1
|
You JS, Kim Y, Lee S, Bashir R, Chen J. RhoA/ROCK signalling activated by ARHGEF3 promotes muscle weakness via autophagy in dystrophic mdx mice. J Cachexia Sarcopenia Muscle 2023. [PMID: 37311604 PMCID: PMC10401546 DOI: 10.1002/jcsm.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/16/2023] [Accepted: 05/01/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD), caused by dystrophin deficiency, leads to progressive and fatal muscle weakness through yet-to-be-fully deciphered molecular perturbations. Emerging evidence implicates RhoA/Rho-associated protein kinase (ROCK) signalling in DMD pathology, yet its direct role in DMD muscle function, and related mechanisms, are unknown. METHODS Three-dimensionally engineered dystrophin-deficient mdx skeletal muscles and mdx mice were used to test the role of ROCK in DMD muscle function in vitro and in situ, respectively. The role of ARHGEF3, one of the RhoA guanine nucleotide exchange factors (GEFs), in RhoA/ROCK signalling and DMD pathology was examined by generating Arhgef3 knockout mdx mice. The role of RhoA/ROCK signalling in mediating the function of ARHGEF3 was determined by evaluating the effects of wild-type or GEF-inactive ARHGEF3 overexpression with ROCK inhibitor treatment. To gain more mechanistic insights, autophagy flux and the role of autophagy were assessed in various conditions with chloroquine. RESULTS Inhibition of ROCK with Y-27632 improved muscle force production in 3D-engineered mdx muscles (+25% from three independent experiments, P < 0.05) and in mice (+25%, P < 0.001). Unlike suggested by previous studies, this improvement was independent of muscle differentiation or quantity and instead related to increased muscle quality. We found that ARHGEF3 was elevated and responsible for RhoA/ROCK activation in mdx muscles, and that depleting ARHGEF3 in mdx mice restored muscle quality (up to +36%, P < 0.01) and morphology without affecting regeneration. Conversely, overexpressing ARHGEF3 further compromised mdx muscle quality (-13% vs. empty vector control, P < 0.01) in GEF activity- and ROCK-dependent manner. Notably, ARHGEF3/ROCK inhibition exerted the effects by rescuing autophagy which is commonly impaired in dystrophic muscles. CONCLUSIONS Our findings uncover a new pathological mechanism of muscle weakness in DMD involving the ARHGEF3-ROCK-autophagy pathway and the therapeutic potential of targeting ARHGEF3 in DMD.
Collapse
Affiliation(s)
- Jae-Sung You
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yongdeok Kim
- Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Soohyun Lee
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Nick J. Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, Illinois, USA
| | - Jie Chen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
2
|
Hayashi T, Fujita R, Okada R, Hamada M, Suzuki R, Fuseya S, Leckey J, Kanai M, Inoue Y, Sadaki S, Nakamura A, Okamura Y, Abe C, Morita H, Aiba T, Senkoji T, Shimomura M, Okada M, Kamimura D, Yumoto A, Muratani M, Kudo T, Shiba D, Takahashi S. Lunar gravity prevents skeletal muscle atrophy but not myofiber type shift in mice. Commun Biol 2023; 6:424. [PMID: 37085700 PMCID: PMC10121599 DOI: 10.1038/s42003-023-04769-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 03/28/2023] [Indexed: 04/23/2023] Open
Abstract
Skeletal muscle is sensitive to gravitational alterations. We recently developed a multiple artificial-gravity research system (MARS), which can generate gravity ranging from microgravity to Earth gravity (1 g) in space. Using the MARS, we studied the effects of three different gravitational levels (microgravity, lunar gravity [1/6 g], and 1 g) on the skeletal muscle mass and myofiber constitution in mice. All mice survived and returned to Earth, and skeletal muscle was collected two days after landing. We observed that microgravity-induced soleus muscle atrophy was prevented by lunar gravity. However, lunar gravity failed to prevent the slow-to-fast myofiber transition in the soleus muscle in space. These results suggest that lunar gravity is enough to maintain proteostasis, but a greater gravitational force is required to prevent the myofiber type transition. Our study proposes that different gravitational thresholds may be required for skeletal muscle adaptation.
Collapse
Affiliation(s)
- Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ryo Fujita
- Divsion of Regenerative Medicine, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
| | - Riku Suzuki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - James Leckey
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Maho Kanai
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yuri Inoue
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Ayano Nakamura
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Yui Okamura
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Hironobu Morita
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
- Department of Nutrition Management, Tokai Gakuin University, Gifu, 504-8511, Japan
| | - Tatsuya Aiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Teruhiro Senkoji
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Michihiko Shimomura
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
| | - Maki Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Daisuke Kamimura
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Akane Yumoto
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
| | - Masafumi Muratani
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan
- Department of Genome Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan.
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan.
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.
- Mouse Epigenetics Project, ISS/Kibo experiment, JAXA, Ibaraki, 305-8505, Japan.
| |
Collapse
|
3
|
Lasa-Elgarresta J, Mosqueira-Martín L, González-Imaz K, Marco-Moreno P, Gerenu G, Mamchaoui K, Mouly V, López de Munain A, Vallejo-Illarramendi A. Targeting the Ubiquitin-Proteasome System in Limb-Girdle Muscular Dystrophy With CAPN3 Mutations. Front Cell Dev Biol 2022; 10:822563. [PMID: 35309930 PMCID: PMC8924035 DOI: 10.3389/fcell.2022.822563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/03/2022] [Indexed: 12/26/2022] Open
Abstract
LGMDR1 is caused by mutations in the CAPN3 gene that encodes calpain 3 (CAPN3), a non-lysosomal cysteine protease necessary for proper muscle function. Our previous findings show that CAPN3 deficiency leads to reduced SERCA levels through increased protein degradation. This work investigates the potential contribution of the ubiquitin-proteasome pathway to increased SERCA degradation in LGMDR1. Consistent with our previous results, we observed that CAPN3-deficient human myotubes exhibit reduced SERCA protein levels and high cytosolic calcium concentration. Treatment with the proteasome inhibitor bortezomib (Velcade) increased SERCA2 protein levels and normalized intracellular calcium levels in CAPN3-deficient myotubes. Moreover, bortezomib was able to recover mutated CAPN3 protein in a patient carrying R289W and R546L missense mutations. We found that CAPN3 knockout mice (C3KO) presented SERCA deficits in skeletal muscle in the early stages of the disease, prior to the manifestation of muscle deficits. However, treatment with bortezomib (0.8 mg/kg every 72 h) for 3 weeks did not rescue SERCA levels. No change in muscle proteasome activity was observed in bortezomib-treated animals, suggesting that higher bortezomib doses are needed to rescue SERCA levels in this model. Overall, our results lay the foundation for exploring inhibition of the ubiquitin-proteasome as a new therapeutic target to treat LGMDR1 patients. Moreover, patients carrying missense mutations in CAPN3 and presumably other genes may benefit from proteasome inhibition by rescuing mutant protein levels. Further studies in suitable models will be necessary to demonstrate the therapeutic efficacy of proteasome inhibition for different missense mutations.
Collapse
Affiliation(s)
- Jaione Lasa-Elgarresta
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, Hospital Donostia, UPV/EHU, San Sebastian, Spain.,IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
| | - Laura Mosqueira-Martín
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, Hospital Donostia, UPV/EHU, San Sebastian, Spain.,IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
| | - Klaudia González-Imaz
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
| | - Pablo Marco-Moreno
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain
| | - Gorka Gerenu
- IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain.,CIBERNED, Instituto de Salud Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain.,Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, Leioa, Spain
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Vincent Mouly
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Adolfo López de Munain
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, Hospital Donostia, UPV/EHU, San Sebastian, Spain.,IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain.,CIBERNED, Instituto de Salud Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| | - Ainara Vallejo-Illarramendi
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, Hospital Donostia, UPV/EHU, San Sebastian, Spain.,IIS Biodonostia, Neurosciences Area, Group of Neuromuscular Diseases, San Sebastian, Spain.,CIBERNED, Instituto de Salud Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
| |
Collapse
|
4
|
Smith SJ, Fabian L, Sheikh A, Noche R, Cui X, Moore SA, Dowling JJ. Lysosomes and the pathogenesis of merosin-deficient congenital muscular dystrophy. Hum Mol Genet 2022; 31:733-747. [PMID: 34568901 PMCID: PMC9989739 DOI: 10.1093/hmg/ddab278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 11/14/2022] Open
Abstract
Congenital muscular dystrophy type 1A (MDC1A), the most common congenital muscular dystrophy in Western countries, is caused by recessive mutations in LAMA2, the gene encoding laminin alpha 2. Currently, no cure or disease modifying therapy has been successfully developed for MDC1A. Examination of patient muscle biopsies revealed altered distribution of lysosomes. We hypothesized that this redistribution was a novel and potentially druggable aspect of disease pathogenesis. We explored this hypothesis using candyfloss (caf), a zebrafish model of MDC1A. We found that lysosome distribution in caf zebrafish was also abnormal. This altered localization was significantly associated with fiber detachment and could be prevented by blocking myofiber detachment. Overexpression of transcription factor EB, a transcription factor that promotes lysosomal biogenesis, led to increased lysosome content and decreased fiber detachment. We conclude that genetic manipulation of the lysosomal compartment is able to alter the caf zebrafish disease process, suggesting that lysosome function may be a target for disease modification.
