1
|
Newell S, van der Watt PJ, Leaner VD. Therapeutic targeting of nuclear export and import receptors in cancer and their potential in combination chemotherapy. IUBMB Life 2024; 76:4-25. [PMID: 37623925 PMCID: PMC10952567 DOI: 10.1002/iub.2773] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/03/2023] [Indexed: 08/26/2023]
Abstract
Systemic modalities are crucial in the management of disseminated malignancies and liquid tumours. However, patient responses and tolerability to treatment are generally poor and those that enter remission often return with refractory disease. Combination therapies provide a methodology to overcome chemoresistance mechanisms and address dose-limiting toxicities. A deeper understanding of tumorigenic processes at the molecular level has brought a targeted therapy approach to the forefront of cancer research, and novel cancer biomarkers are being identified at a rapid rate, with some showing potential therapeutic benefits. The Karyopherin superfamily of proteins is soluble receptors that mediate nucleocytoplasmic shuttling of proteins and RNAs, and recently, nuclear transport receptors have been recognized as novel anticancer targets. Inhibitors against nuclear export have been approved for clinical use against certain cancer types, whereas inhibitors against nuclear import are in preclinical stages of investigation. Mechanistically, targeting nucleocytoplasmic shuttling has shown to abrogate oncogenic signalling and restore tumour suppressor functions through nuclear sequestration of relevant proteins and mRNAs. Hence, nuclear transport inhibitors display broad spectrum anticancer activity and harbour potential to engage in synergistic interactions with a wide array of cytotoxic agents and other targeted agents. This review is focussed on the most researched nuclear transport receptors in the context of cancer, XPO1 and KPNB1, and highlights how inhibitors targeting these receptors can enhance the therapeutic efficacy of standard of care therapies and novel targeted agents in a combination therapy approach. Furthermore, an updated review on the therapeutic targeting of lesser characterized karyopherin proteins is provided and resistance to clinically approved nuclear export inhibitors is discussed.
Collapse
Affiliation(s)
- Stella Newell
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Pauline J. van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- Institute of Infectious Diseases and Molecular Medicine, University of Cape TownCape TownSouth Africa
| | - Virna D. Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
- UCT/SAMRC Gynaecological Cancer Research CentreUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
2
|
Li Y, Bertozzi A, Mann MRW, Kühn B. Interdependent changes of nuclear lamins, nuclear pore complexes, and ploidy regulate cellular regeneration and stress response in the heart. Nucleus 2023; 14:2246310. [PMID: 37606283 PMCID: PMC10446781 DOI: 10.1080/19491034.2023.2246310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
In adult mammals, many heart muscle cells (cardiomyocytes) are polyploid, do not proliferate (post-mitotic), and, consequently, cannot contribute to heart regeneration. In contrast, fetal and neonatal heart muscle cells are diploid, proliferate, and contribute to heart regeneration. We have identified interdependent changes of the nuclear lamina, nuclear pore complexes, and DNA-content (ploidy) in heart muscle cell maturation. These results offer new perspectives on how cells alter their nuclear transport and, with that, their gene regulation in response to extracellular signals. We present how changes of the nuclear lamina alter nuclear pore complexes in heart muscle cells. The consequences of these changes for cellular regeneration and stress response in the heart are discussed.
