Neurology, Binzhou city central hospital, Binzhou, Shandong 251700, China
| | - Gang Li
- Department of Neurology, Binzhou city central hospital, Binzhou, Shandong 251700, China
| | - Yunxia Ma
- Department of Neurology, Binzhou city central hospital, Binzhou, Shandong 251700, China
| | - Yu Jun Pang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
33
|
Riederer P, Müller T. Use of monoamine oxidase inhibitors in chronic neurodegeneration. Expert Opin Drug Metab Toxicol 2017; 13:233-240. [PMID: 27998194 DOI: 10.1080/17425255.2017.1273901] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Neurotransmission by biogenic monoamines is important for brain function. Biogenic amine turnover employs the enzymes catechol-O-methyltransferase and monoamine oxidase in neuronal and glial cells. Inhibition of these enzymes elevates biogenic amine levels in the synaptic cleft. Subtype selectivity of inhibition is lost during long-term use of 'selective' monoamine oxidase inhibitors. Areas covered: This narrative review discusses use of monoamine oxidase inhibitors in the context with chronic neurodegeneration. Expert opinion: Antidepressant drugs increase synaptic concentrations of biogenic amines. In the aging brain, then one of the two enzymes involved in degrading synaptic amines, catechol-O-methyl transferase, increasingly catalyzes methylation processes. Therefore, metabolism by monoamine oxidase plays an incremental, predominant role in biogenic amine turnover, leading to greater oxidative stress. In patients with chronic neurodegenerative disorders, symptoms, such as depression and apathy, are often treated with drugs that elevate biogenic amine levels. This therapeutic strategy increases biogenic amine turnover, thereby generating neurotoxic aldehydes and enhanced oxidative stress, each of which influence and accelerate the course of neurodegeneration. We propose that antidepressant therapy should be initiated first with monoamine oxidase inhibitors only. If adequate clinical response is not achieved, only then they should be supplemented with a further antidepressant.
Collapse
Affiliation(s)
- Peter Riederer
- a Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy , University Hospital Würzburg , Würzburg , Germany
| | - Thomas Müller
- b Department of Neurology , St. Joseph Hospital Berlin-Weißensee , Berlin , Germany
| |
Collapse
|
34
|
Nagakannan P, Iqbal MA, Yeung A, Thliveris JA, Rastegar M, Ghavami S, Eftekharpour E. Perturbation of redox balance after thioredoxin reductase deficiency interrupts autophagy-lysosomal degradation pathway and enhances cell death in nutritionally stressed SH-SY5Y cells. Free Radic Biol Med 2016; 101:53-70. [PMID: 27693380 DOI: 10.1016/j.freeradbiomed.2016.09.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/24/2016] [Accepted: 09/25/2016] [Indexed: 01/25/2023]
Abstract
Oxidative damage and aggregation of cellular proteins is a hallmark of neuronal cell death after neurotrauma and chronic neurodegenerative conditions. Autophagy and ubiquitin protease system are involved in degradation of protein aggregates, and interruption of their function is linked to apoptotic cell death in these diseases. Oxidative modification of cysteine groups in key molecular proteins has been linked to modification of cellular systems and cell death in these conditions. Glutathione and thioredoxin systems provide reducing protons that can effectively reverse protein modifications and promote cell survival. The central role of Thioredoxin in inhibition of apoptosis is well identified. Additionally, its involvement in initiation of autophagy has been suggested recently. We therefore aimed to investigate the involvement of Thioredoxin system in autophagy-apoptosis processes. A model of serum deprivation in SH-SY5Y was used that is associated with autophagy and apoptosis. Using pharmacological and RNA-editing technology we show that Thioredoxin reductase deficiency in this model enhances oxidative stress and interrupts the early protective autophagy and promotes apoptosis. This was associated with decreased protein-degradation in lysosomes due to altered lysosomal acidification and accumulation of autophagosomes as well as impairment in proteasome pathway. We further confirmed that the extent of oxidative stress is a determining factor in autophagy- apoptosis interplay, as upregulation of cellular reducing capacity by N-acetylcysteine prevented impairment in autophagy and proteasome systems thus promoted cell viability. Our study provides evidence that excessive oxidative stress inhibits protein degradation systems and affects the final stages of autophagy by inhibiting autolysosome maturation: a novel mechanistic link between protein aggregation and conversion of autophagy to apoptosis that can be applicable to neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mohamed Ariff Iqbal
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Albert Yeung
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James A Thliveris
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Eftekhar Eftekharpour
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
35
|