Collapse
Affiliation(s)
- Sarah J Smith
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Department of Family Medicine, University of Calgary, Calgary T2R 0X7, Alberta
| | - Lacramioara Fabian
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Adeel Sheikh
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Ramil Noche
- Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Zebrafish Genetics and Disease Models Core Facility, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Xiucheng Cui
- Zebrafish Genetics and Disease Models Core Facility, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Steven A Moore
- Department of Pathology, University of Iowa Medical Center, Iowa City, IA, USA
| | - James J Dowling
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,Program for Genetics & Genome Biology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
5
|
Nguyen TH, Conotte S, Belayew A, Declèves AE, Legrand A, Tassin A. Hypoxia and Hypoxia-Inducible Factor Signaling in Muscular Dystrophies: Cause and Consequences. Int J Mol Sci 2021; 22:7220. [PMID: 34281273 PMCID: PMC8269128 DOI: 10.3390/ijms22137220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/29/2022] Open
Abstract
Muscular dystrophies (MDs) are a group of inherited degenerative muscle disorders characterized by a progressive skeletal muscle wasting. Respiratory impairments and subsequent hypoxemia are encountered in a significant subgroup of patients in almost all MD forms. In response to hypoxic stress, compensatory mechanisms are activated especially through Hypoxia-Inducible Factor 1 α (HIF-1α). In healthy muscle, hypoxia and HIF-1α activation are known to affect oxidative stress balance and metabolism. Recent evidence has also highlighted HIF-1α as a regulator of myogenesis and satellite cell function. However, the impact of HIF-1α pathway modifications in MDs remains to be investigated. Multifactorial pathological mechanisms could lead to HIF-1α activation in patient skeletal muscles. In addition to the genetic defect per se, respiratory failure or blood vessel alterations could modify hypoxia response pathways. Here, we will discuss the current knowledge about the hypoxia response pathway alterations in MDs and address whether such changes could influence MD pathophysiology.
Collapse
Affiliation(s)
- Thuy-Hang Nguyen
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Stephanie Conotte
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Belayew
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Anne-Emilie Declèves
- Department of Metabolic and Molecular Biochemistry, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium;
| | - Alexandre Legrand
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| | - Alexandra Tassin
- Laboratory of Respiratory Physiology, Pathophysiology and Rehabilitation, Research Institute for Health Sciences and Technology, University of Mons, 7000 Mons, Belgium; (T.-H.N.); (S.C.); (A.B.); (A.L.)
| |
Collapse
|
6
|
Ellwood RA, Piasecki M, Szewczyk NJ. Caenorhabditis elegans as a Model System for Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22094891. [PMID: 34063069 PMCID: PMC8125261 DOI: 10.3390/ijms22094891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
The nematode worm Caenorhabditis elegans has been used extensively to enhance our understanding of the human neuromuscular disorder Duchenne Muscular Dystrophy (DMD). With new arising clinically relevant models, technologies and treatments, there is a need to reconcile the literature and collate the key findings associated with this model.
Collapse
Affiliation(s)
- Rebecca A. Ellwood
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
| | - Mathew Piasecki
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
| | - Nathaniel J. Szewczyk
- Medical Research Council (MRC) Versus Arthritis, Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, UK; (R.A.E.); (M.P.)
- National Institute for Health Research, Nottingham Biomedical Research Centre, Derby DE22 3DT, UK
- Ohio Musculoskeletal and Neurologic Institute, Ohio University, Athens, OH 45701, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
- Correspondence:
| |
Collapse
|
7
|
Leng L, Dong X, Gao X, Ran N, Geng M, Zuo B, Wu Y, Li W, Yan H, Han G, Yin H. Exosome-mediated improvement in membrane integrity and muscle function in dystrophic mice. Mol Ther 2021; 29:1459-1470. [PMID: 33333294 PMCID: PMC8058444 DOI: 10.1016/j.ymthe.2020.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a devastating genetic disorder that leads to compromised cellular membranes, caused by the absence of membrane-bound dystrophin protein. Muscle membrane leakage results in disrupted intracellular homeostasis, protein degradation, and muscle wasting. Improving muscle membrane integrity may delay disease progression and extend the lifespan of DMD patients. Here, we demonstrate that exosomes, membranous extracellular vesicles, can elicit functional improvements in dystrophic mice by improving muscle membrane integrity. Systemic administration of exosomes from different sources induced phenotypic rescue and mitigated pathological progression in dystrophic mice without detectable toxicity. Improved membrane integrity conferred by exosomes inhibited intracellular calcium influx and calcium-dependent activation of calpain proteases, preventing the degradation of the destabilized dystrophin-associated protein complex. We show that exosomes, particularly myotube-derived exosomes, induced functional improvements and alleviated muscle deterioration by stabilizing damaged muscle membrane in dystrophic mice. Our findings suggest that exosomes may have therapeutic implications for DMD and other diseases with compromised membranes.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Calpain/genetics
- Cell Membrane/genetics
- Cell Membrane/pathology
- Disease Models, Animal
- Dystrophin/genetics
- Exosomes/genetics
- Exosomes/metabolism
- Humans
- Mice
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/pathology
- Peptide Hydrolases/genetics
Collapse
Affiliation(s)
- Ling Leng
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xue Dong
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin 300070, China; Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xianjun Gao
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Ning Ran
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Mengyuan Geng
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Bingfeng Zuo
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yingjie Wu
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Wei Li
- Department of Technology, Tianjin Ever Union Biotechnology, Tianjin 301900, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Gang Han
- School of Medical Laboratory, Tianjin Medical University, Guangdong Road, Tianjin 300203, China.
| | - HaiFang Yin
- Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Cell Biology, Tianjin Medical University, Qixiangtai Road, Heping District, Tianjin 300070, China; School of Medical Laboratory, Tianjin Medical University, Guangdong Road, Tianjin 300203, China; Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
8
|
Parvatiyar MS, Brownstein AJ, Kanashiro-Takeuchi RM, Collado JR, Dieseldorff Jones KM, Gopal J, Hammond KG, Marshall JL, Ferrel A, Beedle AM, Chamberlain JS, Renato Pinto J, Crosbie RH. Stabilization of the cardiac sarcolemma by sarcospan rescues DMD-associated cardiomyopathy. JCI Insight 2019; 5:123855. [PMID: 31039133 PMCID: PMC6629091 DOI: 10.1172/jci.insight.123855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 04/23/2019] [Indexed: 02/02/2023] Open
Abstract
In the current preclinical study, we demonstrate the therapeutic potential of sarcospan (SSPN) overexpression to alleviate cardiomyopathy associated with Duchenne muscular dystrophy (DMD) utilizing dystrophin-deficient mdx mice with utrophin haploinsufficiency that more accurately represent the severe disease course of human DMD. SSPN interacts with dystrophin, the DMD disease gene product, and its autosomal paralog utrophin, which is upregulated in DMD as a partial compensatory mechanism. SSPN transgenic mice have enhanced abundance of fully glycosylated α-dystroglycan, which may further protect dystrophin-deficient cardiac membranes. Baseline echocardiography reveals SSPN improves systolic function and hypertrophic indices in mdx and mdx:utr-heterozygous mice. Assessment of SSPN transgenic mdx mice by hemodynamic pressure-volume methods highlights enhanced systolic performance compared to mdx controls. SSPN restores cardiac sarcolemma stability, the primary defect in DMD disease, reduces fibrotic response and improves contractile function. We demonstrate that SSPN ameliorates more advanced cardiac disease in the context of diminished sarcolemma expression of utrophin and β1D integrin that mitigate disease severity and partially restores responsiveness to β-adrenergic stimulation. Overall, our current and previous findings suggest SSPN overexpression in DMD mouse models positively impacts skeletal, pulmonary and cardiac performance by addressing the stability of proteins at the sarcolemma that protect the heart from injury, supporting SSPN and membrane stabilization as a therapeutic target for DMD.
Collapse
Affiliation(s)
- Michelle S. Parvatiyar
- Department of Integrative Biology & Physiology and
- Center for Duchenne Muscular Dystrophy, UCLA, Los Angeles, California, USA
| | - Alexandra J. Brownstein
- Department of Integrative Biology & Physiology and
- Center for Duchenne Muscular Dystrophy, UCLA, Los Angeles, California, USA
| | - Rosemeire M. Kanashiro-Takeuchi
- Interdisciplinary Stem Cell Institute, University of Miami, Florida, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | - Jay Gopal
- Department of Integrative Biology & Physiology and
| | - Katherine G. Hammond
- Department of Integrative Biology & Physiology and
- Center for Duchenne Muscular Dystrophy, UCLA, Los Angeles, California, USA
| | - Jamie L. Marshall
- Department of Integrative Biology & Physiology and
- Center for Duchenne Muscular Dystrophy, UCLA, Los Angeles, California, USA
| | - Abel Ferrel
- Department of Integrative Biology & Physiology and
| | - Aaron M. Beedle
- Department of Pharmaceutical Sciences, Binghamton University State University of New York, Binghamton, New York, USA
| | | | - Jose Renato Pinto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Rachelle H. Crosbie
- Department of Integrative Biology & Physiology and
- Center for Duchenne Muscular Dystrophy, UCLA, Los Angeles, California, USA
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Molecular Biology Institute, UCLA, Los Angeles, California, USA
| |
Collapse
|
9
|
Hovhannisyan Y, Melikyan G, Mougenot N, Gao-Li J, Friguet B, Paulin D, Li Z, Ferry A, Agbulut O. Effects of the selective inhibition of proteasome caspase-like activity by CLi a derivative of nor-cerpegin in dystrophic mdx mice. PLoS One 2019; 14:e0215821. [PMID: 31013315 PMCID: PMC6478376 DOI: 10.1371/journal.pone.0215821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/09/2019] [Indexed: 12/17/2022] Open
Abstract
Previous studies have shown that proteasome inhibition can have beneficial effects in dystrophic mouse models. In this study, we have investigated the effects of a new selective proteasome inhibitor, CLi, a strong caspase-like inhibitor of the 20S proteasome, on skeletal and cardiac muscle functions of mdx mice. In the first series of experiments, five-month-old male mdx mice (n = 34) were treated with 2 different doses (20 and 100 μg/kg) of CLi and in the second series of experiments, five-month-old female mdx (n = 19) and wild-type (n = 24) mice were treated with 20 μg/kg CLi and Velcade (1 mg/kg) for 1-month. All animals were treadmill exercised twice a week to worsen the dystrophic features. In the first series of experiments, our results demonstrated that 20 μg/kg CLi did not significantly increase absolute and specific maximal forces in skeletal muscle from male mdx mice. Moreover, the higher susceptibility to contraction induced skeletal muscle injury was worsened by 100 μg/kg CLi since the force drop following lengthening contractions was increased with this high dose. Furthermore, we found no differences in the mRNA levels of the molecular markers implicated in dystrophic features. Concerning cardiac function, CLi had no effect on left ventricular function since ejection and shortening fractions were unchanged in male mdx mice. Similarly, CLi did not modify the expression of genes implicated in cardiac remodeling. In the second series of experiments, our results demonstrated an improvement in absolute and specific maximal forces by CLi, whereas Velcade only increased specific maximal force in female mdx mice. In addition, exercise tolerance was not improved by CLi. Taken together, our results show that CLi treatment can only improve maximal force production in exercised female mdx mice without affecting either exercice tolerance capacity or cardiac function. In conclusion, selective inhibition of caspase-like activity of proteasome with CLi has no compelling beneficial effect in dystrophic mdx mice.
