1
|
Rizvi ZA, Saleem J, Zeb I, Shahzad R, Kayani JA, Faryal J, Bukhari GMJ, Abdi G, Jain M. Effects of intermittent fasting on body composition, clinical health markers and memory status in the adult population: a single-blind randomised controlled trial. Nutr J 2024; 23:147. [PMID: 39609683 PMCID: PMC11603954 DOI: 10.1186/s12937-024-01046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024] Open
Abstract
INTRODUCTION Despite the popularity and potential protective effects of intermittent fasting (IF) against metabolic disorders, more human trials must be conducted to highlight its effects on human health. Therefore, the present trial aimed to investigate the effect of IF on the body composition, health markers, and memory status of obese and overweight adults. METHODS A parallel randomised controlled trial was conducted in Lahore, Pakistan, with 30 participants recruited from each of the three arms (regular diet, customised diet, and IF group) with a follow-up period of 12 weeks. RESULTS There was no significant difference in the mean percentage change in BMI at the end of the study period (p = 0.55). The IF group exhibited a negative median change (-4.41%) in systolic blood pressure compared with the other two groups (p = 0.014), with no difference among the groups in diastolic blood pressure or blood sugar levels (p > 0.05). The percentage change in waist circumference was more significant in the IF group than in the control group, with a significant improvement in the median percentage change in total cholesterol, LDL, triglyceride, and HDL levels (p < 0.05) as well as in the memory score (p < 0.05). CONCLUSION This study revealed that IF helps improve participants' lipid parameters, systolic blood pressure, and memory status. TRIAL REGISTRATION The present study is registered at the registry of Clinicaltrials.gov with identity number NCT05521945 and registration date 30/08/22.
Collapse
Affiliation(s)
- Zahara Ali Rizvi
- Department of Public Health, Institute of Social and Cultural Studies, Lahore, Pakistan
| | - Javeria Saleem
- Department of Public Health, Institute of Social and Cultural Studies, Lahore, Pakistan.
| | - Irfan Zeb
- WVU Medicine, 1 Medical Center Drive, Morgantown, WV, 26505, USA
| | - Ruhma Shahzad
- Department of Public Health, Institute of Social and Cultural Studies, Lahore, Pakistan
| | - Jawwad Afzal Kayani
- Department of Public Health, Institute of Social and Cultural Studies, Lahore, Pakistan
| | - Joham Faryal
- Peterborough City Hospital, University of Cambridge, Cambridgeshire, UK
| | | | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr, 75169, Iran.
| | - Mukul Jain
- Cell & Developmental Biology Lab, Centre of Research for Development, Parul University, Vadodara, Gujarat, 391760, India.
| |
Collapse
|
2
|
Diab R, Dimachkie L, Zein O, Dakroub A, Eid AH. Intermittent Fasting Regulates Metabolic Homeostasis and Improves Cardiovascular Health. Cell Biochem Biophys 2024; 82:1583-1597. [PMID: 38847940 PMCID: PMC11445340 DOI: 10.1007/s12013-024-01314-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 10/02/2024]
Abstract
Obesity is a leading cause of morbidity and mortality globally. While the prevalence of obesity has been increasing, the incidence of its related complications including dyslipidemia and cardiovascular disease (CVD) has also been rising. Recent research has focused on modalities aimed at reducing obesity. Several modalities have been suggested including behavioral and dietary changes, medications, and bariatric surgery. These modalities differ in their effectiveness and invasiveness, with dietary changes gaining more interest due to their minimal risks compared to other modalities. Specifically, intermittent fasting (IF) has been gaining interest in the past decade. IF is characterized by cycles of alternating fasting and eating windows, with several different forms practiced. IF has been shown to reduce weight and alleviate obesity-related complications. Our review of clinical and experimental studies explores the effects of IF on the lipid profile, white adipose tissue (WAT) dynamics, and the gut microbiome. Notably, IF corrects dyslipidemia, reduces WAT accumulation, and decreases inflammation, which reduces CVD and obesity. This comprehensive analysis details the protective metabolic role of IF, advocating for its integration into public health practices.
