1
|
Huang Q, Wang J, Ning H, Liu W, Han X. Integrin β1 in breast cancer: mechanisms of progression and therapy. Breast Cancer 2024:10.1007/s12282-024-01635-w. [PMID: 39343856 DOI: 10.1007/s12282-024-01635-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
The therapy for breast cancer (BC), to date, still needs improvement. Apart from traditional therapy methods, biological therapy being explored opens up a novel avenue for BC patients. Integrin β1 (ITGβ1), one of the largest subgroups in integrin family, is a key player in cancer evolution and therapy. Recent researches progress in the relationship of ITGβ1 level and BC, finding that ITGβ1 expression evidently concerns BC progression. In this chapter, we outline diverse ITGβ1-based mechanisms regarding to the promoted effect of ITGβ1 on BC cell structure rearrangement and malignant phenotype behaviors, the unfavorable patient prognosis conferred by ITGβ1, BC therapy tolerance induced by ITGβ1, and lastly novel inhibitors targeting ITGβ1 for BC therapy. As an effective biomarker, ITGβ1 undoubtedly emerges one of targeted-therapy opportunities of BC patients in future. It is a necessity focusing on scientific and large-scale clinical trials on the validation of targeted-ITGβ1 drugs for BC patients.
Collapse
Affiliation(s)
- Qionglian Huang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jue Wang
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hanjuan Ning
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weiwei Liu
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
2
|
Dragulska SA, Poursharifi M, Chen Y, Wlodarczyk MT, Acosta Santiago M, Dottino P, Martignetti JA, Mieszawska AJ. Engineering and Validation of a Peptide-Stabilized Poly(lactic- co-glycolic) Acid Nanoparticle for Targeted Delivery of a Vascular Disruptive Agent in Cancer Therapy. Bioconjug Chem 2022; 33:2348-2360. [PMID: 36367382 DOI: 10.1021/acs.bioconjchem.2c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Developing a biocompatible and biodegradable nanoparticle (NP) carrier that integrates drug-loading capability, active targeting, and imaging modality is extremely challenging. Herein, we report an NP with a core of poly(lactic-co-glycolic) acid (PLGA) chemically modified with the drug combretastatin A4 (CA4), a vascular disrupting agent (VDA) in clinical development for ovarian cancer (OvCA) therapy. The NP is stabilized with a short arginine-glycine-aspartic acid-phenylalanine x3 (RGDFFF) peptide via self-assembly of the peptide on the PLGA surface. Importantly, the use of our RGDFFF coating replaces the commonly used polyethylene glycol (PEG) polymer that itself often induces an unwanted immunogenic response. In addition, the RGD motif of the peptide is well-known to preferentially bind to αvβ3 integrin that is implicated in tumor angiogenesis and is exploited as the NP's targeting component. The NP is enhanced with an optical imaging fluorophore label via chemical modification of the PLGA. The RGDFFF-CA4 NPs are synthesized using a nanoprecipitation method and are ∼75 ± 3.7 nm in diameter, where a peptide coating comprises a 2-3 nm outer layer. The NPs are serum stable for 72 h. In vitro studies using human umbilical cord vascular endothelial cells (HUVEC) confirmed the high uptake and biological activity of the RGDFFF-CA4 NP. NP uptake and viability reduction were demonstrated in OvCA cells grown in culture, and the NPs efficiently accumulated in tumors in a preclinical OvCA mouse model. The RGDFFF NP did not induce an inflammatory response when cultured with immune cells. Finally, the NP was efficiently taken up by patient-derived OvCA cells, suggesting a potential for future clinical applications.
Collapse
Affiliation(s)
- Sylwia A Dragulska
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York11210, United States
| | - Mina Poursharifi
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York11210, United States
| | - Ying Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York10029, United States
| | - Marek T Wlodarczyk
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York11210, United States
| | - Maxier Acosta Santiago
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York11210, United States
| | - Peter Dottino
- Department of Obstetrics/Gynecology & Reproductive Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York10029, United States
| | - John A Martignetti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, New York10029, United States.,Women's Health Research Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl., New York, New York10029, United States.,Rudy Ruggles Research Institute, Western Connecticut Health Network, 131 West St., Danbury, Connecticut06810, United States
| | - Aneta J Mieszawska
- Department of Chemistry, Brooklyn College, The City University of New York, 2900 Bedford Avenue, Brooklyn, New York11210, United States
| |
Collapse
|
3
|
Sun Y, Yang J, Li Y, Luo J, Sun J, Li D, Wang Y, Wang K, Yang L, Wu L, Sun X. Single low-dose INC280-loaded theranostic nanoparticles achieve multirooted delivery for MET-targeted primary and liver metastatic NSCLC. Mol Cancer 2022; 21:212. [PMID: 36457016 PMCID: PMC9717478 DOI: 10.1186/s12943-022-01681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/11/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) patients with primary tumors and liver metastases have substantially reduced survival. Since mesenchymal-epithelial transition factor (MET) plays a significant role in the molecular mechanisms of advanced NSCLC, small molecule MET inhibitor capmatinib (INC280) hold promise for clinically NSCLC treatment. However, the major obstacles of MET-targeted therapy are poor drug solubility and off-tumor effects, even oral high-dosing regimens cannot significantly increase the therapeutic drug concentration in primary and metastatic NSCLC. METHODS We developed a multirooted delivery system INC280-PFCE nanoparticles (NPs) by loading INC280 into perfluoro-15-crown-5-ether for improving MET-targeted therapy. Biodistribution and anti-MET/antimetastatic effects of NPs were validated in orthotopic NSCLC and NSCLC liver metastasis models in a single low-dose. The efficacy of INC280-PFCE NPs was also explored in human NSCLC specimens. RESULTS INC280-PFCE NPs exhibited excellent antitumor ability in vitro. In orthotopic NSCLC models, sustained release and prolonged retention behaviors of INC280-PFCE NPs within tumors could be visualized in real-time by 19F magnetic resonance imaging (19F-MRI), and single pulmonary administration of NPs showed more significant tumor growth inhibition than oral administration of free INC280 at a tenfold higher dose. Furthermore, a single low-dose INC280-PFCE NPs administered intravenously suppressed widespread dissemination of liver metastasis without systemic toxicity. Finally, we verified the clinical translation potential of INC280-PFCE NPs in human NSCLC specimens. CONCLUSIONS These results demonstrated high anti-MET/antimetastatic efficacies, real-time MRI visualization and high biocompatibility of NPs after a single low-dose.
Collapse
Affiliation(s)
- Yige Sun
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Jie Yang
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Yingbo Li
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Jing Luo
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Jiemei Sun
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Daoshuang Li
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Yuchen Wang
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Kai Wang
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Lili Yang
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Lina Wu
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| | - Xilin Sun
- grid.410736.70000 0001 2204 9268 Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, 150028 Heilongjiang China ,grid.410736.70000 0001 2204 9268NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, 150028 Heilongjiang China
| |
Collapse
|
4
|
Seyyednia E, Oroojalian F, Baradaran B, Mojarrad JS, Mokhtarzadeh A, Valizadeh H. Nanoparticles modified with vasculature-homing peptides for targeted cancer therapy and angiogenesis imaging. J Control Release 2021; 338:367-393. [PMID: 34461174 DOI: 10.1016/j.jconrel.2021.08.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
The two major challenges in cancer treatment include lack of early detection and ineffective therapies with various side effects. Angiogenesis is the key process in the growth, survival, invasiveness, and metastasis of many of cancerous tumors. Imaging of the angiogenesis could lead to diagnosis of tumors in the early stage and evaluation of the therapeutic responses. Angiogenic blood vessels express specific molecular markers different from normal blood vessels (in level or kind). This fact would make the tumor vasculature a suitable site to target therapeutics and imaging agents within the tumor. Surface modified nanoparticles using peptide ligands with high binding affinity to the vasculature markers, provide efficient delivery of therapeutic and imaging agents, while avoiding undesirable side effects. In this review, we discuss discoveries of various tumor targeting peptides useful for tumor angiogenesis imaging and targeted therapy with emphasis on surface modified nanomedicines using vasculature targeting peptides.
Collapse
Affiliation(s)
- Elham Seyyednia
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javid Shahbazi Mojarrad
- Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hadi Valizadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Notohamiprodjo S, Varasteh Z, Beer AJ, Niu G, Chen X(S, Weber W, Schwaiger M. Tumor Vasculature. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Esser AK, Ross MH, Fontana F, Su X, Gabay A, Fox GC, Xu Y, Xiang J, Schmieder AH, Yang X, Cui G, Scott M, Achilefu S, Chauhan J, Fletcher S, Lanza GM, Weilbaecher KN. Nanotherapy delivery of c-myc inhibitor targets Protumor Macrophages and preserves Antitumor Macrophages in Breast Cancer. Theranostics 2020; 10:7510-7526. [PMID: 32685002 PMCID: PMC7359087 DOI: 10.7150/thno.44523] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/30/2020] [Indexed: 12/27/2022] Open
Abstract
Tumor-associated macrophages (TAMs) enhance tumor growth in mice and are correlated with a worse prognosis for breast cancer patients. While early therapies sought to deplete all macrophages, current therapeutics aim to reprogram pro-tumor macrophages (M2) and preserve those necessary for anti-tumor immune responses (M1). Recent studies have shown that c-MYC (MYC) is induced in M2 macrophages in vitro and in vivo where it regulates the expression of tumor-promoting genes. In a myeloid lineage MYC KO mouse model, MYC had important roles in macrophage maturation and function leading to reduced tumor growth. We therefore hypothesized that targeted delivery of a MYC inhibitor to established M2 TAMs could reduce polarization toward an M2 phenotype in breast cancer models. Methods: In this study, we developed a MYC inhibitor prodrug (MI3-PD) for encapsulation within perfluorocarbon nanoparticles, which can deliver drugs directly to the cytosol of the target cell through a phagocytosis independent mechanism. We have previously shown that M2-like TAMs express significant levels of the vitronectin receptor, integrin β3, and in vivo targeting and therapeutic potential was evaluated using αvβ3 integrin targeted rhodamine-labeled nanoparticles (NP) or integrin αvβ3-MI3-PD nanoparticles. Results: We observed that rhodamine, delivered by αvβ3-rhodamine NP, was incorporated into M2 tumor promoting macrophages through both phagocytosis-independent and dependent mechanisms, while NP uptake in tumor suppressing M1 macrophages was almost exclusively through phagocytosis. In a mouse model of breast cancer (4T1-GFP-FL), M2-like TAMs were significantly reduced with αvβ3-MI3-PD NP treatment. To validate this effect was independent of drug delivery to tumor cells and was specific to the MYC inhibitor, mice with integrin β3 knock out tumors (PyMT-Bo1 β3KO) were treated with αvβ3-NP or αvβ3-MI3-PD NP. M2 macrophages were significantly reduced with αvβ3-MI3-PD nanoparticle therapy but not αvβ3-NP treatment. Conclusion: These data suggest αvβ3-NP-mediated drug delivery of a c-MYC inhibitor can reduce protumor M2-like macrophages while preserving antitumor M1-like macrophages in breast cancer.