Collapse
Affiliation(s)
- Yeranuhi Hovhannisyan
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Gagik Melikyan
- Yerevan State University, Department of Organic Chemistry, Yerevan, Armenia
| | | | - Jacqueline Gao-Li
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Bertrand Friguet
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Denise Paulin
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Zhenlin Li
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
| | - Arnaud Ferry
- Sorbonne Université, Centre de Recherche en Myologie, Institut de Myologie, INSERM U974, Paris, France
- Sorbonne Paris Cité, Université Paris Descartes, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, Paris, France
- * E-mail:
| |
Collapse
|
10
|
McCourt JL, Talsness DM, Lindsay A, Arpke RW, Chatterton PD, Nelson DM, Chamberlain CM, Olthoff JT, Belanto JJ, McCourt PM, Kyba M, Lowe DA, Ervasti JM. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy. Hum Mol Genet 2019; 27:451-462. [PMID: 29194514 DOI: 10.1093/hmg/ddx414] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 11/17/2017] [Indexed: 01/03/2023] Open
Abstract
Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo.
Collapse
Affiliation(s)
| | - Dana M Talsness
- Department of Biochemistry, Molecular Biology and Biophysics
| | | | - Robert W Arpke
- Department of Pediatrics University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | | | - D'anna M Nelson
- Department of Biochemistry, Molecular Biology and Biophysics
| | | | - John T Olthoff
- Department of Biochemistry, Molecular Biology and Biophysics
| | | | | | - Michael Kyba
- Department of Pediatrics University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Dawn A Lowe
- Department of Physical Medicine and Rehabilitation
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics
| |
Collapse
|
11
|
Tripeptide analogues of MG132 as protease inhibitors. Bioorg Med Chem 2018; 27:436-441. [PMID: 30581047 DOI: 10.1016/j.bmc.2018.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
Abstract
The 26S proteasome and calpain are linked to a number of important human diseases. Here, we report a series of analogues of the prototypical tripeptide aldehyde inhibitor MG132 that show a unique combination of high activity and selectivity for calpains over proteasome. Tripeptide aldehydes (1-3) with an aromatic P3 substituent show enhanced activity and selectivity against ovine calpain 2 relative to chymotrypsin-like activity of proteasome. Docking studies reveal the key contacts between inhibitors and calpain to confirm the importance of the S3 pocket with respect to selectivity between calpains 1 and 2 and the proteasome.
Collapse
|
12
|
Exercise prevents impaired autophagy and proteostasis in a model of neurogenic myopathy. Sci Rep 2018; 8:11818. [PMID: 30087400 PMCID: PMC6081439 DOI: 10.1038/s41598-018-30365-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/26/2018] [Indexed: 01/07/2023] Open
Abstract
Increased proteolytic activity has been widely associated with skeletal muscle atrophy. However, elevated proteolysis is also critical for the maintenance of cellular homeostasis by disposing cytotoxic proteins and non-functioning organelles. We recently demonstrated that exercise activates autophagy and re-establishes proteostasis in cardiac diseases. Here, we characterized the impact of exercise on skeletal muscle autophagy and proteostasis in a model of neurogenic myopathy induced by sciatic nerve constriction in rats. Neurogenic myopathy, characterized by progressive atrophy and impaired contractility, was paralleled by accumulation of autophagy-related markers and loss of acute responsiveness to both colchicine and chloroquine. These changes were correlated with elevated levels of damaged proteins, chaperones and pro-apoptotic markers compared to control animals. Sustained autophagy inhibition using chloroquine in rats (50 mg.kg-1.day-1) or muscle-specific deletion of Atg7 in mice was sufficient to impair muscle contractility in control but not in neurogenic myopathy, suggesting that dysfunctional autophagy is critical in skeletal muscle pathophysiology. Finally, 4 weeks of aerobic exercise training (moderate treadmill running, 5x/week, 1 h/day) prior to neurogenic myopathy improved skeletal muscle autophagic flux and proteostasis. These changes were followed by spared muscle mass and better contractility properties. Taken together, our findings suggest the potential value of exercise in maintaining skeletal muscle proteostasis and slowing down the progression of neurogenic myopathy.
Collapse
|
13
|
The effects of Capn1 gene inactivation on the differential expression of genes in skeletal muscle. Gene 2018; 668:54-58. [PMID: 29775750 DOI: 10.1016/j.gene.2018.05.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/06/2018] [Accepted: 05/13/2018] [Indexed: 01/25/2023]
Abstract
Protein turnover is required for muscle growth and regeneration and several proteolytic enzymes, including the calpains, degrade myofibrillar proteins during this process. In a previous experiment, phenotypic differences were observed between μ-calpain knockout (KO) and wild type (WT) mice, including nutrient accretion and fiber type differences. These changes were particularly evident as the animals aged. Thus, we utilized 18 mice (9 KO and 9 WT) to compare transcript abundance to identify differentially expressed genes (DEGs) at 52 wk of age. A total of 55 genes were differentially expressed, including adiponectin, phosphoenolpyruvate carboxykinase 1, uncoupling protein 1, and lysine deficient protein kinase 2. These genes were analyzed for over- and underrepresented gene ontology (GO) terms. Several GO terms, including response to cytokine, response to interferon-beta, regulation of protein phosphorylation, and hydrolase activity, were identified as overrepresented. Pathways related to taurine biosynthesis, nitric oxide synthase signaling, amyloid processing, and L-cysteine degradation were also identified. Our results are consistent with previous experiments, in that identified DEGs may explain, at least in part, some of the phenotypic differences between μ-calpain KO and WT mice. Clearly muscle growth and maintenance are complex, multifaceted processes. Genes affected by the silencing of the μ-calpain gene have been identified, but the relationship between μ-calpain and these pathways requires further investigation.
Collapse
|
14
|
Ismail HM, Dorchies OM, Scapozza L. The potential and benefits of repurposing existing drugs to treat rare muscular dystrophies. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1452733] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hesham M. Ismail
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Olivier M. Dorchies
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry, School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU, Geneva, Switzerland
| |
Collapse
|
15
|
Dp71 is regulated by phosphorylation and ubiquitin-proteasome system in neuronal cells. Biochem Biophys Res Commun 2017; 492:349-355. [PMID: 28851655 DOI: 10.1016/j.bbrc.2017.08.108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 08/26/2017] [Indexed: 01/29/2023]
Abstract
The Dystrophin (Dp) gene is responsible for Duchenne muscular dystrophy (DMD), which is characterized by progressive muscular degeneration and variable degrees of cognitive impairment. Although Dp71 is the most abundant among the Dp isoforms in the brain, the regulatory mechanisms of the related expression levels have not been elucidated. In this study, we found that the constitutive expression levels of Dp71 in PC12 cells were sensitive to proteasomal inhibition. The ectopic expression of FLAG-tagged ubiquitin revealed that Dp71 was ubiquitinated intracellularly. Interestingly, proteasomal inhibition was accompanied by a posttranslational accumulation of modified Dp71, which was restored by protein phosphatase treatment in vitro, indicating that phosphorylation is responsible for the modification and affects the proteasome-dependent degradation of Dp71. Proteasomal activity-sensitive phosphorylated Dp71 is closely associated with syntrophin, a well-known binding partner of Dp71, and syntrophin is also regulated by proteasomal activity in a similar way to Dp71, suggesting that the posttranslational regulatory machinery for Dp71 level is coupled with Dp71-syntrophin molecular complex. Taken together, our results indicated that the expression levels of Dp71 are posttranslationally regulated by the phosphorylation-ubiquitin-proteasomal pathway, which may indicate the presence of regulatory mechanisms underlying the proteostasis of both Dp and its molecular complex, which may lead to better therapeutic approaches for the treatment of Dp-related diseases.
Collapse
|
16
|
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked disease caused by mutations in the DMD gene and loss of the protein dystrophin. The absence of dystrophin leads to myofiber membrane fragility and necrosis, with eventual muscle atrophy and contractures. Affected boys typically die in their second or third decade due to either respiratory failure or cardiomyopathy. Despite extensive attempts to develop definitive therapies for DMD, the standard of care remains prednisone, which has only palliative benefits. Animal models, mainly the mdx mouse and golden retriever muscular dystrophy (GRMD) dog, have played a key role in studies of DMD pathogenesis and treatment development. Because the GRMD clinical syndrome is more severe than in mice, better aligning with the progressive course of DMD, canine studies may translate better to humans. The original founder dog for all GRMD colonies worldwide was identified in the early 1980s before the discovery of the DMD gene and dystrophin. Accordingly, analogies to DMD were initially drawn based on similar clinical features, ranging from the X-linked pattern of inheritance to overlapping histopathologic lesions. Confirmation of genetic homology between DMD and GRMD came with identification of the underlying GRMD mutation, a single nucleotide change that leads to exon skipping and an out-of-frame DMD transcript. GRMD colonies have subsequently been established to conduct pathogenetic and preclinical treatment studies. Simultaneous with the onset of GRMD treatment trials, phenotypic biomarkers were developed, allowing definitive characterization of treatment effect. Importantly, GRMD studies have not always substantiated findings from mdx mice and have sometimes identified serious treatment side effects. While the GRMD model may be more clinically relevant than the mdx mouse, usage has been limited by practical considerations related to expense and the number of dogs available. This further complicates ongoing broader concerns about the poor rate of translation of animal model preclinical studies to humans with analogous diseases. Accordingly, in performing GRMD trials, special attention must be paid to experimental design to align with the approach used in DMD clinical trials. This review provides context for the GRMD model, beginning with its original description and extending to its use in preclinical trials.