Di Giovanni G, Svob Strac D, Sole M, Unzeta M, Tipton KF, Mück-Šeler D, Bolea I, Della Corte L, Nikolac Perkovic M, Pivac N, Smolders IJ, Stasiak A, Fogel WA, De Deurwaerdère P. Monoaminergic and Histaminergic Strategies and Treatments in Brain Diseases. Front Neurosci 2016; 10:541. [PMID: 27932945 PMCID: PMC5121249 DOI: 10.3389/fnins.2016.00541] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/07/2016] [Indexed: 12/18/2022] Open
Abstract
The monoaminergic systems are the target of several drugs for the treatment of mood, motor and cognitive disorders as well as neurological conditions. In most cases, advances have occurred through serendipity, except for Parkinson's disease where the pathophysiology led almost immediately to the introduction of dopamine restoring agents. Extensive neuropharmacological studies first showed that the primary target of antipsychotics, antidepressants, and anxiolytic drugs were specific components of the monoaminergic systems. Later, some dramatic side effects associated with older medicines were shown to disappear with new chemical compounds targeting the origin of the therapeutic benefit more specifically. The increased knowledge regarding the function and interaction of the monoaminergic systems in the brain resulting from in vivo neurochemical and neurophysiological studies indicated new monoaminergic targets that could achieve the efficacy of the older medicines with fewer side-effects. Yet, this accumulated knowledge regarding monoamines did not produce valuable strategies for diseases where no monoaminergic drug has been shown to be effective. Here, we emphasize the new therapeutic and monoaminergic-based strategies for the treatment of psychiatric diseases. We will consider three main groups of diseases, based on the evidence of monoamines involvement (schizophrenia, depression, obesity), the identification of monoamines in the diseases processes (Parkinson's disease, addiction) and the prospect of the involvement of monoaminergic mechanisms (epilepsy, Alzheimer's disease, stroke). In most cases, the clinically available monoaminergic drugs induce widespread modifications of amine tone or excitability through neurobiological networks and exemplify the overlap between therapeutic approaches to psychiatric and neurological conditions. More recent developments that have resulted in improved drug specificity and responses will be discussed in this review.
Collapse
Affiliation(s)
| | | | - Montse Sole
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Mercedes Unzeta
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | - Keith F. Tipton
- School of Biochemistry and Immunology, Trinity College DublinDublin, Ireland
| | - Dorotea Mück-Šeler
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Irene Bolea
- Departament de Bioquímica i Biologia Molecular, Facultat de Medicina, Institut de Neurociències, Universitat Autònoma de BarcelonaBarcelona, Spain
| | | | | | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic InstituteZagreb, Croatia
| | - Ilse J. Smolders
- Department of Pharmaceutical Chemistry and Drug Analysis, Vrije Universiteit BrusselBrussels, Belgium
| | - Anna Stasiak
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Wieslawa A. Fogel
- Department of Hormone Biochemistry, Medical University of LodzLodz, Poland
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), Institut of Neurodegenerative DiseasesBordeaux Cedex, France
| |
Collapse
|
36
|
Fan XJ, Wang Y, Wang L, Zhu M. Salidroside induces apoptosis and autophagy in human colorectal cancer cells through inhibition of PI3K/Akt/mTOR pathway. Oncol Rep 2016; 36:3559-3567. [PMID: 27748934 DOI: 10.3892/or.2016.5138] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/16/2016] [Indexed: 11/06/2022] Open
Abstract
The role of salidroside in colon cancer remains unknown. Here we show that salidroside, a phenylpropanoid glycoside extracted from Rhodiola rosea, exhibited potent anti-proliferative properties in human colorectal cancer cells via inducing apoptosis and autophagy. We ascertained that salidroside exerts an inhibitory effect on the proliferation of human colorectal cancer cells in a dose-dependent manner. In addition, salidroside induced cell apoptosis, accompanied by an increase of chromatin condensation and nuclear fragmentation, and a decrease of Bcl-2/Bax protein expression ratio. We also found that salidroside induced autophagy, evidenced by increased LC3+ autophagic vacuoles, positive acridine orange-stained cells, enhanced conversion of LC3-I to LC3-II, and elevation of Beclin-1. Treatment with autophagy-specific inhibitors [3-methyladenine (3-MA) and bafilomycin A1 (BA)] enhanced salidroside-induced apoptosis, indicating that salidroside-mediated autophagy may protect HT29 cells from undergoing apoptotic cell death. Additionally, salidroside decreased the phosphorylation of PI3K, Akt and mTOR. Treatment with PI3K inhibitor LY294002 augmented the effects of salidroside on the expression of Akt and mTOR. These findings indicate that salidroside could suppress the PI3K/Akt/mTOR signaling pathways. This study may provide a rationale for future clinical application using salidroside as a chemotherapeutic agent for human colorectal cancer.
