1
|
Horowitz A, Chanez-Paredes SD, Haest X, Turner JR. Paracellular permeability and tight junction regulation in gut health and disease. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00766-3. [PMID: 37186118 PMCID: PMC10127193 DOI: 10.1038/s41575-023-00766-3] [Citation(s) in RCA: 143] [Impact Index Per Article: 143.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
Epithelial tight junctions define the paracellular permeability of the intestinal barrier. Molecules can cross the tight junctions via two distinct size-selective and charge-selective paracellular pathways: the pore pathway and the leak pathway. These can be distinguished by their selectivities and differential regulation by immune cells. However, permeability increases measured in most studies are secondary to epithelial damage, which allows non-selective flux via the unrestricted pathway. Restoration of increased unrestricted pathway permeability requires mucosal healing. By contrast, tight junction barrier loss can be reversed by targeted interventions. Specific approaches are needed to restore pore pathway or leak pathway permeability increases. Recent studies have used preclinical disease models to demonstrate the potential of pore pathway or leak pathway barrier restoration in disease. In this Review, we focus on the two paracellular flux pathways that are dependent on the tight junction. We discuss the latest evidence that highlights tight junction components, structures and regulatory mechanisms, their impact on gut health and disease, and opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Arie Horowitz
- UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, Normandie University, Rouen, France
| | - Sandra D Chanez-Paredes
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xenia Haest
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jerrold R Turner
- Laboratory of Mucosal Barrier Pathobiology, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Chattopadhyay P, Srinivasa Vasudevan J, Pandey R. Noncoding RNAs: modulators and modulatable players during infection-induced stress response. Brief Funct Genomics 2021; 20:28-41. [PMID: 33491070 PMCID: PMC7929421 DOI: 10.1093/bfgp/elaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The human genome has an almost equal distribution of unique and transposable genetic elements. Although at the transcriptome level, a relatively higher contribution from transposable elements derived RNA has been reported. This is further highlighted with evidence from pervasive transcription. Of the total RNA, noncoding RNAs (ncRNAs) are significant contributors to the transcriptome pool with sizeable fraction from repetitive elements of the human genome, inclusive of Long Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs). ncRNAs are increasingly being implicated in diverse functional roles especially during conditions of stress. These stress responses are driven through diverse mediators, inclusive of long and short ncRNAs. ncRNAs such as MALAT1, GAS5, miR-204 and miR-199a-5p have been functionally involved during oxidative stress, endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Also, within SINEs, Alu RNAs derived from primate-specific Alu repeats with ~11% human genome contribution, playing a significant role. Pathogenic diseases, including the recent COVID-19, leads to differential regulation of ncRNAs. Although, limited evidence suggests the need for an inquest into the role of ncRNAs in determining the host response towards pathogen challenge.
Collapse
Affiliation(s)
| | | | - Rajesh Pandey
- Corresponding author: Rajesh Pandey, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory. CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), North Campus, Near Jubilee Hall, Mall Road, Delhi-110007, India. Tel.: +91 9811029551; E-mail:
| |
Collapse
|
3
|
Taylor BC, Weldon KC, Ellis RJ, Franklin D, Groth T, Gentry EC, Tripathi A, McDonald D, Humphrey G, Bryant M, Toronczak J, Schwartz T, Oliveira MF, Heaton R, Grant I, Gianella S, Letendre S, Swafford A, Dorrestein PC, Knight R. Depression in Individuals Coinfected with HIV and HCV Is Associated with Systematic Differences in the Gut Microbiome and Metabolome. mSystems 2020; 5:e00465-20. [PMID: 32994287 PMCID: PMC7527136 DOI: 10.1128/msystems.00465-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Depression is influenced by the structure, diversity, and composition of the gut microbiome. Although depression has been described previously in human immunodeficiency virus (HIV) and hepatitis C virus (HCV) monoinfections, and to a lesser extent in HIV-HCV coinfection, research on the interplay between depression and the gut microbiome in these disease states is limited. Here, we characterized the gut microbiome using 16S rRNA amplicon sequencing of fecal samples from 373 participants who underwent a comprehensive neuropsychiatric assessment and the gut metabolome on a subset of these participants using untargeted metabolomics with liquid chromatography-mass spectrometry. We observed that the gut microbiome and metabolome were distinct between HIV-positive and -negative individuals. HCV infection had a large association with the microbiome that was not confounded by drug use. Therefore, we classified the participants by HIV and HCV infection status (HIV-monoinfected, HIV-HCV coinfected, or uninfected). The three groups significantly differed in their gut microbiome (unweighted UniFrac distances) and metabolome (Bray-Curtis distances). Coinfected individuals also had lower alpha diversity. Within each of the three groups, we evaluated lifetime major depressive disorder (MDD) and current Beck Depression Inventory-II. We found that the gut microbiome differed between depression states only in coinfected individuals. Coinfected individuals with a lifetime history of MDD were enriched in primary and secondary bile acids, as well as taxa previously identified in people with MDD. Collectively, we observe persistent signatures associated with depression only in coinfected individuals, suggesting that HCV itself, or interactions between HCV and HIV, may drive HIV-related neuropsychiatric differences.IMPORTANCE The human gut microbiome influences depression. Differences between the microbiomes of HIV-infected and uninfected individuals have been described, but it is not known whether these are due to HIV itself, or to common HIV comorbidities such as HCV coinfection. Limited research has explored the influence of the microbiome on depression within these groups. Here, we characterized the microbial community and metabolome in the stools from 373 people, noting the presence of current or lifetime depression as well as their HIV and HCV infection status. Our findings provide additional evidence that individuals with HIV have different microbiomes which are further altered by HCV coinfection. In individuals coinfected with both HIV and HCV, we identified microbes and molecules that were associated with depression. These results suggest that the interplay of HIV and HCV and the gut microbiome may contribute to the HIV-associated neuropsychiatric problems.