Collapse
Affiliation(s)
- Joe N Kornegay
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Mail Stop 4458, College Station, TX, 77843-4458, USA.
| |
Collapse
|
17
|
Baek JH, Many GM, Evesson FJ, Kelley VR. Dysferlinopathy Promotes an Intramuscle Expansion of Macrophages with a Cyto-Destructive Phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1245-1257. [PMID: 28412297 DOI: 10.1016/j.ajpath.2017.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/14/2017] [Indexed: 01/05/2023]
Abstract
Dysferlinopathies are a group of muscular dystrophies resulting from a genetic deficiency in Dysf. Macrophages, highly plastic cells that mediate tissue repair and destruction, are prominent within dystrophic skeletal muscles of dysferlinopathy patients. We hypothesized that Dysf-deficient muscle promotes recruitment, proliferation, and skewing of macrophages toward a cyto-destructive phenotype in dysferlinopathy. To track macrophage dynamics in dysferlinopathy, we adoptively transferred enhanced green fluorescent protein-labeled monocytes into Dysf-deficient BLA/J mice with age-related (2 to 10 months) muscle disease and Dysf-intact (C57BL/6 [B6]) mice. We detected an age- and disease-related increase in monocyte recruitment into Dysf-deficient muscles. Moreover, macrophages recruited into muscle proliferated locally and were skewed toward a cyto-destructive phenotype. By comparing Dysf-deficient and -intact monocytes, our data showed that Dysf in muscle, but not in macrophages, mediate intramuscle macrophage recruitment and proliferation. To further elucidate macrophage mechanisms related to dysferlinopathy, we investigated in vitro macrophage-myogenic cell interactions and found that Dysf-deficient muscle i) promotes macrophage proliferation, ii) skews macrophages toward a cyto-destructive phenotype, and iii) is more vulnerable to macrophage-mediated apoptosis. Taken together, our data suggest that the loss of Dysf expression in muscle, not macrophages, promotes the intramuscle expansion of cyto-destructive macrophages likely to contribute to dysferlinopathy. Identifying pathways within the Dysf-deficient muscle milieu that regulate cyto-destructive macrophages will potentially uncover therapeutic strategies for dysferlinopathies.
Collapse
Affiliation(s)
- Jea-Hyun Baek
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Gina M Many
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Frances J Evesson
- Department of Cell Biology, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Vicki R Kelley
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
18
|
The ubiquitin ligase tripartite-motif-protein 32 is induced in Duchenne muscular dystrophy. J Transl Med 2016; 96:862-71. [PMID: 27295345 DOI: 10.1038/labinvest.2016.63] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/19/2016] [Accepted: 04/25/2016] [Indexed: 01/02/2023] Open
Abstract
Activation of the proteasome pathway is one of the secondary processes of cell damage, which ultimately lead to muscle degeneration and necrosis in Duchenne muscular dystrophy (DMD). In mdx mice, the proteasome inhibitor bortezomib up-regulates the membrane expression of members of the dystrophin complex and reduces the inflammatory reaction. However, chronic inhibition of the 26S proteasome may be toxic, as indicated by the systemic side-effects caused by this drug. Therefore, we sought to determine the components of the ubiquitin-proteasome pathway that are specifically activated in human dystrophin-deficient muscles. The analysis of a cohort of patients with genetically determined DMD or Becker muscular dystrophy (BMD) unveiled a selective up-regulation of the ubiquitin ligase tripartite motif-containing protein 32 (TRIM32). The induction of TRIM32 was due to a transcriptional effect and it correlated with disease severity in BMD patients. In contrast, atrogin1 and muscle RING-finger protein-1 (MuRF-1), which are strongly increased in distinct types of muscular atrophy, were not affected by the DMD dystrophic process. Knock-out models showed that TRIM32 is involved in ubiquitination of muscle cytoskeletal proteins as well as of protein inhibitor of activated STAT protein gamma (Piasγ) and N-myc downstream-regulated gene, two inhibitors of satellite cell proliferation and differentiation. Accordingly, we showed that in DMD/BMD muscle tissue, TRIM32 induction was more pronounced in regenerating myofibers rather than in necrotic muscle cells, thus pointing out a role of this protein in the regulation of human myoblast cell fate. This finding highlights TRIM32 as a possible therapeutic target to favor skeletal muscle regeneration in DMD patients.
Collapse
|
19
|
Burr AR, Molkentin JD. Genetic evidence in the mouse solidifies the calcium hypothesis of myofiber death in muscular dystrophy. Cell Death Differ 2015; 22:1402-12. [PMID: 26088163 PMCID: PMC4532779 DOI: 10.1038/cdd.2015.65] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/03/2015] [Accepted: 04/17/2015] [Indexed: 01/19/2023] Open
Abstract
Muscular dystrophy (MD) refers to a clinically and genetically heterogeneous group of degenerative muscle disorders characterized by progressive muscle wasting and often premature death. Although the primary defect underlying most forms of MD typically results from a loss of sarcolemmal integrity, the secondary molecular mechanisms leading to muscle degeneration and myofiber necrosis is debated. One hypothesis suggests that elevated or dysregulated cytosolic calcium is the common transducing event, resulting in myofiber necrosis in MD. Previous measurements of resting calcium levels in myofibers from dystrophic animal models or humans produced equivocal results. However, recent studies in genetically altered mouse models have largely solidified the calcium hypothesis of MD, such that models with artificially elevated calcium in skeletal muscle manifest fulminant dystrophic-like disease, whereas models with enhanced calcium clearance or inhibited calcium influx are resistant to myofiber death and MD. Here, we will review the field and the recent cadre of data from genetically altered mouse models, which we propose have collectively mostly proven the hypothesis that calcium is the primary effector of myofiber necrosis in MD. This new consensus on calcium should guide future selection of drugs to be evaluated in clinical trials as well as gene therapy-based approaches.
Collapse
Affiliation(s)
- A R Burr
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, USA
| | - J D Molkentin
- 1] Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, 240 Albert Sabin Way, Cincinnati, OH, USA [2] Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Howard Hughes Medical Institute, Molecular Cardiovascular Biology, 240 Albert Sabin Way, Cincinnati, OH, USA
| |
Collapse
|
20
|
Mázala DAG, Pratt SJP, Chen D, Molkentin JD, Lovering RM, Chin ER. SERCA1 overexpression minimizes skeletal muscle damage in dystrophic mouse models. Am J Physiol Cell Physiol 2015; 308:C699-709. [PMID: 25652448 DOI: 10.1152/ajpcell.00341.2014] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/01/2015] [Indexed: 02/04/2023]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by progressive muscle wasting secondary to repeated muscle damage and inadequate repair. Elevations in intracellular free Ca²⁺ have been implicated in disease progression, and sarcoplasmic/endoplasmic reticulum Ca²⁺-ATPase 1 (SERCA1) overexpression has been shown to ameliorate the dystrophic phenotype in mdx mice. The purpose of this study was to assess the effects of SERCA1 overexpression in the more severe mdx/Utr(-/-) mouse model of DMD. Mice overexpressing SERCA1 were crossed with mdx/Utr ± mice to generate mdx/Utr(-/-)/+SERCA1 mice and compared with wild-type (WT), WT/+SERCA1, mdx/+SERCA1, and genotype controls. Mice were assessed at ∼12 wk of age for changes in Ca²⁺ handling, muscle mass, quadriceps torque, markers of muscle damage, and response to repeated eccentric contractions. SERCA1-overexpressing mice had a two- to threefold increase in maximal sarcoplasmic reticulum Ca²⁺-ATPase activity compared with WT which was associated with normalization in body mass for both mdx/+SERCA1 and mdx/Utr(-/-)/+SERCA1. Torque deficit in the quadriceps after eccentric injury was 2.7-fold greater in mdx/Utr(-/-) vs. WT mice, but only 1.5-fold greater in mdx/Utr(-/-)/+SERCA1 vs. WT mice, an attenuation of 44%. Markers of muscle damage (% centrally nucleated fibers, necrotic area, and serum creatine kinase levels) were higher in both mdx and mdx/Utr(-/-) vs. WT, and all were attenuated by overexpression of SERCA1. These data indicate that SERCA1 overexpression ameliorates functional impairments and cellular markers of damage in a more severe mouse model of DMD. These findings support targeting intracellular Ca²⁺ control as a therapeutic approach for DMD.