Collapse
Affiliation(s)
- Xiang-Jun Fan
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yao Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Lei Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Mingyan Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
37
|
|
38
|
Zheng CY, Guo BJ, Cai W, Cui W, Mak SH, Wang YQ, Lee SMY, Han YF, Zhang ZJ. No synergism between bis(propyl)-cognitin and rasagiline on protecting dopaminergic neurons in Parkinson's disease mice. Neural Regen Res 2016; 11:1339-46. [PMID: 27651784 PMCID: PMC5020835 DOI: 10.4103/1673-5374.189201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Rasagiline, a monoamine oxidase-B inhibitor, and bis(propyl)-cognitin (B3C), a novel dimer are reported to be neuroprotective. Herein, the synergistical neuroprotection produced by rasagiline and B3C was investigated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice of Parkinsonism. By using neurobehavioural tests, high-performance liquid chromatography and western blot assay, we showed that B3C at 0.3 mg/kg, rasagiline at 0.02 mg/kg, as well as co-treatment with B3C and rasagiline prevented MPTP-induced behavioural abnormities, increased the concentrations of dopamine and its metabolites in the striatum, and up-regulated the expression of tyrosine hydroxylase in the substantia nigra. However, the neuroprotective effects of co-treatment were not significantly improved when compared with those of B3C or rasagiline alone. Collectively, we have demonstrated that B3C at 0.3 mg/kg and rasagline at 0.02 mg/kg could not produce synergistic neuroprotective effects.
Collapse
Affiliation(s)
- Cheng-You Zheng
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardiocerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, Guangdong Province, China
| | - Bao-Jian Guo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardiocerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, Guangdong Province, China
| | - Wei Cai
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardiocerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, Guangdong Province, China
| | - Wei Cui
- School of Medicine, Ningbo University, Ningbo, Zhejiang Province, China
| | - Shing-Hung Mak
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
| | - Yu-Qiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardiocerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, Guangdong Province, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao Special Administrative Region, China
| | - Yi-Fan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
| | - Zai-Jun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardiocerebrovascular Diseases, Jinan University College of Pharmacy, Guangzhou, Guangdong Province, China
| |
Collapse
|
39
|
Multi-target therapeutics for neuropsychiatric and neurodegenerative disorders. Drug Discov Today 2016; 21:1886-1914. [PMID: 27506871 DOI: 10.1016/j.drudis.2016.08.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/20/2016] [Accepted: 08/01/2016] [Indexed: 12/30/2022]
Abstract
Historically, neuropsychiatric and neurodegenerative disease treatments focused on the 'magic bullet' concept; however multi-targeted strategies are increasingly attractive gauging from the escalating research in this area. Because these diseases are typically co-morbid, multi-targeted drugs capable of interacting with multiple targets will expand treatment to the co-morbid disease condition. Despite their theoretical efficacy, there are significant impediments to clinical success (e.g., difficulty titrating individual aspects of the drug and inconclusive pathophysiological mechanisms). The new and revised diagnostic frameworks along with studies detailing the endophenotypic characteristics of the diseases promise to provide the foundation for the circumvention of these impediments. This review serves to evaluate the various marketed and nonmarketed multi-targeted drugs with particular emphasis on their design strategy.