Collapse
Affiliation(s)
- Yao Li
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alberto Bertozzi
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mellissa RW Mann
- Department of Obstetrics, Gynaecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Bernhard Kühn
- Division of Pediatric Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics (I-HRT), UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
van der Watt PJ, Okpara MO, Wishart A, Parker MI, Soares NC, Blackburn JM, Leaner VD. Nuclear transport proteins are secreted by cancer cells and identified as potential novel cancer biomarkers. Int J Cancer 2021; 150:347-361. [PMID: 34591985 DOI: 10.1002/ijc.33832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022]
Abstract
Previous studies have identified increased expression of members of the nuclear transport protein family in cancer cells. Recently, certain nuclear transport proteins have been reported to be secreted by cells and found in the serum. The aims of our study were to investigate the levels of multiple nuclear transport proteins secreted from cancer cells, and to determine their potential as diagnostic markers for cervical and oesophageal cancer. Mass spectrometry identified 10 nuclear transport proteins in the secretome and exosomes of cultured cancer cells, and Western blot analysis confirmed increased secreted levels in cancer cells compared to normal. To investigate their presence in patient serum, enzyme-linked immunosorbent assays were performed and revealed significantly increased levels of KPNβ1, CRM1, CAS, IPO5 and TNPO1 in cervical and oesophageal cancer patient serum compared to non-cancer controls. Significantly elevated KPNα2 and RAN levels were also identified in oesophageal cancer serum samples. Logistics regression analyses revealed IPO5 and TNPO1 to be the best performing individual candidate biomarkers in discriminating between cancer cases and controls. The combination of KPNβ1, CRM1, KPNα2, CAS, RAN, IPO5 and TNPO1 as a panel of biomarkers had the highest diagnostic capacity with an area under the curve of 0.944 and 0.963, for cervical cancer and oesophageal cancer, and sensitivity of 92.5% at 86.8% specificity and 95.3% sensitivity at 87.5% specificity, respectively. These results suggest that nuclear transport proteins have potential as diagnostic biomarkers for cervical and oesophageal cancers, with a combination of protein family members being the best predictor.
Collapse
Affiliation(s)
- Pauline J van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michael O Okpara
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrew Wishart
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - M Iqbal Parker
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nelson C Soares
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonathan M Blackburn
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,SAMRC Gynaecology Cancer Research Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Ajayi-Smith A, van der Watt P, Mkwanazi N, Carden S, Trent JO, Leaner VD. Novel small molecule inhibitor of Kpnβ1 induces cell cycle arrest and apoptosis in cancer cells. Exp Cell Res 2021; 404:112637. [PMID: 34019908 DOI: 10.1016/j.yexcr.2021.112637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/02/2021] [Accepted: 05/02/2021] [Indexed: 12/11/2022]
Abstract
Karyopherin beta 1 (Kpnβ1) is a major nuclear import receptor that mediates the import of cellular cargoes into the nucleus. Recently it has been shown that Kpnβ1 is highly expressed in several cancers, and its inhibition by siRNA induces apoptotic cancer cell death, while having little effect on non-cancer cells. This study investigated the effect of a novel small molecule, Inhibitor of Nuclear Import-60 (INI-60), on cancer cell biology, as well as nuclear import activities associated with Kpnβ1, and cancer progression in vivo using cervical and oesophageal cancer cell lines. INI-60 treatment resulted in the inhibition of cancer cell proliferation, colony formation, migration and invasion, and induced a G1/S cell cycle arrest, followed by cancer cell death via apoptosis. Non-cancer cells were minimally affected by INI-60 at concentrations that inhibited cancer cells. INI-60 treatment altered the localisation of Kpnβ1 and its cargoes, NFκB/p65, NFAT and AP-1, and the overexpression of Kpnβ1 reduced INI-60 cytotoxicity. INI-60 also inhibited KYSE 30 oesophageal cancer cell line growth in vivo. Taken together, these results show that INI-60 inhibits the nuclear import of Kpnβ1 cargoes and interferes with cancer cell biology. INI-60 presents as a potential therapeutic approach for cancers of different tissue origins and warrants further investigation as a novel anti-cancer agent.
Collapse
Affiliation(s)
- Aderonke Ajayi-Smith
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Pauline van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Nonkululeko Mkwanazi
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - Sarah Carden
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa
| | - John O Trent
- Department of Medicine, J.G. Brown Cancer Center, University of Louisville, Kentucky, USA
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, #SAMRC Gynaecology Cancer Research Centre, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa.