Collapse
|
7
|
d'Angelo M, Castelli V, Benedetti E, Antonosante A, Catanesi M, Dominguez-Benot R, Pitari G, Ippoliti R, Cimini A. Theranostic Nanomedicine for Malignant Gliomas. Front Bioeng Biotechnol 2019; 7:325. [PMID: 31799246 PMCID: PMC6868071 DOI: 10.3389/fbioe.2019.00325] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/28/2019] [Indexed: 12/14/2022] Open
Abstract
Brain tumors mainly originate from glial cells and are classified as gliomas. Malignant gliomas represent an incurable disease; indeed, after surgery and chemotherapy, recurrence appears within a few months, and mortality has remained high in the last decades. This is mainly due to the heterogeneity of malignant gliomas, indicating that a single therapy is not effective for all patients. In this regard, the advent of theranostic nanomedicine, a combination of imaging and therapeutic agents, represents a strategic tool for the management of malignant brain tumors, allowing for the detection of therapies that are specific to the single patient and avoiding overdosing the non-responders. Here, recent theranostic nanomedicine approaches for glioma therapy are described.
Collapse
Affiliation(s)
- Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Antonosante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Reyes Dominguez-Benot
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giuseppina Pitari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Mendes M, Sousa JJ, Pais A, Vitorino C. Targeted Theranostic Nanoparticles for Brain Tumor Treatment. Pharmaceutics 2018; 10:E181. [PMID: 30304861 PMCID: PMC6321593 DOI: 10.3390/pharmaceutics10040181] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022] Open
Abstract
The poor prognosis and rapid recurrence of glioblastoma (GB) are associated to its fast-growing process and invasive nature, which make difficult the complete removal of the cancer infiltrated tissues. Additionally, GB heterogeneity within and between patients demands a patient-focused method of treatment. Thus, the implementation of nanotechnology is an attractive approach considering all anatomic issues of GB, since it will potentially improve brain drug distribution, due to the interaction between the blood⁻brain barrier and nanoparticles (NPs). In recent years, theranostic techniques have also been proposed and regarded as promising. NPs are advantageous for this application, due to their respective size, easy surface modification and versatility to integrate multiple functional components in one system. The design of nanoparticles focused on therapeutic and diagnostic applications has increased exponentially for the treatment of cancer. This dual approach helps to understand the location of the tumor tissue, the biodistribution of nanoparticles, the progress and efficacy of the treatment, and is highly useful for personalized medicine-based therapeutic interventions. To improve theranostic approaches, different active strategies can be used to modulate the surface of the nanotheranostic particle, including surface markers, proteins, drugs or genes, and take advantage of the characteristics of the microenvironment using stimuli responsive triggers. This review focuses on the different strategies to improve the GB treatment, describing some cell surface markers and their ligands, and reports some strategies, and their efficacy, used in the current research.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
| | - João José Sousa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, 3004-504 Coimbra, Portugal.
- LAQV, REQUIMTE, Group of Pharmaceutical Technology, 3000-548 Coimbra, Portugal.
| |
Collapse
|
9
|
Hyun H, Park J, Willis K, Park JE, Lyle LT, Lee W, Yeo Y. Surface modification of polymer nanoparticles with native albumin for enhancing drug delivery to solid tumors. Biomaterials 2018; 180:206-224. [PMID: 30048910 PMCID: PMC6076859 DOI: 10.1016/j.biomaterials.2018.07.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 01/09/2023]
Abstract
Albumin is a promising surface modifier of nanoparticulate drug delivery systems. Serving as a dysopsonin, albumin can protect circulating nanoparticles (NPs) from the recognition and clearance by the mononuclear phagocytic system (MPS). Albumin may also help transport the NPs to solid tumors based on the increased consumption by cancer cells and interactions with the tumor microenvironment. Several studies have explored the benefits of surface-bound albumin to enhance NP delivery to tumors. However, it remains unknown how the surface modification process affects the conformation of albumin and the performance of the albumin-modified NPs. We use three different surface modification methods including two prevalent approaches (physisorption and interfacial embedding) and a new method based on dopamine polymerization to modify the surface of poly(lactic-co-glycolic acid) NPs with albumin and compare the extent of albumin binding, conformation of the surface-bound albumin, and biological performances of the albumin-coated NPs. We find that the dopamine polymerization method preserves the albumin structure, forming a surface layer that facilitates NP transport and drug delivery into tumors via the interaction with albumin-binding proteins. In contrast, the interfacial embedding method creates NPs with denatured albumin that offers no particular benefit to the interaction with cancer cells but rather promotes the MPS uptake via direct and indirect interactions with scavenger receptor A. This study demonstrates that the surface-bound albumin can bring distinct effects according to the way they interact with NP surface and thus needs to be controlled in order to achieve favorable therapeutic outcomes.
Collapse
Affiliation(s)
- Hyesun Hyun
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Joonyoung Park
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Kiela Willis
- School of Chemical Engineering, Purdue University, 480 West Stadium Avenue, West Lafayette, IN, 47907, USA
| | - Ji Eun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - L Tiffany Lyle
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, 47907, USA
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 South Martin Jischke Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
10
|
Li X, Sui Z, Li X, Xu W, Guo Q, Sun J, Jing F. Perfluorooctylbromide nanoparticles for ultrasound imaging and drug delivery. Int J Nanomedicine 2018; 13:3053-3067. [PMID: 29872293 PMCID: PMC5975599 DOI: 10.2147/ijn.s164905] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Perfluorooctylbromide nanoparticles (PFOB NPs) are a type of multifunctional nanotechnology that has been studied for various medical applications. Commercial ultrasound contrast agents (UCAs) suffer from the following limitations: short half-lives in vivo, high background signal and restricted distribution in the vascular circulation due to their micrometer dimensions. PFOB NPs are new potential UCAs that persist for long periods in the circulatory system, possess a relatively stable echogenic response without increasing the background signal and exhibit lower acoustic attenuation than commercial UCAs. Furthermore, PFOB NPs may also serve as drug delivery vehicles in which drugs are dissolved in the outer lipid or polymer layer for subsequent delivery to target sites in site-targeted therapy. The use of PFOB NPs as carriers has the potential advantage of selectively delivering payloads to the target site while improving visualization of the site using ultrasound (US) imaging. Unfortunately, the application of PFOB NPs to the field of ultrasonography has been limited because of the low intensity of US reflection. Numerous researchers have realized the potential use of PFOB NPs as UCAs and thus have developed alternative approaches to apply PFOB NPs in ultrasonography. In this article, we review the latest approaches for using PFOB NPs to enhance US imaging in vivo. In addition, this article emphasizes the application of PFOB NPs as promising drug delivery carriers for cancer and atherosclerosis treatments, as PFOB NPs can transport different drug payloads for various applications with good efficacy. We also note the challenges and future study directions for the application of PFOB NPs as both a delivery system for therapeutic agents and a diagnostic agent for ultrasonography.
Collapse
Affiliation(s)
- Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Zhongguo Sui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xin Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wen Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jialin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Fanbo Jing
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|
11
|
Sikkandhar MG, Nedumaran AM, Ravichandar R, Singh S, Santhakumar I, Goh ZC, Mishra S, Archunan G, Gulyás B, Padmanabhan P. Theranostic Probes for Targeting Tumor Microenvironment: An Overview. Int J Mol Sci 2017; 18:E1036. [PMID: 28492519 PMCID: PMC5454948 DOI: 10.3390/ijms18051036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023] Open
Abstract
Long gone is the time when tumors were thought to be insular masses of cells, residing independently at specific sites in an organ. Now, researchers gradually realize that tumors interact with the extracellular matrix (ECM), blood vessels, connective tissues, and immune cells in their environment, which is now known as the tumor microenvironment (TME). It has been found that the interactions between tumors and their surrounds promote tumor growth, invasion, and metastasis. The dynamics and diversity of TME cause the tumors to be heterogeneous and thus pose a challenge for cancer diagnosis, drug design, and therapy. As TME is significant in enhancing tumor progression, it is vital to identify the different components in the TME such as tumor vasculature, ECM, stromal cells, and the lymphatic system. This review explores how these significant factors in the TME, supply tumors with the required growth factors and signaling molecules to proliferate, invade, and metastasize. We also examine the development of TME-targeted nanotheranostics over the recent years for cancer therapy, diagnosis, and anticancer drug delivery systems. This review further discusses the limitations and future perspective of nanoparticle based theranostics when used in combination with current imaging modalities like Optical Imaging, Magnetic Resonance Imaging (MRI) and Nuclear Imaging (Positron Emission Tomography (PET) and Single Photon Emission Computer Tomography (SPECT)).
Collapse
Affiliation(s)
- Musafar Gani Sikkandhar
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Anu Maashaa Nedumaran
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Roopa Ravichandar
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Satnam Singh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Induja Santhakumar
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Zheng Cong Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Sachin Mishra
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Govindaraju Archunan
- Centre for Pheromone Technology, Department of Animal Science, Bharathidasan University, Tiruchirappalli 620024, India.
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.
| |
Collapse
|
12
|
Zhou Z, Lu ZR. Molecular imaging of the tumor microenvironment. Adv Drug Deliv Rev 2017; 113:24-48. [PMID: 27497513 DOI: 10.1016/j.addr.2016.07.012] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022]
Abstract
The tumor microenvironment plays a critical role in tumor initiation, progression, metastasis, and resistance to therapy. It is different from normal tissue in the extracellular matrix, vascular and lymphatic networks, as well as physiologic conditions. Molecular imaging of the tumor microenvironment provides a better understanding of its function in cancer biology, and thus allowing for the design of new diagnostics and therapeutics for early cancer diagnosis and treatment. The clinical translation of cancer molecular imaging is often hampered by the high cost of commercialization of targeted imaging agents as well as the limited clinical applications and small market size of some of the agents. Because many different cancer types share similar tumor microenvironment features, the ability to target these biomarkers has the potential to provide clinically translatable molecular imaging technologies for a spectrum of cancers and broad clinical applications. There has been significant progress in targeting the tumor microenvironment for cancer molecular imaging. In this review, we summarize the principles and strategies of recent advances made in molecular imaging of the tumor microenvironment, using various imaging modalities for early detection and diagnosis of cancer.