Collapse
Affiliation(s)
- Rawan Diab
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lina Dimachkie
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Omar Zein
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Dakroub
- St. Francis Hospital and Heart Center, Roslyn, NY, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, Qatar University, QU Health, Doha, Qatar.
| |
Collapse
|
3
|
Arai H. [Physiological Function and Congenital Deficiency of α-TTP, a Determinant of Vitamin E Transport in the Body -One Portion of the Research for Which the Pharmaceutical Society of Japan Award Was Given]. YAKUGAKU ZASSHI 2022; 142:775-795. [PMID: 35908939 DOI: 10.1248/yakushi.22-00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This review summarizes one portion of the research for which the author received the Pharmaceutical Society of Japan Award. The complete title of the awarded research is "Pharmacological Studies on Metabolism and Functions of Biomembrane Lipids". Because the awarded research is a very broad study, this review describes the discovery, physiological functions, and congenital defects of α-tocopherol transfer protein (α-TTP), a critical factor in determining the transport of vitamin E in the body, which has been the focus of the author's work throughout his research career.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
4
|
Genetic diversity and population structure of six autochthonous pig breeds from Croatia, Serbia, and Slovenia. Genet Sel Evol 2022; 54:30. [PMID: 35484510 PMCID: PMC9052598 DOI: 10.1186/s12711-022-00718-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The importance of local breeds as genetic reservoirs of valuable genetic variation is well established. Pig breeding in Central and South-Eastern Europe has a long tradition that led to the formation of several local pig breeds. In the present study, genetic diversity parameters were analysed in six autochthonous pig breeds from Slovenia, Croatia and Serbia (Banija spotted, Black Slavonian, Turopolje pig, Swallow-bellied Mangalitsa, Moravka and Krskopolje pig). Animals from each of these breeds were genotyped using microsatellites and single nucleotide polymorphisms (SNPs). The results obtained with these two marker systems and those based on pedigree data were compared. In addition, we estimated inbreeding levels based on the distribution of runs of homozygosity (ROH) and identified genomic regions under selection pressure using ROH islands and the integrated haplotype score (iHS). RESULTS The lowest heterozygosity values calculated from microsatellite and SNP data were observed in the Turopolje pig. The observed heterozygosity was higher than the expected heterozygosity in the Black Slavonian, Moravka and Turopolje pig. Both types of markers allowed us to distinguish clusters of individuals belonging to each breed. The analysis of admixture between breeds revealed potential gene flow between the Mangalitsa and Moravka, and between the Mangalitsa and Black Slavonian, but no introgression events were detected in the Banija spotted and Turopolje pig. The distribution of ROH across the genome was not uniform. Analysis of the ROH islands identified genomic regions with an extremely high frequency of shared ROH within the Swallow-bellied Mangalitsa, which harboured genes associated with cholesterol biosynthesis, fatty acid metabolism and daily weight gain. The iHS approach to detect signatures of selection revealed candidate regions containing genes with potential roles in reproduction traits and disease resistance. CONCLUSIONS Based on the estimation of population parameters obtained from three data sets, we showed the existence of relationships among the six pig breeds analysed here. Analysis of the distribution of ROH allowed us to estimate the level of inbreeding and the extent of homozygous regions in these breeds. The iHS analysis revealed genomic regions potentially associated with phenotypic traits and allowed the detection of genomic regions under selection pressure.