Collapse
Affiliation(s)
- Davi A G Mázala
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryand
| | - Stephen J P Pratt
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryand; and
| | - Dapeng Chen
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryand
| | - Jeffery D Molkentin
- Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryand; and
| | - Eva R Chin
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryand; Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, Maryand; and Department of Pediatrics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
21
|
Mázala DAG, Grange RW, Chin ER. The role of proteases in excitation-contraction coupling failure in muscular dystrophy. Am J Physiol Cell Physiol 2014; 308:C33-40. [PMID: 25298424 DOI: 10.1152/ajpcell.00267.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Duchenne muscular dystrophy (DMD) is one of the most frequent types of muscular dystrophy. Alterations in intracellular calcium (Ca(2+)) handling are thought to contribute to the disease severity in DMD, possibly due to the activation of Ca(2+)-activated proteases. The purpose of this study was twofold: 1) to determine whether prolonged excitation-contraction (E-C) coupling disruption following repeated contractions is greater in animals lacking both dystrophin and utrophin (mdx/Utr(-/-)) compared with mice lacking only dystrophin (mdx); and 2) to assess whether protease inhibition can prevent E-C coupling failure following repeated tetani in these dystrophic mouse models. Excitation-contraction coupling was assessed using Fura-2 ratio, as an index of intracellular free Ca(2+) concentration, in response to electrical stimulation of single muscle fibers from the flexor digitorum brevis muscle. Resting Fura-2 ratio was higher in dystrophic compared with control (Con) fibers, but peak Fura-2 ratios during stimulation were similar in dystrophic and Con fibers. One hour after a series of repeated tetani, peak Fura-2 ratios were reduced by 30 ± 5.6%, 23 ± 2%, and 36 ± 3.1% in mdx, mdx/Utr(+/-), and mdx/Utr(-/-), respectively, with the greatest reduction in mdx/Utr(-/-) fibers (P < 0.05). Protease inhibition attenuated this decrease in peak Fura-2 ratio. These data indicate that E-C coupling impairment after repeated contractions is greatest in fibers lacking both dystrophin and utrophin and that prevention of protease activation can mitigate the prolonged E-C coupling impairment. These data further suggest that acute protease inhibition may be useful in reducing muscle weakness in DMD.
Collapse
Affiliation(s)
- Davi A G Mázala
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland; and
| | - Robert W Grange
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Eva R Chin
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, Maryland; and
| |
Collapse
|
22
|
Wynne GM, Russell AJ. Drug Discovery Approaches for Rare Neuromuscular Diseases. ORPHAN DRUGS AND RARE DISEASES 2014. [DOI: 10.1039/9781782624202-00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rare neuromuscular diseases encompass many diverse and debilitating musculoskeletal disorders, ranging from ultra-orphan conditions that affect only a few families, to the so-called ‘common’ orphan diseases like Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which affect several thousand individuals worldwide. Increasingly, pharmaceutical and biotechnology companies, in an effort to improve productivity and rebuild dwindling pipelines, are shifting their business models away from the formerly popular ‘blockbuster’ strategy, with rare diseases being an area of increased focus in recent years. As a consequence of this paradigm shift, coupled with high-profile campaigns by not-for-profit organisations and patient advocacy groups, rare neuromuscular diseases are attracting considerable attention as new therapeutic areas for improved drug therapy. Much pioneering work has taken place to elucidate the underlying pathological mechanisms of many rare neuromuscular diseases. This, in conjunction with the availability of new screening technologies, has inspired the development of several truly innovative therapeutic strategies aimed at correcting the underlying pathology. A survey of medicinal chemistry approaches and the resulting clinical progress for new therapeutic agents targeting this devastating class of degenerative diseases is presented, using DMD and SMA as examples. Complementary strategies using small-molecule drugs and biological agents are included.
Collapse
Affiliation(s)
- Graham M. Wynne
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Angela J. Russell
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
23
|
Immunoproteasome in animal models of Duchenne muscular dystrophy. J Muscle Res Cell Motil 2014; 35:191-201. [PMID: 24934129 DOI: 10.1007/s10974-014-9385-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/20/2014] [Indexed: 10/25/2022]
Abstract
Increased proteasome activity has been implicated in the atrophy and deterioration associated with dystrophic muscles of Duchenne muscular dystrophy (DMD). While proteasome inhibitors show promise in the attenuation of muscle degeneration, proteasome inhibition-induced toxicity was a major drawback of this therapeutic strategy. Inhibitors that selectively target the proteasome subtype that is responsible for the loss in muscle mass and quality would reduce side effects and be less toxic. This study examined proteasome activity and subtype populations, along with muscle function, morphology and damage in wild-type (WT) mice and two murine models of DMD, dystrophin-deficient (MDX) and dystrophin- and utrophin-double-knockout (DKO) mice. We found that immunoproteasome content was increased in dystrophic muscles while the total proteasome content was unchanged among the three genotypes of mice. Proteasome proteolytic activity was elevated in dystrophic muscles, especially in DKO mice. These mice also exhibited more severe muscle atrophy than either WT or MDX mice. Muscle damage and regeneration, characterized by the activity of muscle creatine kinase in the blood and the percentage of central nuclei were equally increased in dystrophic mice. Accordingly, the overall muscle function was similarly reduced in both dystrophic mice compared with WT. These data demonstrated that there was transformation of standard proteasomes to immunoproteasomes in dystrophic muscles. In addition, DKO that showed greatest increase in proteasome activities also demonstrated more severe atrophy compared with MDX and WT. These results suggest a putative role for the immunoproteasome in muscle deterioration associated with DMD and provide a potential target for therapeutic intervention.
Collapse
|
24
|
Effects of Feeding Hexane-Extracts of a Shochu Distillery By-Product on Skeletal Muscle Protein Degradation in Broiler Chicken. Biosci Biotechnol Biochem 2014; 74:92-5. [DOI: 10.1271/bbb.90587] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Gokhin DS, Tierney MT, Sui Z, Sacco A, Fowler VM. Calpain-mediated proteolysis of tropomodulin isoforms leads to thin filament elongation in dystrophic skeletal muscle. Mol Biol Cell 2014; 25:852-65. [PMID: 24430868 PMCID: PMC3952854 DOI: 10.1091/mbc.e13-10-0608] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Calpain-mediated proteolysis of the thin filament pointed-end–capping protein tropomodulin results in actin subunit association onto pointed ends and increased thin filament lengths in two different murine models of Duchenne muscular dystrophy. This mechanism affects different skeletal muscles in a use- and disease severity–dependent manner. Duchenne muscular dystrophy (DMD) induces sarcolemmal mechanical instability and rupture, hyperactivity of intracellular calpains, and proteolytic breakdown of muscle structural proteins. Here we identify the two sarcomeric tropomodulin (Tmod) isoforms, Tmod1 and Tmod4, as novel proteolytic targets of m-calpain, with Tmod1 exhibiting ∼10-fold greater sensitivity to calpain-mediated cleavage than Tmod4 in situ. In mdx mice, increased m-calpain levels in dystrophic soleus muscle are associated with loss of Tmod1 from the thin filament pointed ends, resulting in ∼11% increase in thin filament lengths. In mdx/mTR mice, a more severe model of DMD, Tmod1 disappears from the thin filament pointed ends in both tibialis anterior (TA) and soleus muscles, whereas Tmod4 additionally disappears from soleus muscle, resulting in thin filament length increases of ∼10 and ∼12% in TA and soleus muscles, respectively. In both mdx and mdx/mTR mice, both TA and soleus muscles exhibit normal localization of α-actinin, the nebulin M1M2M3 domain, Tmod3, and cytoplasmic γ-actin, indicating that m-calpain does not cause wholesale proteolysis of other sarcomeric and actin cytoskeletal proteins in dystrophic skeletal muscle. These results implicate Tmod proteolysis and resultant thin filament length misspecification as novel mechanisms that may contribute to DMD pathology, affecting muscles in a use- and disease severity–dependent manner.
Collapse
Affiliation(s)
- David S Gokhin
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | | | | | | | | |
Collapse
|
26
|
Hollinger K, Selsby JT. The physiological response of protease inhibition in dystrophic muscle. Acta Physiol (Oxf) 2013; 208:234-44. [PMID: 23648220 DOI: 10.1111/apha.12114] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Revised: 03/25/2013] [Accepted: 04/29/2013] [Indexed: 01/06/2023]
Abstract
Duchenne muscular dystrophy (DMD) is caused by the production of a non-functional dystrophin gene product and a failure to accumulate functional dystrophin protein in muscle cells. This leads to membrane instability, loss of Ca(2+) homoeostasis and widespread cellular injury. Associated with these changes are increased protease activities in a variety of proteolytic systems. As such, there have been numerous investigations directed towards determining the therapeutic potential of protease inhibition. In this review, evidence from genetic and/or pharmacological inhibition of proteases as a treatment strategy for DMD is systematically evaluated. Specifically, we review the potential roles of calpain, proteasome, caspase, matrix metalloproteinase and serine protease inhibition as therapeutic approaches for DMD. We conclude that despite early results to the contrary, inhibition of calpain proteases is unlikely to be successful. Conversely, evidence suggests that inhibition of proteasome, matrix metalloproteinases and serine proteases does appear to decrease disease severity. An important caveat to these conclusions, however, is that the fundamental cause of DMD, dystrophin deficiency, is not corrected by this strategy. Hence, this should not be viewed as a cure, but rather, protease inhibitors should be considered for inclusion in a therapeutic cocktail. Physiological Relevance. Selective modulation of protease activity has the potential to profoundly change intracellular physiology resulting in a possible treatment for DMD. However, alteration of protease activities could also lead to worsening of disease progression by promoting the accumulation of substrates in the cell. The balance of benefit and potential damage caused by protease inhibition in human DMD patients is largely unexplored.
Collapse
Affiliation(s)
- K. Hollinger
- Department of Animal Science; Iowa State University; Ames; IA; USA
| | - J. T. Selsby
- Department of Animal Science; Iowa State University; Ames; IA; USA
| |
Collapse
|
27
|
Kemp CM, Oliver WT, Wheeler TL, Chishti AH, Koohmaraie M. The effects of Capn1 gene inactivation on skeletal muscle growth, development, and atrophy, and the compensatory role of other proteolytic systems. J Anim Sci 2013; 91:3155-67. [PMID: 23798514 PMCID: PMC3962768 DOI: 10.2527/jas.2012-5737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Myofibrillar protein turnover is a key component of muscle growth and degeneration, requiring proteolytic enzymes to degrade the skeletal muscle proteins. The objective of this study was to investigate the role of the calpain proteolytic system in muscle growth development using μ-calpain knockout (KO) mice in comparison with control wild-type (WT) mice, and evaluate the subsequent effects of silencing this gene on other proteolytic systems. No differences in muscle development between genotypes were observed during the early stages of growth due to the up regulation of other proteolytic systems. The KO mice showed significantly greater m-calpain protein abundance (P < 0.01) and activity (P < 0.001), and greater caspase 3/7 activity (P < 0.05). At 30 wk of age, KO mice showed increased protein:DNA (P < 0.05) and RNA:DNA ratios (P < 0.01), greater protein content (P < 0.01) at the expense of lipid deposition (P < 0.05), and an increase in size and number of fast-twitch glycolytic muscle fibers (P < 0.05), suggesting that KO mice exhibit an increased capacity to accumulate and maintain protein in their skeletal muscle. Also, expression of proteins associated with muscle regeneration (neural cell adhesion molecule and myoD) were both reduced in the mature KO mice (P < 0.05 and P < 0.01, respectively), indicating less muscle regeneration and, therefore, less muscle damage. These findings indicate the concerted action of proteolytic systems to ensure muscle protein homeostasis in vivo. Furthermore, these data contribute to the existing evidence of the importance of the calpain system's involvement in muscle growth, development, and atrophy. Collectively, these data suggest that there are opportunities to target the calpain system to promote the growth and/or restoration of skeletal muscle mass.