| |
Collapse
|
5
|
Özçelik S, Pratx G. Nuclear-targeted gold nanoparticles enhance cancer cell radiosensitization. NANOTECHNOLOGY 2020; 31:415102. [PMID: 32585647 DOI: 10.1088/1361-6528/aba02b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Radiation therapy aims to kill or inhibit proliferation of cancer cells while sparing normal cells. To enhance radiosensitization, we developed 40 nm-sized gold nanoparticles targeting the nucleus. We exploited a strategy that combined RGD and NLS peptides respectively targeting cancer cell and the nucleus to initiate cell-death activated by x-ray irradiation. We observed that the modified gold nanoparticles were either translocated in the nuclei or accumulated in the vicinity of the nuclei. We demonstrated that x-ray irradiation at 225 kVp energy reduced cell proliferation by 3.8-fold when the nuclear targeted gold nanoparticles were used. We determined that the radiation dose to have a 10% survival fraction was reduced from 11.0 Gy to 7.1 Gy when 10.0 µg ml-1 of the NLS/RGD/PEG-AuNP was incubated with A549 cancer cells. We conclude that the peptide-modified gold nanoparticles targeting the nucleus significantly enhance radiosensitization.
Collapse
Affiliation(s)
- Serdar Özçelik
- İzmir Institute of Technology, Department of Chemistry, Gülbahçe-Urla 35430, İzmir, Turkey. Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, United States of America
| | | |
Collapse
|
6
|
XPO1E571K Mutation Modifies Exportin 1 Localisation and Interactome in B-cell Lymphoma. Cancers (Basel) 2020; 12:cancers12102829. [PMID: 33007990 PMCID: PMC7600770 DOI: 10.3390/cancers12102829] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Almost 25% of patients with either primary mediastinal B-cell lymphoma (PMBL) or classical Hodgkin lymphoma (cHL) possess a recurrent mutation of the XPO1 gene encoding the major nuclear export protein. The aim of our study was to assess the molecular function of the mutant XPO1 protein. Using several cell models (including CRISPR–Cas9 edited cells) and high throughput techniques, we determined that the export capacity of the mutant XPO1 was not altered. However, mutant XPO1 accumulated in the cytoplasm due to its binding to importin β1 (or IPO1). The targeting of XPO1 is largely efficient for fighting haemopathies. The inhibition of IPO1 could open new therapeutic perspectives for B-cell lymphomas. Abstract The XPO1 gene encodes exportin 1 (XPO1) that controls the nuclear export of cargo proteins and RNAs. Almost 25% of primary mediastinal B-cell lymphoma (PMBL) and classical Hodgkin lymphoma (cHL) cases harboured a recurrent XPO1 point mutation (NM_003400, chr2:g61718472C>T) resulting in the E571K substitution within the hydrophobic groove of the protein, the site of cargo binding. We investigated the impact of the XPO1E571K mutation using PMBL/cHL cells having various XPO1 statuses and CRISPR–Cas9-edited cells in which the E571K mutation was either introduced or knocked-out. We first confirmed that the mutation was present in both XPO1 mRNA and protein. We observed that the mutation did not modify the export capacity but rather the subcellular localisation of XPO1 itself. In particular, mutant XPO1 bound to importin β1 modified the nuclear export/import dynamics of relevant cargoes.
Collapse
|
7
|
Sakuma S, Raices M, Borlido J, Guglielmi V, Zhu EYS, D'Angelo MA. Inhibition of Nuclear Pore Complex Formation Selectively Induces Cancer Cell Death. Cancer Discov 2020; 11:176-193. [PMID: 32988961 DOI: 10.1158/2159-8290.cd-20-0581] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/03/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Nuclear pore complexes (NPC) are the central mediators of nucleocytoplasmic transport. Increasing evidence shows that many cancer cells have increased numbers of NPCs and become addicted to the nuclear transport machinery. How reducing NPC numbers affects the physiology of normal and cancer cells and whether it could be exploited for cancer therapies has not been investigated. We report that inhibition of NPC formation, a process mostly restricted to proliferating cells, causes selective cancer cell death, prevents tumor growth, and induces tumor regression. Although cancer cells die in response to NPC assembly inhibition, normal cells undergo a reversible cell-cycle arrest that allows them to survive. Mechanistically, reducing NPC numbers results in multiple alterations contributing to cancer cell death, including abnormalities in nuclear transport, catastrophic alterations in gene expression, and the selective accumulation of DNA damage. Our findings uncover the NPC formation process as a novel targetable pathway in cancer cells. SIGNIFICANCE: Reducing NPC numbers in cancer cells induces death, prevents tumor growth, and results in tumor regression. Conversely, normal cells undergo a reversible cell-cycle arrest in response to inhibition of NPC assembly. These findings expose the potential of targeting NPC formation in cancer.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Stephen Sakuma
