1
|
Zhang M, Chen C, Peng Q, Wu X, Zhou R, Ma Y, Zou Z. A novel gene therapy for methamphetamine- induced cognitive disorder with a hyper-acidified fusion variant of DnaJB1. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:703-716. [PMID: 36923951 PMCID: PMC10009643 DOI: 10.1016/j.omtn.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Methamphetamine (MA) is spread worldwide and is a highly addictive psychostimulant that can induce neurodegeneration and cognitive disorder, which lacks effective treatments. We and other researchers have found that the crucial member of Hsp70 chaperone machinery, DnaJ, is liable to be co-aggregated with aberrant proteins, which has been confirmed a risk factor to promote neurodegeneration. In the current study, we demonstrated that tailing with a hyper-acidic fusion partner, tua2, human DnaJB1 could resist the formation of toxic mutant Tau aggregates both in prokaryote and eukaryote models. We found that aberrant Tau aggregates could deplete the antioxidant enzyme pool and disturb Hsp70 molecular chaperone system by co-aggregating with the principal members of these systems. Stability-enhanced DnaJB1-tua2 could stop the chain reaction of Tau aggregates as well as maintain redox balance and protein homeostasis. With an MA-induced cognitive disorder mouse model, we found that the cognitive disorder of MA mice was rescued and the overactivated inflammatory response was relieved by the expression of DnaJB1-tua2 in the hippocampus. Furthermore, the Tau neurofibrillary tangles and apoptotic neurons were diminished with the escorting of DnaJB1-tua2. These findings demonstrate that delivering DnaJB1-tua2 in hippocampus may have a therapeutic potential in the treatment of MA-induced cognitive disorder.
Collapse
Affiliation(s)
- Mengru Zhang
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Cheng Chen
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Qingyan Peng
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Xiaocong Wu
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ruiyi Zhou
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yuru Ma
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Zhurong Zou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Kunming, Yunnan 650500, China
| |
Collapse
|
2
|
Salazar-González RA, Doll MA, Hein DW. N-acetyltransferase 2 genetic polymorphism modifies genotoxic and oxidative damage from new psychoactive substances. Arch Toxicol 2023; 97:189-199. [PMID: 36138126 PMCID: PMC10187882 DOI: 10.1007/s00204-022-03383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 01/19/2023]
Abstract
The use of new psychoactive substances (NPS) as drugs of abuse is common and increasingly popular, particularly among youth and neglected communities. Recent studies have reported acute toxic effects from these chemicals; however, their long-term toxicity is unknown. Genetic differences between individuals likely affect the toxicity risk. Arylamine N-acetyltransferase 2 (NAT2) capacity differs among individuals due to genetic inheritance. The goal of the present study is to investigate the gene-environment interaction between NAT2 polymorphism and toxicity after exposure to these chemicals. We measured N-acetylation by human NAT1 and NAT2 and found that N-acetylation of NPS is carried out exclusively by NAT2. Differences in N-acetylation between NAT2*4 (reference allele) and NAT2*5B (common variant allele) were highly significant (p < 0.0001). Using DNA repair-deficient genetically engineered Chinese hamster ovary (CHO cells), expressing human CYP1A2 and either NAT2*4 or NAT2*5B, we measured the induction of DNA double-strand breaks ([Formula: see text]H2Ax) following treatment of the CHO cells with increasing concentrations of NPS. The induction of [Formula: see text]H2Ax showed a NAT2 allele-dependent response, higher in the NAT2*4 vs NAT2*5B alleles (p < 0.05). Induction of oxidative stress (ROS/RNS) was evaluated; we observed NAT2 allele-dependent response for all compounds in concentrations as low as 10 [Formula: see text]M, where NAT2*4 showed increased ROS/RNS vs NAT2*5B (p < 0.05). In summary, NPS are N-acetylated by NAT2 at rates higher in cells expressing NAT2*4 than NAT2*5B. Exposure to psychoactive chemicals results in genotoxic and oxidative damage that is modified by the NAT2 genetic polymorphism.
Collapse
Affiliation(s)
- Raúl A Salazar-González
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, 505 S. Hancock Street, CTR Rm 303, Louisville, KY, 40202, USA.
| |
Collapse
|
3
|
Al-Hakeim HK, Altufaili MF, Almulla AF, Moustafa SR, Maes M. Increased Lipid Peroxidation and Lowered Antioxidant Defenses Predict Methamphetamine Induced Psychosis. Cells 2022; 11:3694. [PMID: 36429122 PMCID: PMC9688750 DOI: 10.3390/cells11223694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND a significant percentage of methamphetamine (MA) dependent patients develop psychosis. The associations between oxidative pathways and MA-induced psychosis (MIP) are not well delineated. OBJECTIVE the aim of this study is to delineate whether acute MA intoxication in MA dependent patients is accompanied by increased nitro-oxidative stress and whether the latter is associated with MIP. METHOD we recruited 30 healthy younger males and 60 acutely intoxicated males with MA dependence and assessed severity of MA use and dependence and psychotic symptoms during intoxication, and serum oxidative toxicity (OSTOX) biomarkers including oxidized high (oxHDL) and low (oxLDL)-density lipoprotein, myeloperoxidase (MPO), malondialdehyde (MDA), and nitric oxide (NO), and antioxidant defenses (ANTIOX) including HDL-cholesterol, zinc, glutathione peroxidase (GPx), total antioxidant capacity (TAC), and catalase-1. RESULTS a large part (50%, n = 30) of patients with MA dependence could be allocated to a cluster characterized by high psychosis ratings including delusions, suspiciousness, conceptual disorganization and difficulties abstract thinking and an increased OSTOX/ANTIOX ratio. Partial Least Squares analysis showed that 29.9% of the variance in MIP severity (a first factor extracted from psychosis, hostility, excitation, mannerism, and formal thought disorder scores) was explained by HDL, TAC and zinc (all inversely) and oxLDL (positively). MA dependence and dosing explained together 44.7% of the variance in the OSTOX/ANTIOX ratio. CONCLUSIONS MA dependence and intoxication are associated with increased oxidative stress and lowered antioxidant defenses, both of which increase risk of MIP during acute intoxication. MA dependence is accompanied by increased atherogenicity due to lowered HDL and increased oxLDL and oxHDL.
Collapse
Affiliation(s)
| | | | - Abbas F. Almulla
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf 54001, Iraq
| | - Shatha Rouf Moustafa
- Clinical Analysis Department, College of Pharmacy, Hawler Medical University, Erbil 44001, Iraq
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Psychiatry, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
- School of Medicine, Barwon Health, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong VIC 3216, Australia
| |
Collapse
|
4
|
Veerappa A, Pendyala G, Guda C. A systems omics-based approach to decode substance use disorders and neuroadaptations. Neurosci Biobehav Rev 2021; 130:61-80. [PMID: 34411560 PMCID: PMC8511293 DOI: 10.1016/j.neubiorev.2021.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/23/2021] [Accepted: 08/14/2021] [Indexed: 11/15/2022]
Abstract
Substance use disorders (SUDs) are a group of neuropsychiatric conditions manifesting due to excessive dependence on potential drugs of abuse such as psychostimulants, opioids including prescription opioids, alcohol, inhalants, etc. Experimental studies have generated enormous data in the area of SUDs, but outcomes from such data have remained largely fragmented. In this review, we attempt to coalesce these data points providing an important first step towards our understanding of the etiology of SUDs. We propose and describe a 'core addictome' pathway that behaves central to all SUDs. Besides, we also have made some notable observations paving way for several hypotheses; MECP2 behaves as a master switch during substance use; five distinct gene clusters were identified based on respective substance addiction; a central cluster of genes serves as a hub of the addiction pathway connecting all other substance addiction clusters. In addition to describing these findings, we have emphasized the importance of some candidate genes that are of substantial interest for further investigation and serve as high-value targets for translational efforts.
