1
|
Hu J, Xu Y, Ma X, Hu W, Zhang Y, Ye Y, Yang S, Lin H, Sheng X, Wu J, Zhang T, Gao J. Hair follicle-targeted delivery for hair recoloration using scalp-curvature-conforming microneedles based on sodium alginate and polyvinylpyrrolidone. Int J Biol Macromol 2024; 280:135917. [PMID: 39326608 DOI: 10.1016/j.ijbiomac.2024.135917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024]
Abstract
Hair-related disorders are currently widely concerned issues for not only the scientific society but also the public attentions. Microneedle-based drug delivery system has been regarded as a promise hair follicle-targeted drug delivery approach, largely because they can effectively penetrate the stratum corneum barrier and deliver drugs to hair follicles within dermis. However, the currently reported microneedles for treating hair-related disorders usually rely on rigid backings, showing poor adaptability to the curved scalp and thereby restricting their usability for hair follicles targeted drug delivery. To this end, this study utilized sodium alginate and polyvinylpyrrolidone to construct a scalp-curvature-conforming microneedle with flexible backing. Subsequently, Psoralea corylifolia extract (PE) was loaded into the microneedles to investigate its capability in delivering PE to the hair follicle site for treating leukotrichia associated with vitiligo. These PE-loaded microneedles can effectively conform to the curvature of skin, enhancing the efficiency of microneedle insertion and ensuring stable drug delivery. Moreover, animal studies demonstrate that the PE loaded microneedles can effectively penetrate the stratum corneum, benefiting the drug delivery to hair follicles located site, and consequently showing a successful inhibition of hair graying. In summary, the present study reports a design and preparation of scalp-curvature-conforming microneedle. This design may offer a potential solution for efficient drug delivery using microneedles to the curved skin.
Collapse
Affiliation(s)
- Jingyi Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaolu Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weitong Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yunting Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321000, China
| | - Yuxian Ye
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Innovation and Entrepreneurship, Zhejiang University, Hangzhou 310018, China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hangjuan Lin
- Department of Pharmacy, Ningbo Municipal Hospital of Traditional Chinese Medicine, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo, Zhejiang 315010, China
| | | | - Jiahe Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Department of Pharmacy, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Tianyuan Zhang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Jinhua Institute of Zhejiang University, Jinhua 321000, China; Institute of Innovation and Entrepreneurship, Zhejiang University, Hangzhou 310018, China; Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, China.
| |
Collapse
|
2
|
Ungvari A, Kiss T, Gulej R, Tarantini S, Csik B, Yabluchanskiy A, Mukli P, Csiszar A, Harris ML, Ungvari Z. Irradiation-induced hair graying in mice: an experimental model to evaluate the effectiveness of interventions targeting oxidative stress, DNA damage prevention, and cellular senescence. GeroScience 2024; 46:3105-3122. [PMID: 38182857 PMCID: PMC11009199 DOI: 10.1007/s11357-023-01042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024] Open
Abstract
Hair graying, also known as canities or achromotrichia, is a natural phenomenon associated with aging and is influenced by external factors such as stress, environmental toxicants, and radiation exposure. Understanding the mechanisms underlying hair graying is an ideal approach for developing interventions to prevent or reverse age-related changes in regenerative tissues. Hair graying induced by ionizing radiation (γ-rays or X-rays) has emerged as a valuable experimental model to investigate the molecular pathways involved in this process. In this review, we examine the existing evidence on radiation-induced hair graying, with a particular focus on the potential role of radiation-induced cellular senescence. We explore the current understanding of hair graying in aging, delve into the underlying mechanisms, and highlight the unique advantages of using ionizing-irradiation-induced hair graying as a research model. By elucidating the molecular pathways involved, we aim to deepen our understanding of hair graying and potentially identify novel therapeutic targets to address this age-related phenotypic change.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, Budapest, Hungary.
| | - Tamas Kiss
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- First Department of Pediatrics, Semmelweis University, Budapest, Hungary
- Eötvös Loránd Research Network and Semmelweis University (ELKH-SE) Cerebrovascular and Neurocognitive Disorders Research Group, Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stefano Tarantini
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Boglarka Csik
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Andriy Yabluchanskiy
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Peter Mukli
- Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Melissa L Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zoltan Ungvari
- Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
3
|
Du F, Li J, Zhang S, Zeng X, Nie J, Li Z. Oxidative stress in hair follicle development and hair growth: Signalling pathways, intervening mechanisms and potential of natural antioxidants. J Cell Mol Med 2024; 28:e18486. [PMID: 38923380 PMCID: PMC11196958 DOI: 10.1111/jcmm.18486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Hair follicle development and hair growth are regulated by multiple factors and multiple signalling pathways. The hair follicle, as an important skin appendage, is the basis for hair growth, and it has the functions of safeguarding the body, perceiving the environment and regulating body temperature. Hair growth undergoes a regular hair cycle, including anagen, catagen and telogen. A small amount of physiological shedding of hair occurs under normal conditions, always in a dynamic equilibrium. Hair loss occurs when the skin or hair follicles are stimulated by oxidative stress, inflammation or hormonal disorders that disrupt the homeostasis of the hair follicles. Numerous researches have indicated that oxidative stress is an important factor causing hair loss. Here, we summarize the signalling pathways and intervention mechanisms by which oxidative stress affects hair follicle development and hair growth, discuss existing treatments for hair loss via the antioxidant pathway and provide our own insights. In addition, we collate antioxidant natural products promoting hair growth in recent years and discuss the limitations and perspectives of current hair loss prevention and treatment.
Collapse
Affiliation(s)
- Fanpan Du
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Shiqian Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Xuemei Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Basic Pharmacology of Guizhou ProvinceZunyi Medical UniversityZunyiChina
- Department of Pharmacology, School of PharmacyZunyi Medical UniversityZunyiChina
| |
Collapse
|
4
|
Paus R, Sevilla A, Grichnik JM. Human Hair Graying Revisited: Principles, Misconceptions, and Key Research Frontiers. J Invest Dermatol 2024; 144:474-491. [PMID: 38099887 DOI: 10.1016/j.jid.2023.09.276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 09/12/2023] [Indexed: 02/25/2024]
Abstract
Hair graying holds psychosocial importance and serves as an excellent model for studying human pigmentation and aging in an accessible miniorgan. Current evidence suggests that graying results from an interindividually varying mixture of cumulative oxidative and DNA damage, excessive mTORC1 activity, melanocyte senescence, and inadequate production of pigmentation-promoting factors in the hair matrix. Various regulators modulate this process, including genetic factors (DNA repair defects and IRF4 sequence variation, peripheral clock genes, P-cadherin signaling, neuromediators, HGF, KIT ligand secretion, and autophagic flux. This leads to reduced MITF- and tyrosinase-controlled melanogenesis, defective melanosome transfer to precortical matrix keratinocytes, and eventual depletion of hair follicle (HF) pigmentary unit (HFPU) melanocytes and their local progenitors. Graying becomes irreversible only when bulge melanocyte stem cells are also depleted, occurring later in this process. Distinct pigmentary microenvironments are created as the HF cycles: early anagen is the most conducive phase for melanocytic reintegration and activation, and only during anagen can the phenotype of hair graying and repigmentation manifest, whereas the HFPU disassembles during catagen. The temporary reversibility of graying is highlighted by several drugs and hormones that induce repigmentation, indicating potential target pathways. We advise caution in directly applying mouse model concepts, define major open questions, and discuss future human antigraying strategies.
Collapse
Affiliation(s)
- Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; CUTANEON - Skin & Hair Innovations, Hamburg, Germany; Monasterium Laboratory, Münster, Germany.
| | - Alec Sevilla
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Internal Medicine, Lakeland Regional Health, Lakeland, Florida, USA
| | - James M Grichnik
- Department of Dermatology & Cutaneous Surgery, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
5
|
Ungvari A, Gulej R, Csik B, Mukli P, Negri S, Tarantini S, Yabluchanskiy A, Benyo Z, Csiszar A, Ungvari Z. The Role of Methionine-Rich Diet in Unhealthy Cerebrovascular and Brain Aging: Mechanisms and Implications for Cognitive Impairment. Nutrients 2023; 15:4662. [PMID: 37960316 PMCID: PMC10650229 DOI: 10.3390/nu15214662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
As aging societies in the western world face a growing prevalence of vascular cognitive impairment and Alzheimer's disease (AD), understanding their underlying causes and associated risk factors becomes increasingly critical. A salient concern in the western dietary context is the high consumption of methionine-rich foods such as red meat. The present review delves into the impact of this methionine-heavy diet and the resultant hyperhomocysteinemia on accelerated cerebrovascular and brain aging, emphasizing their potential roles in cognitive impairment. Through a comprehensive exploration of existing evidence, a link between high methionine intake and hyperhomocysteinemia and oxidative stress, mitochondrial dysfunction, inflammation, and accelerated epigenetic aging is drawn. Moreover, the microvascular determinants of cognitive deterioration, including endothelial dysfunction, reduced cerebral blood flow, microvascular rarefaction, impaired neurovascular coupling, and blood-brain barrier (BBB) disruption, are explored. The mechanisms by which excessive methionine consumption and hyperhomocysteinemia might drive cerebromicrovascular and brain aging processes are elucidated. By presenting an intricate understanding of the relationships among methionine-rich diets, hyperhomocysteinemia, cerebrovascular and brain aging, and cognitive impairment, avenues for future research and potential therapeutic interventions are suggested.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Translational Medicine, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
6
|
Adav SS, Ng KW. Recent omics advances in hair aging biology and hair biomarkers analysis. Ageing Res Rev 2023; 91:102041. [PMID: 37634889 DOI: 10.1016/j.arr.2023.102041] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/27/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Aging is a complex natural process that leads to a decline in physiological functions, which is visible in signs such as hair graying, thinning, and loss. Although hair graying is characterized by a loss of pigment in the hair shaft, the underlying mechanism of age-associated hair graying is not fully understood. Hair graying and loss can have a significant impact on an individual's self-esteem and self-confidence, potentially leading to mental health problems such as depression and anxiety. Omics technologies, which have applications beyond clinical medicine, have led to the discovery of candidate hair biomarkers and may provide insight into the complex biology of hair aging and identify targets for effective therapies. This review provides an up-to-date overview of recent omics discoveries, including age-associated alterations of proteins and metabolites in the hair shaft and follicle, and highlights the significance of hair aging and graying biomarker discoveries. The decline in hair follicle stem cell activity with aging decreased the regeneration capacity of hair follicles. Cellular senescence, oxidative damage and altered extracellular matrix of hair follicle constituents characterized hair follicle and hair shaft aging and graying. The review attempts to correlate the impact of endogenous and exogenous factors on hair aging. We close by discussing the main challenges and limitations of the field, defining major open questions and offering an outlook for future research.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore; Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, 637141, Singapore.