Collapse
Affiliation(s)
- C. M. Kemp
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - W. T. Oliver
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - T. L. Wheeler
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933
| | - A. H. Chishti
- Department of Molecular Physiology and Pharmacology, Tufts University, School of Medicine, Boston, MA 02111
| | - M. Koohmaraie
- IEH Laboratories & Consulting Group, Lake Forest Park, WA 98155; and College of Food and Agriculture, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
28
|
Raith M, Valencia RG, Fischer I, Orthofer M, Penninger JM, Spuler S, Rezniczek GA, Wiche G. Linking cytoarchitecture to metabolism: sarcolemma-associated plectin affects glucose uptake by destabilizing microtubule networks in mdx myofibers. Skelet Muscle 2013; 3:14. [PMID: 23758845 PMCID: PMC3695810 DOI: 10.1186/2044-5040-3-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/11/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is one of the most frequent forms of muscular disorders. It is caused by the absence of dystrophin, a core component of the sarcolemma-associated junctional complex that links the cytoskeleton to the extracellular matrix. We showed previously that plectin 1f (P1f), one of the major muscle-expressed isoforms of the cytoskeletal linker protein plectin, accumulates at the sarcolemma of DMD patients as well as of mdx mice, a widely studied animal model for DMD.Based on plectin's dual role as structural protein and scaffolding platform for signaling molecules, we speculated that the dystrophic phenotype observed after loss of dystrophin was caused, at least to some extent, by excess plectin. Thus, we hypothesized that elimination of plectin expression in mdx skeletal muscle, while probably resulting in an overall more severe phenotype, may lead to a partial phenotype rescue. In particular, we wanted to assess whether excess sarcolemmal plectin contributes to the dysregulation of sugar metabolism in mdx myofibers. METHODS We generated plectin/dystrophin double deficient (dKO) mice by breeding mdx with conditional striated muscle-restricted plectin knockout (cKO) mice. The phenotype of these mice was comparatively analyzed with that of mdx, cKO, and wild-type mice, focusing on structural integrity and dysregulation of glucose metabolism. RESULTS We show that the accumulation of plectin at the sarcolemma of mdx muscle fibers hardly compensated for their loss of structural integrity. Instead, it led to an additional metabolic deficit by impairing glucose uptake. While dKO mice suffered from an overall more severe form of muscular dystrophy compared to mdx or plectin-deficient mice, sarcolemmal integrity as well as glucose uptake of their myofibers were restored to normal levels upon ablation of plectin. Furthermore, microtubule (MT) networks in intact dKO myofibers, including subsarcolemmal areas, were found to be more robust than those in mdx mice. Finally, myotubes differentiated from P1f-overexpressing myoblasts showed an impairment of glucose transporter 4 translocation and a destabilization of MT networks. CONCLUSIONS Based on these results we propose that sarcolemma-associated plectin acts as an antagonist of MT network formation in myofibers, thereby hindering vesicle-mediated (MT-dependent) transport of glucose transporter 4. This novel role of plectin throws a bridge between extra-sarcomeric cytoarchitecture and metabolism of muscle fibers. Our study thus provides new insights into pathomechanisms of plectinopathies and muscular dystrophies in general.
Collapse
Affiliation(s)
- Marianne Raith
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, Vienna, 1030, Austria
| | - Rocio G Valencia
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, Vienna, 1030, Austria
| | - Irmgard Fischer
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, Vienna, 1030, Austria
| | - Michael Orthofer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr.-Bohr-Gasse 3, Vienna, 1030, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr.-Bohr-Gasse 3, Vienna, 1030, Austria
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Lindenberger Weg 80, Berlin, 13125, Germany
| | - Günther A Rezniczek
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, Vienna, 1030, Austria
- Department of Obstetrics and Gynecology (Marienhospital Herne), Ruhr-Universität Bochum, Düngelstrasse 33, Herne, 44623, Germany
| | - Gerhard Wiche
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr.-Bohr-Gasse 9, Vienna, 1030, Austria
| |
Collapse
|
29
|
Duguez S, Duddy W, Johnston H, Lainé J, Le Bihan MC, Brown KJ, Bigot A, Hathout Y, Butler-Browne G, Partridge T. Dystrophin deficiency leads to disturbance of LAMP1-vesicle-associated protein secretion. Cell Mol Life Sci 2013; 70:2159-74. [PMID: 23344255 PMCID: PMC11113779 DOI: 10.1007/s00018-012-1248-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/13/2012] [Accepted: 12/17/2012] [Indexed: 01/06/2023]
Abstract
Duchenne muscular dystrophy results from loss of the protein dystrophin, which links the intracellular cytoskeletal network with the extracellular matrix, but deficiency in this function does not fully explain the onset or progression of the disease. While some intracellular events involved in the degeneration of dystrophin-deficient muscle fibers have been well characterized, changes in their secretory profile are undescribed. To analyze the secretome profile of mdx myotubes independently of myonecrosis, we labeled the proteins of mdx and wild-type myotubes with stable isotope-labeled amino acids (SILAC), finding marked enrichment of vesicular markers in the mdx secretome. These included the lysosomal-associated membrane protein, LAMP1, that co-localized in vesicles with an over-secreted cytoskeletal protein, myosin light chain 1. These LAMP1/MLC1-3-positive vesicles accumulated in the cytosol of mdx myotubes and were secreted into the culture medium in a range of abnormal densities. Restitution of dystrophin expression, by exon skipping, to some 30 % of the control value, partially normalized the secretome profile and the excess LAMP1 accumulation. Together, our results suggest that a lack of dystrophin leads to a general dysregulation of vesicle trafficking. We hypothesize that disturbance of the export of proteins through vesicles occurs before, and then concurrently with, the myonecrotic cascade and contributes chronically to the pathophysiology of DMD, thereby presenting us with a range of new potential therapeutic targets.
Collapse
Affiliation(s)
- Stephanie Duguez
- Center for Genetic Medicine, Children’s Research Institute, Children’s National Medical Center, 111 Michigan Avenue, Washington, DC USA
- Institut de Myologie, UM76, Inserm U974, CNRS, UMR7215, Université Pierre et Marie Curie-Paris 6, Paris, 75013 France
| | - William Duddy
- Center for Genetic Medicine, Children’s Research Institute, Children’s National Medical Center, 111 Michigan Avenue, Washington, DC USA
- Institut de Myologie, UM76, Inserm U974, CNRS, UMR7215, Université Pierre et Marie Curie-Paris 6, Paris, 75013 France
| | - Helen Johnston
- Center for Genetic Medicine, Children’s Research Institute, Children’s National Medical Center, 111 Michigan Avenue, Washington, DC USA
| | - Jeanne Lainé
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Département de Physiologie, Université Pierre Et Marie Curie-Paris 06, Site Pitié-Salpêtrière, Paris, 75013 France
| | - Marie Catherine Le Bihan
- Institut de Myologie, UM76, Inserm U974, CNRS, UMR7215, Université Pierre et Marie Curie-Paris 6, Paris, 75013 France
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Kristy J. Brown
- Center for Genetic Medicine, Children’s Research Institute, Children’s National Medical Center, 111 Michigan Avenue, Washington, DC USA
| | - Anne Bigot
- Institut de Myologie, UM76, Inserm U974, CNRS, UMR7215, Université Pierre et Marie Curie-Paris 6, Paris, 75013 France
| | - Yetrib Hathout
- Center for Genetic Medicine, Children’s Research Institute, Children’s National Medical Center, 111 Michigan Avenue, Washington, DC USA
| | - Gillian Butler-Browne
- Institut de Myologie, UM76, Inserm U974, CNRS, UMR7215, Université Pierre et Marie Curie-Paris 6, Paris, 75013 France
| | - Terence Partridge
- Center for Genetic Medicine, Children’s Research Institute, Children’s National Medical Center, 111 Michigan Avenue, Washington, DC USA
| |
Collapse
|
30
|
Abstract
There is substantial evidence indicating that disruption of Ca2+ homeostasis and activation of cytosolic proteases play a key role in the pathogenesis and progression of Duchenne Muscular Dystrophy (DMD). However, the exact nature of the Ca2+ deregulation and the Ca2+ signaling pathways that are altered in dystrophic muscles have not yet been resolved. Here we examined the contribution of the store-operated Ca2+ entry (SOCE) for the pathogenesis of DMD. RT-PCR and Western blot found that the expression level of Orai1, the pore-forming unit of SOCE, was significantly elevated in the dystrophic muscles, while parallel increases in SOCE activity and SR Ca2+ storage were detected in adult mdx muscles using Fura-2 fluorescence measurements. High-efficient shRNA probes against Orai1 were delivered into the flexor digitorum brevis muscle in live mice and knockdown of Orai1 eliminated the differences in SOCE activity and SR Ca2+ storage between the mdx and wild type muscle fibers. SOCE activity was repressed by intraperitoneal injection of BTP-2, an Orai1 inhibitor, and cytosolic calpain1 activity in single muscle fibers was measured by a membrane-permeable calpain substrate. We found that BTP-2 injection for 2 weeks significantly reduced the cytosolic calpain1 activity in mdx muscle fibers. Additionally, ultrastructural changes were observed by EM as an increase in the number of triad junctions was identified in dystrophic muscles. Compensatory changes in protein levels of SERCA1, TRP and NCX3 appeared in the mdx muscles, suggesting that comprehensive adaptations occur following altered Ca2+ homeostasis in mdx muscles. Our data indicates that upregulation of the Orai1-mediated SOCE pathway and an overloaded SR Ca2+ store contributes to the disrupted Ca2+ homeostasis in mdx muscles and is linked to elevated proteolytic activity, suggesting that targeting Orai1 activity may be a promising therapeutic approach for the prevention and treatment of muscular dystrophy.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Division of Pharmacology, College of Pharmacy, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (XZ); (NW)
| | - Joseph G. Moloughney
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Sai Zhang
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Shinji Komazaki
- Department of Anatomy, Saitama Medical University, Saitama, Japan
| | - Noah Weisleder
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (XZ); (NW)
| |
Collapse
|
31
|
Perkins KJ, Davies KE. Recent advances in Duchenne muscular dystrophy. Degener Neurol Neuromuscul Dis 2012; 2:141-164. [PMID: 30890885 DOI: 10.2147/dnnd.s26637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), an allelic X-linked progressive muscle-wasting disease, is one of the most common single-gene disorders in the developed world. Despite knowledge of the underlying genetic causation and resultant pathophysiology from lack of dystrophin protein at the muscle sarcolemma, clinical intervention is currently restricted to symptom management. In recent years, however, unprecedented advances in strategies devised to correct the primary defect through gene- and cell-based therapeutics hold particular promise for treating dystrophic muscle. Conventional gene replacement and endogenous modification strategies have greatly benefited from continued improvements in encapsidation capacity, transduction efficiency, and systemic delivery. In particular, RNA-based modifying approaches such as exon skipping enable expression of a shorter but functional dystrophin protein and rapid progress toward clinical application. Emerging combined gene- and cell-therapy strategies also illustrate particular promise in enabling ex vivo genetic correction and autologous transplantation to circumvent a number of immune challenges. These approaches are complemented by a vast array of pharmacological approaches, in particular the successful identification of molecules that enable functional replacement or ameliorate secondary DMD pathology. Animal models have been instrumental in providing proof of principle for many of these strategies, leading to several recent trials that have investigated their efficacy in DMD patients. Although none has reached the point of clinical use, rapid improvements in experimental technology and design draw this goal ever closer. Here, we review therapeutic approaches to DMD, with particular emphasis on recent progress in strategic development, preclinical evaluation and establishment of clinical efficacy. Further, we discuss the numerous challenges faced and synergistic approaches being devised to combat dystrophic pathology effectively.