Collapse
|
13
|
Atukorale PU, Covarrubias G, Bauer L, Karathanasis E. Vascular targeting of nanoparticles for molecular imaging of diseased endothelium. Adv Drug Deliv Rev 2017; 113:141-156. [PMID: 27639317 DOI: 10.1016/j.addr.2016.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 01/08/2023]
Abstract
This review seeks to highlight the enormous potential of targeted nanoparticles for molecular imaging applications. Being the closest point-of-contact, circulating nanoparticles can gain direct access to targetable molecular markers of disease that appear on the endothelium. Further, nanoparticles are ideally suitable to vascular targeting due to geometrically enhanced multivalent attachment on the vascular target. This natural synergy between nanoparticles, vascular targeting and molecular imaging can provide new avenues for diagnosis and prognosis of disease with quantitative precision. In addition to the obvious applications of targeting molecular signatures of vascular diseases (e.g., atherosclerosis), deep-tissue diseases often manifest themselves by continuously altering and remodeling their neighboring blood vessels (e.g., cancer). Thus, the remodeled endothelium provides a wide range of targets for nanoparticles and molecular imaging. To demonstrate the potential of molecular imaging, we present a variety of nanoparticles designed for molecular imaging of cancer or atherosclerosis using different imaging modalities.
Collapse
|
14
|
Lanza GM, Jenkins J, Schmieder AH, Moldobaeva A, Cui G, Zhang H, Yang X, Zhong Q, Keupp J, Sergin I, Paranandi KS, Eldridge L, Allen JS, Williams T, Scott MJ, Razani B, Wagner EM. Anti-angiogenic Nanotherapy Inhibits Airway Remodeling and Hyper-responsiveness of Dust Mite Triggered Asthma in the Brown Norway Rat. Am J Cancer Res 2017; 7:377-389. [PMID: 28042341 PMCID: PMC5197071 DOI: 10.7150/thno.16627] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022] Open
Abstract
Although angiogenesis is a hallmark feature of asthmatic inflammatory responses, therapeutic anti-angiogenesis interventions have received little attention. Objective: Assess the effectiveness of anti-angiogenic Sn2 lipase-labile prodrugs delivered via αvβ3-micellar nanotherapy to suppress microvascular expansion, bronchial remodeling, and airway hyper-responsiveness in Brown Norway rats exposed to serial house dust mite (HDM) inhalation challenges. Results: Anti-neovascular effectiveness of αvβ3-mixed micelles incorporating docetaxel-prodrug (Dxtl-PD) or fumagillin-prodrug (Fum-PD) were shown to robustly suppress neovascular expansion (p<0.01) in the upper airways/bronchi of HDM rats using simultaneous 19F/1H MR neovascular imaging, which was corroborated by adjunctive fluorescent microscopy. Micelles without a drug payload (αvβ3-No-Drug) served as a carrier-only control. Morphometric measurements of HDM rat airway size (perimeter) and vessel number at 21d revealed classic vascular expansion in control rats but less vascularity (p<0.001) after the anti-angiogenic nanotherapies. CD31 RNA expression independently corroborated the decrease in airway microvasculature. Methacholine (MCh) induced respiratory system resistance (Rrs) was high in the HDM rats receiving αvβ3-No-Drug micelles while αvβ3-Dxtl-PD or αvβ3-Fum-PD micelles markedly and equivalently attenuated airway hyper-responsiveness and improved airway compliance. Total inflammatory BAL cells among HDM challenged rats did not differ with treatment, but αvβ3+ macrophages/monocytes were significantly reduced by both nanotherapies (p<0.001), most notably by the αvβ3-Dxtl-PD micelles. Additionally, αvβ3-Dxtl-PD decreased BAL eosinophil and αvβ3+ CD45+ leukocytes relative to αvβ3-No-Drug micelles, whereas αvβ3-Fum-PD micelles did not. Conclusion: These results demonstrate the potential of targeted anti-angiogenesis nanotherapy to ameliorate the inflammatory hallmarks of asthma in a clinically relevant rodent model.
Collapse
|
15
|
Cui Y, Zhang C, Luo R, Liu H, Zhang Z, Xu T, Zhang Y, Wang D. Noninvasive monitoring of early antiangiogenic therapy response in human nasopharyngeal carcinoma xenograft model using MRI with RGD-conjugated ultrasmall superparamagnetic iron oxide nanoparticles. Int J Nanomedicine 2016; 11:5671-5682. [PMID: 27895477 PMCID: PMC5117895 DOI: 10.2147/ijn.s115357] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Arginine-glycine-aspartic acid (RGD)-based nanoprobes allow specific imaging of integrin αvβ3, a protein overexpressed during angiogenesis. Therefore, this study applied a novel RGD-coupled, polyacrylic acid (PAA)-coated ultrasmall superparamagnetic iron oxide (USPIO) (referred to as RGD-PAA-USPIO) in order to detect tumor angiogenesis and assess the early response to antiangiogenic treatment in human nasopharyngeal carcinoma (NPC) xenograft model by magnetic resonance imaging (MRI). Materials and methods The binding specificity of RGD-PAA-USPIO with human umbilical vein endothelial cells (HUVECs) was confirmed by Prussian blue staining and transmission electron microscopy in vitro. The tumor targeting of RGD-PAA-USPIO was evaluated in the NPC xenograft model. Later, mice bearing NPC underwent MRI at baseline and after 4 and 14 days of consecutive treatment with Endostar or phosphate-buffered saline (n=10 per group). Results The specific uptake of the RGD-PAA-USPIO nanoparticles was mainly dependent on the interaction between RGD and integrin αvβ3 of HUVECs. The tumor targeting of RGD-PAA-USPIO was observed in the NPC xenograft model. Moreover, the T2 relaxation time of mice in the Endostar-treated group decreased significantly compared with those in the control group both on days 4 and 14, consistent with the immunofluorescence results of CD31 and CD61 (P<0.05). Conclusion This study demonstrated that the magnetic resonance molecular nanoprobes, RGD-PAA-USPIOs, allow noninvasive in vivo imaging of tumor angiogenesis and assessment of the early response to antiangiogenic treatment in NPC xenograft model, favoring its potential clinical translation.
Collapse
Affiliation(s)
- Yanfen Cui
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Caiyuan Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Ran Luo
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Huanhuan Liu
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhongyang Zhang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| | - Tianyong Xu
- MR Advanced Application and Research Center, GE Healthcare China, Shanghai, People's Republic of China
| | - Yong Zhang
- MR Advanced Application and Research Center, GE Healthcare China, Shanghai, People's Republic of China
| | - Dengbin Wang
- Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine
| |
Collapse
|
16
|
Blau R, Krivitsky A, Epshtein Y, Satchi-Fainaro R. Are nanotheranostics and nanodiagnostics-guided drug delivery stepping stones towards precision medicine? Drug Resist Updat 2016; 27:39-58. [PMID: 27449597 DOI: 10.1016/j.drup.2016.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/01/2016] [Accepted: 06/09/2016] [Indexed: 12/12/2022]
Abstract
The progress in medical research has led to the understanding that cancer is a large group of heterogeneous diseases, with high variability between and within individuals. This variability sprouted the ambitious goal to improve therapeutic outcomes, while minimizing drug adverse effects through stratification of patients by the differences in their disease markers, in a personalized manner, as opposed to the strategy of "one therapy fits all". Nanotheranostics, composed of nanoparticles (NPs) carrying therapeutic and/or diagnostics probes, have the potential to revolutionize personalized medicine. There are different modalities to combine these two distinct fields into one system for a synergistic outcome. The addition of a nanocarrier to a theranostic system holds great promise. Nanocarriers possess high surface area, enabling sophisticated functionalization with imaging agents, thus gaining enhanced diagnostic ability in real-time. Yet, most of the FDA-approved theranostic approaches are based on small molecules. The theranostic approaches that are reviewed herein are paving the road towards personalized medicine through all stages of patient care: starting from screening and diagnostics, proceeding to treatment and ending with treatment follow-up. Our current review provides a broad background and highlights new insights for the rational design of theranostic nanosystems for desired therapeutic niches, while summoning the hurdles on their way to become first-line diagnostics and therapeutics for cancer patients.
Collapse
Affiliation(s)
- Rachel Blau
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yana Epshtein
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Arosio D, Casagrande C. Advancement in integrin facilitated drug delivery. Adv Drug Deliv Rev 2016; 97:111-43. [PMID: 26686830 DOI: 10.1016/j.addr.2015.12.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023]
Abstract
The research of integrin-targeted anticancer agents has recorded important advancements in ingenious design of delivery systems, based either on the prodrug approach, or on nanoparticle carriers, but for now, none of these has reached a clinical stage of development. Past work in this area has been extensively reviewed by us and others. Thus, the purpose and scope of the present review is to survey the advancement reported in the last 3years, with focus on innovative delivery systems that appear to afford openings for future developments. These systems exploit the labelling with conventional and novel integrin ligands for targeting the interface of cancer cells and of endothelial cells involved in cancer angiogenesis, with the proteins of the extracellular matrix, in the circulation, in tissues, and in tumour stroma, as the site of progression and metastatic evolution of the disease. Furthermore, these systems implement the expertise in the development of nanomedicines to the purpose of achieving preferential biodistribution and uptake in cancer tissues, internalisation in cancer cells, and release of the transported drugs at intracellular sites. The assessment of the value of controlling these factors, and their combination, for future developments requires support of biological testing in appropriate mechanistic models, but also imperatively demand confirmation in therapeutically relevant in vivo models for biodistribution, efficacy, and lack of off-target effects. Thus, among many studies, we have tried to point out the results supported by relevant in vivo studies, and we have emphasised in specific sections those addressing the medical needs of drug delivery to brain tumours, as well as the delivery of oligonucleotides modulating gene-dependent pathological mechanism. The latter could constitute the basis of a promising third branch in the therapeutic armamentarium against cancer, in addition to antibody-based agents and to cytotoxic agents.