| |
Collapse
|
7
|
Fan H, Bai Q, Yang Y, Shi X, Du G, Yan J, Shi J, Wang D. The key roles of reactive oxygen species in microglial inflammatory activation: Regulation by endogenous antioxidant system and exogenous sulfur-containing compounds. Eur J Pharmacol 2023; 956:175966. [PMID: 37549725 DOI: 10.1016/j.ejphar.2023.175966] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Aberrant innate immunity in the brain has been implicated in the pathogenesis of several central nervous system (CNS) disorders, including Alzheimer's disease, Huntington's disease, Parkinson's disease, stroke, amyotrophic lateral sclerosis, and depression. Except for extraparenchymal CNS-associated macrophages, which predominantly afford protection against peripheral invading pathogens, it has been reported that microglia, a population of macrophage-like cells governing CNS immune defense in nearly all neurological diseases, are the main CNS resident immune cells. Although microglia have been recognized as the most important source of reactive oxygen species (ROS) in the CNS, ROS also may underlie microglial functions, especially M1 polarization, by modulating redox-sensitive signaling pathways. Recently, endogenous antioxidant systems, including glutathione, hydrogen sulfide, superoxide dismutase, and methionine sulfoxide reductase A, were found to be involved in regulating microglia-mediated neuroinflammation. A series of natural sulfur-containing compounds, including S-adenosyl methionine, S-methyl-L-cysteine, sulforaphane, DMS, and S-alk(enyl)-l-cysteine sulfoxide, modulating endogenous antioxidant systems have been discovered. We have summarized the current knowledge on the involvement of endogenous antioxidant systems in regulating microglial inflammatory activation and the effects of sulfur-containing compounds on endogenous antioxidant systems. Finally, we discuss the possibilities associated with compounds targeting the endogenous antioxidant system to treat neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Qianqian Bai
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Yang Yang
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaofei Shi
- Department of Rheumatology and Immunology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Ganqin Du
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jian Shi
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
8
|
Wang S, Kang Y, Qi F, Jin H. Genetics of hair graying with age. Ageing Res Rev 2023; 89:101977. [PMID: 37276979 DOI: 10.1016/j.arr.2023.101977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/17/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
Hair graying is an early and obvious phenotypic and physiological trait with age in humans. Several recent advances in molecular biology and genetics have increased our understanding of the mechanisms of hair graying, which elucidate genes related to the synthesis, transport, and distribution of melanin in hair follicles, as well as genes regulating these processes above. Therefore, we review these advances and examine the trends in the genetic aspects of hair graying from enrichment theory, Genome-Wide association studies, whole exome sequencing, gene expression studies, and animal models for hair graying with age, aiming to overview the changes in hair graying at the genetic level and establish the foundation for future research. Meanwhile, by summarizing the genetics, it's of great value to explore the possible mechanism, treatment, or even prevention of hair graying with age.
Collapse
Affiliation(s)
- Sifan Wang
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing 100730, China
| | - Yuanbo Kang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Shuaifuyuan1#, Dongcheng District, Beijing 100730, P.R.China
| | - Fei Qi
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing 100730, China
| | - Hongzhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing 100730, China.
| |
Collapse
|
9
|
Chiriţoiu GN, Munteanu CV, Şulea TA, Spiridon L, Petrescu AJ, Jandus C, Romero P, Petrescu ŞM. Methionine oxidation selectively enhances T cell reactivity against a melanoma antigen. iScience 2023; 26:107205. [PMID: 37485346 PMCID: PMC10362274 DOI: 10.1016/j.isci.2023.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/02/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
The impact of the peptide amino acids side-chain modifications on the immunological recognition has been scarcely explored. We investigate here the effect of methionine oxidation on the antigenicity of the melanoma immunodominant peptide 369-YMDGTMSQV-377 (YMD). Using CD8+ T cell activation assays, we found that the antigenicity of the sulfoxide form is higher when compared to the YMD peptide. This is consistent with free energy computations performed on HLA-A∗02:01/YMD/TCR complex showing that this is lowered upon oxidation, paired with a steep increase in order at atomic level. Oxidized YMD forms were identified at the melanoma cell surface by LC-MS/MS analysis. These results demonstrate that methionine oxidation in the antigenic peptides may generate altered peptide ligands with increased antigenicity, and that this oxidation may occur in vivo, opening up the possibility that high-affinity CD8+ T cells might be naturally primed in the course of melanoma progression, as a result of immunosurveillance.
Collapse
Affiliation(s)
- Gabriela N. Chiriţoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031 Bucharest, Romania
| | - Cristian V.A. Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031 Bucharest, Romania
| | - Teodor A. Şulea
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031 Bucharest, Romania
| | - Laurenţiu Spiridon
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031 Bucharest, Romania
| | - Andrei-Jose Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry, Splaiul Independenței 296, 060031 Bucharest, Romania
| | - Camilla Jandus
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Epalinges, Switzerland
| | - Pedro Romero
- Departement of Oncology, UNIL-CHUV, University of Lausanne, Epalinges, Switzerland
| | - Ştefana M. Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Splaiul Independenței 296, 060031 Bucharest, Romania
| |
Collapse
|
10
|
Zeng Z, Wang B, Ibrar M, Ying M, Li S, Yang X. Schizochytrium sp. Extracted Lipids Prevent Alopecia by Enhancing Antioxidation and Inhibiting Ferroptosis of Dermal Papilla Cells. Antioxidants (Basel) 2023; 12:1332. [PMID: 37507872 PMCID: PMC10375984 DOI: 10.3390/antiox12071332] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Alopecia has gradually become a problem that puzzles an increasing number of people. Dermal papilla cells (DPCs) play an important role in hair follicle (HF) growth; thus, exploring the effective chemicals or natural extracts that can remediate the growth of DPCs is vital. Our results showed that Schizochytrium sp.-extracted lipids (SEL) significantly promoted proliferation (up to 1.13 times) and survival ratio (up to 2.45 times) under oxidative stress. The treatment with SEL can protect DPCs against oxidative stress damage, reducing the reactive oxygen species (ROS) level by 90.7%. The relative gene transcription and translation were thoroughly analyzed using RNA-Seq, RT-qPCR, and Western blot to explore the mechanism. Results showed that SEL significantly inhibited the ferroptosis pathway and promoted the expression of antioxidant genes (up to 1.55-3.52 times). The in vivo application of SEL improved hair growth, with the length of new hair increasing by 16.7% and the length of new HF increasing by 92.6%, and the period of telogen shortening increased by 40.0%. This study proposes a novel therapeutic option for alopecia, with the effect and regulation mechanism of SEL on DPC systematically clarified.
Collapse
Affiliation(s)
- Zuye Zeng
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Boyu Wang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Muhammad Ibrar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Ming Ying
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Innova Bay (Shenzhen) Technology Co., Ltd., Shenzhen 518118, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
11
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
12
|
Abstract
Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
13
|
Kataria S, Dabas P, Saraswathy KN, Sachdeva MP, Jain S. Investigating the morphology and genetics of scalp and facial hair characteristics for phenotype prediction. Sci Justice 2023; 63:135-148. [PMID: 36631178 DOI: 10.1016/j.scijus.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Microscopic traits and ultrastructure of hair such as cross-sectional shape, pigmentation, curvature, and internal structure help determine the level of variations between and across human populations. Apart from cosmetics and anthropological applications, such as determining species, somatic origin (body area), and biogeographic ancestry, the evidential value of hair has increased with rapid progression in the area of forensic DNA phenotyping (FDP). Individuals differ in the features of their scalp hair (greying, shape, colour, balding, thickness, and density) and facial hair (eyebrow thickness, monobrow, and beard thickness) features. Scalp and facial hair characteristics are genetically controlled and lead to visible inter-individual variations within and among populations of various ethnic origins. Hence, these characteristics can be exploited and made more inclusive in FDP, thereby leading to more comprehensive, accurate, and robust prediction models for forensic purposes. The present article focuses on understanding the genetics of scalp and facial hair characteristics with the goal to develop a more inclusive approach to better understand hair biology by integrating hair microscopy with genetics for genotype-phenotype correlation research.
Collapse
Affiliation(s)
- Suraj Kataria
- Department of Anthropology, University of Delhi, India.
| | - Prashita Dabas
- Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India.
| | | | - M P Sachdeva
- Department of Anthropology, University of Delhi, India.
| | - Sonal Jain
- Department of Anthropology, University of Delhi, India.
| |
Collapse
|
14
|
The impact of perceived stress on the hair follicle: Towards solving a psychoneuroendocrine and neuroimmunological puzzle. Front Neuroendocrinol 2022; 66:101008. [PMID: 35660551 DOI: 10.1016/j.yfrne.2022.101008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 12/24/2022]
Abstract
While popular belief harbors little doubt that perceived stress can cause hair loss and premature graying, the scientific evidence for this is arguably much thinner. Here, we investigate whether these phenomena are real, and show that the cyclic growth and pigmentation of the hair follicle (HF) provides a tractable model system for dissecting how perceived stress modulates aspects of human physiology. Local production of stress-associated neurohormones and neurotrophins coalesces with neurotransmitters and neuropeptides released from HF-associated sensory and autonomic nerve endings, forming a complex local stress-response system that regulates perifollicular neurogenic inflammation, interacts with the HF microbiome and controls mitochondrial function. This local system integrates into the central stress response systems, allowing the study of systemic stress responses affecting organ function by quantifying stress mediator content of hair. Focusing on selected mediators in this "brain-HF axis" under stress conditions, we distill general principles of HF dysfunction induced by perceived stress.
Collapse
|
15
|
Papaccio F, D′Arino A, Caputo S, Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants (Basel) 2022; 11:1121. [PMID: 35740018 PMCID: PMC9220264 DOI: 10.3390/antiox11061121] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Skin aging is one of the most evident signs of human aging. Modification of the skin during the life span is characterized by fine lines and wrinkling, loss of elasticity and volume, laxity, rough-textured appearance, and pallor. In contrast, photoaged skin is associated with uneven pigmentation (age spot) and is markedly wrinkled. At the cellular and molecular level, it consists of multiple interconnected processes based on biochemical reactions, genetic programs, and occurrence of external stimulation. The principal cellular perturbation in the skin driving senescence is the alteration of oxidative balance. In chronological aging, reactive oxygen species (ROS) are produced mainly through cellular oxidative metabolism during adenosine triphosphate (ATP) generation from glucose and mitochondrial dysfunction, whereas in extrinsic aging, loss of redox equilibrium is caused by environmental factors, such as ultraviolet radiation, pollution, cigarette smoking, and inadequate nutrition. During the aging process, oxidative stress is attributed to both augmented ROS production and reduced levels of enzymatic and non-enzymatic protectors. Apart from the evident appearance of structural change, throughout aging, the skin gradually loses its natural functional characteristics and regenerative potential. With aging, the skin immune system also undergoes functional senescence manifested as a reduced ability to counteract infections and augmented frequency of autoimmune and neoplastic diseases. This review proposes an update on the role of oxidative stress in the appearance of the clinical manifestation of skin aging, as well as of the molecular mechanisms that underline this natural phenomenon sometimes accelerated by external factors.