Collapse
Affiliation(s)
- Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Gurudutt Pendyala
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Child Health Research Institute, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
5
|
Sharma HS, Lafuente JV, Feng L, Muresanu DF, Menon PK, Castellani RJ, Nozari A, Sahib S, Tian ZR, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Methamphetamine exacerbates pathophysiology of traumatic brain injury at high altitude. Neuroprotective effects of nanodelivery of a potent antioxidant compound H-290/51. PROGRESS IN BRAIN RESEARCH 2021; 266:123-193. [PMID: 34689858 DOI: 10.1016/bs.pbr.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are often exposed to high altitude (HA, ca. 4500-5000m) for combat operations associated with neurological dysfunctions. HA is a severe stressful situation and people frequently use methamphetamine (METH) or other psychostimulants to cope stress. Since military personnel are prone to different kinds of traumatic brain injury (TBI), in this review we discuss possible effects of METH on concussive head injury (CHI) at HA based on our own observations. METH exposure at HA exacerbates pathophysiology of CHI as compared to normobaric laboratory environment comparable to sea level. Increased blood-brain barrier (BBB) breakdown, edema formation and reductions in the cerebral blood flow (CBF) following CHI were exacerbated by METH intoxication at HA. Damage to cerebral microvasculature and expression of beta catenin was also exacerbated following CHI in METH treated group at HA. TiO2-nanowired delivery of H-290/51 (150mg/kg, i.p.), a potent chain-breaking antioxidant significantly enhanced CBF and reduced BBB breakdown, edema formation, beta catenin expression and brain pathology in METH exposed rats after CHI at HA. These observations are the first to point out that METH exposure in CHI exacerbated brain pathology at HA and this appears to be related with greater production of oxidative stress induced brain pathology, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
6
|
6,7,4'-Trihydroxyflavanone Mitigates Methamphetamine-Induced Neurotoxicity in SH-SY5y Cells via Nrf2/heme Oxyganase-1 and PI3K/Akt/mTOR Signaling Pathways. Molecules 2021; 26:molecules26092442. [PMID: 33922144 PMCID: PMC8122742 DOI: 10.3390/molecules26092442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 12/30/2022] Open
Abstract
Methamphetamine (METH) is a synthetic psychostimulant drug that has detrimental effects on the health of its users. Although it has been investigated as a cause of neurodegenerative disease due to its neurotoxicity, whether small molecules derived from natural products attenuate these side effects remains elusive. 6,7,4'-trihydroxyflavanone (THF) is a flavanone family that possesses various pharmacological activities, including anti-rheumatic, anti-ischemic, anti-inflammatory, anti-osteoclastogenic, and protective effects against METH-induced deactivation of T cells. However, little is known about whether THF protects neuronal cells from METH-induced neurotoxicity. Here, we investigated the protective effects of THF on neurotoxicity induced by METH exposure by enhancing the Nrf2/HO-1 and PI3K/Akt/mTOR signaling pathways in SH-SY5y cells. Treatment with THF did not lead to cytotoxicity, but attenuated METH-induced neurotoxicity by modulating the expression of apoptosis-related proteins, METH-induced oxidative stress, and PI3K/Akt/mTOR phosphorylation in METH-exposed SH-SY5y cells. Moreover, we found THF induced Nrf2 nuclear translocation and HO-1 expression. An inhibitor assay confirmed that the induction of HO-1 by THF attenuates METH-induced neurotoxicity. Therefore, we suggest that THF preserves neuronal cells from METH-induced neurotoxicity by upregulating HO-1 expression through the Nrf2 and PI3K/Akt/mTOR signaling pathways. Thus, THF has therapeutic potential for use in the treatment of METH-addicts suffering from neurodegenerative diseases.
Collapse
|
7
|
Zoubková H, Tomášková A, Nohejlová K, Černá M, Šlamberová R. Prenatal Exposure to Methamphetamine: Up-Regulation of Brain Receptor Genes. Front Neurosci 2019; 13:771. [PMID: 31417344 PMCID: PMC6686742 DOI: 10.3389/fnins.2019.00771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/09/2019] [Indexed: 01/10/2023] Open
Abstract
Methamphetamine (METH) is a widespread illicit drug. If it is taken by pregnant women, it passes through the placenta and just as it affects the mother, it can impair the development of the offspring. The aim of our study was to identify candidates to investigate for changes in the gene expression in the specific regions of the brain associated with addiction to METH in rats. We examined the various areas of the central nervous system (striatum, hippocampus, prefrontal cortex) for signs of impairment in postnatal day 80 in experimental rats, whose mothers had been administered METH (5 mg/kg/day) during the entire gestation period. Changes in the gene expression at the mRNA level were determined by two techniques, microarray and real-time PCR. Results of two microarray trials were evaluated by LIMMA analysis. The first microarray trial detected either up-regulated or down-regulated expression of 2189 genes in the striatum; the second microarray trial detected either up-regulated or down-regulated expression of 1344 genes in the hippocampus of prenatally METH-exposed rats. We examined the expression of 10 genes using the real-time PCR technique. Differences in the gene expression were counted by the Mann–Whitney U-test. Significant changes were observed in the cocaine- and amphetamine-regulated transcript prepropeptide, tachykinin receptor 3, dopamine receptor D3 gene expression in the striatum regions, in the glucocorticoid nuclear receptor Nr3c1 gene expression in the prefrontal cortex and in the carboxylesterase 2 gene expression in the hippocampus of prenatally METH-exposed rats. The microarray technique also detected up-regulated expression of trace amine-associated receptor 7 h gene in the hippocampus of prenatally METH-exposed rats. We have identified susceptible genes; candidates for the study of an impairment related to methamphetamine addiction in the specific regions of the brain.