Collapse
Affiliation(s)
- Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM), CNR, Via C. Golgi 19, I-20133 Milan, Italy.
| | - Cesare Casagrande
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, I-20133 Milan, Italy.
| |
Collapse
|
18
|
Schmieder AH, Caruthers SD, Keupp J, Wickline SA, Lanza GM. Recent Advances in 19Fluorine Magnetic Resonance Imaging with Perfluorocarbon Emulsions. ENGINEERING (BEIJING, CHINA) 2015; 1:475-489. [PMID: 27110430 PMCID: PMC4841681 DOI: 10.15302/j-eng-2015103] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The research roots of 19fluorine (19F) magnetic resonance imaging (MRI) date back over 35 years. Over that time span, 1H imaging flourished and was adopted worldwide with an endless array of applications and imaging approaches, making magnetic resonance an indispensable pillar of biomedical diagnostic imaging. For many years during this timeframe, 19F imaging research continued at a slow pace as the various attributes of the technique were explored. However, over the last decade and particularly the last several years, the pace and clinical relevance of 19F imaging has exploded. In part, this is due to advances in MRI instrumentation, 19F/1H coil designs, and ultrafast pulse sequence development for both preclinical and clinical scanners. These achievements, coupled with interest in the molecular imaging of anatomy and physiology, and combined with a cadre of innovative agents, have brought the concept of 19F into early clinical evaluation. In this review, we attempt to provide a slice of this rich history of research and development, with a particular focus on liquid perfluorocarbon compound-based agents.
Collapse
Affiliation(s)
- Anne H. Schmieder
- Division of Cardiology, Washington University School of Medical, St. Louis, MO 63110, USA
| | - Shelton D. Caruthers
- Toshiba Medical Research Institute USA, Inc., Cleveland, OH 44143, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Jochen Keupp
- Philips Research Hamburg, Hamburg 22335, Germany
| | - Samuel A. Wickline
- Division of Cardiology, Washington University School of Medical, St. Louis, MO 63110, USA
| | - Gregory M. Lanza
- Division of Cardiology, Washington University School of Medical, St. Louis, MO 63110, USA
- Correspondence author.
| |
Collapse
|
19
|
Kankaanpää P, Tiitta S, Bergman L, Puranen AB, von Haartman E, Lindén M, Heino J. Cellular recognition and macropinocytosis-like internalization of nanoparticles targeted to integrin α2β1. NANOSCALE 2015; 7:17889-17901. [PMID: 26462719 DOI: 10.1039/c5nr06218g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Targeting nanoparticles to desired intracellular compartments is a major challenge. Integrin-type adhesion receptors are connected to different endocytosis routes in a receptor-specific manner. According to our previous observations, the internalization of an α2β1-integrin-echovirus-1 complex takes place via a macropinocytosis-like mechanism, suggesting that the receptor could be used to target nanoparticles to this specific entry route. Here, silica-based nanoparticles, carrying monoclonal antibodies against the α2β1 integrin as address labels, were synthesized. Studies with flow cytometry, atomic force microscopy and confocal microscopy showed the particles to attach to the cell surface via the α2β1 integrin. Furthermore, quantitative analysis of nanoparticle trafficking inside the cell performed with the BioImageXD software indicated that the particles enter cells via a macropinocytosis-like process and end up in caveolin-1 positive structures. Thus, we suggest that different integrins can guide particles to distinct endocytosis routes and, subsequently, also to specific intracellular compartments. In addition, we show that with the BioImageXD software it is possible to conduct sensitive and complex analyses of the behavior of small fluorescent particles inside cells, using basic confocal microscopy images.
Collapse
Affiliation(s)
- P Kankaanpää
- Department of Biochemistry, FI-20014 University of Turku, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
20
|
Esser AK, Schmieder AH, Ross MH, Xiang J, Su X, Cui G, Zhang H, Yang X, Allen JS, Williams T, Wickline SA, Pan D, Lanza GM, Weilbaecher KN. Dual-therapy with αvβ3-targeted Sn2 lipase-labile fumagillin-prodrug nanoparticles and zoledronic acid in the Vx2 rabbit tumor model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:201-11. [PMID: 26515754 DOI: 10.1016/j.nano.2015.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/16/2023]
Abstract
Fumagillin, an unstable anti-angiogenesis mycotoxin, was synthesized into a stable lipase-labile prodrug and incorporated into integrin-targeted lipid-encapsulated nanoparticles (αvβ3-Fum-PD NP). Dual anti-angiogenic therapy combining αvβ3-Fum-PD NP with zoledronic acid (ZA), a long-acting osteoclast inhibitor with proposed anti-angiogenic effects, was evaluated. In vitro, αvβ3-Fum-PD NP reduced (P<0.05) endothelial cell viability without impacting macrophage viability. ZA suppressed (P<0.05) macrophage viability at high dosages but not endothelial cell proliferation. 3D MR neovascular imaging of rabbit Vx2 tumors showed no effect with ZA, whereas αvβ3-Fum-PD NP alone and with ZA decreased angiogenesis (P<0.05). Immunohistochemistry revealed decreased (P<0.05) microvascularity with αvβ3-Fum-PD NP and ZA and further microvascular reduction (P<0.05) with dual-therapy. In vivo, ZA did not decrease tumor macrophage numbers nor cancer cell proliferation, whereas αvβ3-Fum-PD-NPs reduced both measures. Dual-therapy with ZA and αvβ3-Fum-PD-NP may provide enhanced neo-adjuvant utility if macrophage ZA uptake is increased. From the Clinical Editor: Although anti-angiogenesis is one of the treatment modalities in the fight against cancer, many cancers become resistant to VEGF pathway inhibitors. In this article, the authors investigated the use of dual therapy using fumagillin, integrin-targeted lipid-encapsulated nanoparticles (αvβ3- Fum-PD NP) and zoledronic acid (ZA), in both in-vitro and in-vivo experiments. This combination approach may provide an insight to the design of future drugs against cancers.
Collapse
Affiliation(s)
- Alison K Esser
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne H Schmieder
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael H Ross
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Jingyu Xiang
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xinming Su
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Grace Cui
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Huiying Zhang
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoxia Yang
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John S Allen
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Todd Williams
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel A Wickline
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana, Urbana, IL, USA
| | - Gregory M Lanza
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| | - Katherine N Weilbaecher
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
21
|
D’Alessandria C, Pohle K, Rechenmacher F, Neubauer S, Notni J, Wester HJ, Schwaiger M, Kessler H, Beer AJ. In vivo biokinetic and metabolic characterization of the 68Ga-labelled α5β1-selective peptidomimetic FR366. Eur J Nucl Med Mol Imaging 2015; 43:953-963. [DOI: 10.1007/s00259-015-3218-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/06/2015] [Indexed: 01/04/2023]
|
22
|
Pan D, Pham CTN, Weilbaecher KN, Tomasson MH, Wickline SA, Lanza GM. Contact-facilitated drug delivery with Sn2 lipase labile prodrugs optimize targeted lipid nanoparticle drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:85-106. [PMID: 26296541 PMCID: PMC4709477 DOI: 10.1002/wnan.1355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/18/2015] [Indexed: 01/10/2023]
Abstract
Sn2 lipase labile phospholipid prodrugs in conjunction with contact-facilitated drug delivery offer an important advancement in Nanomedicine. Many drugs incorporated into nanosystems, targeted or not, are substantially lost during circulation to the target. However, favorably altering the pharmacokinetics and volume of distribution of systemic drug delivery can offer greater efficacy with lower toxicity, leading to new prolonged-release nanoexcipients. However, the concept of achieving Paul Erhlich's inspired vision of a 'magic bullet' to treat disease has been largely unrealized due to unstable nanomedicines, nanosystems achieving low drug delivery to target cells, poor intracellular bioavailability of endocytosed nanoparticle payloads, and the substantial biological barriers of extravascular particle penetration into pathological sites. As shown here, Sn2 phospholipid prodrugs in conjunction with contact-facilitated drug delivery prevent premature drug diffusional loss during circulation and increase target cell bioavailability. The Sn2 phospholipid prodrug approach applies equally well for vascular constrained lipid-encapsulated particles and micelles the size of proteins that penetrate through naturally fenestrated endothelium in the bone marrow or thin-walled venules of an inflamed microcirculation. At one time Nanomedicine was considered a 'Grail Quest' by its loyal opposition and even many in the field adsorbing the pains of a long-learning curve about human biology and particles. However, Nanomedicine with innovations like Sn2 phospholipid prodrugs has finally made 'made the turn' toward meaningful translational success.
Collapse
Affiliation(s)
- Dipanjan Pan
- Departments of Bioengineering, Materials Science and Engineering, Beckman Institute, University of Illinois, Urbana-Champaign, IL, USA
| | - Christine T N Pham
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine N Weilbaecher
- Division of Oncology, Department of Medicine, Washington University Medical School, St. Louis, MO, USA
| | - Michael H Tomasson
- Division of Oncology, Department of Medicine, Washington University Medical School, St. Louis, MO, USA
| | - Samuel A Wickline
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory M Lanza
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
23
|
Penet MF, Krishnamachary B, Chen Z, Jin J, Bhujwalla ZM. Molecular imaging of the tumor microenvironment for precision medicine and theranostics. Adv Cancer Res 2015; 124:235-56. [PMID: 25287691 DOI: 10.1016/b978-0-12-411638-2.00007-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Morbidity and mortality from cancer and their associated conditions and treatments continue to extract a heavy social and economic global burden despite the transformative advances in science and technology in the twenty-first century. In fact, cancer incidence and mortality are expected to reach pandemic proportions by 2025, and costs of managing cancer will escalate to trillions of dollars. The inability to establish effective cancer treatments arises from the complexity of conditions that exist within tumors, the plasticity and adaptability of cancer cells coupled with their ability to escape immune surveillance, and the co-opted stromal cells and microenvironment that assist cancer cells in survival. Stromal cells, although destroyed together with cancer cells, have an ever-replenishing source that can assist in resurrecting tumors from any residual cancer cells that may survive treatment. The tumor microenvironment landscape is a continually changing landscape, with spatial and temporal heterogeneities that impact and influence cancer treatment outcome. Importantly, the changing landscape of the tumor microenvironment can be exploited for precision medicine and theranostics. Molecular and functional imaging can play important roles in shaping and selecting treatments to match this landscape. Our purpose in this review is to examine the roles of molecular and functional imaging, within the context of the tumor microenvironment, and the feasibility of their applications for precision medicine and theranostics in humans.