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California. NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Marcela Raices
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California. NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Joana Borlido
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California. NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Valeria Guglielmi
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California. NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Ethan Y S Zhu
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California. NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Maximiliano A D'Angelo
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California. NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
8
|
Ishikawa C, Senba M, Mori N. Importin β1 regulates cell growth and survival during adult T cell leukemia/lymphoma therapy. Invest New Drugs 2020; 39:317-329. [PMID: 32959166 DOI: 10.1007/s10637-020-01007-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
There is no cure for adult T cell leukemia/lymphoma (ATLL) associated with human T cell leukemia virus type 1 (HTLV-1), and novel targeted strategies are needed. NF-κB and AP-1 are crucial for ATLL, and both are transported to the nucleus by an importin (IPO)α/β heterodimeric complex to activate target genes. In this study, we aimed to elucidate the function of IPOβ1 in ATLL. The expression of IPOβ1 was analyzed by western blotting and RT-PCR. Cell growth, viability, cell cycle, apoptosis and intracellular signaling cascades were examined by the water-soluble tetrazolium-8 assay, flow cytometry and western blotting. Xenograft tumors in severe combined immune deficient mice were used to evaluate the growth of ATLL cells in vivo. IPOβ1 was upregulated in HTLV-1-infected T cell lines. Further, IPOβ1 knockdown or the IPOβ1 inhibitor importazole and the IPOα/β1 inhibitor ivermectin reduced HTLV-1-infected T cell proliferation. However, the effect of inhibitors on uninfected T cells was less pronounced. Further, in HTLV-1-infected T cell lines, inhibitors suppressed NF-κB and AP-1 nuclear transport and DNA binding, induced apoptosis and poly (ADP-ribose) polymerase cleavage, and activated caspase-3, caspase-8 and caspase-9. Inhibitors also mediated G1 cell cycle arrest. Moreover, the expression of NF-κB- and AP-1-target proteins involved in cell cycle and apoptosis was reduced. In vivo, the IPOα/β1 inhibitor ivermectin decreased ATLL tumor burden without side effects. IPOβ1 mediated NF-κB and AP-1 translocation into ATLL cell nuclei, thereby regulating cell growth and survival, which provides new insights for targeted ATLL therapies. Thus, ivermectin, an anti-strongyloidiasis medication, could be a potent anti-ATLL agent.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.,Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Masachika Senba
- Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa, 903-0215, Japan.
| |
Collapse
|
9
|
Barrabés S, Ng-Choi I, Martínez MÁ, Manzano BR, Jalón FA, Espino G, Feliu L, Planas M, de Llorens R, Massaguer A. A nucleus-directed bombesin derivative for targeted delivery of metallodrugs to cancer cells. J Inorg Biochem 2020; 212:111214. [PMID: 32919249 DOI: 10.1016/j.jinorgbio.2020.111214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 11/19/2022]
Abstract