Collapse
Affiliation(s)
- Hana Zoubková
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Anežka Tomášková
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Kateryna Nohejlová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Marie Černá
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Romana Šlamberová
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
8
|
Epigenetic Effects Induced by Methamphetamine and Methamphetamine-Dependent Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4982453. [PMID: 30140365 PMCID: PMC6081569 DOI: 10.1155/2018/4982453] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022]
Abstract
Methamphetamine is a widely abused drug, which possesses neurotoxic activity and powerful addictive effects. Understanding methamphetamine toxicity is key beyond the field of drug abuse since it allows getting an insight into the molecular mechanisms which operate in a variety of neuropsychiatric disorders. In fact, key alterations produced by methamphetamine involve dopamine neurotransmission in a way, which is reminiscent of spontaneous neurodegeneration and psychiatric schizophrenia. Thus, understanding the molecular mechanisms operated by methamphetamine represents a wide window to understand both the addicted brain and a variety of neuropsychiatric disorders. This overlapping, which is already present when looking at the molecular and cellular events promoted immediately after methamphetamine intake, becomes impressive when plastic changes induced in the brain of methamphetamine-addicted patients are considered. Thus, the present manuscript is an attempt to encompass all the molecular events starting at the presynaptic dopamine terminals to reach the nucleus of postsynaptic neurons to explain how specific neurotransmitters and signaling cascades produce persistent genetic modifications, which shift neuronal phenotype and induce behavioral alterations. A special emphasis is posed on disclosing those early and delayed molecular events, which translate an altered neurotransmitter function into epigenetic events, which are derived from the translation of postsynaptic noncanonical signaling into altered gene regulation. All epigenetic effects are considered in light of their persistent changes induced in the postsynaptic neurons including sensitization and desensitization, priming, and shift of neuronal phenotype.
Collapse
|
9
|
Untargeted Metabolomic Analysis of Rat Neuroblastoma Cells as a Model System to Study the Biochemical Effects of the Acute Administration of Methamphetamine. Metabolites 2018; 8:metabo8020038. [PMID: 29880740 PMCID: PMC6027511 DOI: 10.3390/metabo8020038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Methamphetamine is an illicit psychostimulant drug that is linked to a number of diseases of the nervous system. The downstream biochemical effects of its primary mechanisms are not well understood, and the objective of this study was to investigate whether untargeted metabolomic analysis of an in vitro model could generate data relevant to what is already known about this drug. Rat B50 neuroblastoma cells were treated with 1 mM methamphetamine for 48 h, and both intracellular and extracellular metabolites were profiled using gas chromatography–mass spectrometry. Principal component analysis of the data identified 35 metabolites that contributed most to the difference in metabolite profiles. Of these metabolites, the most notable changes were in amino acids, with significant increases observed in glutamate, aspartate and methionine, and decreases in phenylalanine and serine. The data demonstrated that glutamate release and, subsequently, excitotoxicity and oxidative stress were important in the response of the neuronal cell to methamphetamine. Following this, the cells appeared to engage amino acid-based mechanisms to reduce glutamate levels. The potential of untargeted metabolomic analysis has been highlighted, as it has generated biochemically relevant data and identified pathways significantly affected by methamphetamine. This combination of technologies has clear uses as a model for the study of neuronal toxicology.
Collapse
|
10
|
Reis AFVF, Gonçalves ILP, Neto AFG, Santos AS, Kuca K, Nepovimova E, Neto AMJC. Intermolecular interactions between DNA and methamphetamine, amphetamine, ecstasy and their major metabolites. J Biomol Struct Dyn 2017; 36:3047-3057. [PMID: 28978251 DOI: 10.1080/07391102.2017.1386592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In this work, we carried out a theoretical investigation regarding amphetamine-type stimulants, which can cause central nervous system degeneration, interacting with human DNA. These include amphetamine, methamphetamine, 3,4-Methylenedioxymethamphetamine (also known as ecstasy), as well as their main metabolites. The studies were performed through molecular docking and molecular dynamics simulations, where molecular interactions of the receptor-ligand systems, along with their physical-chemical energies, were reported. Our results show that 3,4-Methylenedioxymethamphetamine and 3,4-Dihydroxymethamphetamine (ecstasy) present considerable reactivity with the receptor (DNA), suggesting that these molecules may cause damage due to human-DNA. These results were indicated by free Gibbs change of bind (ΔGbind) values referring to intermolecular interactions between the drugs and the minor grooves of DNA, which were predominant for all simulations. In addition, it was observed that 3,4-Dihydroxymethamphetamine (ΔGbind = -13.15 kcal/mol) presented greater spontaneity in establishing interactions with DNA in comparison to 3,4-Methylenedioxymethamphetamine (ΔGbind = -8.61 kcal/mol). Thus, according with the calculations performed our results suggest that the 3,4-Methylenedioxymethamphetamine and 3,4-Dihydroxymethamphetamine have greater probability to provide damage to human DNA fragments.
Collapse
Affiliation(s)
- Arthur F V F Reis
- a Laboratory of Preparation and Computation of Nanomaterial , Faculty of Physics-ICEN-Federal University of Pará , Augusto Correa Street N°.1 C. P. 479, 66075-110 Belém , PA , Brazil.,b Federal University of Pará , Institute of Exact and Natural Sciences, Faculty of Chemistry . Augusto Correa Street, 01, Guamá66075-110, Belém , PA , Brazil
| | - Igor L P Gonçalves
- a Laboratory of Preparation and Computation of Nanomaterial , Faculty of Physics-ICEN-Federal University of Pará , Augusto Correa Street N°.1 C. P. 479, 66075-110 Belém , PA , Brazil.,b Federal University of Pará , Institute of Exact and Natural Sciences, Faculty of Chemistry . Augusto Correa Street, 01, Guamá66075-110, Belém , PA , Brazil
| | - Abel F G Neto
- a Laboratory of Preparation and Computation of Nanomaterial , Faculty of Physics-ICEN-Federal University of Pará , Augusto Correa Street N°.1 C. P. 479, 66075-110 Belém , PA , Brazil
| | - Alberdan S Santos
- b Federal University of Pará , Institute of Exact and Natural Sciences, Faculty of Chemistry . Augusto Correa Street, 01, Guamá66075-110, Belém , PA , Brazil
| | - Kamil Kuca
- c Biomedical Research Center , University Hospital Hradec Kralove , Sokolska 581, 500 05 Hradec Kralove , Czech Republic.,d Department of Chemistry, Faculty of Science , University of Hradec Kralove , Rokitanskeho 62, 500 03 Hradec Kralove , Czech Republic
| | - Eugenie Nepovimova
- c Biomedical Research Center , University Hospital Hradec Kralove , Sokolska 581, 500 05 Hradec Kralove , Czech Republic.,d Department of Chemistry, Faculty of Science , University of Hradec Kralove , Rokitanskeho 62, 500 03 Hradec Kralove , Czech Republic
| | - Antonio M J C Neto
- a Laboratory of Preparation and Computation of Nanomaterial , Faculty of Physics-ICEN-Federal University of Pará , Augusto Correa Street N°.1 C. P. 479, 66075-110 Belém , PA , Brazil
| |
Collapse
|
11
|
Wells PG, Bhatia S, Drake DM, Miller-Pinsler L. Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine. ACTA ACUST UNITED AC 2017; 108:108-30. [PMID: 27345013 DOI: 10.1002/bdrc.21134] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/09/2016] [Indexed: 11/06/2022]
Abstract