Collapse
Affiliation(s)
- Marie-France Penet
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Balaji Krishnamachary
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zhihang Chen
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jiefu Jin
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zaver M Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
24
|
Cosco D, Fattal E, Fresta M, Tsapis N. Perfluorocarbon-loaded micro and nanosystems for medical imaging: A state of the art. J Fluor Chem 2015. [DOI: 10.1016/j.jfluchem.2014.10.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Melemenidis S, Jefferson A, Ruparelia N, Akhtar AM, Xie J, Allen D, Hamilton A, Larkin JR, Perez-Balderas F, Smart SC, Muschel RJ, Chen X, Sibson NR, Choudhury RP. Molecular magnetic resonance imaging of angiogenesis in vivo using polyvalent cyclic RGD-iron oxide microparticle conjugates. Theranostics 2015; 5:515-29. [PMID: 25767618 PMCID: PMC4350013 DOI: 10.7150/thno.10319] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/12/2015] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is an essential component of tumour growth and, consequently, an important target both therapeutically and diagnostically. The cell adhesion molecule α(v)β(3) integrin is a specific marker of angiogenic vessels and the most prevalent vascular integrin that binds the amino acid sequence arginine-glycine-aspartic acid (RGD). Previous studies using RGD-targeted nanoparticles (20-50 nm diameter) of iron oxide (NPIO) for magnetic resonance imaging (MRI) of tumour angiogenesis, have identified a number of limitations, including non-specific extravasation, long blood half-life (reducing specific contrast) and low targeting valency. The aim of this study, therefore, was to determine whether conjugation of a cyclic RGD variant [c(RGDyK)], with enhanced affinity for α(v)β(3), to microparticles of iron oxide (MPIO) would provide a more sensitive contrast agent for imaging of angiogenic tumour vessels. Cyclic RGD [c(RGDyK)] and RAD [c(RADyK)] based peptides were coupled to 2.8 μm MPIO, and binding efficacy tested both in vitro and in vivo. Significantly greater specific binding of c(RGDyK)-MPIO to S-nitroso-n-acetylpenicillamine (SNAP)-stimulated human umbilical vein endothelial cells in vitro than PBS-treated cells was demonstrated under both static (14-fold increase; P < 0.001) and flow (44-fold increase; P < 0.001) conditions. Subsequently, mice bearing subcutaneous colorectal (MC38) or melanoma (B16F10) derived tumours underwent in vivo MRI pre- and post-intravenous administration of c(RGDyK)-MPIO or c(RADyK)-MPIO. A significantly greater volume of MPIO-induced hypointensities were found in c(RGDyK)-MPIO injected compared to c(RADyK)-MPIO injected mice, in both tumour models (P < 0.05). Similarly, administration of c(RGDyK)-MPIO induced a greater reduction in mean tumour T(2)* relaxation times than the control agent in both tumour models (melanoma P < 0.001; colorectal P < 0.0001). Correspondingly, MPIO density per tumour volume assessed immunohistochemically was significantly greater for c(RGDyK)-MPIO than c(RADyK)-MPIO injected animals, in both melanoma (P < 0.05) and colorectal (P < 0.0005) tumours. In both cases, binding of c(RGDyK)-MPIO co-localised with α(v)β(3) expression. Comparison of RGD-targeted and dynamic contrast enhanced (DCE) MRI assessment of tumour perfusion indicated sensitivity to different vascular features. This study demonstrates specific binding of c(RGDyK)-MPIO to α(v)β(3) expressing neo-vessels, with marked and quantifiable contrast and rapid clearance of unbound particles from the blood circulation compared to NPIO. Combination of this molecular MRI approach with conventional DCE MRI will enable integrated molecular, anatomical and perfusion tumour imaging.
Collapse
Affiliation(s)
- Stavros Melemenidis
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Andrew Jefferson
- 1. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Neil Ruparelia
- 1. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Asim M Akhtar
- 1. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| | - Jin Xie
- 3. Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Danny Allen
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Alastair Hamilton
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - James R Larkin
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Francisco Perez-Balderas
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Sean C Smart
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Ruth J Muschel
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Xiaoyuan Chen
- 3. Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Nicola R Sibson
- 2. Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Robin P Choudhury
- 1. Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom
| |
Collapse
|
26
|
Wang K, Pan D, Schmieder AH, Senpan A, Caruthers SD, Cui G, Allen JS, Zhang H, Shen B, Lanza GM. Atherosclerotic neovasculature MR imaging with mixed manganese-gadolinium nanocolloids in hyperlipidemic rabbits. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:569-78. [PMID: 25652897 DOI: 10.1016/j.nano.2014.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 10/24/2022]
Abstract
A high r1 relaxivity manganese-gadolinium nanocolloid (αvβ3-MnOL-Gd NC) was developed and effectively detected atherosclerotic angiogenesis in rabbits fed cholesterol-rich diets for 12 months using a clinical MRI scanner (3T). 3D mapping of neovasculature signal intensity revealed the spatial coherence and intensity of plaque angiogenic expansion, which may, with other high risk MR bioindicators, help identify high-risk patients with moderate (40% to 60%) vascular stenosis. Microscopy confirmed the predominant media and plaque distribution of fluorescent αvβ3-MnOL-Gd NC, mirroring the MR data. An expected close spatial association of αvβ3-integrin neovasculature and macrophages was noted, particularly within plaque shoulder regions. Manganese oleate bioelimination occurred via the biliary system into feces. Gd-DOTA was eliminated through the bile-fecal and renal excretion routes. αvβ3-MnOL-Gd NC offers an effective vehicle for T1w neovascular imaging in atherosclerosis. From the clinical editor: Cerebrovascular accidents are a leading cause of mortality and morbidity worldwide. The acute formation of thrombus following atherosclerotic plaque rupture has been well recognized as the etiology of stroke. The authors studied microanatomical features of vulnerable atherosclerotic plaque in this article, in an attempt to identify those with high risk of rupture. Gadolinium-manganese hybrid nanocolloid (MnOL-Gd NC) was developed as a novel contrast agent for MRI. They show that this agent is effective in providing neovascular imaging.
Collapse
Affiliation(s)
- Kezheng Wang
- Department of Radiology, the Fourth Hospital of Harbin Medical University and Molecular Imaging Center of Harbin Medical University, Harbin, China; Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dipanjan Pan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne H Schmieder
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Angana Senpan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shelton D Caruthers
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Grace Cui
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John S Allen
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Huiying Zhang
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Baozhong Shen
- Department of Radiology, the Fourth Hospital of Harbin Medical University and Molecular Imaging Center of Harbin Medical University, Harbin, China.
| | - Gregory M Lanza
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Wang K, Pan D, Schmieder AH, Senpan A, Hourcade DE, Pham CTN, Mitchell LM, Caruthers SD, Cui G, Wickline SA, Shen B, Lanza GM. Synergy between surface and core entrapped metals in a mixed manganese-gadolinium nanocolloid affords safer MR imaging of sparse biomarkers. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:601-9. [PMID: 25652900 DOI: 10.1016/j.nano.2014.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 12/09/2014] [Accepted: 12/13/2014] [Indexed: 12/14/2022]
Abstract
High-relaxivity T1-weighted (T1w) MR molecular imaging nanoparticles typically present high surface gadolinium payloads that can elicit significant acute complement activation (CA). The objective of this research was to develop a high T1w contrast nanoparticle with improved safety. We report the development, optimization, and characterization of a gadolinium-manganese hybrid nanocolloid (MnOL-Gd NC; 138±10 (Dav)/nm; PDI: 0.06; zeta: -27±2 mV). High r1 particulate relaxivity with minute additions of Gd-DOTA-lipid conjugate to the MnOL nanocolloid surface achieved an unexpected paramagnetic synergism. This hybrid MnOL-Gd NC provided optimal MR TSE signal intensity at 5 nM/voxel and lower levels consistent with the level expression anticipated for sparse biomarkers, such as neovascular integrins. MnOL NC produced optimal MR TSE signal intensity at 10 nM/voxel concentrations and above. Importantly, MnOL-Gd NC avoided acute CA in vitro and in vivo while retaining minimal transmetallation risk. From the clinical editor: The authors developed a gadolinium-manganese hybrid nanocolloid (MnOL-Gd NC) in this study. These were used as a high-relaxivity paramagnetic MR molecular imaging agent in experimental models. It was shown that MnOL-Gd NC could provide high T1w MR contrast for targeted imaging. As the level of gadolinium used was reduced, there was also reduced risk of systemic side effects from complement activation.
Collapse
Affiliation(s)
- Kezheng Wang
- Department of Radiology, the Fourth Hospital of Harbin Medical University Molecular Imaging Center of Harbin Medical University, Harbin, China; Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dipanjan Pan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Anne H Schmieder
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Angana Senpan
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dennis E Hourcade
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Christine T N Pham
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lynne M Mitchell
- Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | - Shelton D Caruthers
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Grace Cui
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel A Wickline
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Baozhong Shen
- Department of Radiology, the Fourth Hospital of Harbin Medical University Molecular Imaging Center of Harbin Medical University, Harbin, China.
| | - Gregory M Lanza
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
28
|
Schleich N, Danhier F, Préat V. Iron oxide-loaded nanotheranostics: Major obstacles to in vivo studies and clinical translation. J Control Release 2015; 198:35-54. [DOI: 10.1016/j.jconrel.2014.11.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 12/14/2022]
|
29
|
Goette MJ, Lanza GM, Caruthers SD, Wickline SA. Improved quantitative (19) F MR molecular imaging with flip angle calibration and B1 -mapping compensation. J Magn Reson Imaging 2014; 42:488-94. [PMID: 25425244 DOI: 10.1002/jmri.24812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/07/2014] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To improve (19) F flip angle calibration and compensate for B1 inhomogeneities in quantitative (19) F MRI of sparse molecular epitopes with perfluorocarbon (PFC) nanoparticle (NP) emulsion contrast agents. MATERIALS AND METHODS Flip angle sweep experiments on PFC-NP point source phantoms with three custom-designed (19) F/(1) H dual-tuned coils revealed a difference in required power settings for (19) F and (1) H nuclei, which was used to calculate a calibration ratio specific for each coil. An image-based correction technique was developed using B1 -field mapping on (1) H to correct for (19) F and (1) H images in two phantom experiments. RESULTS Optimized (19) F peak power differed significantly from that of (1) H power for each coil (P < 0.05). A ratio of (19) F/(1) H power settings yielded a coil-specific and spatially independent calibration value (surface: 1.48 ± 0.06; semicylindrical: 1.71 ± 0.02, single-turn-solenoid: 1.92 ± 0.03). (1) H-image-based B1 correction equalized the signal intensity of (19) F images for two identical (19) F PFC-NP samples placed in different parts of the field, which were offset significantly by ~66% (P < 0.001), before correction. CONCLUSION (19) F flip angle calibration and B1 -mapping compensations to the (19) F images employing the more abundant (1) H signal as a basis for correction resulted in a significant change in the quantification of sparse (19) F MR signals from targeted PFC NP emulsions.