We have synthesized a set of bombesin derivatives with the aim of exploring their tumor targeting properties to deliver metal-based chemotherapeutics into cancer cells. Peptide QRLGNQWAVGHLL-NH2 (BN3) was selected based on its high internalization in gastrin-releasing peptide receptor (GRPR)-overexpressing PC-3 cells. Three metallopeptides were prepared by incorporating the terpyridine Pt(II) complex [PtCl(cptpy)]Cl (1) (cptpy = 4'-(4-carboxyphenyl)-2,2':6,2″-terpyridine) at the N-terminus of BN3 or at the NƐ- or Nα-amino group of an additional Lys residue (1-BN3, Lys-1-BN3 and 1-Lys-BN3, respectively). 1-Lys-BN3 displayed the best cytotoxic activity (IC50: 19.2 ± 1.7 μM) and similar ability to intercalate into DNA than complex 1. Moreover, the polypyridine Ru(II) complex [Ru(bpy)2)(cmbpy)](PF6)2 (2) (bpy = 2,2'-bipyridine; cmbpy = 4-methyl-2,2'-bipyridine-4'-carboxylic acid), with proven activity as photosensitizer, was coupled to BN3 leading to metallopeptide 2-Lys-BN3. Upon photoactivation, 2-Lys-BN3 displayed 2.5-fold higher cytotoxicity against PC-3 cells (IC50: 7.6 ± 1.0 μM) than complex 2. To enhance the accumulation of the drugs into the cell nucleus, the nuclear localization signal (NLS) PKKKRKV was incorporated at the N-terminus of BN3. NLS-BN3 displayed higher cellular internalization along with nuclear biodistribution. Accordingly, metallopeptides 1-NLS-BN3 and 2-NLS-BN3 showed increased cytotoxicity (IC50: 12.0 ± 1.1 μM and 2.3 ± 1.1 μM). Interestingly, the phototoxic index of 2-NLS-BN3 was 8-fold higher than that of complex 2. Next, the selectivity towards cancer cells was explored using 1BR3.G fibroblasts. Higher selectivity indexes were obtained for 1-NLS-BN3 and 2-NLS-BN3 than for the unconjugated complexes. These results prove NLS-BN3 effective for targeted delivery of metallodrugs to GRPR-overexpressing cells and for enhancing the cytotoxic efficacy of metal-based photosensitizers.
Collapse
Affiliation(s)
- Sílvia Barrabés
- Departament de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Iteng Ng-Choi
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - María Ángeles Martínez
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - Blanca R Manzano
- Universidad de Castilla-La Mancha, Facultad de Ciencias y Tecnologías Químicas-IRICA, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Félix A Jalón
- Universidad de Castilla-La Mancha, Facultad de Ciencias y Tecnologías Químicas-IRICA, Avda. Camilo J. Cela 10, 13071 Ciudad Real, Spain
| | - Gustavo Espino
- Departamento de Química, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Lidia Feliu
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - Marta Planas
- Departament de Química, Universitat de Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| | - Rafael de Llorens
- Departament de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain
| | - Anna Massaguer
- Departament de Biologia, Universitat de Girona, Maria Aurèlia Capmany 40, 17003 Girona, Spain.
| |
Collapse
|
10
|
Shi C, Sun L, Liu S, Zhang E, Song Y. Overexpression of Karyopherin Subunit alpha 2 (KPNA2) Predicts Unfavorable Prognosis and Promotes Bladder Cancer Tumorigenicity via the P53 Pathway. Med Sci Monit 2020; 26:e921087. [PMID: 32147666 PMCID: PMC7081662 DOI: 10.12659/msm.921087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background We sought to investigate the expression of KPNA2 in bladder cancer (BC) and its relationship with prognosis, and to analyze the potential mechanism of KPNA2 in promoting BC progression. Material/Methods The RNA-seq data on BC from The Cancer Genome Atlas (TCGA) database were imported into R statistical software for differential analysis. The clinical data for patients with BC were screened and analyzed with R software. The survival curve was drawn with the Kaplan-Meier Plotter. The expression of KPNA2 in 4 human BC cell lines and a human bladder epithelial cell line was detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB). The proliferation of BC cells was detected with Cell Counting Kit-8 (CCK8), detection of apoptosis, and flow cytometry, and the migration and invasion of BC cells were detected through Transwell assays. WB was used to detect proteins involved in the P53 pathway. Results The expression of KPNA2 was higher in BC. The difference in KPNA2 expression was associated with many clinicopathological factors, and high expression of KPNA2 was associated with shorter survival time. After KPNA2 knockout, the proliferation, migration, and invasion ability decreased significantly, the cell cycle was clearly arrested in the G0/G1 phase, and the number of apoptotic cells increased. Moreover, CyclinD1, BCL2, and pro-caspase3 decreased significantly, whereas P53, P21, BAX, and cleaved-caspase3 increased significantly. The results in the overexpression group were the opposite of results in the knockdown group. Conclusions KPNA2 is an oncogenic factor that facilitates BC tumorigenicity through the P53 pathway.