In utero exposure of mouse progeny to alcohol (ethanol, EtOH) and methamphetamine (METH) causes substantial postnatal neurodevelopmental deficits. One emerging pathogenic mechanism underlying these deficits involves fetal brain production of reactive oxygen species (ROS) that alter signal transduction, and/or oxidatively damage cellular macromolecules like lipids, proteins, and DNA, the latter leading to altered gene expression, likely via non-mutagenic mechanisms. Even physiological levels of fetal ROS production can be pathogenic in biochemically predisposed progeny, and ROS formation can be enhanced by drugs like EtOH and METH, via activation/induction of ROS-producing NADPH oxidases (NOX), drug bioactivation to free radical intermediates by prostaglandin H synthases (PHS), and other mechanisms. Antioxidative enzymes, like catalase in the fetal brain, while low, provide critical protection. Oxidatively damaged DNA is normally rapidly repaired, and fetal deficiencies in several DNA repair proteins, including oxoguanine glycosylase 1 (OGG1) and breast cancer protein 1 (BRCA1), enhance the risk of drug-initiated postnatal neurodevelopmental deficits, and in some cases deficits in untreated progeny, the latter of which may be relevant to conditions like autism spectrum disorders (ASD). Risk is further regulated by fetal nuclear factor erythroid 2-related factor 2 (Nrf2), a ROS-sensing protein that upregulates an array of proteins, including antioxidative enzymes and DNA repair proteins. Imbalances between conceptal pathways for ROS formation, versus those for ROS detoxification and DNA repair, are important determinants of risk. Birth Defects Research (Part C) 108:108-130, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Peter G Wells
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada.,Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Shama Bhatia
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Danielle M Drake
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Lutfiya Miller-Pinsler
- Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Bagheri J, Rajabzadeh A, Baei F, Jalayeri Z, Ebrahimzadeh-bideskan A. The effect of maternal exposure to methamphetamine during pregnancy and lactation period on hippocampal neurons apoptosis in rat offspring. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1288141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Javad Bagheri
- Department of Anatomy and Cell Biology, School of Medicine and
| | - Aliakbar Rajabzadeh
- Department of Anatomy and Cell Biology, School of Medicine and
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Baei
- Department of Anatomy and Cell Biology, School of Medicine and
| | - Zahra Jalayeri
- Department of Anatomy and Cell Biology, School of Medicine and
| | - Alireza Ebrahimzadeh-bideskan
- Department of Anatomy and Cell Biology, School of Medicine and
- Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
dl-3-n-Butylphthalide attenuation of methamphetamine-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Life Sci 2016; 165:16-20. [DOI: 10.1016/j.lfs.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022]
|
14
|
Ohnishi S, Mizutani H, Kawanishi S. The enhancement of oxidative DNA damage by anti-diabetic metformin, buformin, and phenformin, via nitrogen-centered radicals. Free Radic Res 2016; 50:929-37. [DOI: 10.1080/10715762.2016.1204651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Ramkissoon A, Wells PG. Methamphetamine oxidative stress, neurotoxicity, and functional deficits are modulated by nuclear factor-E2-related factor 2. Free Radic Biol Med 2015; 89:358-68. [PMID: 26427884 DOI: 10.1016/j.freeradbiomed.2015.07.157] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/30/2022]
Abstract
Activation of redox-sensitive transcription factors like nuclear factor-E2-related factor 2 (Nrf2) can enhance the transcription of cytoprotective genes during oxidative stress. We investigated whether Nrf2 is activated by methamphetamine (METH) thereby altering neurotoxicity in Nrf2 +/+ and -/- adult mouse brain. A single dose of METH can induce the mRNA levels of Nrf2-regulated antioxidant and cytoprotective proteins in mouse brain. Multiple-day dosing with METH enhanced DNA oxidation and decreased tyrosine hydroxylase and dopamine transporter staining in the striatum, indicating dopaminergic nerve terminal toxicity, which was more severe in -/- mice, as were deficits in motor coordination and olfactory discrimination. These Nrf2-dependent effects were independent of changes in METH metabolism or the induction of hyperthermia. Similarly, METH increased striatal glial fibrillary acidic protein, indicating neurotoxicity. METH neurotoxicity was also observed in the glial cells and in the GABAergic system of the olfactory bulbs and was enhanced in -/- mice, whereas dopaminergic parameters were unaffected. With one-day dosing of METH, there were no differences between +/+ and -/- mice in either basal or METH-enhanced DNA oxidation and neurotoxicity markers. Nrf2-mediated pathways accordingly may protect against the neurodegenerative effects and functional deficits initiated by METH and perhaps other reactive oxygen species-enhancing neurotoxicants, when there is time for transcriptional activation and protein induction. In human users of METH, this mechanism may be essential when differences in drug abuse patterns may alter the induction and duration of Nrf2 activation thereby modulating susceptibility to the neurotoxic effects of METH.
Collapse
Affiliation(s)
- Annmarie Ramkissoon
- Division of Biomolecular Sciences, Faculty of Pharmacy University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Peter G Wells
- Division of Biomolecular Sciences, Faculty of Pharmacy University of Toronto, Toronto, ON M5S 3M2, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
16
|
Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol 2015; 2015:103969. [PMID: 25861156 PMCID: PMC4377385 DOI: 10.1155/2015/103969] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/05/2015] [Accepted: 03/05/2015] [Indexed: 12/19/2022] Open
Abstract
Methamphetamine (METH) is a sympathomimetic amine that belongs to phenethylamine and amphetamine class of psychoactive drugs, which are widely abused for their stimulant, euphoric, empathogenic, and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, METH produces persistent damage to dopamine and serotonin release in nerve terminals, gliosis, and apoptosis. This review summarized the numerous interdependent mechanisms including excessive dopamine, ubiquitin-proteasome system dysfunction, protein nitration, endoplasmic reticulum stress, p53 expression, inflammatory molecular, D3 receptor, microtubule deacetylation, and HIV-1 Tat protein that have been demonstrated to contribute to this damage. In addition, the feasible therapeutic strategies according to recent studies were also summarized ranging from drug and protein to gene level.
Collapse
|
17
|
Miller-Pinsler L, Pinto DJ, Wells PG. Oxidative DNA damage in the in utero initiation of postnatal neurodevelopmental deficits by normal fetal and ethanol-enhanced oxidative stress in oxoguanine glycosylase 1 knockout mice. Free Radic Biol Med 2015; 78:23-9. [PMID: 25311828 DOI: 10.1016/j.freeradbiomed.2014.09.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/15/2014] [Accepted: 09/24/2014] [Indexed: 01/18/2023]
Abstract
Studies in mice with deficient antioxidative enzymes have shown that physiological levels of reactive oxygen species (ROS) can adversely affect the developing embryo and fetus. Herein, DNA repair-deficient progeny of oxoguanine glycosylase 1 (ogg1)-knockout mice lacking repair of the oxidative DNA lesion 8-oxo-2'-deoxyguanosine (8-oxodGuo) exhibited enhanced postnatal neurodevelopmental deficits, revealing the pathogenic potential of 8-oxodGuo initiated by physiological ROS production in fetal brain and providing the first evidence of a pathological phenotype for ogg1-knockout mice. Moreover, when exposed in utero to ethanol (EtOH), ogg1-knockout progeny exhibited higher levels of 8-oxodGuo in fetal brain and more severe postnatal neurodevelopmental deficits than wild-type littermates, both of which were blocked by pretreatment with the free radical trapping agent phenylbutylnitrone. These results suggest that ROS-initiated DNA oxidation, as distinct from altered signal transduction, contributes to neurodevelopmental deficits caused by in utero EtOH exposure, and fetal DNA repair is a determinant of risk.