Collapse
Affiliation(s)
- Matthew J Goette
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA
| | - Gregory M Lanza
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Shelton D Caruthers
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Philips Healthcare, Cleveland, Ohio, USA
| | - Samuel A Wickline
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Department of Medicine, Washington University in St. Louis, Missouri, USA
| |
Collapse
|
30
|
Tirotta I, Dichiarante V, Pigliacelli C, Cavallo G, Terraneo G, Bombelli FB, Metrangolo P, Resnati G. (19)F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem Rev 2014; 115:1106-29. [PMID: 25329814 DOI: 10.1021/cr500286d] [Citation(s) in RCA: 340] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ilaria Tirotta
- Laboratory of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry, Materials, and Chemical Engineering "Giulio Natta" and ‡Fondazione Centro Europeo Nanomedicina, Politecnico di Milano , Milan 20131, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Toy R, Bauer L, Hoimes C, Ghaghada KB, Karathanasis E. Targeted nanotechnology for cancer imaging. Adv Drug Deliv Rev 2014; 76:79-97. [PMID: 25116445 PMCID: PMC4169743 DOI: 10.1016/j.addr.2014.08.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/26/2014] [Accepted: 08/04/2014] [Indexed: 02/02/2023]
Abstract
Targeted nanoparticle imaging agents provide many benefits and new opportunities to facilitate accurate diagnosis of cancer and significantly impact patient outcome. Due to the highly engineerable nature of nanotechnology, targeted nanoparticles exhibit significant advantages including increased contrast sensitivity, binding avidity and targeting specificity. Considering the various nanoparticle designs and their adjustable ability to target a specific site and generate detectable signals, nanoparticles can be optimally designed in terms of biophysical interactions (i.e., intravascular and interstitial transport) and biochemical interactions (i.e., targeting avidity towards cancer-related biomarkers) for site-specific detection of very distinct microenvironments. This review seeks to illustrate that the design of a nanoparticle dictates its in vivo journey and targeting of hard-to-reach cancer sites, facilitating early and accurate diagnosis and interrogation of the most aggressive forms of cancer. We will report various targeted nanoparticles for cancer imaging using X-ray computed tomography, ultrasound, magnetic resonance imaging, nuclear imaging and optical imaging. Finally, to realize the full potential of targeted nanotechnology for cancer imaging, we will describe the challenges and opportunities for the clinical translation and widespread adaptation of targeted nanoparticles imaging agents.
Collapse
Affiliation(s)
- Randall Toy
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Lisa Bauer
- Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Christopher Hoimes
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; University Hospitals Case Medical Center, Cleveland, OH 44106, USA
| | - Ketan B Ghaghada
- Edward B. Singleton Department of Pediatric Radiology, Texas Children's Hospital, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA; Case Center for Imaging Research, Case Western Reserve University, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Radiology, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
32
|
Goette MJ, Keupp J, Rahmer J, Lanza GM, Wickline SA, Caruthers SD. Balanced UTE-SSFP for 19F MR imaging of complex spectra. Magn Reson Med 2014; 74:537-43. [PMID: 25163853 DOI: 10.1002/mrm.25437] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/18/2014] [Accepted: 08/15/2014] [Indexed: 12/30/2022]
Abstract
PURPOSE A novel technique for highly sensitive detection of multiresonant fluorine imaging agents was designed and tested with the use of dual-frequency 19F/1H ultrashort echo times (UTE) sampled with a balanced steady-state free precession (SSFP) pulse sequence and three-dimensional (3D) radial readout. METHODS Feasibility of 3D radial balanced UTE-SSFP imaging was demonstrated for a phantom comprising liquid perfluorooctyl bromide (PFOB). Sensitivity of the pulse sequence was measured and compared with other sequences imaging the PFOB (CF2 )6 line group including UTE radial gradient-echo (GRE) at α = 30°, as well as Cartesian GRE, balanced SSFP, and fast spin-echo (FSE). The PFOB CF3 peak was also sampled with FSE. RESULTS The proposed balanced UTE-SSFP technique exhibited a relative detection sensitivity of 51 μmolPFOB(-1) min(-1/2) (α = 30°), at least twice that of other sequence types with either 3D radial (UTE GRE: 20 μmolPFOB(-1) min(-1/2) ) or Cartesian k-space filling (GRE: 12 μmolPFOB(-1) min(-1/2) ; FSE: 16 μmolPFOB(-1) min(-1/2) ; balanced SSFP: 23 μmolPFOB(-1) min(-1/2) ). In vivo imaging of angiogenesis-targeted PFOB nanoparticles was demonstrated in a rabbit model of cancer on a clinical 3 Tesla scanner. CONCLUSION A new dual 19F/1H balanced UTE-SSFP sequence manifests high SNR, with detection sensitivity more than two-fold better than traditional techniques, and alleviates imaging problems caused by dephasing in complex spectra.
Collapse
Affiliation(s)
- Matthew J Goette
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA
| | | | | | - Gregory M Lanza
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Samuel A Wickline
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Department of Medicine, Washington University in St. Louis, Missouri, USA
| | - Shelton D Caruthers
- Department of Biomedical Engineering, Washington University in St. Louis, Missouri, USA.,Philips Healthcare, Cleveland, Ohio, USA
| |
Collapse
|
33
|
Wagner EM, Jenkins J, Schmieder A, Eldridge L, Zhang Q, Moldobaeva A, Zhang H, Allen JS, Yang X, Mitzner W, Keupp J, Caruthers SD, Wickline SA, Lanza GM. Angiogenesis and airway reactivity in asthmatic Brown Norway rats. Angiogenesis 2014; 18:1-11. [PMID: 25149641 DOI: 10.1007/s10456-014-9441-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/16/2014] [Indexed: 12/24/2022]
Abstract
Expanded and aberrant bronchial vascularity, a prominent feature of the chronic asthmatic airway, might explain persistent airway wall edema and sustained leukocyte recruitment. Since it is well established that there are causal relationships between exposure to house dust mite (HDM) and the development of asthma, determining the effects of HDM in rats, mammals with a bronchial vasculature similar to humans, provides an opportunity to study the effects of bronchial angiogenesis on airway function directly. We studied rats exposed bi-weekly to HDM (Der p 1; 50 μg/challenge by intranasal aspiration, 1, 2, 3 weeks) and measured the time course of appearance of increased blood vessels within the airway wall. Results demonstrated that within 3 weeks of HDM exposure, the number of vessels counted within airway walls of bronchial airways (0.5-3 mm perimeter) increased significantly. These vascular changes were accompanied by increased airway responsiveness to methacholine. A shorter exposure regimen (2 weeks of bi-weekly exposure) was insufficient to cause a significant increase in functional vessels or reactivity. Yet, 19F/1H MR imaging at 3T following αvβ3-targeted perfluorocarbon nanoparticle infusion revealed a significant increase in 19F signal in rat airways after 2 weeks of bi-weekly HDM, suggesting earlier activation of the process of neovascularization. Although many antigen-induced mouse models exist, mice lack a bronchial vasculature and consequently lack the requisite human parallels to study bronchial edema. Overall, our results provide an important new model to study the impact of bronchial angiogenesis on chronic inflammation and airways hyperreactivity.
Collapse
|
34
|
Winter P. Molecular Imaging at Nanoscale with Magnetic Resonance Imaging. Nanomedicine (Lond) 2014. [DOI: 10.1201/b17246-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
35
|
Zhou HF, Yan H, Hu Y, Springer LE, Yang X, Wickline SA, Pan D, Lanza GM, Pham CTN. Fumagillin prodrug nanotherapy suppresses macrophage inflammatory response via endothelial nitric oxide. ACS NANO 2014; 8:7305-17. [PMID: 24941020 PMCID: PMC4108210 DOI: 10.1021/nn502372n] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 06/18/2014] [Indexed: 05/19/2023]
Abstract
Antiangiogenesis has been extensively explored for the treatment of a variety of cancers and certain inflammatory processes. Fumagillin, a mycotoxin produced by Aspergillus fumigatus that binds methionine aminopeptidase 2 (MetAP-2), is a potent antiangiogenic agent. Native fumagillin, however, is poorly soluble and extremely unstable. We have developed a lipase-labile fumagillin prodrug (Fum-PD) that eliminated the photoinstability of the compound. Using αvβ3-integrin-targeted perfluorocarbon nanocarriers to deliver Fum-PD specifically to angiogenic vessels, we effectively suppressed clinical disease in an experimental model of rheumatoid arthritis (RA). The exact mechanism by which Fum-PD-loaded targeted nanoparticles suppressed inflammation in experimental RA, however, remained unexplained. We herein present evidence that Fum-PD nanotherapy indirectly suppresses inflammation in experimental RA through the local production of endothelial nitric oxide (NO). Fum-PD-induced NO activates AMP-activated protein kinase (AMPK), which subsequently modulates macrophage inflammatory response. In vivo, NO-induced AMPK activation inhibits mammalian target of rapamycin (mTOR) activity and enhances autophagic flux, as evidenced by p62 depletion and increased autolysosome formation. Autophagy in turn mediates the degradation of IkappaB kinase (IKK), suppressing the NF-κB p65 signaling pathway and inflammatory cytokine release. Inhibition of NO production by N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, reverses the suppression of NF-κB-mediated inflammatory response induced by Fum-PD nanotherapy. These unexpected results uncover an activity of Fum-PD nanotherapy that may be further explored in the treatment of angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Hui-fang Zhou
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Huimin Yan
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Ying Hu
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Luke E. Springer
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Xiaoxia Yang
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Samuel A. Wickline
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Dipanjan Pan
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
| | - Gregory M. Lanza
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
- Address correspondence to (G. Lanza) , (C. Pham)
| | - Christine T. N. Pham
- Division of Rheumatology and Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States
- Address correspondence to (G. Lanza) , (C. Pham)
| |
Collapse
|
36
|
Pan D, Schmieder AH, Wang K, Yang X, Senpan A, Cui G, Killgore K, Kim B, Allen JS, Zhang H, Caruthers SD, Shen B, Wickline SA, Lanza GM. Anti-angiogenesis therapy in the Vx2 rabbit cancer model with a lipase-cleavable Sn 2 taxane phospholipid prodrug using α(v)β₃-targeted theranostic nanoparticles. Theranostics 2014; 4:565-78. [PMID: 24723979 PMCID: PMC3982128 DOI: 10.7150/thno.7581] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 01/27/2014] [Indexed: 01/18/2023] Open
Abstract
In nanomedicine, the hydrophobic nature of paclitaxel has favored its incorporation into many nanoparticle formulations for anti-cancer chemotherapy. At lower doses taxanes are reported to elicit anti-angiogenic responses. In the present study, the facile synthesis, development and characterization of a new lipase-labile docetaxel prodrug is reported and shown to be an effective anti-angiogenic agent in vitro and in vivo. The Sn 2 phosphatidylcholine prodrug was stably incorporated into the lipid membrane of αvβ3-integrin targeted perfluorocarbon (PFC) nanoparticles (αvβ3-Dxtl-PD NP) and did not appreciably release during dissolution against PBS buffer or plasma over three days. Overnight exposure of αvβ3-Dxtl-PD NP to plasma spiked with phospholipase enzyme failed to liberate the taxane from the membrane until the nanoparticle integrity was compromised with alcohol. The bioactivity and efficacy of αvβ3-Dxtl-PD NP in endothelial cell culture was as effective as Taxol® or free docetaxel in methanol at equimolar doses over 96 hours. The anti-angiogenesis effectiveness of αvβ3-Dxtl-PD NP was demonstrated in the Vx2 rabbit model using MR imaging of angiogenesis with the same αvβ3-PFC nanoparticle platform. Nontargeted Dxtl-PD NP had a similar MR anti-angiogenesis response as the integrin-targeted agent, but microscopically measured decreases in tumor cell proliferation and increased apoptosis were detected only for the targeted drug. Equivalent dosages of Abraxane® given over the same treatment schedule had no effect on angiogenesis when compared to control rabbits receiving saline only. These data demonstrate that αvβ3-Dxtl-PD NP can reduce MR detectable angiogenesis and slow tumor progression in the Vx2 model, whereas equivalent systemic treatment with free taxane had no benefit.