Collapse
|
5
|
Arai H, Kono N. α-Tocopherol transfer protein (α-TTP). Free Radic Biol Med 2021; 176:162-175. [PMID: 34563650 DOI: 10.1016/j.freeradbiomed.2021.09.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
α-Tocopherol transfer protein (α-TTP) is so far the only known protein that specifically recognizes α-tocopherol (α-Toc), the most abundant and most biologically active form of vitamin E, in higher animals. α-TTP is highly expressed in the liver where α-TTP selects α-Toc among vitamin E forms taken up via plasma lipoproteins and promotes its secretion to circulating lipoproteins. Thus, α-TTP is a major determinant of plasma α-Toc concentrations. Familial vitamin E deficiency, also called Ataxia with vitamin E deficiency, is caused by mutations in the α-TTP gene. More than 20 different mutations have been found in the α-TTP gene worldwide, among which some missense mutations provided valuable clues to elucidate the molecular mechanisms underlying intracellular α-Toc transport. In hepatocytes, α-TTP catalyzes the vectorial transport of α-Toc from the endocytotic compartment to the plasma membrane (PM) by targeting phosphatidylinositol phosphates (PIPs) such as PI(4,5)P2. By binding PIPs at the PM, α-TTP opens the lid covering the hydrophobic pocket, thus facilitating the release of bound α-Toc to the PM.
Collapse
Affiliation(s)
- Hiroyuki Arai
- Laboratory of Microenvironmental and Metabolic Health Science, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Nozomu Kono
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
6
|
Gong B, Guo Y, Ding S, Liu X, Meng A, Li D, Jia S. A Golgi-derived vesicle potentiates PtdIns4P to PtdIns3P conversion for endosome fission. Nat Cell Biol 2021; 23:782-795. [PMID: 34183801 DOI: 10.1038/s41556-021-00704-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Endosome fission is essential for cargo sorting and targeting in the endosomal system. However, whether organelles other than the endoplasmic reticulum (ER) participate in endosome fission through membrane contacts is unknown. Here, we characterize a Golgi-derived vesicle, the SEC14L2 compartment, that plays a unique role in facilitating endosome fission through ternary contacts with endosomes and the ER. Localized to the ER-mediated endosome fission site, the phosphatidylinositol transfer protein SEC14L2 promotes phosphatidylinositol 4-phosphate (PtdIns4P) to phosphatidylinositol 3-phosphate (PtdIns3P) conversion before endosome fission. In the absence of SEC14L2, endosome fission is attenuated and more enlarged endosomes arise due to endosomal accumulation of PtdIns4P and reduction in PtdIns3P. Collectively, our data suggest roles of the Golgi network in ER-associated endosome fission and a mechanism involving ER-endosome contacts in the regulation of endosomal phosphoinositide conversion.
Collapse
Affiliation(s)
- Bo Gong
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuting Guo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shihui Ding
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- School of Life Sciences, National Protein Science Facility, Tsinghua University, Beijing, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Shunji Jia
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
7
|
Ahmed N, Farooq J, Siddiqi HS, Meo SA, Kulsoom B, Laghari AH, Jamshed H, Pasha F. Impact of Intermittent Fasting on Lipid Profile-A Quasi-Randomized Clinical Trial. Front Nutr 2021; 7:596787. [PMID: 33598473 PMCID: PMC7882512 DOI: 10.3389/fnut.2020.596787] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Sub-optimal HDL is a prognostic marker of cardiovascular disease. South Asia has a high prevalence of sub-optimal HDL compared to other parts of the world. Intermittent fasting (IF) is a type of energy restriction which may improve serum HDL and other lipids thereby reducing the risk of cardiovascular diseases. Objective: The aim of the study was to evaluate the effect of IF on lipid profile and HDL-cholesterol in a sample of South Asian adults. Methods: A 6-week quasi-experimental (non-randomized) clinical trial was conducted on participants with low HDL (< 40 mg/dl for men and < 50 mg/dl for women). Participants of the control