Collapse
Affiliation(s)
| | | | | | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy; (F.P.); (S.C.)
| |
Collapse
|
16
|
Modeling human gray hair by irradiation as a valuable tool to study aspects of tissue aging. GeroScience 2022; 45:1215-1230. [PMID: 35612775 PMCID: PMC9886793 DOI: 10.1007/s11357-022-00592-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/11/2022] [Indexed: 02/03/2023] Open
Abstract
As one of the earliest and most visible phenomenon of aging, gray hair makes it a unique model system for investigating the mechanism of aging. Ionizing radiation successfully induces gray hair in mice, and also provides a venue to establish an organ-cultured human gray hair model. To establish a suitable organ-cultured human gray HF model by IR, which imitates gray hair in the elderly, and to explore the mechanisms behind the model. By detecting growth parameters, melanotic and senescence markers of the model, we found that the model of 5 Gy accords best with features of elderly gray hair. Then, we investigated the formation mechanisms of the model by RNA-sequencing. We demonstrated that the model of organ-cultured gray HFs after 5 Gy irradiation is closest to the older gray HFs. Moreover, the 5 Gy inhibited the expression of TRP-1, Tyr, Pmel17, and MITF in hair bulbs/ORS of HFs. The 5 Gy also significantly induced ectopically pigmented melanocytes and increased the expression of DNA damage and senescence in HFs. Finally, RNA-seq analysis of the model suggested that IR resulted in cell DNA damage, and the accumulation of oxidative stress in the keratinocytes. Oxidative stress and DNA damage caused cell dysfunction and decreased melanin synthesis in the gray HFs. We found that HFs irradiated at 5 Gy successfully constructed an appropriate aging HF model. This may provide a useful model for cost-effective and predictable treatment strategies to human hair graying and the process of aging.
Collapse
|
17
|
Sevilla A, Chéret J, Slominski RM, Slominski AT, Paus R. Revisiting the role of melatonin in human melanocyte physiology: A skin context perspective. J Pineal Res 2022; 72:e12790. [PMID: 35133682 PMCID: PMC8930624 DOI: 10.1111/jpi.12790] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/24/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022]
Abstract
The evolutionarily ancient methoxyindoleamine, melatonin, has long perplexed investigators by its versatility of functions and mechanisms of action, which include the regulation of vertebrate pigmentation. Although first discovered through its potent skin-lightening effects in amphibians, melatonin's role in human skin and hair follicle pigmentation and its impact on melanocyte physiology remain unclear. Synthesizing our limited current understanding of this role, we specifically examine its impact on melanogenesis, oxidative biology, mitochondrial function, melanocyte senescence, and pigmentation-related clock gene activity, with emphasis on human skin, yet without ignoring instructive pointers from nonhuman species. Given the strict dependence of melanocyte functions on the epithelial microenvironment, we underscore that melanocyte responses to melatonin are best interrogated in a physiological tissue context. Current evidence suggests that melatonin and some of its metabolites inhibit both, melanogenesis (via reducing tyrosinase activity) and melanocyte proliferation by stimulating melatonin membrane receptors (MT1, MT2). We discuss whether putative melanogenesis-inhibitory effects of melatonin may occur via activation of Nrf2-mediated PI3K/AKT signaling, estrogen receptor-mediated and/or melanocortin-1 receptor- and cAMP-dependent signaling, and/or via melatonin-regulated changes in peripheral clock genes that regulate human melanogenesis, namely Bmal1 and Per1. Melatonin and its metabolites also accumulate in melanocytes where they exert net cyto- and senescence-protective as well as antioxidative effects by operating as free radical scavengers, stimulating the synthesis and activity of ROS scavenging enzymes and other antioxidants, promoting DNA repair, and enhancing mitochondrial function. We argue that it is clinically and biologically important to definitively clarify whether melanocyte cell culture-based observations translate into melatonin-induced pigmentary changes in a physiological tissue context, that is, in human epidermis and hair follicles ex vivo, and are confirmed by clinical trial results. After defining major open questions in this field, we close by suggesting how to begin answering them in clinically relevant, currently available preclinical in situ research models.
Collapse
Affiliation(s)
- Alec Sevilla
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Radomir M. Slominski
- Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Pathology Laboratory Service, Veteran Administration Medical Center at Birmingham, Birmingham, AL35294, USA
- Corresponding authors: Ralf Paus, MD, DSc: ; Andrzej T. Slominski, MD, PhD:
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Monasterium Laboratory, Münster, Germany
- CUTANEON – Skin & Hair Innovations, Hamburg, Germany
- Corresponding authors: Ralf Paus, MD, DSc: ; Andrzej T. Slominski, MD, PhD:
| |
Collapse
|
18
|
Fuzhuan Brick Tea Boosts Melanogenesis and Prevents Hair Graying through Reduction of Oxidative Stress via NRF2- HO-1 Signaling. Antioxidants (Basel) 2022; 11:antiox11030599. [PMID: 35326249 PMCID: PMC8945210 DOI: 10.3390/antiox11030599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
The anti-graying effect of the hexane fraction of Fuzhuan brick tea is investigated in Melan-A cells and C57BL/6 mice. As a result, it is found that reactive oxygen species-induced damage is associated with the reduction of melanogenesis in hair bulb melanocytes when reactive oxygen species generation in Melan-A cells occurred. The results revealed that the hexane fraction of Fuzhuan brick tea could remarkably reduce reactive oxygen species generation in Melan-A cells; meanwhile, it could increase the cellular tyrosinase and melanin content, as well as up-regulate the expression of tyrosinase, tyrosinase related protein-1, tyrosinase related protein-2, and microphthalmia-associated transcription factor, and activate the MAP-kinase pathway through activating the phosphorylation of p38 c-Jun N terminal kinase/extracellular signal-regulated kinase. Furthermore, high-pressure liquid chromatography analysis reveals that the tea's major ingredients in hexane fraction include gallic acid, theaflavin, theobromine, caffeine, epicatechin, and quercetin. Together, the current results suggest that Fuzhuan brick tea proves to protect from the damage of hydroquinone, which induces hair pigment loss.
Collapse
|
19
|
Arbab AH, Zaroug EE, Mudawi MME. Review on Plants with Traditional Uses and Bio-Activity Against Hair Graying. CURRENT TRADITIONAL MEDICINE 2022. [DOI: 10.2174/2215083808666220208105012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Hair graying occurs worldwide, and it has a high impact on the self-esteem of an individual. Hair graying is a melanogenesis disorder that can be attributed to many factors, including age, oxidative stress, psychological stress, and malnutrition. Though there are effective p-phenylenediamine based hair dyes, they often cause allergy and systematic toxicity. Plants are popular a traditional remedy for the management of hair disorders. Due to their high chemical diversity, phytoproducts offer great promises to develop an effective and safe product to manage hair graying and melanogenesis disorders. The aim of the present article is to review plants with traditional uses and bio-activity against hair graying. An extensive literature search was conducted on PubMed, Science Direct, and Google Scholar databases using many combinations of the following keywords: plants used to treat gray hair, natural products, hair graying, melanogenesis, pigmentation, and tyrosinase activity. This review documented about sixty-one plants, including a summary of 47 plants frequently used in traditional medicine, and a brief review of fourteen plants showing promising activity against hair graying. The active constituents and the mechanisms by which active constituents exert anti-hair graying effects were also reviewed.
Collapse
Affiliation(s)
- Ahmed H. Arbab
- Department of Pharmacognosy, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Elwaleed E. Zaroug
- Department of Phytochemistry and Natural Products, Northern Border University, Kingdom of Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Omdurman Islamic University, Sudan
| | - Mahmoud M. E. Mudawi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Kingdom of Saudi Arabia
- Department of Pharmacology, Faculty of Pharmacy, Omdurman Islamic University, Sudan
| |
Collapse
|
20
|
Hang Y, Boryczka J, Wu N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 2022; 51:329-375. [PMID: 34897302 PMCID: PMC9135580 DOI: 10.1039/c9cs00621d] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This review article deals with the concepts, principles and applications of visible-light and near-infrared (NIR) fluorescence and surface-enhanced Raman scattering (SERS) in in vitro point-of-care testing (POCT) and in vivo bio-imaging. It has discussed how to utilize the biological transparency windows to improve the penetration depth and signal-to-noise ratio, and how to use surface plasmon resonance (SPR) to amplify fluorescence and SERS signals. This article has highlighted some plasmonic fluorescence and SERS probes. It has also reviewed the design strategies of fluorescent and SERS sensors in the detection of metal ions, small molecules, proteins and nucleic acids. Particularly, it has provided perspectives on the integration of fluorescent and SERS sensors into microfluidic chips as lab-on-chips to realize point-of-care testing. It has also discussed the design of active microfluidic devices and non-paper- or paper-based lateral flow assays for in vitro diagnostics. In addition, this article has discussed the strategies to design in vivo NIR fluorescence and SERS bio-imaging platforms for monitoring physiological processes and disease progression in live cells and tissues. Moreover, it has highlighted the applications of POCT and bio-imaging in testing toxins, heavy metals, illicit drugs, cancers, traumatic brain injuries, and infectious diseases such as COVID-19, influenza, HIV and sepsis.
Collapse
Affiliation(s)
- Yingjie Hang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Jennifer Boryczka
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| | - Nianqiang Wu
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003-9303, USA.
| |
Collapse
|
21
|
Jeon S, Kim MM. The down-regulation of melanogenesis via MITF and FOXO1 signaling pathways in SIRT1 knockout cells using CRISPR/Cas9 system. J Biotechnol 2021; 342:114-127. [PMID: 34757047 DOI: 10.1016/j.jbiotec.2021.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
Hair graying is processed by the inactivation of tyrosinase caused by the accumulation of oxidative stress and a decrease in the number of melanocytes. Therefore, the purpose of this study was to investigate the effect of SIRT1 gene knockout using the CRISPR/Cas9 system on the protein and gene expressions related to melanogenesis. In this study, the mutation in the SIRT1 knockout(KO) gene was verified by T7EI assay and Sanger DNA sequencing. Furthermore, the expression levels of SIRT1 protein and gene in KO cells were remarkably decreased compared with normal cells. Therefore, the SIRT1 gene KO cell line was successfully established for further study. The KO cells also increased SA-β-galactosidase and decreased melanin production and the scavenging activity of hydrogen peroxide. In particular, the down-regulation of p38 and c-kit as well as the up-regulation of ERK resulted in the inactivation of MITF in the KO cells. Thus, KO cells reduced the expressions of Tyrosinase, Tyrosine hydroxylase, TRP-1 and TRP-2 through the negative modulation of MITF. Furthermore, SIRT1 gene KO cells negatively modulated antioxidant proteins such as Catalase, MnSOD, MsrA and MsrB3 through FOXO1 and Keap1. Therefore, it is suggested that SIRT1 could play a positive role in melanogenesis via MITF and FOXO1.
Collapse
Affiliation(s)
- Sojeong Jeon
- Department of Chemistry & Biology, Dong-Eui University, Busan 614-714, South Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan 614-714, South Korea.
| |
Collapse
|
22
|
Kim M, Jeon K, Shin S, Yoon S, Kim H, Kang HY, Ryu D, Park D, Jung E. Melanogenesis-promoting effect of Cirsium japonicum flower extract in vitro and ex vivo. Int J Cosmet Sci 2021; 43:703-714. [PMID: 34674286 DOI: 10.1111/ics.12746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE In this study, we examined the effect of C. japonicum flower extract (CFE) on melanogenesis and its mechanism in vitro and ex vivo. METHODS The effect of CFE on melanogenesis was investigated with lightly (HEMn-LP) and moderately (HEMn-MP) pigmented normal human melanocytes, reconstituted three-dimensional skin (3D skin) model and ex vivo human hair follicles. The melanogenesis-inducing effect of CFE was evaluated using melanin content and intracellular tyrosinase activity assay. The amount and type of eumelanin and pheomelanin were analysed by using HPLC method. The mechanism involved in the effect of CFE on hyperpigmentation was explored by cyclic adenosine monophosphate (cAMP) immunoassay and western blot analysis for tyrosinase, microphthalmia-associated transcription factor (MITF) and phosphorylated CRE-binding protein (pCREB) expression. The degree of pigmentation in 3D skin and L-values were measured using a CR-300 chroma meter. The amount of dissolved melanin was measured using a spectrophotometer. The content of melanin in the hair follicles was evaluated by Fontana Masson staining. RESULTS C. japonicum flower extract significantly increased the melanin content and cellular tyrosinase activity in both HEMn-LP and HEMn-MP cells. The markers of pheomelanin and eumelanin in HEMn-LP and HEMn-MP were also increased by CFE. We observed that CFE treatment on melanocytes increased intracellular cAMP with inducing pCREB and up-regulating the protein levels of TYR and MITF. Furthermore, CFE considerably increased the melanin content in a 3D skin model and ex vivo human hair follicles. CONCLUSIONS These results suggest that CFE exerts hyperpigmentation activity through cAMP signalling in human melanocytes that it can improve follicular depigmentation and vitiligo by stimulating the melanin synthesis.