Collapse
Affiliation(s)
- Bryn C Taylor
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Kelly C Weldon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Ronald J Ellis
- Department of Neuroscience, HIV Neurobehavioral Research Center, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, HIV Neurobehavioral Research Center, University of California San Diego, La Jolla, California, USA
| | - Donald Franklin
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tobin Groth
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Emily C Gentry
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Anupriya Tripathi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Gregory Humphrey
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - MacKenzie Bryant
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Julia Toronczak
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tara Schwartz
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Michelli F Oliveira
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert Heaton
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Igor Grant
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Sara Gianella
- Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, California, USA
| | - Scott Letendre
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA
| | - Austin Swafford
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Alzahrani J, Hussain T, Simar D, Palchaudhuri R, Abdel-Mohsen M, Crowe SM, Mbogo GW, Palmer CS. Inflammatory and immunometabolic consequences of gut dysfunction in HIV: Parallels with IBD and implications for reservoir persistence and non-AIDS comorbidities. EBioMedicine 2019; 46:522-531. [PMID: 31327693 PMCID: PMC6710907 DOI: 10.1016/j.ebiom.2019.07.027] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal mucosa is critical for maintaining the integrity and functions of the gut. Disruption of this barrier is a hallmark and a risk factor for many intestinal and chronic inflammatory diseases. Inflammatory bowel disease (IBD) and HIV infection are characterized by microbial translocation and systemic inflammation. Despite the clinical overlaps between HIV and IBD, significant differences exist such as the severity of gut damage and mechanisms of immune cell homeostasis. Studies have supported the role of metabolic activation of immune cells in promoting chronic inflammation in HIV and IBD. This inflammatory response persists in HIV+ persons even after long-term virologic suppression by antiretroviral therapy (ART). Here, we review gut dysfunction and microbiota changes during HIV infection and IBD, and discuss how this may induce metabolic reprogramming of monocytes, macrophages and T cells to impact disease outcomes. Drawing from parallels with IBD, we highlight how factors such as lipopolysaccharides, residual viral replication, and extracellular vesicles activate biochemical pathways that regulate immunometabolic processes essential for HIV persistence and non-AIDS metabolic comorbidities. This review highlights new mechanisms and support for the use of immunometabolic-based therapeutics towards HIV remission/cure, and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Jehad Alzahrani
- Life Sciences, Burnet Institute, Melbourne, Australia; School of Medical Science, RMIT University, Melbourne, Australia
| | - Tabinda Hussain
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David Simar
- School of Medical Sciences, UNSW, Sydney, Australia
| | | | | | - Suzanne M Crowe
- Life Sciences, Burnet Institute, Melbourne, Australia; Department of Infectious Diseases, Monash University, Melbourne, Australia
| | | | - Clovis S Palmer
- Life Sciences, Burnet Institute, Melbourne, Australia; School of Medical Science, RMIT University, Melbourne, Australia; Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
5
|
Taborda NA, Correa LA, Feria MG, Rugeles MT. The Spontaneous Control of HIV Replication is Characterized by Decreased Pathological Changes in the Gut-associated Lymphoid Tissue. Curr HIV Res 2019; 16:338-344. [PMID: 30706820 PMCID: PMC6446516 DOI: 10.2174/1570162x17666190130115113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND HIV infection induces alterations in the gut-associated lymphoid tissue (GALT) that constitutes the most important site for viral replication due to the extensive presence of effector memory T-cells. In the case of HIV-controllers, several studies have reported fewer peripheral alterations and conserved immune responses that correlate with viral control; however, the histopathological characterization of GALT in those patients is still missing. In this study, we evaluated pathological alterations in GALT, trying to associate them with clinical parameters of HIV infected patients with or without evidence of viral control. METHODS This study included eight HIV-controllers (antiretroviral treatment-naïve patients, with viral loads below 2.000 copies/mL for at least 1 year); 14 Noncontrollers (antiretroviral treatmentnaïve patients, with viral loads > 2.000 copies/mL and CD4+ T cells count > 250 cells/μL), and 12 uninfected donors. Biopsy fragments were obtained by rectosigmoidoscopy and stained with hematoxylin and eosin, silver methenamine, Ziehl Neelsen, and modified Ziehl Neelsen. RESULTS Histopathological findings in HIV-controllers were similar to those observed in the uninfected group. In contrast, noncontrollers exhibited several alterations including condyloma acuminate, squamous metaplasia and acute colitis. These alterations were associated with disease progression. CONCLUSION HIV-controllers exhibit lower pathological alterations in the gut tissue, associated with higher CD4 T cell count, and lower viral load.
Collapse
Affiliation(s)
- Natalia A Taborda
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia.,Grupo de Investigaciones Biomedicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporacion Universitaria Remington, Medellin, Colombia
| | - Luis A Correa
- Seccion de Dermatologia, Departamento de Medicina Interna, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia.,Laboratorio de Patología, Laboratorio Clínico VID, Obra de la Congregación Mariana, Medellín, Colombia
| | - Manuel Geronimo Feria
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - María T Rugeles
- Grupo Inmunovirologia, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| |
Collapse
|
6
|
Asahchop EL, Meziane O, Mamik MK, Chan WF, Branton WG, Resch L, Gill MJ, Haddad E, Guimond JV, Wainberg MA, Baker GB, Cohen EA, Power C. Reduced antiretroviral drug efficacy and concentration in HIV-infected microglia contributes to viral persistence in brain. Retrovirology 2017; 14:47. [PMID: 29037245 PMCID: PMC5644262 DOI: 10.1186/s12977-017-0370-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/01/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND In patients with HIV/AIDS receiving antiretroviral therapy (ART), HIV-1 persistence in brain tissue is a vital and unanswered question. HIV-1 infects and replicates in resident microglia and trafficking macrophages within the brain although the impact of individual ART drugs on viral infection within these brain myeloid cells is unknown. Herein, the effects of contemporary ART drugs were investigated using in vitro and in vivo models of HIV-1 brain infection. RESULTS The EC50 values for specific ART drugs in HIV-infected human microglia were significantly higher compared to bone marrow-derived macrophages and peripheral blood mononuclear cells. Intracellular ART drug concentrations in microglia were significantly lower than in human lymphocytes. In vivo brain concentrations of ART drugs in mice were 10 to 100-fold less in brain tissues compared with plasma and liver levels. In brain tissues from untreated HIV-infected BLT mice, HIV-encoded RNA, DNA and p24 were present in human leukocytes while ART eradicated viral RNA and DNA in both brain and plasma. Interruption of ART resulted in detectable viral RNA and DNA and increased human CD68 expression in brains of HIV-infected BLT mice. In aviremic HIV/AIDS patients receiving effective ART, brain tissues that were collected within hours of last ART dosing showed HIV-encoded RNA and DNA with associated neuroinflammatory responses. CONCLUSIONS ART drugs show variable concentrations and efficacies in brain myeloid cells and tissues in drug-specific manner. Despite low drug concentrations in brain, experimental ART suppressed HIV-1 infection in brain although HIV/AIDS patients receiving effective ART had detectable HIV-1 in brain. These findings suggest that viral suppression in brain is feasible but new approaches to enhancing ART efficacy and concentrations in brain are required for sustained HIV-1 eradication from brain.
Collapse
Affiliation(s)
- Eugene L Asahchop
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | | | - Manmeet K Mamik
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Wing F Chan
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - William G Branton
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada
| | - Lothar Resch
- Department of Pathology, University of Calgary, Calgary, AB, Canada
| | - M John Gill
- Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - Elie Haddad
- CHU Sainte-Justine, Montréal, Canada.,Department of Pediatrics, Université de Montréal, Montréal, Canada
| | - Jean V Guimond
- CIUSSS du Centre-Sud-de-l'ile-Montréal, CLSC des Faubourgs, Montréal, QC, Canada
| | - Mark A Wainberg
- McGill University AIDS Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Glen B Baker
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Eric A Cohen
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada.,Montreal Clinical Research Institute, Montréal, Canada
| | - Christopher Power
- Department of Medicine (Neurology), University of Alberta, Edmonton, AB, Canada. .,Department of Psychiatry, University of Alberta, Edmonton, AB, Canada. .,Department of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
7
|
Endoplasmic reticulum stress and unfolded protein response in infection by intracellular parasites. Future Sci OA 2017; 3:FSO198. [PMID: 28883998 PMCID: PMC5583660 DOI: 10.4155/fsoa-2017-0020] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/21/2017] [Indexed: 12/30/2022] Open
Abstract
Perturbations of the physiological status of the endoplasmic reticulum (ER) trigger a specific response known as the ER stress response or unfolded protein response (UPR). In mammalian cells, the UPR is mediated by three ER transmembrane proteins (IRE1, PERK and ATF6) which activate three signaling cascades to restore ER homeostasis. In recent years, a cross-talk between UPR, inflammatory and microbial sensing pathways has been elucidated. Pathogen infection can lead to UPR activation; moreover, several pathogens subvert the UPR to promote their survival and replication. While the UPR in viral and bacterial infection has been characterized, little is known about the role of UPR in intracellular parasite infection. Here, we review recent findings on UPR induction/modulation by intracellular parasites in host cells.