Collapse
Affiliation(s)
| | - Daniel J Pinto
- Department of Pharmacology and Toxicology, Faculty of Medicine
| | - Peter G Wells
- Department of Pharmacology and Toxicology, Faculty of Medicine; Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
18
|
Bartkiene E, Schleining G, Juodeikiene G, Vidmantiene D, Krungleviciute V, Rekstyte T, Basinskiene L, Stankevicius M, Akuneca I, Ragazinskiene O, Maruska A. The influence of lactic acid fermentation on biogenic amines and volatile compounds formation in flaxseed and the effect of flaxseed sourdough on the quality of wheat bread. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2013.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Wells PG, Miller-Pinsler L, Shapiro AM. Impact of Oxidative Stress on Development. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2014. [DOI: 10.1007/978-1-4939-1405-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
20
|
Ramkissoon A, Wells PG. Developmental role of nuclear factor E2-related factor 2 in mitigating methamphetamine fetal toxicity and postnatal neurodevelopmental deficits. Free Radic Biol Med 2013; 65:620-631. [PMID: 23932974 DOI: 10.1016/j.freeradbiomed.2013.07.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 07/19/2013] [Accepted: 07/31/2013] [Indexed: 12/30/2022]
Abstract
Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that mediates protective responses to oxidative stress, but its developmental role is unknown. Herein, we treated pregnant Nrf2-deficient knockout mice with methamphetamine (METH) (5-40 mg/kg ip), which increases fetal reactive oxygen species (ROS) and oxidatively damaged DNA in fetal brain tissue. METH-exposed Nrf2(-/-) fetuses were unable to increase mRNA levels of ROS-protective heme oxygenase-1, NAD(P)H:quinone oxidoreductase, or oxoguanine glycosylase 1, unlike wild-type controls, and exhibited enhanced DNA oxidation, fetal resorption, edema, and reduced fetal weight, with greater toxicity in female Nrf2(-/-) fetuses. Postnatal neurodevelopmental deficits in activity and olfactory function were exacerbated, with gender-dependent differences, and the olfactory bulb GABAergic marker GAD-65 was decreased in Nrf2(-/-) offspring exposed in utero to METH. In utero METH-initiated olfactory deficits may be a sensitive postnatal functional test for long-term neurotoxicity, and indicated a broad fetal role for Nrf2. The results show that fetal Nrf2 deficiency enhances METH-initiated oxidative DNA damage and toxicity, suggesting that Nrf2 activation of cytoprotective proteins mitigates the effects of ROS and their oxidative damage to cellular macromolecules, thereby protecting the developing fetus from adverse structural and postnatal neurodevelopmental consequences.
Collapse
Affiliation(s)
- Annmarie Ramkissoon
- Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Peter G Wells
- Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Halpin LE, Collins SA, Yamamoto BK. Neurotoxicity of methamphetamine and 3,4-methylenedioxymethamphetamine. Life Sci 2013; 97:37-44. [PMID: 23892199 DOI: 10.1016/j.lfs.2013.07.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 01/08/2023]
Abstract
Amphetamines are a class of psychostimulant drugs that are widely abused for their stimulant, euphoric, empathogenic and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, methamphetamine and 3,4 methylenedioxymethamphetamine (MDMA) produce persistent damage to dopamine and serotonin nerve terminals. This review summarizes the numerous interdependent mechanisms including excitotoxicity, mitochondrial damage and oxidative stress that have been demonstrated to contribute to this damage. Emerging non-neuronal mechanisms by which the drugs may contribute to monoaminergic terminal damage, as well as the neuropsychiatric consequences of this terminal damage are also presented. Methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) have similar chemical structures and pharmacologic properties compared to other abused substances including cathinone (khat), as well as a relatively new class of novel synthetic amphetamines known as 'bath salts' that have gained popularity among drug abusers.
Collapse
Affiliation(s)
- Laura E Halpin
- Department of Neurosciences, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Stuart A Collins
- Department of Neurosciences, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Bryan K Yamamoto
- Department of Neurosciences, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614, USA.
| |
Collapse
|
22
|
Jeng W, Loniewska MM, Wells PG. Brain glucose-6-phosphate dehydrogenase protects against endogenous oxidative DNA damage and neurodegeneration in aged mice. ACS Chem Neurosci 2013; 4:1123-32. [PMID: 23672460 DOI: 10.1021/cn400079y] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) protects the embryo from endogenous and xenobiotic-enhanced oxidative DNA damage and embryopathies. Here we show in aged mice that G6PD similarly protects against endogenous reactive oxygen species (ROS)-mediated neurodegeneration. In G6PD-normal (G6PD(+/+)) and heterozygous (G6PD(+/def)) and homozygous (G6PD(def/def)) G6PD-deficient male and female mice at about 2 years of age, oxidative DNA damage in various brain regions was assessed by 8-oxo-2'-deoxyguanosine formation using high-performance liquid chromatography and immunohistochemistry. Morphological changes in brain sections were assessed by H&E staining. DNA oxidation was increased in G6PD(def/def) mice in the cortex (p < 0.02), hippocampus (p < 0.01) and cerebellum (p < 0.006) compared to G6PD(+/+) mice, and was localized to distinct cell types. Histologically, in G6PD(+/def) mice, enhanced regionally and cellularly specific neurodegenerative changes were observed in those brain regions exhibiting elevated DNA oxidation, with a 53% reduction in the Purkinje cell count. These results show G6PD is important in protecting against the neurodegenerative effects of endogenous ROS in aging, and suggest that common hereditary G6PD deficiencies may constitute a risk factor for some neurodegenerative diseases.
Collapse
Affiliation(s)
- Winnie Jeng
- Faculty of Pharmacy and ‡Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario,
Canada
| | - Margaret M. Loniewska
- Faculty of Pharmacy and ‡Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario,
Canada
| | - Peter G. Wells
- Faculty of Pharmacy and ‡Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario,
Canada
| |
Collapse
|
23
|
Abstract
Bioactivation through drug metabolism is frequently suspected as an initiating event in many drug toxicities. The CYP450 and peroxidase enzyme systems are generally considered the most important groups of enzymes involved in bioactivation, producing either electrophilic or radical metabolites. Drug design efforts routinely consider these factors, and a number of structural alerts for bioactivation have been identified. Among the most frequently encountered structural alerts are aromatic systems with electron-donating substituents and some five-membered heterocycles. Metabolism of these groups can lead to chemically reactive electrophiles. Strategies that have been used to minimize the associated risk involve replacing the structural-alert moiety, blocking or making metabolism less favorable, and incorporating metabolic soft spots to facilitate metabolism away from the structural-alert substituent. The metabolism of drugs to radicals usually leads to cellular oxidative stress. The formation of radical metabolites can be minimized through the use of similar approaches but remains an area less frequently considered in drug design.