Collapse
Affiliation(s)
- Minkyung Kim
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Kyungeun Jeon
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Seoungwoo Shin
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Sohyun Yoon
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Hayeon Kim
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Hee Young Kang
- Department of Dermatology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dehun Ryu
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Deokhoon Park
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| | - Eunsun Jung
- Biospectrum Life Science Institute, Yongin-si, Republic of Korea
| |
Collapse
|
23
|
Rosenberg AM, Rausser S, Ren J, Mosharov EV, Sturm G, Ogden RT, Patel P, Kumar Soni R, Lacefield C, Tobin DJ, Paus R, Picard M. Quantitative mapping of human hair greying and reversal in relation to life stress. eLife 2021; 10:67437. [PMID: 34155974 PMCID: PMC8219384 DOI: 10.7554/elife.67437] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Hair greying is a hallmark of aging generally believed to be irreversible and linked to psychological stress. Methods: Here, we develop an approach to profile hair pigmentation patterns (HPPs) along individual human hair shafts, producing quantifiable physical timescales of rapid greying transitions. Results: Using this method, we show white/grey hairs that naturally regain pigmentation across sex, ethnicities, ages, and body regions, thereby quantitatively defining the reversibility of greying in humans. Molecularly, grey hairs upregulate proteins related to energy metabolism, mitochondria, and antioxidant defenses. Combining HPP profiling and proteomics on single hairs, we also report hair greying and reversal that can occur in parallel with psychological stressors. To generalize these observations, we develop a computational simulation, which suggests a threshold-based mechanism for the temporary reversibility of greying. Conclusions: Overall, this new method to quantitatively map recent life history in HPPs provides an opportunity to longitudinally examine the influence of recent life exposures on human biology. Funding: This work was supported by the Wharton Fund and NIH grants GM119793, MH119336, and AG066828 (MP). Hair greying is a visible sign of aging that affects everyone. The loss of hair color is due to the loss of melanin, a pigment found in the skin, eyes and hair. Research in mice suggests stress may accelerate hair greying, but there is no definitive research on this in humans. This is because there are no research tools to precisely map stress and hair color over time. But, just like tree rings hold information about past decades, and rocks hold information about past centuries, hairs hold information about past months and years. Hair growth is an active process that happens under the skin inside hair follicles. It demands lots of energy, supplied by structures inside cells called mitochondria. While hairs are growing, cells receive chemical and electrical signals from inside the body, including stress hormones. It is possible that these exposures change proteins and other molecules laid down in the growing hair shaft. As the hair grows out of the scalp, it hardens, preserving these molecules into a stable form. This preservation is visible as patterns of pigmentation. Examining single-hairs and matching the patterns to life events could allow researchers to look back in time through a person’s biological history. Rosenberg et al. report a new way to digitize and measure small changes in color along single human hairs. This method revealed that some white hairs naturally regain their color, something that had not been reported in a cohort of healthy individuals before. Aligning the hair pigmentation patterns with recent reports of stress in the hair donors’ lives showed striking associations. When one donor reported an increase in stress, a hair lost its pigment. When the donor reported a reduction in stress, the same hair regained its pigment. Rosenberg et al. mapped hundreds of proteins inside the hairs to show that white hairs contained more proteins linked to mitochondria and energy use. This suggests that metabolism and mitochondria may play a role in hair greying. To explore these observations in more detail Rosenberg et al. developed a mathematical model that simulates the greying of a whole head of hair over a lifetime, an experiment impossible to do with living people. The model suggested that there might be a threshold for temporary greying; if hairs are about to go grey anyway, a stressful event might trigger that change earlier. And when the stressful event ends, if a hair is just above the threshold, then it could revert back to dark. The new method for measuring small changes in hair coloring opens up the possibility of using hair pigmentation patterns like tree rings. This could track the influence of past life events on human biology. In the future, monitoring hair pigmentation patterns could provide a way to trace the effectiveness of treatments aimed at reducing stress or slowing the aging process. Understanding how ‘old’ white hairs regain their ‘young’ pigmented state could also reveal new information about the malleability of human aging more generally.
Collapse
Affiliation(s)
- Ayelet M Rosenberg
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Shannon Rausser
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - Junting Ren
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Eugene V Mosharov
- Department of Psychiatry, Division of Molecular Therapeutics, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States
| | - Gabriel Sturm
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
| | - R Todd Ogden
- Department of Biostatistics, Mailman School of Public Health, Columbia University Irving Medical Center, New York, United States
| | - Purvi Patel
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Columbia University Irving Medical Center, New York, United States
| | - Clay Lacefield
- New York State Psychiatric Institute, New York, United States
| | - Desmond J Tobin
- UCD Charles Institute of Dermatology & UCD Conway Institute, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ralf Paus
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, United States.,Centre for Dermatology Research, University of Manchester, Manchester, United Kingdom.,Monasterium Laboratory, Münster, Germany
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States.,New York State Psychiatric Institute, New York, United States.,Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
24
|
Vyumvuhore R, Verzeaux L, Gilardeau S, Bordes S, Aymard E, Manfait M, Closs B. Investigation of the molecular signature of greying hair shafts. Int J Cosmet Sci 2021; 43:332-340. [PMID: 33713467 DOI: 10.1111/ics.12700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Hair greying (i.e. canitie) is a physiological process occurring with the loss of melanin production and deposition within the hair shafts. Many studies reported the oxidation as the main biological process underlying this defect of pigmentation. Even though the overall appearance and biomechanical properties of hairs are reported to be altered with greying, there is a lack of information about molecular modifications occurring in grey hair shafts. The aim of this study was thus to investigate the molecular signature and associated changes occurring in greying hair shafts by confocal Raman microspectroscopy. METHODS This study was conducted on pigmented, intermediate (i.e. grey) and unpigmented hairs taken from 29 volunteers. Confocal Raman microspectroscopy measurements were acquired directly on hair shafts. RESULTS Automatic classification of Raman spectra revealed 5 groups displaying significant differences. Hence, the analysis of the molecular signature highlighted the existence of 3 sub-groups within grey hair: light, medium and dark intermediate. Among molecular markers altered in the course of greying, this study identified for the first time a gradual modification of lipid conformation (trans/gauche ratio) and protein secondary structure (α-helix/β-sheet ratio), referring respectively to an alteration of barrier function and biomechanical properties of greying hair. CONCLUSION This study thus reports for the first time a highly specific molecular signature as well as molecular modifications within grey hair shaft.
Collapse
Affiliation(s)
| | | | | | | | | | - Michel Manfait
- BioSpecT (Translational BioSpectroscopy) EA 7506, University of Reims Champagne Ardenne, Reims, France
| | | |
Collapse
|
25
|
Iron Gall Ink Revisited: A Surfactant-Free Emulsion Technology for Black Hair-Dyeing Formulation. COSMETICS 2021. [DOI: 10.3390/cosmetics8010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Inspired by the redox reactions in the preparation of the iron gall ink that has been used in Europe since the Middle Ages, we developed a technology for forming the oil-in-water emulsions, without any surfactants and emulsifiers, by homogenizing a mixture of tannic acid, gallic acid, Fe(D-gluconate)2, and natural oil, which are all approved as cosmetic ingredients. Various plant-derived oils, such as argan oil, olive oil, sunflower oil, grape seed oil, hemp seed oil, peppermint oil, rosemary oil, and ylang-ylang oil, were used as an oil phase for the emulsion formation, and all the fabricated emulsions exhibited the capability of black hair-dyeing. This surfactant-free emulsion technology for combining the hair-dyeing capability of Fe3+–tannin complex with the hair-fortifying property of natural oil would have great impact on the hair-cosmetic industry.
Collapse
|
26
|
Poljsak B, Dahmane R, Adamič M, Sotler R, Levec T, Pavan Jukić D, Rotim C, Jukić T, Starc A. THE (A)SYMMETRY OF THE MALE GRAYING BEARD HAIRS AS AN INDICATION OF THE PROGRAMMED AGING PROCESS. Acta Clin Croat 2020; 59:650-660. [PMID: 34456453 PMCID: PMC8253069 DOI: 10.20471/acc.2020.59.04.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 10/22/2018] [Indexed: 11/24/2022] Open
Abstract
Aging interventions will be ineffective if we do not understand the basic principles of aging. Currently, there is no consensus on the issue whether aging is programmed or not. The hypothesis presented in this article indicates that aging (at least graying of male hairs) is programmed. This hypothesis is supported by the symmetry of the graying of male beard hairs. According to stochastic theories of aging, aging is a passive non-programmed process where random dispersion of graying hairs should result. On the contrary, programmed theories of aging would predict that there should be symmetry on the left and right parts of the face showing the same proportion, pattern and time of appearance of graying hairs.