Collapse
|
37
|
Sheldrake HM, Patterson LH. Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists. J Med Chem 2014; 57:6301-15. [PMID: 24568695 DOI: 10.1021/jm5000547] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The integrins are a family of 24 heterodimeric transmembrane cell surface receptors. Involvement in cell attachment to the extracellular matrix, motility, and proliferation identifies integrins as therapeutic targets in cancer and associated conditions: thrombosis, angiogenesis, and osteoporosis. The most reported strategy for drug development is synthesis of an agent that is highly selective for a single integrin receptor. However, the ability of cancer cells to change their integrin repertoire in response to drug treatment renders this approach vulnerable to the development of resistance and paradoxical promotion of tumor growth. Here, we review progress toward development of antagonists targeting two or more members of the Arg-Gly-Asp (RGD) binding integrins, notably αvβ3, αvβ5, αvβ6, αvβ8, α5β1, and αIIbβ3, as anticancer therapeutics.
Collapse
Affiliation(s)
- Helen M Sheldrake
- Institute of Cancer Therapeutics, University of Bradford , Bradford, BD7 1DP, U.K
| | | |
Collapse
|
38
|
Abstract
This review is focused on a novel cellular probe, the plasmonic nanobubble (PNB), which has the dynamically tunable and multiple functions of imaging, diagnosis, delivery, therapy and, ultimately, theranostics. The concept of theranostics was recently introduced in order to unite the clinically important stages of treatment, namely diagnosis, therapy and therapy guidance, into one single, rapid and highly accurate procedure. Cell level theranostics will have far-reaching implications for the treatment of cancer and other diseases at their earliest stages. PNBs were developed to support cell level theranostics as a new generation of on-demand tunable cellular probes. A PNB is a transient vapor nanobubble that is generated within nanoseconds around an overheated plasmonic nanoparticle with a short laser pulse. In the short term, we expect that PNB technology will be rapidly adaptable to clinical medicine, where the single cell resolution it provides will be critical for diagnosing incipient or residual disease and eliminating cancer cells, while leaving healthy cells intact. This review discusses mechanisms of plasmonic nanobubbles and their biomedical applications with the focus on cancer cell theranostics.
Collapse
Affiliation(s)
- Dmitri Lapotko
- Department of Physics & Astronomy, Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77005, USA; ; Tel.: +1-713-348-3708
| |
Collapse
|
39
|
Chen J, Pan H, Lanza GM, Wickline SA. Perfluorocarbon nanoparticles for physiological and molecular imaging and therapy. Adv Chronic Kidney Dis 2013; 20:466-78. [PMID: 24206599 DOI: 10.1053/j.ackd.2013.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/20/2013] [Accepted: 08/20/2013] [Indexed: 11/11/2022]
Abstract
Herein, we review the use of non-nephrotoxic perfluorocarbon nanoparticles (PFC NPs) for noninvasive detection and therapy of kidney diseases, and we provide a synopsis of other related literature pertinent to their anticipated clinical application. Recent reports indicate that PFC NPs allow for quantitative mapping of kidney perfusion and oxygenation after ischemia-reperfusion injury with the use of a novel multinuclear (1)H/(19)F magnetic resonance imaging approach. Furthermore, when conjugated with targeting ligands, the functionalized PFC NPs offer unique and quantitative capabilities for imaging inflammation in the kidney of atherosclerotic ApoE-null mice. In addition, PFC NPs can facilitate drug delivery for treatment of inflammation, thrombosis, and angiogenesis in selected conditions that are comorbidities for kidney failure. The excellent safety profile of PFC NPs with respect to kidney injury positions these nanomedicine approaches as promising diagnostic and therapeutic candidates for treating and following acute and chronic kidney diseases.
Collapse
|
40
|
Lanza GM, Moonen C, Baker JR, Chang E, Cheng Z, Grodzinski P, Ferrara K, Hynynen K, Kelloff G, Lee YEK, Patri AK, Sept D, Schnitzer JE, Wood BJ, Zhang M, Zheng G, Farahani K. Assessing the barriers to image-guided drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 6:1-14. [PMID: 24339356 DOI: 10.1002/wnan.1247] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 12/13/2022]
Abstract
Imaging has become a cornerstone for medical diagnosis and the guidance of patient management. A new field called image-guided drug delivery (IGDD) now combines the vast potential of the radiological sciences with the delivery of treatment and promises to fulfill the vision of personalized medicine. Whether imaging is used to deliver focused energy to drug-laden particles for enhanced, local drug release around tumors, or it is invoked in the context of nanoparticle-based agents to quantify distinctive biomarkers that could risk stratify patients for improved targeted drug delivery efficiency, the overarching goal of IGDD is to use imaging to maximize effective therapy in diseased tissues and to minimize systemic drug exposure in order to reduce toxicities. Over the last several years, innumerable reports and reviews covering the gamut of IGDD technologies have been published, but inadequate attention has been directed toward identifying and addressing the barriers limiting clinical translation. In this consensus opinion, the opportunities and challenges impacting the clinical realization of IGDD-based personalized medicine were discussed as a panel and recommendations were proffered to accelerate the field forward.
Collapse
Affiliation(s)
- Gregory M Lanza
- Division of Cardiology, Washington University Medical School, St. Louis, MO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schmieder AH, Wang K, Zhang H, Senpan A, Pan D, Keupp J, Caruthers SD, Wickline SA, Shen B, Wagner EM, Lanza GM. Characterization of early neovascular response to acute lung ischemia using simultaneous (19)F/ (1)H MR molecular imaging. Angiogenesis 2013; 17:51-60. [PMID: 23918207 DOI: 10.1007/s10456-013-9377-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 07/29/2013] [Indexed: 12/31/2022]
Abstract
Angiogenesis is an important constituent of many inflammatory pulmonary diseases, which has been unappreciated until recently. Early neovascular expansion in the lungs in preclinical models and patients is very difficult to assess noninvasively, particularly quantitatively. The present study demonstrated that (19)F/(1)H MR molecular imaging with αvβ3-targeted perfluorocarbon nanoparticles can be used to directly measure neovascularity in a rat left pulmonary artery ligation (LPAL) model, which was employed to create pulmonary ischemia and induce angiogenesis. In rats 3 days after LPAL, simultaneous (19)F/(1)H MR imaging at 3T revealed a marked (19)F signal in animals 2 h following αvβ3-targeted perfluorocarbon nanoparticles [(19)F signal (normalized to background) = 0.80 ± 0.2] that was greater (p = 0.007) than the non-targeted (0.30 ± 0.04) and the sham-operated (0.07 ± 0.09) control groups. Almost no (19)F signal was found in control right lung with any treatment. Competitive blockade of the integrin-targeted particles greatly decreased the (19)F signal (p = 0.002) and was equivalent to the non-targeted control group. Fluorescent and light microscopy illustrated heavy decorating of vessel walls in and around large bronchi and large pulmonary vessels. Focal segmental regions of neovessel expansion were also noted in the lung periphery. Our results demonstrate that (19)F/(1)H MR molecular imaging with αvβ3-targeted perfluorocarbon nanoparticles provides a means to assess the extent of systemic neovascularization in the lung.
Collapse
Affiliation(s)
- Anne H Schmieder
- Department of Medicine, Washington University School of Medicine, 660 S. Euclid, Campus Box 8215, St. Louis, MO, 63110, USA,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Penet MF, Artemov D, Farahani K, Bhujwalla ZM. MR - eyes for cancer: looking within an impenetrable disease. NMR IN BIOMEDICINE 2013; 26:745-55. [PMID: 23784955 PMCID: PMC3690531 DOI: 10.1002/nbm.2980] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 03/28/2013] [Accepted: 05/09/2013] [Indexed: 05/16/2023]
Abstract
Probe development is a critical component in cancer imaging, and novel probes are making major inroads in several aspects of cancer detection and image-guided treatments. Intrinsic MR probes such as signals from metabolites and their chemical shifts have been used for more than a decade to understand cancer physiology and metabolism. Through the integration of technology, molecular biology, and chemistry, the last few years have witnessed an explosion of extrinsic probes for molecular and functional imaging of cancer that, together with techniques such as CEST and hyperpolarization, have significantly expanded the repertoire of MR techniques in basic and translational investigations of many different aspects of cancer. Furthermore, incorporation of MR probes into multifunctional nanoparticles and multimodality imaging platforms have opened new opportunities for MR in image-guided diagnosis and therapy of cancer. Here we have provided an overview of recent innovations that have occurred in the development of MRI probes for molecular and functional imaging of cancer. Although most of these novel probes are not clinically available, they offer significant promise for future translational applications. In this review, we have highlighted the areas of future development that are likely to have a profound impact on cancer detection and treatment.