Collapse
Affiliation(s)
- John S Walsh
- DMPK Consulting, Wake Forest, North Carolina 27587, USA.
| | | |
Collapse
|
24
|
Abramov JP, Wells PG. Embryonic catalase protects against endogenous and phenytoin‐enhanced DNA oxidation and embryopathies in acatalasemic and human catalase‐expressing mice. FASEB J 2011; 25:2188-200. [DOI: 10.1096/fj.11-182444] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Peter G. Wells
- Faculty of PharmacyUniversity of TorontoTorontoOntarioCanada
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
25
|
McCallum GP, Wong AW, Wells PG. Cockayne syndrome B protects against methamphetamine-enhanced oxidative DNA damage in murine fetal brain and postnatal neurodevelopmental deficits. Antioxid Redox Signal 2011; 14:747-56. [PMID: 20673160 PMCID: PMC3116650 DOI: 10.1089/ars.2009.2946] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Methamphetamine (METH) increases the oxidative DNA lesion 8-oxoguanine (8-oxoG) in fetal mouse brain, and causes postnatal motor coordination deficits after in utero exposure. Like oxoguanine glycosylase 1 (OGG1), the Cockayne syndrome B (CSB) protein is involved in the repair of oxidatively damaged DNA, although its function is unclear. Here we used CSB-deficient Csb(m/m) knockout mice to investigate the developmental role of DNA oxidation and CSB in METH-initiated neurodevelopmental deficits. METH (40 mg/kg intraperitoneally) administration to pregnant Csb females on gestational day 17 increased 8-oxoG levels in Csb(m/m) fetal brains (p < 0.05). CSB modulated 8-oxoG levels independent of OGG1 activity, as 8-oxoG incision activity in fetal nuclear extracts was identical in Csb(m/m) and Csb(+/+)mice. This CSB effect was evident despite 7.1-fold higher OGG1 activity in Csb(+/+) mice compared to outbred CD-1 mice. Female Csb(m/m) offspring exposed in utero to METH exhibited motor coordination deficits postnatally (p < 0.05). In utero METH exposure did not cause dopaminergic nerve terminal degeneration, in contrast to adult exposures. This is the first evidence that CSB protects the fetus from xenobiotic-enhanced DNA oxidation and postnatal functional deficits, suggesting that oxidatively damaged DNA is developmentally pathogenic, and that fetal CSB activity may modulate the risk of reactive oxygen species-mediated adverse developmental outcomes.
Collapse
Affiliation(s)
- Gordon P McCallum
- Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada
| | | | | |
Collapse
|
26
|
Jeng W, Ramkissoon A, Wells PG. Reduced DNA oxidation in aged prostaglandin H synthase-1 knockout mice. Free Radic Biol Med 2011; 50:550-6. [PMID: 21094252 DOI: 10.1016/j.freeradbiomed.2010.11.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 11/01/2010] [Accepted: 11/11/2010] [Indexed: 11/30/2022]
Abstract
Prostaglandin H synthase (PHS)-2 (COX-2) is implicated in the neurodegeneration of Alzheimer and Parkinson diseases. Multiple mechanisms may be involved, including PHS-catalyzed bioactivation of neurotransmitters, precursors, and metabolites to neurotoxic free radical intermediates. Herein, in vitro studies with the purified PHS-1 (COX-1) isoform and in vivo studies of aging PHS-1 knockout mice were used to evaluate the potential neurodegenerative role of PHS-1-catalyzed bioactivation of endogenous neurotransmitters to free radical intermediates that enhance reactive oxygen species formation and oxidative DNA damage. The brains of 2-year-old wild-type (+/+) PHS-1 normal and heterozygous (+/-) and homozygous (-/-) PHS-1 knockout mice were analyzed for 8-oxo-2'-deoxyguanosine formation, characterized by high-performance liquid chromatography with electrochemical detection and by immunohistochemistry. Compared to aging PHS-1(+/+) normal mice, aging PHS-1(-/-) knockout mice had less oxidative DNA damage in the cortex, hippocampus, cerebellum, and brain stem. This PHS-1-dependent oxidative damage was not observed in young mice. In vitro incubation of purified PHS-1 and 2'-deoxyguanosine with dopamine, L-DOPA, and epinephrine, but not glutamate or norepinephrine, enhanced oxidative DNA damage. These results suggest that PHS-1-dependent accumulation of oxidatively damaged macromolecules including DNA may contribute to the mechanisms and risk factors of aging-related neurodegeneration.
Collapse
Affiliation(s)
- Winnie Jeng
- Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada M5S 3M2
| | | | | |
Collapse
|
27
|
Ramkissoon A, Wells PG. Human prostaglandin H synthase (hPHS)-1- and hPHS-2-dependent bioactivation, oxidative macromolecular damage, and cytotoxicity of dopamine, its precursor, and its metabolites. Free Radic Biol Med 2011; 50:295-304. [PMID: 21078384 DOI: 10.1016/j.freeradbiomed.2010.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 09/22/2010] [Accepted: 11/08/2010] [Indexed: 01/14/2023]
Abstract
The dopamine (DA) precursor l-dihydroxyphenylalanine (L-DOPA) and metabolites dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and 3-methoxytyramine may serve as substrates for prostaglandin H synthase (PHS)-catalyzed bioactivation to free radical intermediates. We used CHO-K1 cells expressing human (h) PHS-1 or hPHS-2 to investigate hPHS isozyme-dependent oxidative damage and cytotoxicity. hPHS-1- and hPHS-2-expressing cells incubated with DA, L-DOPA, DOPAC, or HVA exhibited increased cytotoxicity compared to untransfected cells, and cytotoxicity was increased further by exogenous arachidonic acid (AA), which increased hPHS activity. Preincubation with catalase, which detoxifies reactive oxygen species, or acetylsalicylic acid, an inhibitor of hPHS-1 and -2, reduced the cytotoxicity caused by DA, L-DOPA, DOPAC, and HVA in hPHS-1 and -2 cells both with and without AA. Protein oxidation was increased in hPHS-1 and -2 cells exposed to DA or L-DOPA and further increased by AA addition. DNA oxidation was enhanced earlier and at lower substrate concentrations than protein oxidation in both hPHS-1 and -2 cells by DA, L-DOPA, DOPAC, and HVA and further enhanced by AA addition. hPHS-2 cells seemed more susceptible than hPHS-1 cells, whereas untransfected CHO-K1 cells were less susceptible. Thus, isozyme-specific, hPHS-dependent oxidative damage and cytotoxicity caused by neurotransmitters, their precursors, and their metabolites may contribute to neurodegeneration associated with aging.