Collapse
Affiliation(s)
| | - Raja Dahmane
- 1Laboratory for Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia; 2Department of Biomedicine in Health Care Division, Faculty of Health Sciences, Faculty of Medicine, Institute of Anatomy, University of Ljubljana, Ljubljana, Slovenia; 3Metka Adamič Dermatology Clinic, Ljubljana, Slovenia; 4Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Gynecology and Obstetrics, Osijek, Croatia; 5Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 6Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia
| | - Metka Adamič
- 1Laboratory for Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia; 2Department of Biomedicine in Health Care Division, Faculty of Health Sciences, Faculty of Medicine, Institute of Anatomy, University of Ljubljana, Ljubljana, Slovenia; 3Metka Adamič Dermatology Clinic, Ljubljana, Slovenia; 4Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Gynecology and Obstetrics, Osijek, Croatia; 5Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 6Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia
| | - Robert Sotler
- 1Laboratory for Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia; 2Department of Biomedicine in Health Care Division, Faculty of Health Sciences, Faculty of Medicine, Institute of Anatomy, University of Ljubljana, Ljubljana, Slovenia; 3Metka Adamič Dermatology Clinic, Ljubljana, Slovenia; 4Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Gynecology and Obstetrics, Osijek, Croatia; 5Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 6Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia
| | - Tina Levec
- 1Laboratory for Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia; 2Department of Biomedicine in Health Care Division, Faculty of Health Sciences, Faculty of Medicine, Institute of Anatomy, University of Ljubljana, Ljubljana, Slovenia; 3Metka Adamič Dermatology Clinic, Ljubljana, Slovenia; 4Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Gynecology and Obstetrics, Osijek, Croatia; 5Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 6Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia
| | - Doroteja Pavan Jukić
- 1Laboratory for Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia; 2Department of Biomedicine in Health Care Division, Faculty of Health Sciences, Faculty of Medicine, Institute of Anatomy, University of Ljubljana, Ljubljana, Slovenia; 3Metka Adamič Dermatology Clinic, Ljubljana, Slovenia; 4Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Gynecology and Obstetrics, Osijek, Croatia; 5Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 6Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia
| | - Cecilija Rotim
- 1Laboratory for Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia; 2Department of Biomedicine in Health Care Division, Faculty of Health Sciences, Faculty of Medicine, Institute of Anatomy, University of Ljubljana, Ljubljana, Slovenia; 3Metka Adamič Dermatology Clinic, Ljubljana, Slovenia; 4Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Gynecology and Obstetrics, Osijek, Croatia; 5Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 6Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia
| | - Tomislav Jukić
- 1Laboratory for Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia; 2Department of Biomedicine in Health Care Division, Faculty of Health Sciences, Faculty of Medicine, Institute of Anatomy, University of Ljubljana, Ljubljana, Slovenia; 3Metka Adamič Dermatology Clinic, Ljubljana, Slovenia; 4Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Gynecology and Obstetrics, Osijek, Croatia; 5Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 6Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia
| | - Andrej Starc
- 1Laboratory for Oxidative Stress Research, Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia; 2Department of Biomedicine in Health Care Division, Faculty of Health Sciences, Faculty of Medicine, Institute of Anatomy, University of Ljubljana, Ljubljana, Slovenia; 3Metka Adamič Dermatology Clinic, Ljubljana, Slovenia; 4Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Gynecology and Obstetrics, Osijek, Croatia; 5Dr Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia; 6Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Department of Internal Medicine, Family Medicine and History of Medicine, Osijek, Croatia
| |
Collapse
|
27
|
Kim J, Kim MM. The effect of emodin on melanogenesis through the modulation of ERK and MITF signaling pathway. Nat Prod Res 2020; 36:1084-1088. [PMID: 33205668 DOI: 10.1080/14786419.2020.1849200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate the effect of emodin derived from Polygonum multiflorum on melanin production in B16F1 cells. In this study, emodin did not show antioxidant activity in DPPH radical and reducing power assays. However, it was found that emodin scavenged intracellular H2O2. Emodin increased not only tyrosinase activity but also melanin synthesis in vitro. Moreover, emodin enhanced melanin synthesis by increasing the expression level of tyrosinase (TYR), tyrosine related protein (TRP)-1, TRP-2, MITF and SIRT1 proteins in live cells treated with H2O2 compared with H2O2 treatment group in the analyses of western blot and immunofluorescence. Moreover, emodin suppressed ERK activation by SIRT1 and FOXO1. Thus, emodin promoted melanin synthesis by increasing the expression of TRP-1, TRP-2, tyrosinase through the activation of MITF transcription factor. These findings suggest that emodin could promote melanin production related to anti-hair graying.
Collapse
Affiliation(s)
- Jaeho Kim
- Department of Chemistry & Biology, Dong-Eui University, Busan, Republic of Korea
| | - Moon-Moo Kim
- Department of Applied Chemistry, Dong-Eui University, Busan, Republic of Korea
| |
Collapse
|
28
|
Sikkink SK, Mine S, Freis O, Danoux L, Tobin DJ. Stress-sensing in the human greying hair follicle: Ataxia Telangiectasia Mutated (ATM) depletion in hair bulb melanocytes in canities-prone scalp. Sci Rep 2020; 10:18711. [PMID: 33128003 PMCID: PMC7603349 DOI: 10.1038/s41598-020-75334-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Canities (or hair greying) is an age-linked loss of the natural pigment called melanin from hair. While the specific cause(s) underlying the loss of melanogenically-active melanocytes from the anagen hair bulbs of affected human scalp remains unclear, oxidative stress sensing appears to be a key factor involved. In this study, we examined the follicular melanin unit in variably pigmented follicles from the aging human scalp of healthy individuals (22-70 years). Over 20 markers were selected within the following categories: melanocyte-specific, apoptosis, cell cycle, DNA repair/damage, senescence and oxidative stress. As expected, a reduction in melanocyte-specific markers in proportion to the extent of canities was observed. A major finding of our study was the intense and highly specific nuclear expression of Ataxia Telangiectasia Mutated (ATM) protein within melanocytes in anagen hair follicle bulbs. ATM is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks and functions as an important sensor of reactive oxygen species (ROS) in human cells. The incidence and expression level of ATM correlated with pigmentary status in canities-affected hair follicles. Moreover, increased staining of the redox-associated markers 8-OHdG, GADD45 and GP-1 were also detected within isolated bulbar melanocytes, although this change was not clearly associated with donor age or canities extent. Surprisingly, we were unable to detect any specific change in the expression of other markers of oxidative stress, senescence or DNA damage/repair in the canities-affected melanocytes compared to surrounding bulbar keratinocytes. By contrast, several markers showed distinct expression of markers for oxidative stress and apoptosis/differentiation in the inner root sheath (IRS) as well as other parts of the hair follicle. Using our in vitro model of primary human scalp hair follicle melanocytes, we showed that ATM expression increased after incubation with the pro-oxidant hydrogen peroxide (H2O2). In addition, this ATM increase was prevented by pre-incubation of cells with antioxidants. The relationship between ATM and redox stress sensing was further evidenced as we observed that the inhibition of ATM expression by chemical inhibition promoted the loss of melanocyte viability induced by oxidative stress. Taken together these new findings illustrate the key role of ATM in the protection of human hair follicle melanocytes from oxidative stress/damage within the human scalp hair bulb. In conclusion, these results highlight the remarkable complexity and role of redox sensing in the status of human hair follicle growth, differentiation and pigmentation.
Collapse
Affiliation(s)
- Stephen K Sikkink
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford, BD7 1DP, West Yorkshire, UK.
| | - Solene Mine
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Olga Freis
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Louis Danoux
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Desmond J Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford, BD7 1DP, West Yorkshire, UK. .,The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
29
|
O'Sullivan JDB, Nicu C, Picard M, Chéret J, Bedogni B, Tobin DJ, Paus R. The biology of human hair greying. Biol Rev Camb Philos Soc 2020; 96:107-128. [PMID: 32965076 DOI: 10.1111/brv.12648] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Hair greying (canities) is one of the earliest, most visible ageing-associated phenomena, whose modulation by genetic, psychoemotional, oxidative, senescence-associated, metabolic and nutritional factors has long attracted skin biologists, dermatologists, and industry. Greying is of profound psychological and commercial relevance in increasingly ageing populations. In addition, the onset and perpetuation of defective melanin production in the human anagen hair follicle pigmentary unit (HFPU) provides a superb model for interrogating the molecular mechanisms of ageing in a complex human mini-organ, and greying-associated defects in bulge melanocyte stem cells (MSCs) represent an intriguing system of neural crest-derived stem cell senescence. Here, we emphasize that human greying invariably begins with the gradual decline in melanogenesis, including reduced tyrosinase activity, defective melanosome transfer and apoptosis of HFPU melanocytes, and is thus a primary event of the anagen hair bulb, not the bulge. Eventually, the bulge MSC pool becomes depleted as well, at which stage greying becomes largely irreversible. There is still no universally accepted model of human hair greying, and the extent of genetic contributions to greying remains unclear. However, oxidative damage likely is a crucial driver of greying via its disruption of HFPU melanocyte survival, MSC maintenance, and of the enzymatic apparatus of melanogenesis itself. While neuroendocrine factors [e.g. alpha melanocyte-stimulating hormone (α-MSH), adrenocorticotropic hormone (ACTH), ß-endorphin, corticotropin-releasing hormone (CRH), thyrotropin-releasing hormone (TRH)], and micropthalmia-associated transcription factor (MITF) are well-known regulators of human hair follicle melanocytes and melanogenesis, how exactly these and other factors [e.g. thyroid hormones, hepatocyte growth factor (HGF), P-cadherin, peripheral clock activity] modulate greying requires more detailed study. Other important open questions include how HFPU melanocytes age intrinsically, how psychoemotional stress impacts this process, and how current insights into the gerontobiology of the human HFPU can best be translated into retardation or reversal of greying.
Collapse
Affiliation(s)
- James D B O'Sullivan
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Carina Nicu
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Martin Picard
- Departments of Psychiatry and Neurology, Columbia University Irving Medical Center, 622 W 168th Street, PH1540N, New York, 10032, U.S.A
| | - Jérémy Chéret
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Barbara Bedogni
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A
| | - Desmond J Tobin
- Charles Institute of Dermatology, University College Dublin, Dublin 4, Ireland
| | - Ralf Paus
- Dr. Philip Frost Department for Dermatology and Cutaneous Surgery, University of Miami, Miami, Florida, 33136, U.S.A.,Monasterium Laboratory, Skin & Hair Research Solutions GmbH, Münster, D-48149, Germany.,Centre for Dermatology Research, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, M13 9PT, U.K
| |
Collapse
|
30
|
Mahendiratta S, Sarma P, Kaur H, Kaur S, Kaur H, Bansal S, Prasad D, Prajapat M, Upadhay S, Kumar S, Kumar H, Singh R, Singh A, Mishra A, Prakash A, Medhi B. Premature graying of hair: Risk factors, co-morbid conditions, pharmacotherapy and reversal-A systematic review and meta-analysis. Dermatol Ther 2020; 33:e13990. [PMID: 32654282 DOI: 10.1111/dth.13990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/29/2022]
Abstract
Premature graying of hair (PGH) being a very common entity for which pharmacotherapy and reversibility are not properly addressed. Therefore, this systematic review was conducted to address these issues. For this relevant study were selected from various databases including PubMed, EMBASE, OVID, Web of science, Scopus, and Google Scholar till January 20, 2019. Studies which reported risk factors, co-morbid conditions associated with PGH, its pharmacotherapy and reversal were included in the study. Although many risk factors are reported in literature, smoking, vitamin deficiency (B12, folic acid, and B7), mineral deficiency (low serum calcium and serum ferritin) are found to be associated with PGH. Other important risk factors are family history of PGH, obesity, high B.P, lack of exercise, drugs, genetic syndromes, dyslipidemia, thyroid disorders, hyperuricemia, and alteration in liver function. PGH is found to be an important marker of CAD, more so in case of smoker. Among different pharmacotherapeutic management options, low grade recommendation (2A) is given to calcium pantothenate, PABA, calcium pantothenate + PABA combination. Anu-tailam is the only herbal agent evaluated in clinical research settings. Finally, treating the accompanying pathologies led to the reversal of the disease in many cases.
Collapse
Affiliation(s)
- Saniya Mahendiratta
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Harpinder Kaur
- Department of Pharmacology and Toxicology, NIPER, Mohali, India
| | - Seema Bansal
- Department of Pharmacology, Punjab University, Chandigarh, India
| | - Davinder Prasad
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sujata Upadhay
- Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Punjab University, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harish Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Singh
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abhishek Mishra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
31
|
S-methyl-L-cysteine Protects against Antimycin A-induced Mitochondrial Dysfunction in Neural Cells via Mimicking Endogenous Methionine-centered Redox Cycle. Curr Med Sci 2020; 40:422-433. [PMID: 32681247 DOI: 10.1007/s11596-020-2196-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/30/2020] [Indexed: 12/26/2022]
Abstract
Mitochondrial superoxide overproduction is believed to be responsible for the neurotoxicity associated with neurodegeneration. Mitochondria-targeted antioxidants, such as MitoQ, have emerged as potentially effective antioxidant therapies. Methionine sulfoxide reductase A (MsrA) is a key mitochondrial-localized endogenous antioxidative enzyme and it can scavenge oxidizing species by catalyzing the methionine (Met)-centered redox cycle (MCRC). In this study, we observed that the natural L-Met acted as a good scavenger for antimycin A-induced mitochondrial superoxide overproduction in PC12 cells. This antioxidation was largely dependent on the Met oxidase activity of MsrA. S-methyl-L-cysteine (SMLC), a natural analogue of Met that is abundantly found in garlic and cabbage, could activate the Met oxidase activity of MsrA to scavenge free radicals. Furthermore, SMLC protected against antimycin A-induced mitochondrial membrane depolarization and alleviated 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity. Thus, our data highlighted the possibility for SMLC supplement in the detoxication of mitochondrial damage by activating the Met oxidase activity of MsrA.