group were recommended not to change their diet. The intervention group was recommended to fast for ~12 h during day time, three times per week for 6 weeks. Pulse rate, blood pressure, body weight, waist circumference, serum lipid profile, and blood glucose levels were measured at baseline and after 6 weeks. Result: A total of 40 participants were enrolled in the study (N = 20 in each group), while 35 (20 control and 15 intervention) completed the trial and were included in data analysis of the study. Body measurements, including body weight, BMI and waist circumference, showed significant interaction effects (p's < 0.001), indicating that there were larger reductions in the IF group than in the control group. Significant interaction effects were also observed for total (p = 0.033), HDL (p = 0.0001), and LDL cholesterol (p = 0.010) with larger improvements in the IF group. Conclusion: This study suggests that intermittent fasting may protect cardiovascular health by improving the lipid profile and raising the sub-optimal HDL. Intermittent fasting may be adopted as a lifestyle intervention for the prevention, management and treatment of cardiovascular disorders. Clinical Trial Registration: NCT03805776, registered on January 16, 2019, https://clinicaltrials.gov/ct2/show/NCT03805776
Collapse
Affiliation(s)
- Naseer Ahmed
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Javeria Farooq
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Hasan Salman Siddiqi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Sultan Ayoub Meo
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Bibi Kulsoom
- Postgraduate Programme-Training and Monitoring, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Abid H Laghari
- Department of Medicine, Section of Cardiology, Aga Khan University, Karachi, Pakistan
| | - Humaira Jamshed
- Integrated Sciences and Mathematics, Dhanani School of Science and Engineering, Habib University, Karachi, Pakistan
| | - Farooq Pasha
- Economics, Boston College, Chestnut Hill, MA, United States
| |
Collapse
|
8
|
Zingg JM. Vitamin E: Regulatory Role on Signal Transduction. IUBMB Life 2018; 71:456-478. [PMID: 30556637 DOI: 10.1002/iub.1986] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 01/02/2023]
Abstract
Vitamin E modulates signal transduction pathways by several molecular mechanisms. As a hydrophobic molecule located mainly in membranes it contributes together with other lipids to the physical and structural characteristics such as membrane stability, curvature, fluidity, and the organization into microdomains (lipid rafts). By acting as the main lipid-soluble antioxidant, it protects other lipids such as mono- and poly-unsaturated fatty acids (MUFA and PUFA, respectively) against chemical reactions with reactive oxygen and nitrogen species (ROS and RNS, respectively) and prevents membrane destabilization and cellular dysfunction. In cells, vitamin E affects signaling in redox-dependent and redox-independent molecular mechanisms by influencing the activity of enzymes and receptors involved in modulating specific signal transduction and gene expression pathways. By protecting and preventing depletion of MUFA and PUFA it indirectly enables regulatory effects that are mediated by the numerous lipid mediators derived from these lipids. In recent years, some vitamin E metabolites have been observed to affect signal transduction and gene expression and their relevance for the regulatory function of vitamin E is beginning to be elucidated. In particular, the modulation of the CD36/FAT scavenger receptor/fatty acids transporter by vitamin E may influence many cellular signaling pathways relevant for lipid homeostasis, inflammation, survival/apoptosis, angiogenesis, tumorigenesis, neurodegeneration, and senescence. Thus, vitamin E has an important role in modulating signal transduction and gene expression pathways relevant for its uptake, distribution, metabolism, and molecular action that when impaired affect physiological and patho-physiological cellular functions relevant for the prevention of a number of diseases. © 2018 IUBMB Life, 71(4):456-478, 2019.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
9
|