Collapse
Affiliation(s)
- Marie-France Penet
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dmitri Artemov
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Keyvan Farahani
- Image Guided Interventions Branch, Cancer Imaging Program, National Cancer Institute, Bethesda MD, USA
| | - Zaver M. Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Correspondence to: Zaver M. Bhujwalla, Ph.D., Department of Radiology, Johns Hopkins University School of Medicine, 208C Traylor Building, 720 Rutland Avenue, Baltimore, MD 21205, USA., Phone: 410-955-9698, Fax: 410-614-1948,
| |
Collapse
|
43
|
Schmieder AH, Winter PM, Williams TA, Allen JS, Hu G, Zhang H, Caruthers SD, Wickline SA, Lanza GM. Molecular MR imaging of neovascular progression in the Vx2 tumor with αvβ3-targeted paramagnetic nanoparticles. Radiology 2013; 268:470-80. [PMID: 23771914 DOI: 10.1148/radiol.13120789] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To assess the dependence of neovascular molecular magnetic resonance (MR) imaging on relaxivity (r1) of αvβ3-targeted paramagnetic perfluorocarbon (PFC) nanoparticles and to delineate the temporal-spatial consistency of angiogenesis assessments for individual animals. MATERIALS AND METHODS Animal protocols were approved by the Washington University Animal Studies Committee. Proton longitudinal and transverse relaxation rates of αvβ3-targeted and nontargeted PFC nanoparticles incorporating gadolinium diethylenetrianime pentaacedic acid (Gd-DTPA) bisoleate (BOA) or gadolinium tetraazacyclododecane tetraacetic acid (Gd-DOTA) phosphatidylethanolamine (PE) into the surfactant were measured at 3.0 T. These paramagnetic nanoparticles were compared in 30 New Zealand White rabbits (four to six rabbits per group) 14 days after implantation of a Vx2 tumor. Subsequently, serial MR (3.0 T) neovascular maps were developed 8, 14, and 16 days after tumor implantation by using αvβ3-targeted Gd-DOTA-PE nanoparticles (n = 4) or nontargeted Gd-DOTA-PE nanoparticles (n = 4). Data were analyzed with analysis of variance and nonparametric statistics. RESULTS At 3.0 T, Gd-DTPA-BOA nanoparticles had an ionic r1 of 10.3 L · mmol(-1) · sec(-1) and a particulate r1 of 927000 L · mmol(-1) · sec(-1). Gd-DOTA-PE nanoparticles had an ionic r1 of 13.3 L · mmol(-1) · sec(-1) and a particulate r1 of 1 197000 L · mmol(-1) · sec(-1). Neovascular contrast enhancement in Vx2 tumors (at 14 days) was 5.4% ± 1.06 of the surface volume with αvβ3-targeted Gd-DOTA-PE nanoparticles and 3.0% ± 0.3 with αvβ3-targeted Gd-DTPA-BOA nanoparticles (P = .03). MR neovascular contrast maps of tumors 8, 14, and 16 days after implantation revealed temporally consistent and progressive surface enhancement (1.0% ± 0.3, 4.5% ± 0.9, and 9.3% ± 1.4, respectively; P = .0008), with similar time-dependent changes observed among individual animals. CONCLUSION Temporal-spatial patterns of angiogenesis for individual animals were followed to monitor longitudinal tumor progression. Neovasculature enhancement was dependent on the relaxivity of the targeted agent.
Collapse
Affiliation(s)
- Anne H Schmieder
- Department of Medicine, Washington University Medical School, 660 S. Euclid Ave, Campus Box 8215, St Louis, MO 63108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wadajkar AS, Menon JU, Kadapure T, Tran RT, Yang J, Nguyen KT. Design and Application of Magnetic-based Theranostic Nanoparticle Systems. ACTA ACUST UNITED AC 2013; 6:47-57. [PMID: 23795343 DOI: 10.2174/1874764711306010007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, magnetic-based theranostic nanoparticle (MBTN) systems have been studied, researched, and applied extensively to detect and treat various diseases including cancer. Theranostic nanoparticles are advantageous in that the diagnosis and treatment of a disease can be performed in a single setting using combinational strategies of targeting, imaging, and/or therapy. Of these theranostic strategies, magnetic-based systems containing magnetic nanoparticles (MNPs) have gained popularity because of their unique ability to be used in magnetic resonance imaging, magnetic targeting, hyperthermia, and controlled drug release. To increase their effectiveness, MNPs have been decorated with a wide variety of materials to improve their biocompatibility, carry therapeutic payloads, encapsulate/bind imaging agents, and provide functional groups for conjugation of biomolecules that provide receptor-mediated targeting of the disease. This review summarizes recent patents involving various polymer coatings, imaging agents, therapeutic agents, targeting mechanisms, and applications along with the major requirements and challenges faced in using MBTN for disease management.
Collapse
Affiliation(s)
- Aniket S Wadajkar
- Department of Bioengineering, The University of Texas at Arlington, Arlington, TX 76019 ; Joint Biomedical Engineering Program between The University of Texas at Arlington and The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | | | | | | | | | | |
Collapse
|
45
|
Yan C, Wu Y, Feng J, Chen W, Liu X, Hao P, Yang R, Zhang J, Lin B, Xu Y, Liu R. Anti-αvβ3 antibody guided three-step pretargeting approach using magnetoliposomes for molecular magnetic resonance imaging of breast cancer angiogenesis. Int J Nanomedicine 2013; 8:245-55. [PMID: 23345972 PMCID: PMC3548418 DOI: 10.2147/ijn.s38678] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Pretargeting of biomarkers with nanoparticles in molecular imaging is promising to improve diagnostic specificity and realize signal amplification, but data regarding its targeting potential in magnetic resonance (MR) imaging are limited. The purpose of this study was to evaluate the tumor angiogenesis targeting efficacy of the anti-αvβ3 antibody guided three-step pretargeting approach with magnetoliposomes. METHODS Polyethylene glycol-modified and superparamagnetic iron oxide-encapsulated magnetoliposomes with and without biotin were synthesized and characterized. The cytotoxicity of both probes was evaluated using the methyl thiazdyl tetrazolium assay, and their cellular uptake by mouse macrophage was visualized using Prussian blue staining. Three-step pretargeting MR imaging was performed on MDA-MB-435S breast cancer-bearing mice by intravenous administration of biotinylated anti-αvβ3 monoclonal antibodies (first step), followed by avidin and streptavidin (second step), and by biotinylated magnetoliposomes or magnetoliposomes in the targeted or nontargeted group, respectively (third step). The specificity of αvβ3 targeting was assessed by histologic examinations. RESULTS The developed magnetoliposomes were superparamagnetic and biocompatible as confirmed by cell toxicity assay. The liposomal bilayer and polyethylene glycol modification protected Fe(3)O(4) cores from uptake by macrophage cells. MR imaging by three-step pretargeting resulted in a greater signal enhancement along the tumor periphery, occupying 7.0% of the tumor area, compared with 2.0% enhancement of the nontargeted group (P < 0.05). Histologic analysis demonstrated the targeted magnetoliposomes colocalized with neovasculature, which was responsible for the MR signal decrease. CONCLUSION These results indicate that our strategy for MR imaging of αvβ3-integrin is an effective means for sensitive detection of tumor angiogenesis, and may provide a targetable nanodelivery system for anticancer drugs.
Collapse
Affiliation(s)
- Chenggong Yan
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Goswami S. Importance of integrin receptors in the field of pharmaceutical & medical science. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/abc.2013.32028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Inspired by nature: fundamentals in nanotechnology design to overcome biological barriers. Ther Deliv 2013; 4:27-43. [DOI: 10.4155/tde.12.126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Synergy between nanotechnology and drug delivery has created a multitude of novel drug-delivery systems with great therapeutic potential. However, directing these systems across the biological barriers to the target site has proven difficult. Nanotechnology is looking for inspiration in natural systems that have evolved to overcome such barriers. Here, we review nature-inspired strategies and fundamental features common to successful drug-delivery systems across biological barriers.
Collapse
|
48
|
Abstract
Magnetic resonance imaging (MRI) is a key imaging modality in cancer diagnostics and therapy monitoring. MRI-based tumor detection and characterization is commonly achieved by exploiting the compositional, metabolic, cellular, and vascular differences between malignant and healthy tissue. Contrast agents are frequently applied to enhance this contrast. The last decade has witnessed an increasing interest in novel multifunctional MRI probes. These multifunctional constructs, often of nanoparticle design, allow the incorporation of multiple imaging agents for complementary imaging modalities as well as anti-cancer drugs for therapeutic purposes. The composition, size, and surface properties of such constructs can be tailored as to improve biodistribution and ensure optimal delivery to the tumor microenvironment by passive or targeted mechanisms. Multifunctional MRI probes hold great promise to facilitate more specific tumor diagnosis, patient-specific treatment planning, the monitoring of local drug delivery, and the early evaluation of therapy. This chapter reviews the state-of-the-art and new developments in the application of multifunctional MRI probes in oncology.
Collapse
Affiliation(s)
- Ewelina Kluza
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | |
Collapse
|
49
|
Reddy LH, Arias JL, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 2012; 112:5818-78. [PMID: 23043508 DOI: 10.1021/cr300068p] [Citation(s) in RCA: 1121] [Impact Index Per Article: 93.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- L Harivardhan Reddy
- Laboratoire de Physico-Chimie, Pharmacotechnie et Biopharmacie, Université Paris-Sud XI, UMR CNRS, Faculté de Pharmacie, IFR, Châtenay-Malabry, France
| | | | | | | |
Collapse
|
50
|
Danhier F, Le Breton A, Préat V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol Pharm 2012; 9:2961-73. [PMID: 22967287 DOI: 10.1021/mp3002733] [Citation(s) in RCA: 709] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The integrin α(v)β(3) plays an important role in angiogenesis. It is expressed on tumoral endothelial cells as well as on some tumor cells. RGD peptides are well-known to bind preferentially to the α(v)β(3) integrin. In this context, targeting tumor cells or tumor vasculature by RGD-based strategies is a promising approach for delivering anticancer drugs or contrast agents for cancer therapy and diagnosis. RGD-based strategies include antagonist drugs (peptidic or peptidomimetic) of the RGD sequence, RGD-conjugates, and the grafting of the RGD peptide or peptidomimetic, as targeting ligand, at the surface of nanocarriers. Although all strategies are overviewed, this review aims to particularly highlight the position of RGD-based nanoparticles in cancer therapy and imaging. This review is divided into three parts: the first one describes the context of angiogenesis, the role of the integrin α(v)β(3), and the binding of the RGD peptide to this integrin; the second one focuses on RGD-based strategies in cancer therapy; while the third one focuses on RGD-based strategies in cancer diagnosis.
Collapse
Affiliation(s)
- Fabienne Danhier
- Université catholique de Louvain, Pharmaceutics and Drug Delivery, Louvain Drug Research Institute, Avenue E. Mounier, 73 B1 73 12, B-1200, Brussels, Belgium
| | | | | |
Collapse
|