Collapse
|
40
|
Robles AJ, Du L, Cichewicz RH, Mooberry SL. Maximiscin Induces DNA Damage, Activates DNA Damage Response Pathways, and Has Selective Cytotoxic Activity against a Subtype of Triple-Negative Breast Cancer. JOURNAL OF NATURAL PRODUCTS 2016; 79:1822-7. [PMID: 27310425 PMCID: PMC4958493 DOI: 10.1021/acs.jnatprod.6b00290] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Triple-negative breast cancers are highly aggressive, and patients with these types of tumors have poor long-term survival. These breast cancers do not express estrogen or progesterone receptors and do not have gene amplification of human epidermal growth factor receptor 2; therefore, they do not respond to available targeted therapies. The lack of targeted therapies for triple-negative breast cancers stems from their heterogeneous nature and lack of a clear definition of driver defects. Studies have recently identified triple-negative breast cancer molecular subtypes based on gene expression profiling and representative cell lines, allowing for the identification of subtype-specific drug leads and molecular targets. We previously reported the identification of a new fungal metabolite named maximiscin (1) identified through a crowdsourcing program. New results show that 1 has selective cytotoxic efficacy against basal-like 1 MDA-MB-468 cells compared to cell lines modeling other triple-negative breast cancer molecular subtypes. This compound also exhibited antitumor efficacy in a xenograft mouse model. The mechanisms of action of 1 in MDA-MB-468 cells were investigated to identify potential molecular targets and affected pathways. Compound 1 caused accumulation of cells in the G1 phase of the cell cycle, suggesting induction of DNA damage. Indeed, treatment with 1 caused DNA double-strand breaks with concomitant activation of the DNA damage response pathways, indicated by phosphorylation of p53, Chk1, and Chk2. Collectively, these results suggest basal-like triple-negative breast cancer may be inherently sensitive to DNA-damaging agents relative to other triple-negative breast cancer subtypes. These results also demonstrate the potential of our citizen crowdsourcing program to identify new lead molecules for treating the subtypes of triple-negative breast cancer.
Collapse
Affiliation(s)
- Andrew J. Robles
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, United States
| | - Lin Du
- Natural Product Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-0390, United States
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-0390, United States
| | - Robert H. Cichewicz
- Natural Product Discovery Group, Institute for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-0390, United States
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-0390, United States
| | - Susan L. Mooberry
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, United States
- Cancer Therapy & Research Center, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, United States
| |
Collapse
|
41
|
Liu W, Lang M, Youdim MBH, Amit T, Sun Y, Zhang Z, Wang Y, Weinreb O. Design, synthesis and evaluation of novel dual monoamine-cholinesterase inhibitors as potential treatment for Alzheimer's disease. Neuropharmacology 2016; 109:376-385. [PMID: 27318273 DOI: 10.1016/j.neuropharm.2016.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 11/18/2022]
Abstract
Current novel therapeutic approach suggests that multifunctional compounds with diverse biological properties and a single bioavailability and pharmacokinetic metabolism, will produce higher significant advantages in treatment of neurodegenerative diseases, such as Alzheimer's disease (AD). Based on this rational, a new class of cholinesterase (ChE)-monoamine oxidase (MAO) inhibitors were designed and synthesized by amalgamating the propargyl moiety of the irreversible selective MAO-B inhibitor, neuroprotective/neurorestorative anti-Parkinsonian drug, rasagiline, into the "N-methyl" position of the ChE inhibitor, anti-AD drug rivastigmine. Initially, we examined the MAO and ChE inhibitory effect of these novel compounds, MT series in vitro and in vivo. Among MT series, MT-031 exhibited higher potency as a dual MAO-A and ChE inhibitor compared to other compounds in acute-treated mice. Additionally, MT-031 was found to increase the striatal levels of dopamine (DA), serotonin (5-HT) and norepinephrine (NE), and prevent the metabolism of DA and 5-HT. Finally, we have demonstrated that MT-031 exerted neuroprotective effect against H2O2-induced neurotoxicity and reactive oxygen species generation in human neuroblastoma SH-SY5Y cells. These findings provide evidence that MT-031 is a potent brain permeable novel multifunctional, neuroprotective and MAO-A/ChE inhibitor, preserves in one molecule entity some of the beneficial properties of its parent drugs, rasagiline and rivastigmine, and thus may be indicated as novel therapeutic approach for AD.