Collapse
Affiliation(s)
- Annmarie Ramkissoon
- Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
28
|
Ramkissoon A, Wells PG. Human prostaglandin H synthase (hPHS)-1 and hPHS-2 in amphetamine analog bioactivation, DNA oxidation, and cytotoxicity. Toxicol Sci 2010; 120:154-62. [PMID: 21163909 DOI: 10.1093/toxsci/kfq377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Neurotoxicity of the amphetamine analogs methamphetamine (METH) and 3,4-methylenedioxyamphetamine (MDA) (the active metabolite of ecstasy) may involve their prostaglandin H synthase (PHS)-dependent bioactivation to free radical intermediates that generate reactive oxygen species and oxidatively damage cellular macromolecules. We used Chinese hamster ovary-K1 (CHO-K1) cell lines either untransfected or stably expressing human PHS-1 (hPHS-1) or hPHS-2 to investigate hPHS isozyme-dependent oxidative damage and cytotoxicity. Both METH and MDA (250-1000 μM) caused concentration-independent cytotoxicity in hPHS-1 cells, suggesting maximal bioactivation at the lowest concentration. In hPHS-2 cells, with half the activity of hPHS-1 cells, METH (250-1000 μM) cytotoxicity was less than that for hPHS-1 cells but was concentration dependent and increased by exogenous arachidonic acid (AA), which increased hPHS activity. Whereas 10 μM MDA and METH were not cytotoxic, at 100 μM both analogs caused AA-dependent and concentration-dependent increases in cytotoxicity and DNA oxidation in both hPHS-1/2 cells. The hPHS-2 isozyme appeared to provide more efficacious bioactivation of these amphetamine analogs. Acetylsalicylic acid, an irreversible inhibitor of both hPHS-1 and hPHS-2, blocked cytotoxicity and DNA oxidation in both cell lines and untransfected CHO-K1 cells lacking PHS activity were similarly resistant. Accordingly, isozyme-dependent hPHS-catalyzed bioactivation of METH and MDA can cause oxidative macromolecular damage and cytotoxicity, which may contribute to their neurotoxicity.
Collapse
Affiliation(s)
- Annmarie Ramkissoon
- Division of Biomolecular Sciences, Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | |
Collapse
|
29
|
Sengupta T, Mohanakumar K. 2-Phenylethylamine, a constituent of chocolate and wine, causes mitochondrial complex-I inhibition, generation of hydroxyl radicals and depletion of striatal biogenic amines leading to psycho-motor dysfunctions in Balb/c mice. Neurochem Int 2010; 57:637-46. [DOI: 10.1016/j.neuint.2010.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 06/29/2010] [Accepted: 07/24/2010] [Indexed: 01/08/2023]
|
30
|
Jeng W, Wells PG. Reduced 3,4-methylenedioxymethamphetamine (MDMA, Ecstasy)-initiated oxidative DNA damage and neurodegeneration in prostaglandin H synthase-1 knockout mice. ACS Chem Neurosci 2010; 1:366-80. [PMID: 22778832 DOI: 10.1021/cn900022w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 01/12/2010] [Indexed: 11/29/2022] Open
Abstract
The neurodegenerative potential of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and underlying mechanisms are under debate. Here, we show that MDMA is a substrate for CNS prostaglandin H synthase (PHS)-catalyzed bioactivation to a free radical intermediate that causes reactive oxygen species (ROS) formation and neurodegenerative oxidative DNA damage. In vitro PHS-1-catalyzed bioactivation of MDMA stereoselectively produced free radical intermediate formation and oxidative DNA damage that was blocked by the PHS inhibitor eicosatetraynoic acid. In vivo, MDMA stereoselectively caused gender-independent DNA oxidation and dopaminergic nerve terminal degeneration in several brain regions, dependent on regional PHS-1 levels. Conversely, MDMA-initiated striatal DNA oxidation, nerve terminal degeneration, and motor coordination deficits were reduced in PHS-1 +/- and -/- knockout mice in a gene dose-dependent fashion. These results confirm the neurodegenerative potential of MDMA and provide the first direct evidence for a novel molecular mechanism involving PHS-catalyzed formation of a neurotoxic MDMA free radical intermediate.
Collapse
Affiliation(s)
| | - Peter G. Wells
- Faculty of Pharmacy
- Department of Pharmacology and Toxicology
| |
Collapse
|
31
|
Preston TJ, Henderson JT, McCallum GP, Wells PG. Base excision repair of reactive oxygen species-initiated 7,8-dihydro-8-oxo-2'-deoxyguanosine inhibits the cytotoxicity of platinum anticancer drugs. Mol Cancer Ther 2009; 8:2015-26. [PMID: 19567822 DOI: 10.1158/1535-7163.mct-08-0929] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anticancer therapy with cisplatin and oxaliplatin is limited by toxicity and onset of tumor resistance. Both drugs form platinum-DNA cross-linked adducts, and cisplatin causes oxidative DNA damage including the 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG) lesion. To assess oxidative DNA damage as a mechanism of cisplatin and oxaliplatin cytotoxicity, 8-oxodG-directed base excision repair was stably enhanced in human embryonic kidney cells by FLAG-tagged expression of human oxoguanine glycosylase 1 (alpha-OGG1) or its functional homologue, Escherichia coli formamidopyrimidine glycosylase (fpg). Both drugs increased reactive oxygen species and 8-oxodG levels, and cytotoxicity was decreased by antioxidant pretreatment. Ectopic expression of alpha-OGG1 or fpg in cell clones increased nuclear and mitochondrial 8-oxodG repair, and reduced death by reactive oxygen species initiators (H(2)O(2), menadione) and both platinum drugs. Exposure to oxaliplatin caused a more marked and sustained block of cell proliferation than exposure to cisplatin. We conclude that the 8-oxodG lesion is cytotoxic, and base excision repair a likely determinant of risk. The greater antitumor efficacy of oxaliplatin seems unrelated to oxidative DNA damage, suggesting a novel strategy for improving the therapeutic index in cancer therapy.
Collapse
|
32
|
Gonçalves LL, Ramkissoon A, Wells PG. Prostaglandin H Synthase-1-Catalyzed Bioactivation of Neurotransmitters, Their Precursors, and Metabolites: Oxidative DNA Damage and Electron Spin Resonance Spectroscopy Studies. Chem Res Toxicol 2009; 22:842-52. [DOI: 10.1021/tx800423s] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luísa L. Gonçalves
- Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, and Department of Pharmacology and Toxicology, University of Toronto, 1 Kings’ College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Annmarie Ramkissoon
- Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, and Department of Pharmacology and Toxicology, University of Toronto, 1 Kings’ College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Peter G. Wells
- Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, and Department of Pharmacology and Toxicology, University of Toronto, 1 Kings’ College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
33
|
Krasnova IN, Cadet JL. Methamphetamine toxicity and messengers of death. ACTA ACUST UNITED AC 2009; 60:379-407. [PMID: 19328213 DOI: 10.1016/j.brainresrev.2009.03.002] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 03/16/2009] [Indexed: 12/11/2022]
Abstract
Methamphetamine (METH) is an illicit psychostimulant that is widely abused in the world. Several lines of evidence suggest that chronic METH abuse leads to neurodegenerative changes in the human brain. These include damage to dopamine and serotonin axons, loss of gray matter accompanied by hypertrophy of the white matter and microgliosis in different brain areas. In the present review, we summarize data on the animal models of METH neurotoxicity which include degeneration of monoaminergic terminals and neuronal apoptosis. In addition, we discuss molecular and cellular bases of METH-induced neuropathologies. The accumulated evidence indicates that multiple events, including oxidative stress, excitotoxicity, hyperthermia, neuroinflammatory responses, mitochondrial dysfunction, and endoplasmic reticulum stress converge to mediate METH-induced terminal degeneration and neuronal apoptosis. When taken together, these findings suggest that pharmacological strategies geared towards the prevention and treatment of the deleterious effects of this drug will need to attack the various pathways that form the substrates of METH toxicity.