Collapse
|
32
|
Thyroxine restores severely impaired cutaneous re-epithelialisation and angiogenesis in a novel preclinical assay for studying human skin wound healing under "pathological" conditions ex vivo. Arch Dermatol Res 2020; 313:181-192. [PMID: 32572565 PMCID: PMC7935818 DOI: 10.1007/s00403-020-02092-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/14/2020] [Accepted: 03/28/2020] [Indexed: 01/18/2023]
Abstract
Impaired cutaneous wound healing remains a major healthcare challenge. The enormity of this challenge is compounded by the lack of preclinical human skin wound healing models that recapitulate selected key factors underlying impaired healing, namely hypoxia/poor tissue perfusion, oxidative damage, defective innervation, and hyperglycaemia. Since organ-cultured human skin already represents a denervated and impaired perfusion state, we sought to further mimic “pathological” wound healing conditions by culturing experimentally wounded, healthy full-thickness frontotemporal skin from three healthy female subjects for three days in either serum-free supplemented Williams’ E medium or in unsupplemented medium under “pathological” conditions (i.e. hypoxia [5% O2], oxidative damage [10 mM H2O2], absence of insulin, excess glucose). Under these “pathological” conditions, dermal–epidermal split formation and dyskeratosis were prominent in organ-cultured human skin, and epidermal reepithelialisation was significantly impaired (p < 0.001), associated with reduced keratinocyte proliferation (p < 0.001), cytokeratin 6 expression (p < 0.001) and increased apoptosis (p < 0.001). Moreover, markers of intracutaneous angiogenesis (CD31 immunoreactivity and the number of of CD31 positive cells and CD31 positive vessel lumina) were significantly reduced. Since we had previously shown that thyroxine promotes wound healing in healthy human skin ex vivo, we tested whether this in principle also occurs under “pathological” wound healing conditions. Indeed, thyroxine administration sufficed to rescue re-epithelialisation (p < 0.001) and promoted both epidermal keratinocyte proliferation (p < 0.01) and angiogenesis in terms of CD31 immunoreactivity and CD31 positive cells under “pathological” conditions (p < 0.001) ex vivo. This demonstrates the utility of this pragmatic short-term ex vivo model, which recapitulates some key parameters of impaired human skin wound healing, for the preclinical identification of promising wound healing promoters.
Collapse
|
33
|
Saxena S, Gautam RK, Gupta A, Chitkara A. Evaluation of Systemic Oxidative Stress in Patients with Premature Canities and Correlation of Severity of Hair Graying with the Degree of Redox Imbalance. Int J Trichology 2020; 12:16-23. [PMID: 32549695 PMCID: PMC7276162 DOI: 10.4103/ijt.ijt_99_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/21/2019] [Accepted: 01/21/2020] [Indexed: 11/30/2022] Open
Abstract
Context: Premature canities etiopathogenesis is unclear, and approach to its therapy remains arbitrary. Reactive oxygen species generated during melanin biosynthesis in anagen hair bulb have been implicated in melanocyte apoptosis and hair graying. Extraneous factors, namely environmental pollution, stressful lifestyle, may compound the melanogenesis-induced endogenous oxidative stress. Aims: We aimed to investigate the role of systemic oxidative stress in causation of premature canities and its correlation with the severity of hair graying. Settings and Design: This was a tertiary care hospital-based cross-sectional study. Materials and Methods: Consecutive 50 patients with premature hair graying, aged <25 years, and 30 age and sex-matched healthy controls were recruited. Severity of premature canities was graded based on the total number of gray hair on the scalp. Redox status was evaluated in cases and controls, by malondialdehyde (MDA), reduced glutathione (rGSH), and superoxide dismutase (SOD) measurement in serum, by enzyme-linked immunosorbent assay. Results: Serum MDA concentration, an oxidative stress marker, was significantly higher (P < 0.01), while serum rGSH and SOD levels, both indicators of antioxidant potential, were significantly lower (P < 0.0001 and P < 0.01 respectively) in premature canities patients compared to controls. A novel observation was the significant correlation of serum MDA rise and serum rGSH decline with increasing severity of hair graying (P < 0.01 and P = 0.01, respectively). Conclusion: Systemic redox imbalance is present in premature canities patients, with the severity of hair graying varying in parallel to the degree of oxidative stress. Antioxidants supplementation is likely to yield therapeutic benefit in premature canities.
Collapse
Affiliation(s)
- Snigdha Saxena
- Department of Dermatology Venereology and Leprosy, Dr. Ram Manohar Lohia Hospital and Postgraduate Institute of Medical Education and Research, New Delhi, India
| | - Ram Krishan Gautam
- Department of Dermatology Venereology and Leprosy, Dr. Ram Manohar Lohia Hospital and Postgraduate Institute of Medical Education and Research, New Delhi, India
| | - Aastha Gupta
- Department of Dermatology Venereology and Leprosy, Dr. Ram Manohar Lohia Hospital and Postgraduate Institute of Medical Education and Research, New Delhi, India
| | - Anubhuti Chitkara
- Department of Dermatology Venereology and Leprosy, Dr. Ram Manohar Lohia Hospital and Postgraduate Institute of Medical Education and Research, New Delhi, India
| |
Collapse
|
34
|
Acer E, Kaya Erdoğan H, Kocatürk E, Saracoğlu ZN, Alataş Ö, Bilgin M. Evaluation of oxidative stress and psychoemotional status in premature hair graying. J Cosmet Dermatol 2020; 19:3403-3407. [DOI: 10.1111/jocd.13428] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/10/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Ersoy Acer
- Department of Dermatology Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| | - Hilal Kaya Erdoğan
- Department of Dermatology Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| | - Evin Kocatürk
- Department of Biochemistry Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| | - Zeynep Nurhan Saracoğlu
- Department of Dermatology Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| | - Özkan Alataş
- Department of Biochemistry Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| | - Muzaffer Bilgin
- Department of Biostatistics Faculty of Medicine Eskisehir Osmangazi University Eskisehir Turkey
| |
Collapse
|
35
|
Taguchi N, Hata T, Kamiya E, Homma T, Kobayashi A, Aoki H, Kunisada T. Eriodictyon angustifolium extract, but not Eriodictyon californicum extract, reduces human hair greying. Int J Cosmet Sci 2020; 42:336-345. [PMID: 32324292 DOI: 10.1111/ics.12620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/27/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Yerba Santa (Eriodictyon angustifolium and Eriodictyon californicum) has been used for many years in traditional medicine. However, the effect of Yerba Santa on melanogenesis has not yet been investigated. We aimed to assess the biological effects of Yerba Santa on hair pigmentation. METHODS Yerba Santa extracts were assessed for their cytological effects following X-ray irradiation treatment and then tested directly for the prevention of human hair greying. Ultra-performance liquid chromatography (UPLC) was utilized to identify the individual extract components. RESULTS Eriodictyon angustifolium extract significantly increased melanin synthesis in the melanoma cell line through activation of the WNT/MITF/tyrosinase-signalling pathway. In contrast, E. californicum had no effect on melanin synthesis. E. angustifolium extract also demonstrated a protective effect against the damage induced by X-ray irradiation in human keratinocytes. Application of the extracts to subjects who had grey beards demonstrated a reduced number of grey beard hair per year specifically with the E. angustifolium extract. A significant decrease in grey head hair was also observed after application of E. angustifolium extract. Upregulation of gene expression related to melanin production and WNT signalling was observed after the application of E. angustifolium extract. Sterubin was the most abundant flavonoid detected by UPLC in E. angustifolium extract. In addition, sterubin showed the highest difference in terms of quantity, between E. angustifolium and E. californicum extract. CONCLUSION Eriodictyon angustifolium extract, which is abundant in sterubin, may be suitable as a potential cosmetic and medical agent for the prevention and improvement of hair greying.
Collapse
Affiliation(s)
- N Taguchi
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan.,Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, 5011194, Japan
| | - T Hata
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan
| | - E Kamiya
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan
| | - T Homma
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan
| | - A Kobayashi
- General Research & Development Institute, Hoyu Co., Ltd., Aichi, 4801136, Japan
| | - H Aoki
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, 5011194, Japan
| | - T Kunisada
- Department of Tissue and Organ Development, Regeneration and Advanced Medical Science, Gifu University Graduate School of Medicine, Gifu, 5011194, Japan
| |
Collapse
|
36
|
Juchaux F, Sellathurai T, Perrault V, Boirre F, Delannoy P, Bakkar K, Albaud J, Gueniche A, Cheniti A, Dal Belo S, Souverain L, Le Balch M, Commo S, Thibaut S, Michelet JF. A combination of pyridine-2, 4-dicarboxylic acid diethyl ester and resveratrol stabilizes hypoxia-inducible factor 1-alpha and improves hair density in female volunteers. Int J Cosmet Sci 2020; 42:167-173. [PMID: 31960447 DOI: 10.1111/ics.12600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was first to demonstrate that a combination of pyridine-2, 4-dicarboxylic acid diethyl ester and resveratrol could synergize in vitro on biological pathways associated with hair growth and then to demonstrate the benefit on hair density in a clinical study. METHODS The effects of pyridine-2, 4-dicarboxylic acid diethyl ester and resveratrol directly on the hypoxic inducible factor-1α protein (HIF-1α) and related genes expression were demonstrated on keratinocytes in culture in vitro using western-blot analysis and real time quantitative polymerase chain reaction analysis. The effect of resveratrol against oxidative stress induced by hydrogen peroxide treatment was studied in hair follicle and hair matrix cells in vitro using the sensitive probe Dichloro-dihydro-fluorescein diacetate (DCFH-DA). Finally, a randomized clinical study on hair density was conducted on 79 Caucasian female subjects to assess the effect of this combination of actives. RESULTS Pyridine-2, 4-dicarboxylic acid diethyl ester and resveratrol stabilized HIF-1a protein and increased the expression of HIF-1α target genes. Resveratrol significantly reduced the oxygen peroxide-induced oxidative stress generated in hair follicle and hair matrix cells. The clinical study showed that a topical treatment with the combination significantly increased the hair density on women from 1.5 months. CONCLUSION In addition to the antioxidant properties of resveratrol, the association of pyridine-2, 4-dicarboxylic acid diethyl ester and resveratrol revealed a synergistic effect on the HIF-1α pathway. The results of the clinical study confirmed the importance of such a combination to increase the hair density.