Collapse
Affiliation(s)
- Wei Liu
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ming Lang
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Moussa B H Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Amit
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yewei Sun
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Zaijun Zhang
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Yuqiang Wang
- Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, China
| | - Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
42
|
Golko-Perez S, Amit T, Youdim MBH, Weinreb O. Beneficial Effects of Multitarget Iron Chelator on Central Nervous System and Gastrocnemius Muscle in SOD1(G93A) Transgenic ALS Mice. J Mol Neurosci 2016; 59:504-10. [PMID: 27173029 DOI: 10.1007/s12031-016-0763-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 12/14/2022]
Abstract
Accumulation of evidence has demonstrated high levels of iron in the central nervous system of both sporadic and familial amyotrophic lateral sclerosis (ALS) patients and in ALS mouse models. In accordance, iron chelation therapy was found to exert beneficial effects on ALS mice. Our group has designed and synthesized series of multifunctional non-toxic, brain permeable iron-chelating compounds for neurodegenerative diseases. Recent study has shown that co-administration of one of these drugs, VAR10303 with high calorie/energy-supplemented diet (VAR-ced), initiated after the appearance of disease symptoms improved motor performance, extended survival, and attenuated iron accumulation and motoneuron loss in SOD1(G93A) mice. Since VAR was found to exert diverse pharmacological properties associated with mitochondrial biogenesis in the gastrocnemius (GNS) muscle, we further assessed in the current study the impact of VAR-ced on additional neurorescue-associated molecular targets in the GNS and frontal cortex in SOD1(G93A) mice. The results show that VAR-ced treatment upregulated the expression of various HIF-1α-target glycolytic genes and elevated the levels of Bcl-2, neurotrophic factors, and AKT/GSK3β signaling in the GNS and frontal cortex of SOD1(G93A) mice, suggesting that these protective regulatory parameters regulated by VAR-ced treatment may be associated with the beneficial effects of the drug observed on ALS mice.
Collapse
Affiliation(s)
- Sagit Golko-Perez
- Eve Topf Center, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel
| | - Tamar Amit
- Eve Topf Center, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel
| | - Moussa B H Youdim
- Eve Topf Center, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel
| | - Orly Weinreb
- Eve Topf Center, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel.
| |
Collapse
|
43
|
Ledreux A, Boger HA, Hinson VK, Cantwell K, Granholm AC. BDNF levels are increased by aminoindan and rasagiline in a double lesion model of Parkinson׳s disease. Brain Res 2016; 1631:34-45. [PMID: 26607251 PMCID: PMC11354023 DOI: 10.1016/j.brainres.2015.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 01/12/2023]
Abstract
The anti-Parkinsonian drug rasagiline is a selective, irreversible inhibitor of monoamine oxidase and is used in the treatment of Parkinson׳s disease (PD). Its postulated neuroprotective effects may be attributed to MAO inhibition, or to its propargylamine moiety. The major metabolite of rasagiline, aminoindan, has shown promising neuroprotective properties in vitro but there is a paucity of studies investigating in vivo effects of this compound. Therefore, we examined neuroprotective effects of rasagiline and its metabolite aminoindan in a double lesion model of PD. Male Fisher 344 rats received i.p. injections of the noradrenergic neurotoxin DSP-4 and intra-striatal stereotaxic microinjections of the dopamine neurotoxin 6-OHDA. Saline, rasagiline or aminoindan (3mg/kg/day s.c.) were delivered via Alzet minipumps for 4 weeks. Rats were then tested for spontaneous locomotion and a novel object recognition task. Following behavioral testing, brain tissue was processed for ELISA measurements of growth factors and immunohistochemistry. Double-lesioned rats treated with rasagiline or aminoindan had reduced behavioral deficits, both in motor and cognitive tasks compared to saline-treated double-lesioned rats. BDNF levels were significantly increased in the hippocampus and striatum of the rasagiline- and aminoindan-lesioned groups compared to the saline-treated lesioned group. Double-lesioned rats treated with rasagiline or aminoindan exhibited a sparing in the mitochondrial marker Hsp60, suggesting mitochondrial involvement in neuroprotection. Tyrosine hydroxylase (TH) immunohistochemistry revealed a sparing of TH-immunoreactive terminals in double-lesioned rats treated with rasagiline or aminoindan in the striatum, hippocampus, and substantia nigra. These data provide evidence of neuroprotection by aminoindan and rasagiline via their ability to enhance BDNF levels.