Collapse
Affiliation(s)
- Kelly J Perkins
- Sir William Dunn School of Pathology.,MRC Functional Genomics Unit, University of Oxford, Oxford, UK,
| | - Kay E Davies
- MRC Functional Genomics Unit, University of Oxford, Oxford, UK,
| |
Collapse
|
32
|
Berdeaux R, Stewart R. cAMP signaling in skeletal muscle adaptation: hypertrophy, metabolism, and regeneration. Am J Physiol Endocrinol Metab 2012; 303:E1-17. [PMID: 22354781 PMCID: PMC3404564 DOI: 10.1152/ajpendo.00555.2011] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/09/2012] [Indexed: 12/11/2022]
Abstract
Among organ systems, skeletal muscle is perhaps the most structurally specialized. The remarkable subcellular architecture of this tissue allows it to empower movement with instructions from motor neurons. Despite this high degree of specialization, skeletal muscle also has intrinsic signaling mechanisms that allow adaptation to long-term changes in demand and regeneration after acute damage. The second messenger adenosine 3',5'-monophosphate (cAMP) not only elicits acute changes within myofibers during exercise but also contributes to myofiber size and metabolic phenotype in the long term. Strikingly, sustained activation of cAMP signaling leads to pronounced hypertrophic responses in skeletal myofibers through largely elusive molecular mechanisms. These pathways can promote hypertrophy and combat atrophy in animal models of disorders including muscular dystrophy, age-related atrophy, denervation injury, disuse atrophy, cancer cachexia, and sepsis. cAMP also participates in muscle development and regeneration mediated by muscle precursor cells; thus, downstream signaling pathways may potentially be harnessed to promote muscle regeneration in patients with acute damage or muscular dystrophy. In this review, we summarize studies implicating cAMP signaling in skeletal muscle adaptation. We also highlight ligands that induce cAMP signaling and downstream effectors that are promising pharmacological targets.
Collapse
Affiliation(s)
- Rebecca Berdeaux
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | | |
Collapse
|
33
|
Selsby J, Morris C, Morris L, Sweeney L. A proteasome inhibitor fails to attenuate dystrophic pathology in mdx mice. PLOS CURRENTS 2012; 4:e4f84a944d8930. [PMID: 22866241 PMCID: PMC3392143 DOI: 10.1371/4f84a944d8930] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dystrophin deficiency leads to increased proteasome activity in skeletal muscle. Previous observations suggest short-term inhibition of the proteasome restores dystrophin expression. Contrary to our hypothesis, eight days of MG-132 administration to mdx mice increased susceptibility to contraction induced injury and Evan’s blue dye penetration compared to controls. Following six weeks of MG-132 administration muscle function was similar to control animals. These data suggest that proteasome inhibition does not reduce the severity of muscle dysfunction caused by dystrophin-deficiency.
Collapse
|
34
|
Abstract
The extracellular matrix (ECM) provides a solid scaffold and signals to cells through ECM receptors. The cell-matrix interactions are crucial for normal biological processes and when disrupted they may lead to pathological processes. In particular, the biological importance of ECM-cell membrane-cytoskeleton interactions in skeletal muscle is accentuated by the number of inherited muscle diseases caused by mutations in proteins conferring these interactions. In this review we introduce laminins, collagens, dystroglycan, integrins, dystrophin and sarcoglycans. Mutations in corresponding genes cause various forms of muscular dystrophy. The muscle disorders are presented as well as advances toward the development of treatment.
Collapse
Affiliation(s)
- Virginie Carmignac
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | |
Collapse
|
35
|
Childers MK, Bogan JR, Bogan DJ, Greiner H, Holder M, Grange RW, Kornegay JN. Chronic administration of a leupeptin-derived calpain inhibitor fails to ameliorate severe muscle pathology in a canine model of duchenne muscular dystrophy. Front Pharmacol 2012; 2:89. [PMID: 22291646 PMCID: PMC3253583 DOI: 10.3389/fphar.2011.00089] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 12/18/2011] [Indexed: 11/18/2022] Open
Abstract
Calpains likely play a role in the pathogenesis of Duchenne muscular dystrophy (DMD). Accordingly, calpain inhibition may provide therapeutic benefit to DMD patients. In the present study, we sought to measure benefit from administration of a novel calpain inhibitor, C101, in a canine muscular dystrophy model. Specifically, we tested the hypothesis that treatment with C101 mitigates progressive weakness and severe muscle pathology observed in young dogs with golden retriever muscular dystrophy (GRMD). Young (6-week-old) GRMD dogs were treated daily with either C101 (17 mg/kg twice daily oral dose, n = 9) or placebo (vehicle only, n = 7) for 8 weeks. A battery of functional tests, including tibiotarsal joint angle, muscle/fat composition, and pelvic limb muscle strength were performed at baseline and every 2 weeks during the 8-week study. Results indicate that C101-treated GRMD dogs maintained strength in their cranial pelvic limb muscles (tibiotarsal flexors) while placebo-treated dogs progressively lost strength. However, concomitant improvement was not observed in posterior pelvic limb muscles (tibiotarsal extensors). C101 treatment did not mitigate force drop following repeated eccentric contractions and no improvement was seen in the development of joint contractures, lean muscle mass, or muscle histopathology. Taken together, these data do not support the hypothesis that treatment with C101 mitigates progressive weakness or ameliorates severe muscle pathology observed in young dogs with GRMD.
Collapse
Affiliation(s)
- Martin K Childers
- Department of Neurology, Wake Forest University Health Sciences Winston-Salem, NC, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Mohana Rao V, Sridevi K, Anandraj MPJS. Platelet m-calpain: a facile marker and STR polymorphism analysis for the identification of true carriers of Duchenne muscular dystrophy. Integr Biol (Camb) 2011; 4:202-8. [PMID: 22166894 DOI: 10.1039/c1ib00101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular-degenerative fatal disorder caused by mutations in the dystrophin gene. The incidence rate is one in 3300 live male births in every part of the world. A study into the detection of true carriers of DMD has been performed using gene deletion and non-deletion cases to devise a reliable and cost-effective diagnosis of DMD. The study uses a sample of 130 people (70 males and 60 females), consisting of 105 risk patients (60 male and 45 female) and 25 patients from normal carrying families, analyzed by CPK, M-PCR, Q-PCR and STR. This study aims to perform diagnosis of non-deletional and true carriers of DMD by enzyme-linked immunosorbent assay (ELISA), assessing the amount of m-calpain in the platelets of participants. In order to diagnose DMD patients, true carriers and controls, an ELISA has been standardized using polyclonal antibodies raised against m-calpain purified from human placenta. From the sample group, 45 at risk females were analyzed for m-calpain by quantitative ELISA. It was found that 90% of tests were informative, showing enhanced levels of m-calpain when compared to controls. The quantitative ELISA has proved to be an accurate, reliable, rapid and cost-effective test for DMD patients and true carriers, and also useful for the prenatal diagnosis.