Collapse
Affiliation(s)
- F Juchaux
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - T Sellathurai
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - V Perrault
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - F Boirre
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - P Delannoy
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - K Bakkar
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - J Albaud
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - A Gueniche
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - A Cheniti
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - S Dal Belo
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - L Souverain
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - M Le Balch
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - S Commo
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - S Thibaut
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| | - J F Michelet
- L'Oreal Research and Innovation, Advanced Research, 1, avenue Eugène Schueller, 93601, Aulnay sous Bois, France
| |
Collapse
|
37
|
Sun X, Wu A, Kwan Law BY, Liu C, Zeng W, Ling Qiu AC, Han Y, He Y, Wai Wong VK. The active components derived from Penthorum chinensePursh protect against oxidative-stress-induced vascular injury via autophagy induction. Free Radic Biol Med 2020; 146:160-180. [PMID: 31689485 DOI: 10.1016/j.freeradbiomed.2019.10.417] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
Oxidative stress-induced damage has been proposed as a major risk factor for cardiovascular disease and is a pathogenic feature of atherosclerosis. Although autophagy was reported to have a protective effect against atherosclerosis, its mechanism for reducing oxidative stress remains un-elucidated. In this study, we have identified 4 novel autophagic compounds from traditional Chinese medicines (TCMs), which activated the AMPK mediated autophagy pathway for the recovery of mitochondrial membrane potential (MMP) to reduce the production of reactive oxygen species (ROS) in Human umbilical vein endothelial cells (HUVECs). In this study, 4 compounds (TA, PG, TB and PG1) identified from Penthorum chinense Pursh (PCP) were demonstrated for the first time to possess binding affinity to HUVECs cell membranes via cell membrane chromatography (CMC) accompanied by UHPLC-TOF-MS analysis, and the 4 identified compounds induce autophagy in HUVECs. Among the 4 autophagic activators identified from PCP, TA (Thonningianin A, Pinocembrin dihydrochalcone-7-O-[3″-O-galloyl-4″,6″-hexahydroxydiphenoyl]-glucoside) is the major chemcial component in PCP, which possesses the most potent autophagy effect via a Ca2+/AMPK-dependent and mTOR-independent pathways. Moreover, TA efficiently reduced the level of ROS in HUVECs induced by H2O2. Additionally, the expression of pro- and cleaved-IL-1β in the aortic artery of ApoE-KO mice were also alleviated at the transcription and post-transcription levels after the administration of TA, which might be correlated to the reduction of oxidative-stress induced inflammasome-related Nod-like receptor protein3 (NLRP3) in the aortic arteries of ApoE-KO mice. This study has pinpointed the novel autophagic role of TA in alleviating the oxidative stress of HUVECs and aortic artery of ApoE-KO mice, and provided insight into the therapeutic application of TA in treatment of atherosclerosis or other cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaolei Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Anguo Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Chaolin Liu
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Alena Cong Ling Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Yu Han
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Yanzheng He
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China; Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
38
|
Yale K, Juhasz M, Atanaskova Mesinkovska N. Medication-Induced Repigmentation of Gray Hair: A Systematic Review. Skin Appendage Disord 2019; 6:1-10. [PMID: 32021854 DOI: 10.1159/000504414] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/28/2019] [Indexed: 01/26/2023] Open
Abstract
Hair graying is a common sign of aging resulting from complex regulation of melanogenesis. Currently, there is no medical treatment available for hair repigmentation. In this article we review the literature on medication-induced hair repigmentation, discuss the potential mechanisms of action, and review the quality of the literary data. To date, there have been 27 studies discussing medication-induced gray hair repigmentation, including 6 articles on gray hair repigmentation as a primary objective, notably with psoralen treatment or vitamin supplementation, and 21 reports on medication-induced gray hair repigmentation as an incidental finding. Medications noted in the literature include anti-inflammatory medications (thalidomide, lenalidomide, adalimumab, acitretin, etretinate, prednisone, cyclosporin, cisplatinum, interferon-α, and psoralen), stimulators of melanogenesis (latanoprost, erlotinib, imatinib, tamoxifen, and levodopa), vitamins (calcium pantothenate and para-amino benzoic acid), a medication that accumulates in tissues (clofazimine), and a medication with an undetermined mechanism (captopril). Diffuse repigmentation of gray hair can be induced by certain medications that inhibit inflammation or stimulate melanogenesis. There is also low-quality evidence that some vitamin B complex supplementation can promote gray hair darkening. While these compounds are not currently indicated for the treatment of gray hair, their mechanisms shed light on targets for future medications for hair repigmentation.
Collapse
Affiliation(s)
- Katerina Yale
- Department of Dermatology, University of California, Irvine, Irvine, California, USA
| | - Margit Juhasz
- Department of Dermatology, University of California, Irvine, Irvine, California, USA
| | | |
Collapse
|
39
|
Kaur K, Kaur R, Bala I. Therapeutics of premature hair graying: A long journey ahead. J Cosmet Dermatol 2019; 18:1206-1214. [PMID: 31115162 DOI: 10.1111/jocd.13000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 04/09/2019] [Accepted: 04/26/2019] [Indexed: 01/24/2023]
Abstract
Premature graying of hair has major psychosocial and socioeconomic repercussion, as it is considered as a sign of hastily progressing old age, ill health and often leads to loss of self-esteem. Hair is said to gray prematurely when it happens before the age of 20 years in Caucasians, 25 years in Asians, and 30 years in Africans. The hair color chiefly depends on melanin pigment, and fabrication of this pigment takes place in melanosomes through the process of melanogenesis. This complex biochemical pathway (melanogenesis) is further dependent on tyrosinase which acts as fuel.The normal human scalp is subjected to various factors categorized as intrinsic and extrinsic leading to graying of hair. Intrinsic factors comprise of variants responsible for changes at genetic level while extrinsic factors include air pollution, ultraviolet radiation, smoking, and nutrition. It has been proposed that direct or indirect effect of all these factors results in the generation of reactive oxygen species (ROS), thus leading to further damage. Though research has expanded in last few years in terms of microscopic, biochemical (hormonal, enzymatic), and molecular changes happening within hair follicle/shaft, still the exact mechanism leading to premature graying of hair is not well understood. Probable solutions toward this quandary are diet, herbal remedies, and temporary hair colorants. Ironically, the latter one being the most common has various side effects such as allergic reactions, inflammation, and hair loss. The aim of this paper was to review the manifestation and probable future interventions in preventing premature hair graying.
Collapse
Affiliation(s)
- Kiranjeet Kaur
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Rajveer Kaur
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| | - Indu Bala
- Chitkara School of Health Sciences, Chitkara University, Punjab, India
| |
Collapse
|
40
|
Kiafar B, Taheri A, Isaac Hashemy S, Saki A, Mahdeianfar B, Taghavi F, Vahabi-Amlashi S. Serum levels of lead and selenium in patients with premature graying of the hair. J Cosmet Dermatol 2019; 19:1513-1516. [PMID: 31556475 DOI: 10.1111/jocd.13173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/11/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND The exact etiology of premature hair graying (PHG) remains unknown; however, oxidative stress is shown to be involved. Selenium, as an antioxidant, is widely known for its antiaging potentials. Moreover, PGH is more prevalent among addicts and because Lead is a common impurity found in illegal drug. AIMS We evaluated the serum levels of lead and selenium in patients with PHG and compared it with a control group. PATIENTS/METHODS In this cross-sectional study, 60 patients referred to Dermatology Clinic of Imam-Reza Hospital of Mashhad, Iran in 2015 were evaluated in two groups with and without PHG. Demographic information and disease characteristics, skin phenotype, and family history of PHG were recorded. Furthermore, 5 mL of brachial blood was drawn for measuring selenium and lead levels. RESULTS The mean patients' age was 28.1 ± 4.8 years. Age, sex, occupation, and skin phenotype in individuals with and without PHG were not significantly different (P > .05) but family history of PHG was significantly higher in the patients with PHG (P = .001). Similarly, the number of white hairs was significantly higher (P < .001), and the age of onset of hair graying was significantly lower in patients with PHG (P < .001). Serum levels of selenium and lead were not significantly different between two groups (P < .05). However, the serum levels of lead in the patients with PHG were slightly higher. CONCLUSIONS The results of this study showed that there was no significant difference in lead and selenium serum levels in patients with and without PHG.
Collapse
Affiliation(s)
- Bita Kiafar
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmadreza Taheri
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Saki
- Research Center for Social Factors Affecting Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Faezeh Taghavi
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sadegh Vahabi-Amlashi
- Cutaneous Leishmaniasis Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Effects of the selective TrkA agonist gambogic amide on pigmentation and growth of human hair follicles in vitro. PLoS One 2019; 14:e0221757. [PMID: 31465471 PMCID: PMC6715186 DOI: 10.1371/journal.pone.0221757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
The human hair follicle is a neuroendocrine mini-organ that can be used to study aging processes in vitro. Neurotrophins maintain homeostasis in hair biology via the Trk-family of receptors. TrkA, the high affinity receptor for nerve growth factor (NGF), is expressed in hair follicle melanocytes and keratinocytes, where it regulates proliferation, differentiation and apoptosis and may thereby play a role in hair pigmentation and growth. We investigated TrkA expression during the human hair cycle and the effects of a selective high affinity TrkA agonist, Gambogic Amide, on hair pigmentation and hair growth in human hair follicles in vitro. In human scalp skin, TrkA expression was strongest in proliferating melanocytes re-establishing the pigmentary unit in the hair bulb during the early hair growth phase, anagen. During high anagen and in the de-composing pigmentary-unit of the regression phase, catagen, bulb-melanocytes lost TrkA expression and only undifferentiated outer root sheath melanocytes maintained it. In cultured human anagen hair follicles, Gambogic Amide was able to prevent gradual pigment loss, while it stimulated hair shaft elongation. This was achieved by increased melanocyte activation, migration and dendricity, highlighted by distinct c-KIT-expression in melanocyte sub-populations. Our results suggest that Gambogic Amide can maintain hair follicle pigmentation by acting on undifferentiated melanocytes residing in the outer root sheath and making them migrate to establish the pigmentary-unit. This suggests that the selective TrkA agonist Gambogic Amide acts as an anti-hair greying and hair growth promoting molecule in vitro.
Collapse
|
42
|
Lee SH, Lee S, Du J, Jain K, Ding M, Kadado AJ, Atteya G, Jaji Z, Tyagi T, Kim W, Herzog RI, Patel A, Ionescu CN, Martin KA, Hwa J. Mitochondrial MsrB2 serves as a switch and transducer for mitophagy. EMBO Mol Med 2019; 11:e10409. [PMID: 31282614 PMCID: PMC6685081 DOI: 10.15252/emmm.201910409] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 01/01/2023] Open
Abstract
Mitophagy can selectively remove damaged toxic mitochondria, protecting a cell from apoptosis. The molecular spatial-temporal mechanisms governing autophagosomal selection of reactive oxygen species (ROS)-damaged mitochondria, particularly in a platelet (no genomic DNA for transcriptional regulation), remain unclear. We now report that the mitochondrial matrix protein MsrB2 plays an important role in switching on mitophagy by reducing Parkin methionine oxidation (MetO), and transducing mitophagy through ubiquitination by Parkin and interacting with LC3. This biochemical signaling only occurs at damaged mitochondria where MsrB2 is released from the mitochondrial matrix. MsrB2 platelet-specific knockout and in vivo peptide inhibition of the MsrB2/LC3 interaction lead to reduced mitophagy and increased platelet apoptosis. Pathophysiological importance is highlighted in human subjects, where increased MsrB2 expression in diabetes mellitus leads to increased platelet mitophagy, and in platelets from Parkinson's disease patients, where reduced MsrB2 expression is associated with reduced mitophagy. Moreover, Parkin mutations at Met192 are associated with Parkinson's disease, highlighting the structural sensitivity at the Met192 position. Release of the enzyme MsrB2 from damaged mitochondria, initiating autophagosome formation, represents a novel regulatory mechanism for oxidative stress-induced mitophagy.