Collapse
Affiliation(s)
- Aurélie Ledreux
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Heather A Boger
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA
| | - Vanessa K Hinson
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA; Neurology Service, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Kelsey Cantwell
- Psychology and Program in Neuroscience, College of Charleston, Charleston, SC, USA
| | - Ann-Charlotte Granholm
- Department of Neurosciences and the Center on Aging, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
44
|
Liu P, Zhang G, Sun P. Transition metal-free decarboxylative alkylation reactions. Org Biomol Chem 2016; 14:10763-10777. [DOI: 10.1039/c6ob02101h] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This review summarizes recent advances in the transition metal-free decarboxylative alkylation of carboxylic acids and their derivatives.
Collapse
Affiliation(s)
- Ping Liu
- College of Chemistry and Materials Science
- Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Nanjing 210023
- China
| | - Guanghui Zhang
- School of Chemical Engineering
- Purdue University
- West Lafayette
- USA
| | - Peipei Sun
- College of Chemistry and Materials Science
- Nanjing Normal University; Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control; Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Nanjing 210023
- China
| |
Collapse
|
45
|
Tavari M, Malan SF, Joubert J. Design, synthesis, biological evaluation and docking studies of sulfonyl isatin derivatives as monoamine oxidase and caspase-3 inhibitors. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00228e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfonyl isatin derivatives as multifunctional agents showing monoamine oxidase and caspase-3 inhibitory activities in the low micromolar range.
Collapse
Affiliation(s)
- Mohsen Tavari
- Pharmaceutical Chemistry
- School of Pharmacy
- University of the Western Cape
- Bellville
- South Africa
| | - Sarel F. Malan
- Pharmaceutical Chemistry
- School of Pharmacy
- University of the Western Cape
- Bellville
- South Africa
| | - Jacques Joubert
- Pharmaceutical Chemistry
- School of Pharmacy
- University of the Western Cape
- Bellville
- South Africa
| |
Collapse
|
46
|
Kim JY, Lee JS, Han YS, Lee JH, Bae I, Yoon YM, Kwon SM, Lee SH. Pretreatment with Lycopene Attenuates Oxidative Stress-Induced Apoptosis in Human Mesenchymal Stem Cells. Biomol Ther (Seoul) 2015; 23:517-24. [PMID: 26535076 PMCID: PMC4624067 DOI: 10.4062/biomolther.2015.085] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/29/2015] [Accepted: 08/03/2015] [Indexed: 12/20/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) have been used in cell-based therapy to promote revascularization after peripheral or myocardial ischemia. High levels of reactive oxygen species (ROS) are involved in the senescence and apoptosis of MSCs, causing defective neovascularization. Here, we examined the effect of the natural antioxidant lycopene on oxidative stress-induced apoptosis in MSCs. Although H2O2 (200 μM) increased intracellular ROS levels in human MSCs, lycopene (10 μM) pretreatment suppressed H2O2-induced ROS generation and increased survival. H2O2-induced ROS increased the levels of phosphorylated p38 mitogen activated protein kinase (MAPK), Jun-N-terminal kinase (JNK), ataxia telangiectasia mutated (ATM), and p53, which were inhibited by lycopene pretreatment. Furthermore, lycopene pretreatment decreased the expression of cleaved poly (ADP ribose) polymerase-1 (PARP-1) and caspase-3 and increased the expression of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax), which were induced by H2O2 treatment. Moreover, lycopene significantly increased manganese superoxide dismutase (MnSOD) expression and decreased cellular ROS levels via the PI3K-Akt pathway. Our findings show that lycopene pretreatment prevents ischemic injury by suppressing apoptosis-associated signal pathway and enhancing anti-oxidant protein, suggesting that lycopene could be developed as a beneficial broad-spectrum agent for the successful MSC transplantation in ischemic diseases.