Collapse
|
8
|
Groeger SE, Meyle J. Epithelial barrier and oral bacterial infection. Periodontol 2000 2017; 69:46-67. [PMID: 26252401 DOI: 10.1111/prd.12094] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2015] [Indexed: 01/11/2023]
Abstract
The oral epithelial barrier separates the host from the environment and provides the first line of defense against pathogens, exogenous substances and mechanical stress. It consists of underlying connective tissue and a stratified keratinized epithelium with a basement membrane, whose cells undergo terminal differentiation resulting in the formation of a mechanically resistant surface. Gingival keratinocytes are connected by various transmembrane proteins, such as tight junctions, adherens junctions and gap junctions, each of which has a specialized structure and specific functions. Periodontal pathogens are able to induce inflammatory responses that lead to attachment loss and periodontal destruction. A number of studies have demonstrated that the characteristics of pathogenic oral bacteria influence the expression and structural integrity of different cell-cell junctions. Tissue destruction can be mediated by host cells following stimulation with cytokines and bacterial products. Keratinocytes, the main cell type in gingival epithelial tissues, express a variety of proinflammatory cytokines and chemokines, including interleukin-1alpha, interleukin-1beta, interleukin-6, interleukin-8 and tumor necrosis factor-alpha. Furthermore, the inflammatory mediators that may be secreted by oral keratinocytes are vascular endothelial growth factor, prostaglandin E2 , interleukin-1 receptor antagonist and chemokine (C-C motif) ligand 2. The protein family of matrix metalloproteinases is able to degrade all types of extracellular matrix protein, and can process a number of bioactive molecules. Matrix metalloproteinase activities under inflammatory conditions are mostly deregulated and often increased, and those mainly relevant in periodontal disease are matrix metalloproteinases 1, 2, 3, 8, 9, 13 and 24. Viral infection may also influence the epithelial barrier. Studies show that the expression of HIV proteins in the mucosal epithelium is correlated with the disruption of epithelial tight junctions, suggesting a possible enhancement of human papilloma virus infection by HIV-associated disruption of tight junctions. Altered expression of matrix metalloproteinases was demonstrated in keratinocytes transformed with human papilloma virus-16 or papilloma virus-18,. To summarize, the oral epithelium is able to react to a variety of exogenous, possibly noxious influences.
Collapse
|
9
|
Antiretroviral Treatment with Efavirenz Disrupts the Blood-Brain Barrier Integrity and Increases Stroke Severity. Sci Rep 2016; 6:39738. [PMID: 28008980 PMCID: PMC5180178 DOI: 10.1038/srep39738] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/28/2016] [Indexed: 12/13/2022] Open
Abstract
The introduction of antiretroviral drugs (ARVd) changed the prognosis of HIV infection from a deadly disease to a chronic disease. However, even with undetectable viral loads, patients still develop a wide range of pathologies, including cerebrovascular complications and stroke. It is hypothesized that toxic side effects of ARVd may contribute to these effects. To address this notion, we evaluated the impact of several non-nucleoside reverse transcriptase inhibitors (NNRTI; Efavirenz, Etravirine, Rilpivirine and Nevirapine) on the integrity of the blood-brain barrier, and their impact on severity of stroke. Among studied drugs, Efavirenz, but not other NNRTIs, altered claudin-5 expression, increased endothelial permeability, and disrupted the blood-brain barrier integrity. Importantly, Efavirenz exposure increased the severity of stroke in a model of middle cerebral artery occlusion in mice. Taken together, these results indicate that selected ARVd can exacerbate HIV-associated cerebrovascular pathology. Therefore, careful consideration should be taken when choosing an anti-retroviral therapy regimen.
Collapse
|
10
|
Mikulak J, Oriolo F, Portale F, Tentorio P, Lan X, Saleem MA, Skorecki K, Singhal PC, Mavilio D. Impact of APOL1 polymorphism and IL-1β priming in the entry and persistence of HIV-1 in human podocytes. Retrovirology 2016; 13:63. [PMID: 27599995 PMCID: PMC5011791 DOI: 10.1186/s12977-016-0296-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/16/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients of African ancestry with untreated HIV-1 infection and carrying the G1 or G2 kidney disease risk variants (Vs) at the APOL1 gene have a tenfold higher risk of developing HIV-associated nephropathy (HIVAN) compared to those with the non-risk wild type (WT) G0 variant. However, the mechanistic contribution of the APOL1 allelic state to kidney injury in HIV-1 infection remains to be elucidated. RESULTS Non-risk WT APOL1 is associated with lower intracellular levels of HIV-1 in conditionally immortalized human podocytes, while the over expression of G1 or G2 risk Vs significantly increases viral accumulation. The priming of podocytes with exogenous IL-1β facilitates HIV-1 entry, via the up-regulation of DC-SIGN. The over expression of APOL1 G1 and G2 risk Vs in combination with an increase in IL-1β levels causes a greater increase in viral concentration than either condition alone. In turn, HIV-1 and exogenous IL-1β together induce a de novo secretion of endogenous IL-1β and an increase of APOL1 gene expression. CONCLUSIONS Our findings indicate that the presence of risk Vs of APOL1 is permissive of HIV-1 persistence in human podocytes in synergy with IL-1β, a cytokine that characterizes the inflammatory milieu of acute and chronic phases of HIV-1 infection. The elucidation of these molecular mechanisms explains, at least in part, the higher frequency of HIVAN in populations carrying the risk polymorphic genetic variant of APOL1 gene.
Collapse
Affiliation(s)
- Joanna Mikulak
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy. .,Istituto di Ricerca Genetica e Biomedica, UOS di Milano, Consiglio Nazionale delle Ricerche (UOS/IRGB/CNR), Rozzano, Milan, Italy.
| | - Ferdinando Oriolo
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Federica Portale
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Paolo Tentorio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Xiqian Lan
- Center for Excellence for Immunology and Inflammation, Feinstein Institute for Medical Research, Hofstra North Shore Long Island Jewish Medical School, New Hyde Park, NY, USA
| | - Moin A Saleem
- Children's Renal Unit and Academic Renal Unit, University of Bristol, Bristol, UK
| | - Karl Skorecki
- Nephrology and Molecular Medicine, Technion Institute of Technology and Rambam Medical Center, Haifa, Israel
| | - Pravin C Singhal
- Center for Excellence for Immunology and Inflammation, Feinstein Institute for Medical Research, Hofstra North Shore Long Island Jewish Medical School, New Hyde Park, NY, USA
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy. .,Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Milan, Italy.
| |
Collapse
|
11
|
Abstract
OBJECTIVE HIV-associated neurocognitive disorder (HAND) is a common neurological disorder among HIV-infected patients despite the availability of combination antiretroviral therapy. Host-encoded microRNAs (miRNA) regulate both host and viral gene expression contributing to HAND pathogenesis and can also serve as disease biomarkers. Herein, plasma miRNA profiles were investigated in HIV/AIDS patients with HAND. METHODS Discovery and Validation Cohorts comprising HIV/AIDS patients were studied that included patients with and without HAND (non-HAND). Plasma miRNA levels were measured by array hybridization and verified by quantitative real-time reverse transcriptase PCR (qRT-PCR). Multiple bioinformatic and biostatistical analyses were applied to the data from each cohort. RESULTS Expression analyses identified nine miRNAs in the Discovery Cohort (HAND, n = 22; non-HAND, n = 25) with increased levels (≥two-fold) in the HAND group compared with the non-HAND group (P < 0.05). In the Validation Cohort (HAND, n = 12; non-HAND, n = 12) upregulation (≥two-fold) of three miRNAs (miR-3665, miR-4516 and miR-4707-5p) was observed in the HAND group that were also increased in the Discovery Cohort's HAND patients, which were verified subsequently by qRT-PCR. Receiver-operating characteristic curve analyses for the three miRNAs also pointed to the diagnosis of HAND (area under curve, 0.87, P < 0.005). Bioinformatics tools predicted that all three miRNAs targeted sequences of genes implicated in neural development, cell death, inflammation, cell signalling and cytokine functions. CONCLUSION Differentially expressed plasma-derived miRNAs were detected in HIV/AIDS patients with HAND that were conserved across different patient cohorts and laboratory methods. Plasma-derived miRNAs might represent biomarkers for HAND and also provide insights into disease mechanisms.