Affiliation(s)
- Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida 33136-6129;
| |
Collapse
|
10
|
Structural insights on cholesterol endosynthesis: Binding of squalene and 2,3-oxidosqualene to supernatant protein factor. J Struct Biol 2015; 190:261-70. [DOI: 10.1016/j.jsb.2015.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 11/24/2022]
|
11
|
Arya N, Kharjul MD, Shishoo CJ, Thakare VN, Jain KS. Some molecular targets for antihyperlipidemic drug research. Eur J Med Chem 2014; 85:535-68. [DOI: 10.1016/j.ejmech.2014.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/17/2022]
|
12
|
Traber MG. Mechanisms for the prevention of vitamin E excess. J Lipid Res 2013; 54:2295-306. [PMID: 23505319 PMCID: PMC3735929 DOI: 10.1194/jlr.r032946] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 03/04/2013] [Indexed: 02/07/2023] Open
Abstract
The liver is at the nexus of the regulation of lipoprotein uptake, synthesis, and secretion, and it is the site of xenobiotic detoxification by cytochrome P450 oxidation systems (phase I), conjugation systems (phase II), and transporters (phase III). These two major liver systems control vitamin E status. The mechanisms for the preference for α-tocopherol relative to the eight naturally occurring vitamin E forms largely depend upon the liver and include both a preferential secretion of α-tocopherol from the liver into the plasma for its transport in circulating lipoproteins for subsequent uptake by tissues, as well as the preferential hepatic metabolism of non-α-tocopherol forms. These mechanisms are the focus of this review.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
13
|
Korolenko TA, Tuzikov FV, Vasil'eva ED, Cherkanova MS, Tuzikova NA. Fractional composition of blood serum lipoproteins in mice and rats with Triton WR 1339-induced lipemia. Bull Exp Biol Med 2011; 149:567-70. [PMID: 21165388 DOI: 10.1007/s10517-010-0994-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We compared fractional composition of blood serum lipoproteins (LP) in female ICR mice and Wistar rats induced by single administration of a nonionic detergent Triton WR 1339 in doses of 300 and 500 mg/kg. Lipemia in animals of both species was characterized by a sharp increase in the concentration of cholesterol and, particularly, of triglycerides in blood serum lipoproteins by the 24th hour after administration of the detergent. We revealed a significant increase in the concentrations of atherogenic VLDL cholesterol (due to VLDL2), intermediate density lipoproteins, and LDL. These changes were more pronounced in rats. The model of lipemia can be used to study the role of fractional composition of lipoproteins and, particularly, of triglycerides in the pathogenesis of atherosclerosis. Moreover, this model holds much promise for evaluation of the efficiency of hypolipidemic drugs (statins and fibrates) in normalizing the increased level of atherogenic cholesterol of VLDL and LDL.
Collapse
Affiliation(s)
- T A Korolenko
- Institute of Physiology, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | | | | | | | | |
Collapse
|
14
|
Nile AH, Bankaitis VA, Grabon A. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. CLINICAL LIPIDOLOGY 2010; 5:867-897. [PMID: 21603057 PMCID: PMC3097519 DOI: 10.2217/clp.10.67] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inositol and phosphoinositide signaling pathways represent major regulatory systems in eukaryotes. The physiological importance of these pathways is amply demonstrated by the variety of diseases that involve derangements in individual steps in inositide and phosphoinositide production and degradation. These diseases include numerous cancers, lipodystrophies and neurological syndromes. Phosphatidylinositol transfer proteins (PITPs) are emerging as fascinating regulators of phosphoinositide metabolism. Recent advances identify PITPs (and PITP-like proteins) to be coincidence detectors, which spatially and temporally coordinate the activities of diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. These insights are providing new ideas regarding mechanisms of inherited mammalian diseases associated with derangements in the activities of PITPs and PITP-like proteins.