Collapse
Affiliation(s)
- Changlong Shi
- Department of Second Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Li Sun
- Department of Breast Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Shaozhuang Liu
- Department of Second Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Enchong Zhang
- Department of Second Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yongsheng Song
- Department of Second Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
11
|
Özdaş S, Özdaş T. Crm1 knockdown by specific small interfering RNA reduces cell proliferation and induces apoptosis in head and neck cancer cell lines. Turk J Biol 2019; 42:132-143. [PMID: 30814875 DOI: 10.3906/biy-1711-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common and most aggressive type of head and neck cancer. Current approaches for the treatment of HNSCC are not sufficient to increase the patient survival or to reduce the high recurrence rate. Consequently, there is a need to explore the molecular characteristics of this cancer in order to discover potential therapeutic target molecules. The overexpression of chromosome region maintenance 1 (Crm1), responsible for the transport of different classes of macromolecules from the nuclear membrane to the cytoplasm, in various cancer cells has made it an attractive target molecule in cancer research. It has been reported that transcription factors, which are the target cargo proteins of Crm1, have critical roles in regulating intracellular processes via their expression levels and functions, which in turn are regulated by the cell cycle and signaling proteins. Previous findings show that head and neck cancer cells overexpress Crm1 and that these cells become highly dependent on Crm1 function. The results of this study show that after decreasing Crm1 expression levels in HNSCC cells through either treatment with specific Crm1 RNA interference (siRNA) or the selective Crm1 inhibitor leptomycin B (LMB), cell viability, proliferation, migration, and wound-healing abilities decreased, suppressing tumorigenic properties through the induction of apoptosis. Crm1 is a powerful diagnostic biomarker because of its central role in cancerogenesis, and it has a high potential for the development of targeted Crm1 molecules or synthetic agents, such as LMB, as well as for the improvement of the clinical features in head and neck cancer.
Collapse
Affiliation(s)
- Sibel Özdaş
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Adana Science and Technology University , Adana , Turkey
| | - Talih Özdaş
- Otolaryngology Clinic, Adana Numune Education and Research Hospital , Adana , Turkey
| |
Collapse
|
12
|
Oh JH, Lee JY, Yu S, Cho Y, Hur S, Nam KT, Kim MH. RAE1 mediated ZEB1 expression promotes epithelial-mesenchymal transition in breast cancer. Sci Rep 2019; 9:2977. [PMID: 30814639 PMCID: PMC6393568 DOI: 10.1038/s41598-019-39574-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Breast cancer metastasis accounts for most of the deaths from breast cancer. Since epithelial-mesenchymal transition (EMT) plays an important role in promoting metastasis of cancer, many mechanisms regarding EMT have been studied. We previously showed that Ribonucleic acid export 1 (RAE1) is dysregulated in breast cancer and its overexpression leads to aggressive breast cancer phenotypes by inducing EMT. Here, we evaluated the functional capacity of RAE1 in breast cancer metastasis by using a three-dimensional (3D) culture system and xenograft models. Furthermore, to investigate the mechanisms of RAE1-driven EMT, in vitro studies were carried out. The induction of EMT with RAE1-overexpression was confirmed under the 3D culture system and in vivo system. Importantly, RAE1 mediates upregulation of an EMT marker ZEB1, by binding to the promoter region of ZEB1. Knockdown of ZEB1 in RAE1-overexpressing cells suppressed invasive and migratory behaviors, accompanied by an increase in epithelial and a decrease in mesenchymal markers. Taken together, these data demonstrate that RAE1 contributes to breast cancer metastasis by regulating a key EMT-inducing factor ZEB1 expression, suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Ji Hoon Oh
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ji-Yeon Lee
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Sungsook Yu
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Yejin Cho
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Sumin Hur
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea.
| | - Myoung Hee Kim
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, 03722, Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Korea.