Collapse
|
12
|
Márquez M, Fernández Gutiérrez del Álamo C, Girón-González JA. Gut epithelial barrier dysfunction in human immunodeficiency virus-hepatitis C virus coinfected patients: Influence on innate and acquired immunity. World J Gastroenterol 2016; 22:1433-1448. [PMID: 26819512 PMCID: PMC4721978 DOI: 10.3748/wjg.v22.i4.1433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/11/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Even in cases where viral replication has been controlled by antiretroviral therapy for long periods of time, human immunodeficiency virus (HIV)-infected patients have several non-acquired immunodeficiency syndrome (AIDS) related co-morbidities, including liver disease, cardiovascular disease and neurocognitive decline, which have a clear impact on survival. It has been considered that persistent innate and acquired immune activation contributes to the pathogenesis of these non-AIDS related diseases. Immune activation has been related with several conditions, remarkably with the bacterial translocation related with the intestinal barrier damage by the HIV or by hepatitis C virus (HCV)-related liver cirrhosis. Consequently, increased morbidity and mortality must be expected in HIV-HCV coinfected patients. Disrupted gut barrier lead to an increased passage of microbial products and to an activation of the mucosal immune system and secretion of inflammatory mediators, which in turn might increase barrier dysfunction. In the present review, the intestinal barrier structure, measures of intestinal barrier dysfunction and the modifications of them in HIV monoinfection and in HIV-HCV coinfection will be considered. Both pathogenesis and the consequences for the progression of liver disease secondary to gut microbial fragment leakage and immune activation will be assessed.
Collapse
|
13
|
Qiu S, Xiao Z, Piao C, Zhang J, Dong Y, Cui W, Liu X, Zhang Y, Du J. AMPKα2 reduces renal epithelial transdifferentiation and inflammation after injury through interaction with CK2β. J Pathol 2015; 237:330-42. [PMID: 26108355 DOI: 10.1002/path.4579] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 06/18/2015] [Accepted: 06/22/2015] [Indexed: 12/22/2022]
Abstract
TGFβ1/Smad, Wnt/β-catenin and snail1 are preferentially activated in renal tubular epithelia after injury, leading to epithelial-mesenchymal transition (EMT). The stress response is coupled to EMT and kidney injury; however, the underlying mechanism of the stress response in EMT remains elusive. AMP-activated protein kinase (AMPK) signalling is responsive to stress and regulates cell energy balance and differentiation. We found that knockdown of AMPKα, especially AMPKα2, enhanced EMT by up-regulating β-catenin and Smad3 in vitro. AMPKα2 deficiency enhanced EMT and fibrosis in a murine unilateral ureteral obstruction (UUO) model. AMPKα2 deficiency also increased the expression of chemokines KC and MCP-1, along with enhanced infiltration of inflammatory cells into the kidney after UUO. CK2β interacted physically with AMPKα and enhanced AMPKα Thr172 phosphorylation and its catalytic activity. Thus, activated AMPKα signalling suppresses EMT and secretion of chemokines in renal tubular epithelia through interaction with CK2β to attenuate renal injury.
Collapse
Affiliation(s)
- Shulan Qiu
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Zhicheng Xiao
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Chunmei Piao
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jing Zhang
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Yanjun Dong
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Wei Cui
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Xin Liu
- Centre for Molecular Systems Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Youyi Zhang
- Laboratory of Cardiovascular Bioactive Molecules, School of Basic Medical Sciences, Peking University Health Science Centre, Beijing, People's Republic of China
| | - Jie Du
- Beijing AnZhen Hospital, Capital Medical University, Beijing, People's Republic of China.,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing, People's Republic of China.,Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| |
Collapse
|
14
|
HIV enteropathy and aging: gastrointestinal immunity, mucosal epithelial barrier, and microbial translocation. Curr Opin HIV AIDS 2015; 9:309-16. [PMID: 24871087 DOI: 10.1097/coh.0000000000000066] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Despite decreases in morbidity and mortality as a result of antiretroviral therapy, gastrointestinal dysfunction remains common in HIV infection. Treated patients are at risk for complications of 'premature' aging, such as cardiovascular disease, osteopenia, neurocognitive decline, malignancies, and frailty. This review summarizes recent observations in this field. RECENT FINDINGS Mucosal CD4 lymphocytes, especially Th17 cells, are depleted in acute HIV and simian immune deficiency virus (SIV) infections, although other cell types also are affected. Reconstitution during therapy often is incomplete, especially in mucosa. Mucosal barrier function is affected by both HIV infection and aging and includes paracellular transport via tight junctions and uptake through areas of apoptosis; other factors may affect systemic antigen exposure. The resultant microbial translocation is associated with systemic immune activation in HIV and SIV infections. There is evidence of immune activation and microbial translocation in the elderly. The immune phenotypes of immunosenescence in HIV infection and aging appear similar. There are several targets for intervention; blockage of residual mucosal virus replication, preventing antigen uptake, modulating the microbiome, improving T cell recovery, combining therapies aimed at mucosal integrity, augmenting mucosal immunity, and managing traditional risk factors for premature aging in the general population. SUMMARY Aging may interact with HIV enteropathy to enhance microbial translocation and immune activation.
Collapse
|
15
|
HIV Tat-Mediated Induction of Human Brain Microvascular Endothelial Cell Apoptosis Involves Endoplasmic Reticulum Stress and Mitochondrial Dysfunction. Mol Neurobiol 2014; 53:132-142. [PMID: 25409632 DOI: 10.1007/s12035-014-8991-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/05/2014] [Indexed: 12/31/2022]
Abstract
Endoplasmic reticulum (ER) stress triggered under hyperglycemic, hypoxic, and oxidative conditions has been implicated in cellular dysfunction through activation of the unfolded protein response (UPR). Recent clinical studies have documented that the release of soluble cellular and host factors following HIV infection in the central nervous system (CNS) results in induction of the ER stress response. Herein, we demonstrate that exposure of human brain microvascular endothelial cells (HBMECs) to HIV transactivator protein Tat101 resulted in early induction of several major ER stress regulators including ER chaperones Bip/GRP78 and ER stress sensors ATF6, p-PERK, and downstream mediators p-eIF2α and ATF4. Upregulation of the ER stress mediators was accompanied by decreased cell viability and increased apoptosis as evidenced by MTT and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays, respectively. Pretreatment of HBMECs with either ER inhibitor or knockdown of the effector C/EBP homologous protein (CHOP) resulted in increased cell viability and abrogation of apoptosis following Tat exposure. Notably, Tat-mediated activation of the UPR response involved reactive oxygen species. Furthermore, treatment of Tat also resulted in mitochondrial dysfunction, evidenced by decrease in Bcl2/Bax ratio, dysfunction of mitochondrial membrane potential, and release of cytochrome c, all of which could be partially reversed by the ER stress inhibitor. The current study demonstrates that exposure of HBMECs to Tat induces multiple stress responses, including ER stress and mitochondrial dysfunction which in turn lead to apoptosis.