Collapse
Affiliation(s)
- Irina N Krasnova
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, NIDA/NIH/DHHS, Baltimore, MD 21224, USA
| | | |
Collapse
|
34
|
Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJJ, Perstin J, Preston TJ, Wiley MJ, Wong AW. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 2009; 108:4-18. [PMID: 19126598 DOI: 10.1093/toxsci/kfn263] [Citation(s) in RCA: 290] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In the developing embryo and fetus, endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS) like hydroxyl radicals may adversely alter development by oxidatively damaging cellular lipids, proteins and DNA, and/or by altering signal transduction. The postnatal consequences may include an array of birth defects (teratogenesis), postnatal functional deficits, and diseases. In animal models, the adverse developmental consequences of in utero exposure to agents like thalidomide, methamphetamine, phenytoin, benzo[a]pyrene, and ionizing radiation can be modulated by altering pathways that control the embryonic ROS balance, including enzymes that bioactivate endogenous substrates and xenobiotics to free radical intermediates, antioxidative enzymes that detoxify ROS, and enzymes that repair oxidative DNA damage. ROS-mediated signaling via Ras, nuclear factor kappa B and related transducers also may contribute to altered development. Embryopathies can be reduced by free radical spin trapping agents and antioxidants, and enhanced by glutathione depletion. Further modulatory approaches to evaluate such mechanisms in vivo and/or in embryo culture have included the use of knockout mice, transgenic knock-ins and mutant deficient mice with altered enzyme activities, as well as antisense oligonucleotides, protein therapy with antioxidative enzymes, dietary depletion of essential cofactors and chemical enzyme inhibitors. In a few cases, measures anticipated to be protective have conversely enhanced the risk of adverse developmental outcomes, indicating the complexity of development and need for caution in testing therapeutic strategies in humans. A better understanding of the developmental effects of ROS may provide insights for risk assessment and the reduction of adverse postnatal consequences.
Collapse
Affiliation(s)
- Peter G Wells
- Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Oxoguanine glycosylase 1 protects against methamphetamine-enhanced fetal brain oxidative DNA damage and neurodevelopmental deficits. J Neurosci 2008; 28:9047-54. [PMID: 18768699 DOI: 10.1523/jneurosci.2557-08.2008] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In utero methamphetamine (METH) exposure enhances the oxidative DNA lesion 7,8-dihydro-8-oxoguanine (8-oxoG) in CD-1 fetal mouse brain, and causes long-term postnatal motor coordination deficits. Herein we used oxoguanine glycosylase 1 (ogg1) knock-out mice to determine the pathogenic roles of 8-oxoG and OGG1, which repairs 8-oxoG, in METH-initiated neurodevelopmental anomalies. Administration of METH (20 or 40 mg/kg) on gestational day 17 to pregnant +/- OGG1-deficient females caused a drug dose- and gene dose-dependent increase in 8-oxoG levels in OGG1-deficient fetal brains (p < 0.05). Female ogg1 knock-out offspring exposed in utero to high-dose METH exhibited gene dose-dependent enhanced motor coordination deficits for at least 12 weeks postnatally (p < 0.05). Contrary to METH-treated adult mice, METH-exposed CD-1 fetal brains did not exhibit altered apoptosis or DNA synthesis, and OGG1-deficient offspring exposed in utero to METH did not exhibit postnatal dopaminergic nerve terminal degeneration, suggesting different mechanisms. Enhanced 8-oxoG repair activity in fetal relative to adult organs suggests an important developmental protective role of OGG1 against in utero genotoxic stress. These observations provide the most direct evidence to date that 8-oxoG constitutes an embryopathic molecular lesion, and that functional fetal DNA repair protects against METH teratogenicity.
Collapse
|
36
|
Strolin Benedetti M, Whomsley R, Baltes E. Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics. Expert Opin Drug Metab Toxicol 2007; 2:895-921. [PMID: 17125408 DOI: 10.1517/17425255.2.6.895] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although the majority of oxidative metabolic reactions are mediated by the CYP superfamily of enzymes, non-CYP-mediated oxidative reactions can play an important role in the metabolism of xenobiotics. The (major) oxidative enzymes, other than CYPs, involved in the metabolism of drugs and other xenobiotics are: the flavin-containing monooxygenases, the molybdenum hydroxylases (aldehyde oxidase and xanthine oxidase), the prostaglandin H synthase, the lipoxygenases, the amine oxidases (monoamine, polyamine, diamine and semicarbazide-sensitive amine oxidases) and the alcohol and aldehyde dehydrogenases. In a similar manner to CYPs, these oxidative enzymes can also produce therapeutically active metabolites and reactive/toxic metabolites, modulate the efficacy of therapeutically active drugs or contribute to detoxification. Many of them have been shown to be important in endobiotic metabolism, and, consequently, interactions between drugs and endogenous compounds might occur when they are involved in drug metabolism. In general, most non-CYP oxidative enzymes appear to be noninducible or much less inducible than the CYP system, although some of them may be as inducible as some CYPs. Some of these oxidative enzymes exhibit polymorphic expression, as do some CYPs. It is possible that the contribution of non-CYP oxidative enzymes to the overall metabolism of xenobiotics is underestimated, as most investigations of drug metabolism in discovery and lead optimisation are performed using in vitro test systems optimised for CYP activity.
Collapse
|
37
|
Reese EA, Bunzow JR, Arttamangkul S, Sonders MS, Grandy DK. Trace amine-associated receptor 1 displays species-dependent stereoselectivity for isomers of methamphetamine, amphetamine, and para-hydroxyamphetamine. J Pharmacol Exp Ther 2007; 321:178-86. [PMID: 17218486 DOI: 10.1124/jpet.106.115402] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The synthetic amines methamphetamine (METH), amphetamine (AMPH), and their metabolite para-hydroxyamphetamine (POHA) are chemically and structurally related to the catecholamine neurotransmitters and a small group of endogenous biogenic amines collectively referred to as the trace amines (TAs). Recently, it was reported that METH, AMPH, POHA, and the TAs para-tyramine (TYR) and beta-phenylethylamine (PEA) stimulate cAMP production in human embryonic kidney (HEK)-293 cells expressing rat trace amine-associated receptor 1 (rTAAR1). The discovery that METH and AMPH activate the rTAAR1 motivated us to study the effect of these drugs on the mouse TAAR1 (mTAAR1) and a human-rat chimera (hrChTAAR1). Furthermore, because S-(+)-isomers of METH and AMPH are reported to be more potent and efficacious in vivo than R-(-), we determined the enantiomeric selectivity of all three species of TAAR1. In response to METH, AMPH, or POHA exposure, the accumulation of cAMP by HEK-293 cells stably expressing different species of TAAR1 was concentration- and isomer-dependent. EC50 values for S-(+)-METH were 0.89, 0.92, and 4.44 microM for rTAAR1, mTAAR1, and h-rChTAAR1, respectively. PEA was a potent and full agonist at each species of TAAR1, whereas TYR was a full agonist for the rodent TAAR1s but was a partial agonist at h-rChTAAR1. Interestingly, both isomers of METH were full agonists at mTAAR1 and h-rChTAAR1, whereas both were partial agonists at rTAAR1. Taken together, these in vitro results suggest that, in vivo, TAAR1 could be a novel mediator of the effects of these drugs.
Collapse
Affiliation(s)
- E A Reese
- Department of Physiology and Pharmacology, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|