Collapse
Affiliation(s)
- Aaron H Nile
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Aby Grabon
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| |
Collapse
|
15
|
Zingg JM, Meydani M, Azzi A. alpha-Tocopheryl phosphate--an active lipid mediator? Mol Nutr Food Res 2010; 54:679-92. [PMID: 20169583 DOI: 10.1002/mnfr.200900404] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The vitamin E (alpha-tocopherol, alphaT) derivative, alpha-tocopheryl phosphate (alphaTP), is detectable in small amounts in plasma, tissues, and cultured cells. Studies done in vitro and in vivo suggest that alphaT can become phosphorylated and alphaTP dephosphorylated, suggesting the existence of enzyme(s) with alphaT kinase or alphaTP phosphatase activity, respectively. As a supplement in animal studies, alphaTP can reach plasma concentrations similar to alphaT and only a part is dephosphorylated; thus, alphaTP may act both as pro-vitamin E, but also as phosphorylated form of vitamin E with possibly novel regulatory activities. Many effects of alphaTP have been described: in the test tube alphaTP modulates the activity of several enzymes; in cell culture alphaTP affects proliferation, apoptosis, signal transduction, and gene expression; in animal studies alphaTP prevents atherosclerosis, ischemia/reperfusion injury, and induces hippocampal long-term potentiation. At the molecular level, alphaTP may act as a cofactor for enzymes, as an active lipid mediator similar to other phosphorylated lipids, or indirectly by altering membrane characteristics such as lipid rafts, fluidity, and curvature. In this review, the molecular and cellular activities of alphaTP are examined and the possible functions of alphaTP as a natural compound, cofactor and active lipid mediator involved in signal transduction and gene expression discussed.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- JM USDA-Human Nutr. Res. Ctr. On Aging, Tufts University, Boston, MA, USA
| | | | | |
Collapse
|
16
|
Kempna P, Ricciarelli R, Azzi A, Zingg JM. Alternative splicing and gene polymorphism of the human TAP3/SEC14L4 gene. Mol Biol Rep 2009; 37:3503-8. [PMID: 20012369 DOI: 10.1007/s11033-009-9943-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 11/24/2009] [Indexed: 12/16/2022]
Abstract
Three closely related human SEC14p-like proteins (hTAP1, hTAP2, hTAP3, or SEC14L2, SEC14L3, SEC14L4, respectively) have been described that are related to the Saccharomyces cerevisiae SEC14 protein. These proteins may participate in intracellular lipid transport and influence regulatory lipid-dependent events. Here we report the isolation of an alternatively spliced hTAP3 cDNA and a polymorphism within the coding region of the hTAP3/SEC14L4 gene.
Collapse
Affiliation(s)
- Petra Kempna
- Department of Pediatric Endocrinology and Diabetology, University Children's Hospital, Bern, Switzerland
| | | | | | | |
Collapse
|
17
|
Effect of Atorvastatin on Activities of Matrix Metalloproteinases and Chitotriosidase in Male and Female Mice with Experimental Hyperlipidemia. Bull Exp Biol Med 2009; 148:369-73. [DOI: 10.1007/s10517-010-0715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Wright ME, Peters U, Gunter MJ, Moore SC, Lawson KA, Yeager M, Weinstein SJ, Snyder K, Virtamo J, Albanes D. Association of variants in two vitamin e transport genes with circulating vitamin e concentrations and prostate cancer risk. Cancer Res 2009; 69:1429-38. [PMID: 19190344 DOI: 10.1158/0008-5472.can-08-2343] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significant reductions in prostate cancer incidence and mortality were observed in men randomized to receive 50 mg supplemental vitamin E (alpha-tocopherol) per day in the Alpha-Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study. We hypothesized that variation in key vitamin E transport genes might directly affect prostate cancer risk or modify the effects of vitamin E supplementation. Associations between prostate cancer risk and 13 polymorphisms in two genes, TTPA and SEC14L2, were examined in 982 incident prostate cancer cases and 851 controls drawn from the ATBC Study. There was no association between the genetic variants and prostate cancer risk. Significant interactions were observed, however, between two variants in SEC14L2 (IVS11+931A>G and IVS11-896A>T) and the trial alpha-tocopherol supplement such that vitamin E supplementation reduced prostate cancer risk among men who were homozygous for either common allele [odds ratios (OR) and 95% confidence intervals (95% CI), 0.52 (0.30-0.90) and 0.64 (0.46-0.88), respectively] and nonsignificantly increased risk among those who carried one or two copies of either variant allele [ORs and 95% CIs, 1.27 (0.90-1.79) and 1.21 (0.96-1.52), respectively; both P for interaction < 0.05]. Genotype-phenotype analyses revealed significant but modest differences in baseline circulating concentrations of alpha-tocopherol and serum responses to the vitamin E supplementation for several polymorphisms. This study shows that genetic variation in TTPA and SEC14L2 is associated with serum alpha-tocopherol but does not have a direct effect on prostate cancer. Our results do, however, suggest that polymorphisms in SEC14L2 may modify the effect of vitamin supplementation regimens on prostate cancer risk.