Collapse
|
16
|
Lack of interleukin-10-mediated anti-inflammatory signals and upregulated interferon gamma production are linked to increased intestinal epithelial cell apoptosis in pathogenic simian immunodeficiency virus infection. J Virol 2014; 88:13015-28. [PMID: 25165117 DOI: 10.1128/jvi.01757-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Interleukin-10 (IL-10) is an immunomodulatory cytokine that is important for maintenance of epithelial cell (EC) survival and anti-inflammatory responses (AIR). The majority of HIV infections occur through the mucosal route despite mucosal epithelium acting as a barrier to human immunodeficiency virus (HIV). Therefore, understanding the role of IL-10 in maintenance of intestinal homeostasis during HIV infection is of interest for better characterization of the pathogenesis of HIV-mediated enteropathy. We demonstrated here changes in mucosal IL-10 signaling during simian immunodeficiency virus (SIV) infection in rhesus macaques. Disruption of the epithelial barrier was manifested by EC apoptosis and loss of the tight-junction protein ZO-1. Multiple cell types, including a limited number of ECs, produced IL-10. SIV infection resulted in increased levels of IL-10; however, this was associated with increased production of mucosal gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α), suggesting that IL-10 was not able to regulate AIR. This observation was supported by the downregulation of STAT3, which is necessary to inhibit production of IFN-γ and TNF-α, and the upregulation of SOCS1 and SOCS3, which are important regulatory molecules in the IL-10-mediated AIR. We also observed internalization of the IL-10 receptor (IL-10R) in mucosal lymphocytes, which could limit cellular availability of IL-10 for signaling and contribute to the loss of a functional AIR. Collectively, these findings demonstrate that internalization of IL-10R with the resultant impact on IL-10 signaling and dysregulation of the IL-10-mediated AIR might play a crucial role in EC damage and subsequent SIV/HIV pathogenesis. IMPORTANCE Interleukin-10 (IL-10), an important immunomodulatory cytokine plays a key role to control inflammatory function and homeostasis of the gastrointestinal mucosal immune system. Despite recent advancements in the study of IL-10 and its role in HIV infection, the role of mucosal IL-10 in SIV/HIV infection in inducing enteropathy is not well understood. We demonstrated changes in mucosal IL-10 signaling during SIV infection in rhesus macaques. Disruption of the intestinal epithelial barrier was evident along with the increased levels of mucosal IL-10 production. Increased production of mucosal IFN-γ and TNF-α during SIV infection suggested that the increased level of mucosal IL-10 was not able to regulate anti-inflammatory responses. Our findings demonstrate that internalization of IL-10R with the resultant impact on IL-10 signaling and dysregulation of the IL-10-mediated anti-inflammatory responses might play a crucial role in epithelial cell damage and subsequent SIV/HIV pathogenesis.
Collapse
|
17
|
Mantegazza C, Maconi G, Giacomet V, Furfaro F, Mameli C, Bezzio C, Monteleone M, Ramponi G, Zuccotti GV. Gut and mesenteric lymph node involvement in pediatric patients infected with human immunodeficiency virus. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2014; 6:69-74. [PMID: 24855391 PMCID: PMC4020886 DOI: 10.2147/hiv.s60157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Background The gastrointestinal tract is a primary target for human immunodeficiency virus (HIV). HIV infection causes a depletion of CD4+ T-lymphocytes in gut-associated lymphoid tissue and affects gastrointestinal mucosal integrity and permeability. The gastrointestinal tract has also been suggested as the main reservoir of HIV despite highly active antiretroviral therapy (HAART). We performed a prospective case-control study to assess gut involvement in HIV-infected patients, either naïve or on HAART, using noninvasive methods such as bowel ultrasound and fecal calprotectin. Methods Thirty HIV-infected children and youth underwent the following tests: CD4+ T-cell count and HIV viral load, fecal calprotectin, and bowel ultrasound, with the latter evaluating bowel wall thickness and mesenteric lymph nodes. Fecal calprotectin and bowel ultrasound were also assessed in 30 healthy controls matched for age and sex. Fecal calprotectin was measured using a quantitative immunochromatographic point-of-care test, and concentrations ranging from 0 to 200 μg/g were considered to be normal reference values in children. Results Fecal calprotectin was normal in 29 HIV-infected patients and was not significantly different from controls (mean values 63.8±42.5 μg/g and 68.3±40.5 μg/g, respectively; P=0.419), and did not correlate with HIV viral load, CD4+ T-cell absolute count and percentage, or HAART treatment. No significant changes were found on bowel ultrasound except for enlarged mesenteric lymph nodes, which were observed in seven HIV-infected patients (23.3%) and two controls (6.6%). This finding was significantly correlated with high HIV viral load (P=0.001) and low CD4+ T-cell percentage (P=0.004). Conclusion HIV-infected children did not have significant biochemical or ultrasonographic signs of bowel inflammation. A few patients showed enlarged mesenteric lymph nodes, which correlated with uncontrolled HIV infection.
Collapse
Affiliation(s)
| | - Giovanni Maconi
- Gastroenterology Unit, L Sacco University Hospital, Milan, Italy
| | - Vania Giacomet
- Department of Paediatrics, L Sacco University Hospital, Milan, Italy
| | - Federica Furfaro
- Gastroenterology Unit, L Sacco University Hospital, Milan, Italy
| | - Chiara Mameli
- Department of Paediatrics, L Sacco University Hospital, Milan, Italy
| | - Cristina Bezzio
- Gastroenterology Unit, L Sacco University Hospital, Milan, Italy
| | | | - Giulia Ramponi
- Department of Paediatrics, L Sacco University Hospital, Milan, Italy
| | | |
Collapse
|
18
|
Intestinal epithelial barrier disruption through altered mucosal microRNA expression in human immunodeficiency virus and simian immunodeficiency virus infections. J Virol 2014; 88:6268-80. [PMID: 24672033 DOI: 10.1128/jvi.00097-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Epithelial barrier dysfunction during human immunodeficiency virus (HIV) infection has largely been attributed to the rapid and severe depletion of CD4(+) T cells in the gastrointestinal (GI) tract. Although it is known that changes in mucosal gene expression contribute to intestinal enteropathy, the role of small noncoding RNAs, specifically microRNA (miRNA), has not been investigated. Using the simian immunodeficiency virus (SIV)-infected nonhuman primate model of HIV pathogenesis, we investigated the effect of viral infection on miRNA expression in intestinal mucosa. SIV infection led to a striking decrease in the expression of mucosal miRNA compared to that in uninfected controls. This decrease coincided with an increase in 5'-3'-exoribonuclease 2 protein and alterations in DICER1 and Argonaute 2 expression. Targets of depleted miRNA belonged to molecular pathways involved in epithelial proliferation, differentiation, and immune response. Decreased expression of several miRNA involved in maintaining epithelial homeostasis in the gut was localized to the proliferative crypt region of the intestinal epithelium. Our findings suggest that SIV-induced decreased expression of miRNA involved in epithelial homeostasis, disrupted expression of miRNA biogenesis machinery, and increased expression of XRN2 are involved in the development of epithelial barrier dysfunction and gastroenteropathy. IMPORTANCE MicroRNA (miRNA) regulate the development and function of intestinal epithelial cells, and many viruses disrupt normal host miRNA expression. In this study, we demonstrate that SIV and HIV disrupt expression of miRNA in the small intestine during infection. The depletion of several key miRNA is localized to the proliferative crypt region of the gut epithelium. These miRNA are known to control expression of genes involved in inflammation, cell death, and epithelial maturation. Our data indicate that this disruption might be caused by altered expression of miRNA biogenesis machinery during infection. These findings suggest that the disruption of miRNA in the small intestine likely plays a role in intestinal enteropathy during HIV infection.