Collapse
Affiliation(s)
- V Mohana Rao
- Dept of Biochemistry & Molecular Biology, Institute of Genetics and Hospital for Genetic Diseases, Osmania University, Hyderabad, India. mpjs@
| | | | | |
Collapse
|
37
|
The dystrophin-glycoprotein complex in the prevention of muscle damage. J Biomed Biotechnol 2011; 2011:210797. [PMID: 22007139 PMCID: PMC3189583 DOI: 10.1155/2011/210797] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/03/2011] [Indexed: 01/18/2023] Open
Abstract
Muscular dystrophies are genetically diverse but share common phenotypic features of muscle weakness, degeneration, and progressive decline in muscle function. Previous work has focused on understanding how disruptions in the dystrophin-glycoprotein complex result in muscular dystrophy, supporting a hypothesis that the muscle sarcolemma is fragile and susceptible to contraction-induced injury in multiple forms of dystrophy. Although benign in healthy muscle, contractions in dystrophic muscle may contribute to a higher degree of muscle damage which eventually overwhelms muscle regeneration capacity. While increased susceptibility of muscle to mechanical injury is thought to be an important contributor to disease pathology, it is becoming clear that not all DGC-associated diseases share this supposed hallmark feature. This paper outlines experimental support for a function of the DGC in preventing muscle damage and examines the evidence that supports novel functions for this complex in muscle that when impaired, may contribute to the pathogenesis of muscular dystrophy.
Collapse
|
38
|
Wadosky KM, Li L, Rodríguez JE, Min JN, Bogan D, Gonzalez J, Patterson C, Kornegay JN, Willis M. Regulation of the calpain and ubiquitin-proteasome systems in a canine model of muscular dystrophy. Muscle Nerve 2011; 44:553-62. [PMID: 21826685 DOI: 10.1002/mus.22125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2011] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Previous studies have tested the hypothesis that calpain and/or proteasome inhibition is beneficial in Duchenne muscular dystrophy, based largely on evidence that calpain and proteasome activities are enhanced in the mdx mouse. METHODS mRNA expression of ubiquitin-proteasome and calpain system components were determined using real-time polymerase chain reaction in skeletal muscle and heart in the golden retriever muscular dystrophy model. Similarly, calpain 1 and 2 and proteasome activities were determined using fluorometric activity assays. RESULTS We found that less than half of the muscles tested had increases in proteasome activity, and only half had increased calpain activity. In addition, transcriptional regulation of the ubiquitin-proteasome system was most pronounced in the heart, where numerous components were significantly decreased. CONCLUSION This study illustrates the diversity of expression and activities of the ubiquitin-proteasome and calpain systems, which may lead to unexpected consequences in response to pharmacological inhibition.
Collapse
Affiliation(s)
- Kristine M Wadosky
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Morine KJ, Sleeper MM, Barton ER, Sweeney HL. Overexpression of SERCA1a in the mdx diaphragm reduces susceptibility to contraction-induced damage. Hum Gene Ther 2011; 21:1735-9. [PMID: 20540606 DOI: 10.1089/hum.2010.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the precise pathophysiological mechanism of muscle damage in dystrophin-deficient muscle remains disputed, calcium appears to be a critical mediator of the dystrophic process. Duchenne muscular dystrophy patients and mouse models of dystrophin deficiency exhibit extensive abnormalities of calcium homeostasis, which we hypothesized would be mitigated by increased expression of the sarcoplasmic reticulum calcium pump. Neonatal adeno-associated virus gene transfer of sarcoplasmic reticulum ATPase 1a to the mdx diaphragm decreased centrally located nuclei and resulted in reduced susceptibility to eccentric contraction-induced damage at 6 months of age. As the diaphragm is the mouse muscle most representative of human disease, these results provide impetus for further investigation of therapeutic strategies aimed at enhanced cytosolic calcium removal.
Collapse
Affiliation(s)
- Kevin J Morine
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, 19104, USA.
| | | | | | | |
Collapse
|
40
|
Sorimachi H, Hata S, Ono Y. Expanding members and roles of the calpain superfamily and their genetically modified animals. Exp Anim 2011; 59:549-66. [PMID: 21030783 DOI: 10.1538/expanim.59.549] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Calpains are intracellular Ca²(+)-dependent cysteine proteases (Clan CA, family C02, EC 3.4.22.17) found in almost all eukaryotes and some bacteria. Calpains display limited proteolytic activity at neutral pH, proteolysing substrates to transform and modulate their structures and activities, and are therefore called "modulator proteases". The human genome has 15 genes that encode a calpain-like protease domain, generating diverse calpain homologues that possess combinations of several functional domains such as Ca²(+)-binding domains and Zn-finger domains. The importance of the physiological roles of calpains is reflected in the fact that particular defects in calpain functionality cause a variety of deficiencies in many different organisms, including lethality, muscular dystrophies, lissencephaly, and tumorigenesis. In this review, the unique characteristics of this distinctive protease superfamily are introduced in terms of genetically modified animals, some of which are animal models of calpain deficiency diseases.
Collapse
Affiliation(s)
- Hiroyuki Sorimachi
- Calpain Project, The Tokyo Metropolitan Institute of Medical Science (Rinshoken), Japan
| | | | | |
Collapse
|
41
|
Carmignac V, Quéré R, Durbeej M. Proteasome inhibition improves the muscle of laminin α2 chain-deficient mice. Hum Mol Genet 2010; 20:541-52. [PMID: 21084425 DOI: 10.1093/hmg/ddq499] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Muscle atrophy, a significant characteristic of congenital muscular dystrophy with laminin α2 chain deficiency (also known as MDC1A), occurs by a change in the normal balance between protein synthesis and protein degradation. The ubiquitin-proteasome system (UPS) plays a key role in protein degradation in skeletal muscle cells. In order to identify new targets for drug therapy against MDC1A, we have investigated whether increased proteasomal degradation is a feature of MDC1A. Using the generated dy(3K)/dy(3K) mutant mouse model of MDC1A, we studied the expression of members of the ubiquitin-proteasome pathway in laminin α2 chain-deficient muscle, and we treated dy(3K)/dy(3K) mice with the proteasome inhibitor MG-132. We show that members of the UPS are upregulated and that the global ubiquitination of proteins is raised in dystrophic limb muscles. Also, phosphorylation of Akt is diminished in diseased muscles. Importantly, proteasome inhibition significantly improves the dystrophic dy(3K)/dy(3K) phenotype. Specifically, treatment with MG-132 increases lifespan, enhances locomotive activity, enlarges muscle fiber diameter, reduces fibrosis, restores Akt phosphorylation and decreases apoptosis. These studies promote better understanding of the disease process in mice and could lead to a drug therapy for MDC1A patients.
Collapse
Affiliation(s)
- Virginie Carmignac
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, 221 84 Lund, Sweden.
| | | | | |
Collapse
|
42
|
Selsby J, Pendrak K, Zadel M, Tian Z, Pham J, Carver T, Acosta P, Barton E, Sweeney HL. Leupeptin-based inhibitors do not improve the mdx phenotype. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1192-201. [PMID: 20844259 DOI: 10.1152/ajpregu.00586.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calpain activation has been implicated in the disease pathology of Duchenne muscular dystrophy. Inhibition of calpain has been proposed as a promising therapeutic target, which could lessen the protein degradation and prevent progressive fibrosis. At the same time, there are conflicting reports as to whether elevation of calpastatin, an endogenous calpain inhibitor, alters pathology. We compared the effects of pharmacological calpain inhibition in the mdx mouse using leupeptin and a proprietary compound (C101) that linked the inhibitory portion of leupeptin to carnitine (to increase uptake into muscle). Administration of C101 for 4 wk did not improve muscle histology, function, or serum creatine kinase levels in mdx mice. Mdx mice injected daily with leupeptin (36 mg/kg) for 6 mo also failed to show improved muscle function, histology, or creatine kinase levels. Biochemical analysis revealed that leupeptin administration caused an increase in m-calpain autolysis and proteasome activity, yet calpastatin levels were similar between treated and untreated mdx mice. These data demonstrate that pharmacological inhibition of calpain is not a promising intervention for the treatment of Duchenne muscular dystrophy due to the ability of skeletal muscle to counter calpain inhibitors by increasing multiple degradative pathways.
Collapse
Affiliation(s)
- Joshua Selsby
- Department of Physiology, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gazzerro E, Assereto S, Bonetto A, Sotgia F, Scarfì S, Pistorio A, Bonuccelli G, Cilli M, Bruno C, Zara F, Lisanti MP, Minetti C. Therapeutic potential of proteasome inhibition in Duchenne and Becker muscular dystrophies. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1863-77. [PMID: 20304949 DOI: 10.2353/ajpath.2010.090468] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Duchenne muscular dystrophy (DMD) and its milder allelic variant, Becker muscular dystrophy (BMD), result from mutations of the dystrophin gene and lead to progressive muscle deterioration. Enhanced activation of proteasomal degradation underlies critical steps in the pathogenesis of the DMD/BMD dystrophic process. Previously, we demonstrated that treatment with the proteasome inhibitor MG-132 rescues the cell membrane localization of dystrophin and the dystrophin glycoprotein complex in mdx mice, a natural genetic mouse model of DMD. The current work aims to thoroughly define the therapeutic potential in dystrophinopathies of Velcade, a drug that selectively blocks the ubiquitin-proteasome pathway. Velcade is particularly intriguing since it has been approved for the treatment of multiple myeloma. Therefore, its side effects in humans have been explored. Velcade effects were analyzed through two independent methodological approaches. First, we administered the drug systemically in mdx mice over a 2-week period. In this system, Velcade restores the membrane expression of dystrophin and dystrophin glycoprotein complex members and improves the dystrophic phenotype. In a second approach, we treated with the compound explants from muscle biopsies of DMD or BMD patients. We show that the inhibition of the proteasome pathway up-regulates dystrophin, alpha-sarcoglycan, and beta-dystroglycan protein levels in explants from BMD patients, whereas it increases the proteins of the dystrophin glycoprotein complex in DMD cases.
Collapse
Affiliation(s)
- Elisabetta Gazzerro
- University of Genoa, G. Gaslini Institute, Largo G. Gaslini 5, I-16147 Genoa, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|