Collapse
Affiliation(s)
- Seung Hee Lee
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
- Division of Cardiovascular DiseasesCenter for Biomedical SciencesNational Institute of HealthCheongjuChungbukKorea
| | - Suho Lee
- Departments of Neurology and NeurobiologyCellular Neuroscience, Neurodegeneration and Repair ProgramYale University School of MedicineNew HavenCTUSA
| | - Jing Du
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Kanika Jain
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Min Ding
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Anis J Kadado
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Gourg Atteya
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Zainab Jaji
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Tarun Tyagi
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Won‐ho Kim
- Division of Cardiovascular DiseasesCenter for Biomedical SciencesNational Institute of HealthCheongjuChungbukKorea
| | - Raimund I Herzog
- Section of EndocrinologyDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - Amar Patel
- Division of Movement DisordersDepartments of Neurology and NeurobiologyYale University School of MedicineNew HavenCTUSA
| | - Costin N Ionescu
- Yale Cardiovascular MedicineDepartment of Internal MedicineYale‐New Haven HospitalNew HavenCTUSA
| | - Kathleen A Martin
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| | - John Hwa
- Yale Cardiovascular Research CenterSection of Cardiovascular MedicineDepartment of Internal MedicineYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
43
|
Affiliation(s)
- Gary B Smejkal
- a Core Services Laboratory , Focus Proteomics , Hudson , NH , USA
| | | |
Collapse
|
44
|
Preclinical signs of Parkinson's disease: A possible association of Parkinson's disease with skin and hair features. Med Hypotheses 2019; 127:100-104. [DOI: 10.1016/j.mehy.2019.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 11/24/2022]
|
45
|
H 2O 2 promotes the aging process of melanogenesis through modulation of MITF and Nrf2. Mol Biol Rep 2019; 46:2461-2471. [PMID: 30805890 DOI: 10.1007/s11033-019-04708-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/16/2019] [Indexed: 01/04/2023]
Abstract
The purpose of this study is to investigate the effect of H2O2 on the aging of melanogenesis in human melanocytes. The staining of SA-β-galactosidase, an aging marker, was remarkably increased in the cells aged with H2O2 at 62.5 µM or more compared with young cells. The intracellular H2O2 level and melanin synthesis were also reduced in both H2O2-treated cells and senescent cells compared with young cells in DCFH-DA assay. Both the senescent cells and the H2O2-treated cells showed higher expression level of Catalase than young cells in western blot and immunofluorescence staining. Furthermore, the expression levels of TRP-1, TRP-2 and p300 were reduced in both senescent cells and the H2O2-treated cells, but that of SIRT-1 was inverted compared with young cells. In addition, H2O2 reduced the expression level of MITF but increased that of Nrf2 in nucleus. Those results indicate that the expression levels of antioxidant enzymes in senescent cells and H2O2-treated cell are upregulated, but the expression levels of proteins involved in melanin synthesis are downregulated. Above findings suggest that H2O2 could play a key role in the aging process of melanogenesis through modulation of MITF and Nrf2.
Collapse
|
46
|
Triwongwaranat D, Thuangtong R, Arunkajohnsak S. A review of the etiologies, clinical characteristics, and treatment of canities. Int J Dermatol 2019; 58:659-666. [DOI: 10.1111/ijd.14399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 10/15/2018] [Accepted: 01/17/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Daranporn Triwongwaranat
- Department of Dermatology Faculty of Medicine Siriraj Hospital Mahidol University Bangkok Thailand
| | - Rattapon Thuangtong
- Department of Dermatology Faculty of Medicine Siriraj Hospital Mahidol University Bangkok Thailand
| | - Sittiroj Arunkajohnsak
- Department of Dermatology Faculty of Medicine Siriraj Hospital Mahidol University Bangkok Thailand
| |
Collapse
|
47
|
Hosking AM, Juhasz M, Atanaskova Mesinkovska N. Complementary and Alternative Treatments for Alopecia: A Comprehensive Review. Skin Appendage Disord 2019; 5:72-89. [PMID: 30815439 PMCID: PMC6388561 DOI: 10.1159/000492035] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/10/2018] [Indexed: 12/29/2022] Open
Abstract
The treatment of alopecia is limited by a lack of therapies that induce and sustain disease remission. Given the negative psychosocial impact of hair loss, patients that do not see significant hair restoration with conventional therapies often turn to complementary and alternative medicine (CAM). Although there are a variety of CAM treatment options on the market for alopecia, only a few are backed by multiple randomized controlled trials. Further, these modalities are not regulated by the Food and Drug Administration and there is a lack of standardization of bioactive in gredients in over-the-counter vitamins, herbs, and supplements. In this article, we provide a comprehensive review of the efficacy, safety, and tolerability of CAM, including natural products and mind and body practices, in the treatment of hair loss. Overall, there is a need for additional studies investigating CAM for alopecia with more robust clinical design and standardized, quantitative outcomes.
Collapse
Affiliation(s)
- Anna-Marie Hosking
- Department of Dermatology, University of California, Irvine, Irvine, California, USA
| | | | | |
Collapse
|
48
|
Ma J, Li S, Zhu L, Guo S, Yi X, Cui T, He Y, Chang Y, Liu B, Li C, Jian Z. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway. Free Radic Biol Med 2018; 129:492-503. [PMID: 30342186 DOI: 10.1016/j.freeradbiomed.2018.10.421] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/26/2018] [Accepted: 10/09/2018] [Indexed: 12/30/2022]
Abstract
Vitiligo is a complex disorder characterized by patchy loss of skin pigmentation due to abnormal melanocyte function. Overwhelming evidences have suggested that oxidative stress plays a major role in the loss of melanocytes thereby mediating the onset and progression of vitiligo. The nuclear factor erythroid 2-like factor 2 (Nrf2) is a master regulator of cellular redox homeostasis and the activation of Nrf2 signaling pathway is impaired in the vitiligo melanocytes. Baicalein, as flavonoid extracted from the Scutellaria baicalensis, has been proved to possess the ability to activate Nrf2 signaling pathway in other cell types and mouse model. Our previous data found that baicalein exerts a cytoprotective role in H2O2-induced apoptosis in human melanocytes cell line (PIG1). Based on these founding, we hypothesized that baicalein activates Nrf2 signaling pathway, alleviates H2O2-induced mitochondrial dysfunction and cellular damage, thereby protecting human vitiligo melanocytes from oxidative stress. In the present study, we found that baicalein effectively inhibited H2O2-induced cytotoxicity and apoptosis in human vitiligo melanocytes (PIG3V). Further results demonstrated that baicalein promoted Nrf2 nucleus translocation as well as up-regulated the expression of Nrf2 and its target gene, heme oxygenase-1 (HO-1). Moreover, the protective effects of baicalein against H2O2-induced cellular damage and apoptosis as well as mitochondrial dysfunction were abolished by Nrf2 knockdown. Additionally, we observed that Nrf2 knockdown suppressed proliferation and increased the sensitivity of PIG3V cells to H2O2 treatment. Finally, we explored the mechanism of baicalein associated with Nrf2 activation and found that the phosphorylation of Nrf2 as well as ERK1/2and PI3K/AKT signaling were not involved in the baicalein-induced activation of Nrf2. Taken together, these data clearly suggest that baicalein enhances cellular antioxidant defense capacity of human vitiligo melanocytes through the activation of the Nrf2 signaling pathway, providing beneficial evidence for the application of baicalein in the vitiligo treatment.
Collapse
Affiliation(s)
- Jingjing Ma
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Longfei Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Yuanmin He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Yuqian Chang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Bangmin Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
49
|
Almeida Scalvino S, Chapelle A, Hajem N, Lati E, Gasser P, Choulot JC, Michel L, Hocquaux M, Loing E, Attia J, Wdzieczak-Bakala J. Efficacy of an agonist of α-MSH, the palmitoyl tetrapeptide-20, in hair pigmentation. Int J Cosmet Sci 2018; 40:516-524. [PMID: 30222197 DOI: 10.1111/ics.12494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Hair greying (i.e., canities) is a component of chronological ageing and occurs regardless of gender or ethnicity. Canities is directly linked to the loss of melanin and increase in oxidative stress in the hair follicle and shaft. To promote hair pigmentation and reduce the hair greying process, an agonist of α-melanocyte-stimulating hormone (α-MSH), a biomimetic peptide (palmitoyl tetrapeptide-20; PTP20) was developed. The aim of this study was to describe the effects of the designed peptide on hair greying. METHODS Effect of the PTP20 on the enzymatic activity of catalase and the production of H2 O2 by Human Follicle Dermal Papilla Cells (HFDPC) was evaluated. Influence of PTP20 on the expression of melanocortin receptor-1 (MC1-R) and the production of melanin were investigated. Enzymatic activity of sirtuin 1 (SIRT1) after treatment with PTP20 was also determined. Ex vivo studies using human micro-dissected hairs allowed to visualize the effect of PTP20 on the expression in hair follicle of catalase, TRP-1, TRP-2, Melan-A, ASIP, and MC1-R. These investigations were completed by a clinical study on 15 human male volunteers suffering from premature canities. RESULTS The in vitro and ex vivo studies revealed the capacity of the examined PTP20 peptide to enhance the expression of catalase and to decrease (30%) the intracellular level of H2 O2 . Moreover, PTP20 was shown to activate in vitro and ex vivo the melanogenesis process. In fact, an increase in the production of melanin was shown to be correlated with elevated expression of MC1-R, TRP-1, and Melan-A, and with the reduction in ASIP expression. A modulation on TRP-2 was also observed. The pivotal role of MC1-R was confirmed on protein expression analysed on volunteer's plucked hairs after 3 months of the daily application of lotion containing 10 ppm of PTP20 peptide. CONCLUSION The current findings demonstrate the ability of the biomimetic PTP20 peptide to preserve the function of follicular melanocytes. The present results suggest potential cosmetic application of this newly designed agonist of α-MSH to promote hair pigmentation and thus, reduce the hair greying process.
Collapse
Affiliation(s)
| | - A Chapelle
- ICSN, UPR2301 CNRS, 91198, Gif-sur-Yvette, France
| | - N Hajem
- Ales Groupe, 95871, Bezons, France
| | - E Lati
- Laboratoire BIO-EC, 91160, Longjumeau, France
| | - P Gasser
- Laboratoire BIO-EC, 91160, Longjumeau, France
| | | | - L Michel
- Inserm UMR976, 75475, Paris, France
| | - M Hocquaux
- IFF-Lucas Meyer Cosmetics, 31036, Toulouse, France
| | - E Loing
- IFF-Lucas Meyer Cosmetics, G1V4W2, Québec, Canada
| | - J Attia
- IFF-Lucas Meyer Cosmetics, 31036, Toulouse, France
| | | |
Collapse
|
50
|
Evaluation of the antioxidant enzyme activity level in patients with alopecia areata. Postepy Dermatol Alergol 2018; 35:423-424. [PMID: 30206458 PMCID: PMC6130136 DOI: 10.5114/ada.2018.77674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 12/24/2022] Open
|