Collapse
|
19
|
Sufiawati I, Tugizov SM. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread. PLoS One 2014; 9:e88803. [PMID: 24586397 PMCID: PMC3931628 DOI: 10.1371/journal.pone.0088803] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus (HSV) types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD). Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.
Collapse
Affiliation(s)
- Irna Sufiawati
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Sharof M. Tugizov
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
20
|
Sykes JE. Feline Immunodeficiency Virus Infection. CANINE AND FELINE INFECTIOUS DISEASES 2014. [PMCID: PMC7152317 DOI: 10.1016/b978-1-4377-0795-3.00021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Immunopathogenesis of simian immunodeficiency virus infection in nonhuman primates. Curr Opin HIV AIDS 2013; 8:273-9. [PMID: 23615117 DOI: 10.1097/coh.0b013e328361cf5b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Soon after the discovery of HIV-infected humans, rhesus macaques in a colony at the New England Primate Research Center showed similar signs of a progressive immune suppression. The discovery of the simian immunodeficiency virus (SIV)-associated disease opened the door to study an AIDS-like illness in nonhuman primates (NHP). Even after 3 decades, this animal model remains an invaluable tool to provide a greater insight into HIV immunopathogenesis. In this review, recent progress in deciphering pathways of immunopathogenesis in SIV-infected NHP is discussed. RECENT FINDINGS The immense diversity of mutations in SIV stocks prepared at different laboratories has recently been realized. The massive expansion of the enteric virome is a key finding in SIV-induced immunopathogenesis. Defining the function of host restriction factors, like the recently discovered SAMHD1, helps to evaluate the impact of the innate immune responses on virus replication. Utilization of pyrosequencing and defining molecular mechanisms of major histocompatibility complex (MHC) class I restriction helps to understand how the virus evades CD8 T-cell responses. The definition of MHC class I molecules in different NHP species provides new animal models to study SIV immunopathogenesis. T follicular helper cells have gained major interest in characterizing humoral immune responses in SIV infection and AIDS vaccine strategies. The ability of natural hosts to remain disease-free despite ongoing replication of SIV is continuing to puzzle the field. SUMMARY The HIV research field continues to realize the immense complexity of the host virus interaction. NHP present an invaluable tool to make progress towards an effective AIDS vaccine.
Collapse
|
22
|
Taura M, Kariya R, Kudo E, Goto H, Iwawaki T, Amano M, Suico MA, Kai H, Mitsuya H, Okada S. Comparative analysis of ER stress response into HIV protease inhibitors: lopinavir but not darunavir induces potent ER stress response via ROS/JNK pathway. Free Radic Biol Med 2013; 65:778-788. [PMID: 23973637 DOI: 10.1016/j.freeradbiomed.2013.08.161] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 07/11/2013] [Accepted: 08/09/2013] [Indexed: 12/22/2022]
Abstract
HIV protease inhibitor (PI)-induced ER stress has been associated with adverse effects. Although it is a serious clinical problem for HIV/AIDS patients, comparative analyses of ER stress induction by clinically used PIs have rarely been done. Especially, there is no report on the differential ER stress response between lopinavir (LPV) and darunavir (DRV), although these PIs are the most clinically used PIs. We show here that LPV induces the most potent CHOP expression, ER stress marker, among the 9 Food and Drug Administration (FDA)-approved PIs in human peripheral blood mononuclear cells, several human epithelial cells, and mouse embryonic fibroblasts. LPV induced the most potent ROS production and JNK activation in 9 PIs. A comparison among the most clinically used PIs, ritonavir (RTV), LPV, and DRV, revealed that LPV potently and RTV moderately but not DRV induced ER stress via ROS-dependent JNK activation rather than proteasome inhibition. Finally, we analyzed ER stress induction in tissues of mice intraperitoneally injected with RTV, LPV, and DRV. RTV and LPV but not DRV showed ER stress induction in several mice tissues. In conclusion, we first identify LPV as the most potent ER stress inducing PI among 9 FDA-approved PIs in human cells, and although clinical verification is necessary, we show here that DRV has the advantage of less ROS and ER stress induction potential compared with LPV in vitro and in vivo.
Collapse
Affiliation(s)
- Manabu Taura
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan
| | - Ryusho Kariya
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan
| | - Eriko Kudo
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan
| | - Hiroki Goto
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan
| | - Takao Iwawaki
- Iwawaki Laboratory, Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi 371-8511, Japan
| | - Masayuki Amano
- Department of Infectious Diseases and Hematology, Kumamoto University Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hiroaki Mitsuya
- Department of Infectious Diseases and Hematology, Kumamoto University Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan.
| |
Collapse
|
23
|
HIV-associated disruption of mucosal epithelium facilitates paracellular penetration by human papillomavirus. Virology 2013; 446:378-88. [PMID: 24074602 DOI: 10.1016/j.virol.2013.08.018] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 12/28/2022]
Abstract
The incidence of human papillomavirus (HPV)-associated epithelial lesions is substantially higher in human immunodeficiency virus (HIV)-infected individuals than in HIV-uninfected individuals. The molecular mechanisms underlying the increased risk of HPV infection in HIV-infected individuals are poorly understood. We found that HIV proteins tat and gp120 were expressed within the oral and anal mucosal epithelial microenvironment of HIV-infected individuals. Expression of HIV proteins in the mucosal epithelium was correlated with the disruption of epithelial tight junctions (TJ). Treatment of polarized oral, cervical and anal epithelial cells, and oral tissue explants with tat and gp120 led to disruption of epithelial TJ and increased HPV pseudovirion (PsV) paracellular penetration in to the epithelium. PsV entry was observed in the basal/parabasal cells, the cells in which the HPV life cycle is initiated. Our data suggest that HIV-associated TJ disruption of mucosal epithelia may potentiate HPV infection and subsequent development of HPV-associated neoplasia.
Collapse
|
24
|
Ferrucci A, Nonnemacher MR, Wigdahl B. Extracellular HIV-1 viral protein R affects astrocytic glyceraldehyde 3-phosphate dehydrogenase activity and neuronal survival. J Neurovirol 2013; 19:239-53. [PMID: 23728617 DOI: 10.1007/s13365-013-0170-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 01/01/2023]
Abstract
Extracellular human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is a pleiotropic protein accomplishing several functions within the viral life cycle. While Vpr has been described extensively as an intracellular protein, very little is known about its role as an extracellular protein. In fact, HIV-1 Vpr has been detected in the blood, serum, and cerebrospinal fluid of HIV-1-infected patients, with concentrations increasingly higher in late-stage disease. To determine the role exogenous Vpr plays in HIV-associated central nervous system dysfunction, primary human fetal astrocytes were exposed to recombinant Vpr and a time- and dose-dependent decrease was demonstrated in two fundamental intracellular metabolites (adenosine-5'-triphosphate (ATP) and glutathione (GSH)). Additionally, exposure to exogenous Vpr led to increased caspase activity and secretion of proinflammatory cytokines IL-6 and IL-8 and chemoattractants, monocyte chemotactic protein-1, and migration inhibition factor. Extracellular Vpr also dampened the glycolytic pathway through impairment of glyceraldehyde 3-phosphate dehydrogenase activity, causing a decline in the levels of ATP. The reduction in intracellular ATP increased reactive oxygen species buildup, decreasing GSH concentrations, which affected several genes in the oxidative stress pathway. In addition, exposure of the SK-N-SH neuroblastoma cell line to conditioned medium from exogenous Vpr-treated astrocytes decreased synthesis of GSH, leading to their apoptosis. These observations point to a role that Vpr plays in altering astrocytic metabolism and indirectly affecting neuronal survival. We propose a model that may explain some of the neurological damage and therefore neurocognitive impairment observed during the course of HIV-1 disease.