Collapse
Affiliation(s)
- Margaret E Wright
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zingg JM, Kempna P, Paris M, Reiter E, Villacorta L, Cipollone R, Munteanu A, De Pascale C, Menini S, Cueff A, Arock M, Azzi A, Ricciarelli R. Characterization of three human sec14p-like proteins: α-Tocopherol transport activity and expression pattern in tissues. Biochimie 2008; 90:1703-15. [DOI: 10.1016/j.biochi.2008.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
|
20
|
Abstract
Vitamin E in nature is comprised of a family of tocopherols and tocotrienols. The most studied of these is alpha-tocopherol (alpha-TOH), because this form is retained within the body, and vitamin E deficiency is corrected with this supplement. alpha-TOH is a lipid-soluble antioxidant required for the preservation of cell membranes, and it potentially acts as a defense against oxidative stress. Many studies have investigated the metabolism, transport, and efficacy alpha-TOH in the prevention of sequelae associated with cardiovascular disease (CVD). Supplementation with vitamin E is considered to provide health benefits against CVD through its antioxidant activity, the prevention of lipoprotein oxidation, and the inhibition of platelet aggregation. However, the results from large prospective, randomized, placebo-controlled clinical trials with alpha-TOH have been largely negative. A recent meta-analysis suggests that alpha-TOH supplements may actually increase all-cause mortality; however, the mechanism for this increased risk is unknown. In vitro studies performed in human cell cultures and animal models suggest that vitamin E might increase the hepatic production of cytochrome P450s and MDR1. Induction of CYP3A4 or MDR1 by vitamin E could potentially lower the efficacy of any drug metabolized by CYP3A4 or MDR1. Other possibilities include an adverse effect of alpha-TOH on blood pressure in high-risk populations. Because of the wide popularity and use of vitamin E supplements, further research into potential adverse effects is clearly warranted.
Collapse
Affiliation(s)
- Michael W Clarke
- School of Medicine and Pharmacology, University of Western Australia, Crawley, WA, Australia
| | | | | |
Collapse
|
21
|
Zingg JM. Vitamin E: An overview of major research directions. Mol Aspects Med 2007; 28:400-22. [PMID: 17624418 DOI: 10.1016/j.mam.2007.05.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 05/23/2007] [Indexed: 02/07/2023]
Abstract
During the last 90 years since the discovery of vitamin E, research has focused on different properties of this molecule, the focus often depending on the specific techniques and scientific knowledge present at each time. Originally discovered as a dietary factor essential for reproduction in rats, vitamin E has revealed in the meantime many more important molecular properties, such as the scavenging of reactive oxygen and nitrogen species with consequent prevention of oxidative damage associated with many diseases, or the modulation of signal transduction and gene expression in antioxidant and non-antioxidant manners. Research over the last 30 years has also resolved the biosynthesis and occurrence of vitamin E in plants, the proteins involved in the cellular uptake, tissue distribution and metabolism, and defined a congenital recessive neurological disease, ataxia with vitamin E deficiency (AVED), characterized by impaired enrichment of alpha-tocopherol in plasma as a result of mutations in the liver alpha-tocopherol transfer gene. This review is giving a brief introduction about vitamin E by following the major research directions since its discovery with a historical perspective.
Collapse
Affiliation(s)
- Jean-Marc Zingg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.
| |
Collapse
|