Collapse
Affiliation(s)
- Ji Yong Kim
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Jai-Sung Lee
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yong-Seok Han
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Jun Hee Lee
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Inhyu Bae
- Department of Animal Science and Technology, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yeo Min Yoon
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Sang Mo Kwon
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea ; Departments of Biochemistry, Soonchunhyang University College of Medicine, Cheonan 31151, Republic of Korea
| |
Collapse
|
47
|
Weinreb O, Badinter F, Amit T, Bar-Am O, Youdim MB. Effect of long-term treatment with rasagiline on cognitive deficits and related molecular cascades in aged mice. Neurobiol Aging 2015; 36:2628-36. [DOI: 10.1016/j.neurobiolaging.2015.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 05/12/2015] [Accepted: 05/15/2015] [Indexed: 12/19/2022]
|
48
|
Stojković S, Podolski-Renić A, Dinić J, Stanković T, Banković J, Hadžić S, Paunović V, Isaković A, Tanić N, Pešić M. Development of resistance to antiglioma agents in rat C6 cells caused collateral sensitivity to doxorubicin. Exp Cell Res 2015; 335:248-57. [DOI: 10.1016/j.yexcr.2015.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 01/02/2023]
|
49
|
Bar-Am O, Amit T, Youdim MB, Weinreb O. Neuroprotective and neurorestorative potential of propargylamine derivatives in ageing: focus on mitochondrial targets. J Neural Transm (Vienna) 2015; 123:125-35. [PMID: 25859841 DOI: 10.1007/s00702-015-1395-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/23/2015] [Indexed: 01/14/2023]
Abstract
The mitochondrial theory of ageing proposes that accumulation of damage to mitochondrial function and DNA mutation lead to ageing of humans and animals. It has been suggested that mitochondria play dynamic roles in regulating synaptogenesis and morphological/functional responses of synaptic activity, and thus, deteriorating of mitochondrial function (e.g., deficits of the mitochondrial respiratory enzymes, reduced calcium influx, increased accumulation of mitochondrial DNA defects/apoptotic proteins and impairment of mitochondrial membrane potential) can lead to severe neuronal energy deficit, and in the long run, to modifications in neuronal synapses and neurodegeneration in the ageing brain. Hence, considering the mechanisms by which mitochondrial impairment can lead to neuronal death, the development of neuroprotective molecules that target various mitochondrial pathogenic processes can be effective in the treatment of ageing and age-related neurodegenerative diseases. This review addresses several aspects of the neuroprotective effects of propargylamine derivatives (e.g., the monoamine oxidase-B inhibitors, selegiline and rasagiline and the multifunctional drugs, ladostigil, M30 and VAR10303) in ageing with a special focus on mitochondrial molecular protective mechanisms.
Collapse
Affiliation(s)
- Orit Bar-Am
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel
| | - Tamar Amit
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel
| | - Moussa B Youdim
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel
| | - Orly Weinreb
- Eve Topf Centers of Excellence for Neurodegenerative Diseases Research, Faculty of Medicine, Technion-Israel Institute of Technology, P.O.B. 9697, 31096, Haifa, Israel.
| |
Collapse
|
50
|
Mao F, Li J, Wei H, Huang L, Li X. Tacrine-propargylamine derivatives with improved acetylcholinesterase inhibitory activity and lower hepatotoxicity as a potential lead compound for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2015; 30:995-1001. [PMID: 25792506 DOI: 10.3109/14756366.2014.1003212] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A series of tacrine-propargylamine derivatives were synthesised and evaluated as possible anti-Alzheimer's disease (AD) agents. Among these derivatives, compounds 3a and 3b exhibited superior activities and a favourable balance of AChE and BuChE activities (3a: IC50 values of 51.3 and 77.6 nM; 3b: IC50 values of 11.2 and 83.5 nM). Compounds 3a and 3b also exhibited increased hAChE inhibitory activity compared with tacrine by approximately 5- and 28-fold, respectively, and low neurotoxicity. Importantly, these compounds also had lower hepatotoxicity than tacrine. Based on these results, compounds 3a and 3b could be considered as potential lead compounds for the treatment of AD and other AChE related diseases, such as schizophrenia, glaucoma and myasthenia gravis.
Collapse
Affiliation(s)
- Fei Mao
- a Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou , China .,b Shanghai Key Laboratory of New Drug Design , School of Pharmacy, East China University of Science and Technology , Shanghai , China , and
| | - Jianheng Li
- a Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou , China
| | - Hui Wei
- c School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University , Guangzhou , China
| | - Ling Huang
- a Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou , China
| | - Xingshu Li
- a Institute of Drug Synthesis and Pharmaceutical Process, School of Pharmaceutical Sciences, Sun Yat-sen University , Guangzhou , China
| |
Collapse
|