Collapse
Affiliation(s)
- Adriano Ferrucci
- School of Biomedical Engineering, Science and Health Systems, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | |
Collapse
|
25
|
Kaser A, Adolph TE, Blumberg RS. The unfolded protein response and gastrointestinal disease. Semin Immunopathol 2013; 35:307-19. [PMID: 23588234 DOI: 10.1007/s00281-013-0377-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 03/19/2013] [Indexed: 12/22/2022]
Abstract
As the inner lining of the gastrointestinal tract, the intestinal epithelium serves an essential role in innate immune function at the interface between the host and microbiota. Given the unique environmental challenges and thus physiologic secretory functions of this surface, it is exquisitely sensitive to perturbations that affect its capacity to resolve endoplasmic reticulum (ER) stress. Genetic deletion of factors involved in the unfolded protein response (UPR), which functions in the resolution of ER stress that arises from misfolded proteins, result in spontaneous intestinal inflammation closely mimicking human inflammatory bowel disease (IBD). This is demonstrated by observations wherein deletion of genes such as Xbp1 and Agr2 profoundly affects the intestinal epithelium and results in spontaneous intestinal inflammation. Moreover, both genes, along with others (e.g., ORDML3) represent genetic risk factors for human IBD, both Crohn's disease and ulcerative colitis. Here, we review the current mechanistic understanding for how unresolved ER stress can lead to intestinal inflammation and highlight the findings that implicate ER stress as a genetically affected biological pathway in IBD. We further discuss environmental and microbial factors that might impact on the epithelium's capacity to resolve ER stress and which may constitute exogenous factors that may precipitate disease in genetically susceptible individuals.
Collapse
Affiliation(s)
- Arthur Kaser
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | | | |
Collapse
|
26
|
Maingat FG, Polyak MJ, Paul AM, Vivithanaporn P, Noorbakhsh F, Ahboucha S, Baker GB, Pearson K, Power C. Neurosteroid-mediated regulation of brain innate immunity in HIV/AIDS: DHEA-S suppresses neurovirulence. FASEB J 2012; 27:725-37. [PMID: 23150523 DOI: 10.1096/fj.12-215079] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neurosteroids are cholesterol-derived molecules synthesized within the brain, which exert trophic and protective actions. Infection by human and feline immunodeficiency viruses (HIV and FIV, respectively) causes neuroinflammation and neurodegeneration, leading to neurological deficits. Secretion of neuroinflammatory host and viral factors by glia and infiltrating leukocytes mediates the principal neuropathogenic mechanisms during lentivirus infections, although the effect of neurosteroids on these processes is unknown. We investigated the interactions between neurosteroid-mediated effects and lentivirus infection outcomes. Analyses of HIV-infected (HIV(+)) and uninfected human brains disclosed a reduction in neurosteroid synthesis enzyme expression. Human neurons exposed to supernatants from HIV(+) macrophages exhibited suppressed enzyme expression without reduced cellular viability. HIV(+) human macrophages treated with sulfated dehydroepiandrosterone (DHEA-S) showed suppression of inflammatory gene (IL-1β, IL-6, TNF-α) expression. FIV-infected (FIV(+)) animals treated daily with 15 mg/kg body weight. DHEA-S treatment reduced inflammatory gene transcripts (IL-1β, TNF-α, CD3ε, GFAP) in brain compared to vehicle-(β-cyclodextrin)-treated FIV(+) animals similar to levels found in vehicle-treated FIV(-) animals. DHEA-S treatment also increased CD4(+) T-cell levels and prevented neurobehavioral deficits and neuronal loss among FIV(+) animals, compared to vehicle-treated FIV(+) animals. Reduced neuronal neurosteroid synthesis was evident in lentivirus infections, but treatment with DHEA-S limited neuroinflammation and prevented neurobehavioral deficits. Neurosteroid-derived therapies could be effective in the treatment of virus- or inflammation-mediated neurodegeneration.
Collapse
|
27
|
Caselli E, Benedetti S, Gentili V, Grigolato J, Di Luca D. Short communication: activating transcription factor 4 (ATF4) promotes HIV type 1 activation. AIDS Res Hum Retroviruses 2012; 28:907-12. [PMID: 22050711 DOI: 10.1089/aid.2011.0252] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Activating transcription factor 4 (ATF4) is a central factor in the cellular response to multiple stresses, including altered metabolic conditions, anoxia and hypoxia, and redox stress. ATF4 is triggered by endoplasmic reticulum stress and consequent unfolded protein response. This report identifies for the first time ATF4 as a transcription factor upregulated by HIV-1 infection. Upregulation of ATF4 enhances HIV replication, by synergistic interactions with HIV Tat. Moreover, in specific cell lines ATF4 has a direct transactivating potential on the LTR, even in the absence of Tat. We also provide evidence that expression of ATF4 induces HIV reactivation in chronically infected cell lines. These results show for the first time that ATF4 induction might have an important role in HIV replication, and suggest that ATF4 might represent a convergent signaling molecule for different stressors important in regulating the HIV-1 cycle.
Collapse
Affiliation(s)
- Elisabetta Caselli
- Section of Microbiology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Sabrina Benedetti
- Section of Microbiology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Valentina Gentili
- Section of Microbiology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Jessica Grigolato
- Section of Microbiology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| | - Dario Di Luca
- Section of Microbiology, Department of Experimental and Diagnostic Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
28
|
Martinon F. The endoplasmic reticulum: a sensor of cellular stress that modulates immune responses. Microbes Infect 2012; 14:1293-300. [PMID: 22800981 PMCID: PMC7110899 DOI: 10.1016/j.micinf.2012.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 12/25/2022]
Abstract
Many inflammatory and infectious diseases are characterized by the activation of signaling pathways steaming from the endoplasmic reticulum (ER). These pathways, primarily associated with loss of ER homeostasis, are emerging as key regulators of inflammation and infection. Recent advances shed light on the mechanisms linking ER-stress and immune responses.
Collapse
Affiliation(s)
- Fabio Martinon
- Dept. of Biochemistry, University of Lausanne, 155 Ch. Des Boveresses, Epalinges 1066, Switzerland.
| |
Collapse
|
29
|
MacArthur RD, DuPont HL. Etiology and pharmacologic management of noninfectious diarrhea in HIV-infected individuals in the highly active antiretroviral therapy era. Clin Infect Dis 2012; 55:860-7. [PMID: 22700829 DOI: 10.1093/cid/cis544] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Diarrhea remains a common problem for patients with human immunodeficiency virus (HIV) infection despite highly active antiretroviral therapies (HAART) and can negatively affect patient quality of life and lead to discontinuation or switching of HAART regimens. In the era of HAART, diarrhea from opportunistic infections is uncommon, and HIV-associated diarrhea often has noninfectious causes, including HAART-related adverse events and HIV enteropathy. Diarrhea associated with HAART is typically caused by protease inhibitors (eg, ritonavir), which may damage the intestinal epithelial barrier (leaky-flux diarrhea) and/or alter chloride ion secretion (secretory diarrhea). HIV enteropathy may result from direct effects of HIV on gastrointestinal tract cells and on the gastrointestinal immune system and gut-associated lymphoid tissue, which may be active sites of HIV infection and ongoing inflammation and mucosal damage. New therapies targeting the pathogenic mechanisms of noninfectious diarrheas are needed.
Collapse
Affiliation(s)
- Rodger D MacArthur
- Division of Infectious Diseases, Wayne State University, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
30
|
Murine cytomegalovirus targets transcription factor ATF4 to exploit the unfolded-protein response. J Virol 2012; 86:6712-23. [PMID: 22496230 DOI: 10.1128/jvi.00200-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The unfolded-protein response (UPR), activated by sensor molecules PERK, ATF6, and IRE1 to resolve endoplasmic reticulum (ER) stress, has emerged as a key target for host cells and viruses to control the infection outcomes. The UPR regulates ER protein folding, controls cell fate upon ER stress, and plays an important role in innate immunity. We and others have shown that human cytomegalovirus (HCMV) modulates the UPR. We show here that murine CMV (MCMV), the widely used CMV model for small animal infection, regulated the UPR in a manner similar to that of HCMV. This modulatory ability was triggered by virion entry and enhanced by viral immediate-early and early gene expression. Thus, while vulnerable at early times, MCMV became resistant to exogenous ER stress at late times of infection. MCMV activated the PERK-ATF4 pathway but only induced a subset of representative ATF4 targets at levels somewhat lower than those by the ER stress inducer tunicamycin. Moreover, MCMV induced ER chaperone Bip but actively blocked IRE1-mediated Xbp1(s) protein accumulation. ATF4 depletion severely attenuated viral growth at a low multiplicity of infection by modestly reducing viral DNA synthesis and more pronouncedly inhibiting late gene transcription. Collectively, we show that the UPR is a conserved target of CMVs and identify ATF4, a key UPR component, as a factor critical for MCMV infection. This work sets the stage for using the MCMV model to explore the role of this stress response in CMV biology, particularly during infection of the host, which is difficult to study in HCMV.
Collapse
|
31
|
Escobar J, Pereda J, López-Rodas G, Sastre J. Redox signaling and histone acetylation in acute pancreatitis. Free Radic Biol Med 2012; 52:819-37. [PMID: 22178977 DOI: 10.1016/j.freeradbiomed.2011.11.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022]
Abstract
Histone acetylation via CBP/p300 coordinates the expression of proinflammatory cytokines in the activation phase of inflammation, particularly through mitogen-activated protein kinases (MAPKs), nuclear factor-κB (NF-κB), and signal transducers and activators of transcription (STAT) pathways. In contrast, histone deacetylases (HDACs) and protein phosphatases are mainly involved in the attenuation phase of inflammation. The role of reactive oxygen species (ROS) in the inflammatory cascade is much more important than expected. Mitochondrial ROS act as signal-transducing molecules that trigger proinflammatory cytokine production via inflammasome-independent and inflammasome-dependent pathways. The major source of ROS in acute inflammation seems to be NADPH oxidases, whereas NF-κB, protein phosphatases, and HDACs are the major targets of ROS and redox signaling in this process. There is a cross-talk between oxidative stress and proinflammatory cytokines through serine/threonine protein phosphatases, tyrosine protein phosphatases, and MAPKs that greatly contributes to amplification of the uncontrolled inflammatory cascade and tissue injury in acute pancreatitis. Chromatin remodeling during induction of proinflammatory genes would depend primarily on phosphorylation of transcription factors and their binding to gene promoters together with recruitment of histone acetyltransferases. PP2A should be considered a key modulator of the inflammatory cascade in acute pancreatitis through the ERK/NF-κB pathway and histone acetylation.
Collapse
Affiliation(s)
- Javier Escobar
- Department of Physiology, School of Pharmacy, University of Valencia, Burjasot, Valencia, Spain
| | | | | | | |
Collapse
|
32
|
Pan D, Das A, Liu D, Veazey RS, Pahar B. Isolation and characterization of intestinal epithelial cells from normal and SIV-infected rhesus macaques. PLoS One 2012; 7:e30247. [PMID: 22291924 PMCID: PMC3266894 DOI: 10.1371/journal.pone.0030247] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/15/2011] [Indexed: 01/14/2023] Open
Abstract
Impairment of intestinal epithelial barriers contributes to the progression of HIV/SIV infection and leads to generalized HIV-induced immune-cell activation during chronic infection. Rhesus macaques are the major animal model for studying HIV pathogenesis. However, detailed characterization of isolated rhesus epithelial cells (ECs) from intestinal tissues is not well defined. It is also not well documented whether isolated ECs had any other cell contaminants from intestinal tissues during the time of processing that might hamper interpretation of EC preparations or cultures. In this study, we identify and characterize ECs based on flow cytometry and immunohistochemistry methods using various enzymatic and mechanical isolation techniques to enrich ECs from intestinal tissues. This study shows that normal healthy ECs differentially express HLA-DR, CD23, CD27, CD90, CD95 and IL-10R markers. Early apoptosis and upregulation of ICAM-1 and HLA-DR in intestinal ECs are thought to be the key features in SIV mediated enteropathy. The data suggest that intestinal ECs might be playing an important role in mucosal immune responses by regulating the expression of different important regulatory and adhesion molecules and their function.
Collapse
Affiliation(s)
- Diganta Pan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - David Liu
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
| | - Ronald S. Veazey
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, Louisiana, United States of America
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
33
|
Cellular phenotype impacts human immunodeficiency virus type 1 viral protein R subcellular localization. Virol J 2011; 8:397. [PMID: 21831263 PMCID: PMC3168423 DOI: 10.1186/1743-422x-8-397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 08/10/2011] [Indexed: 01/01/2023] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) is a virion-associated regulatory protein that functions at several points within the viral life cycle and has been shown to accumulate primarily in the nucleus and at the nuclear envelope. However, most studies have investigated Vpr localization employing cell types irrelevant to HIV-1 pathogenesis. To gain a better understanding of how cellular phenotype might impact HIV-1 Vpr intracellular localization, Vpr localization was examined in several cell lines representing major cellular targets for HIV-1 infection within the peripheral blood, bone marrow, and central nervous system (CNS). Results Utilizing a green fluorescent protein-tagged Vpr, we detected Vpr mainly in foci inside the nucleus, at the nuclear envelope, and around the nucleoli, with dispersed accumulation in the cytoplasm of human endothelial kidney 293T cells. No differences were observed in Vpr localization pattern with respect to either the location of the tag (N- or C-terminus) or the presence of other viral proteins. Subsequently, the Vpr localization pattern was explored in two primary HIV-1 target cells within the peripheral blood: the CD4+ T lymphocyte (represented by the Jurkat CD4+ T-cell line) and the monocyte-macrophage (represented by the U-937 cell line). Vpr was found primarily in speckles within the cytoplasm of the Jurkat T cells, whereas it accumulated predominantly intranuclearly in U-937 monocytic cells. These patterns differ from that observed in a bone marrow progenitor cell line (TF-1), wherein Vpr localized mainly at the nuclear envelope with some intranuclear punctuate staining. Within the CNS, we examined two astroglioma cell lines and found that Vpr displayed a perinuclear and cytoplasmic distribution. Conclusions The results suggest that the pattern of Vpr localization depends on cellular phenotype, probably owing to interactions between Vpr and cell type-specific host factors. These interactions, in turn, are likely coupled to specific roles that Vpr plays in each cell type within the context of the viral life cycle. Phenotype-specific Vpr localization patterns might also provide an explanation with respect to Vpr secretion or release from HIV-1-infected cells within the peripheral blood and CNS.
Collapse
|