| |
Collapse
|
13
|
DeBono A, Thomas DR, Lundberg L, Pinkham C, Cao Y, Graham JD, Clarke CL, Wagstaff KM, Shechter S, Kehn-Hall K, Jans DA. Novel RU486 (mifepristone) analogues with increased activity against Venezuelan Equine Encephalitis Virus but reduced progesterone receptor antagonistic activity. Sci Rep 2019; 9:2634. [PMID: 30796232 PMCID: PMC6385310 DOI: 10.1038/s41598-019-38671-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
There are currently no therapeutics to treat infection with the alphavirus Venezuelan equine encephalitis virus (VEEV), which causes flu-like symptoms leading to neurological symptoms in up to 14% of cases. Large outbreaks of VEEV can result in 10,000 s of human cases and mass equine death. We previously showed that mifepristone (RU486) has anti-VEEV activity (EC50 = 20 μM) and only limited cytotoxicity (CC50 > 100 μM), but a limitation in its use is its abortifacient activity resulting from its ability to antagonize the progesterone receptor (PR). Here we generate a suite of new mifepristone analogues with enhanced antiviral properties, succeeding in achieving >11-fold improvement in anti-VEEV activity with no detectable increase in toxicity. Importantly, we were able to derive a lead compound with an EC50 of 7.2 µM and no detectable PR antagonism activity. Finally, based on our SAR analysis we propose avenues for the further development of these analogues as safe and effective anti-VEEV agents.
Collapse
Affiliation(s)
- Aaron DeBono
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - David R Thomas
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Ying Cao
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - J Dinny Graham
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Christine L Clarke
- Centre for Cancer Research, The Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Kylie M Wagstaff
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology School of Biomedical Sciences, Monash University, Melbourne, Australia
| | | | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - David A Jans
- Nuclear Signaling Laboratory, Department of Biochemistry and Molecular Biology School of Biomedical Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
14
|
Carden S, van der Watt P, Chi A, Ajayi-Smith A, Hadley K, Leaner VD. A tight balance of Karyopherin β1 expression is required in cervical cancer cells. BMC Cancer 2018; 18:1123. [PMID: 30445944 PMCID: PMC6240311 DOI: 10.1186/s12885-018-5044-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 11/05/2018] [Indexed: 01/13/2023] Open
Abstract
Background Karyopherin β1 (Kpnβ1) is the main nuclear import protein involved in the transport of cargoes from the cytoplasm into the cell nucleus. Previous research has found Kpnβ1 to be significantly overexpressed in cervical cancer and other cancer tissues, and further studies showed that inhibition of Kpnβ1 expression by siRNA resulted in cancer cell death, while non-cancer cells were minimally affected. These results suggest that Kpnβ1 has potential as an anticancer therapeutic target, thus warranting further research into the association between Kpnβ1 expression and cancer progression. Here, the biological effects associated with Kpnβ1 overexpression were investigated in order to further elucidate the relationship between Kpnβ1 and the cancer phenotype. Methods To evaluate the effect of Kpnβ1 overexpression on cell biology, cell proliferation, cell cycle, cell morphology and cell adhesion assays were performed. To determine whether Kpnβ1 overexpression influences cell sensitivity to chemotherapeutic agents like Cisplatin, cell viability assays were performed. Expression levels of key proteins were analysed by Western blot analysis. Results Our data revealed that Kpnβ1 overexpression, above that which was already detected in cancer cells, resulted in reduced proliferation of cervical cancer cells. Likewise, normal epithelial cells showed reduced proliferation after Kpnβ1 overxpression. Reduced cancer cell proliferation was associated with a delay in cell cycle progression, as well as changes in the morphology and adhesion properties of cells. Additionally, Kpnβ1 overexpressing HeLa cells exhibited increased sensitivity to cisplatin, as shown by decreased cell viability and increased apoptosis, where p53 and p21 inhibition reduced and enhanced cell sensitivity to Cisplatin, respectively. Conclusions Overall, our results suggest that a tight balance of Kpnβ1 expression is required for cellular function, and that perturbation of this balance results in negative effects associated with a variety of biological processes. Electronic supplementary material The online version of this article (10.1186/s12885-018-5044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah Carden
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pauline van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alicia Chi
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Aderonke Ajayi-Smith
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Katie Hadley
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa. .,Division of Medical Biochemistry and Structural Biology, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa.
| |
Collapse
|
15
|
PKA-site phosphorylation of importin13 regulates its subcellular localization and nuclear transport function. Biochem J 2018; 475:2699-2712. [PMID: 30045875 DOI: 10.1042/bcj20180082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/25/2023]
Abstract
Importin 13 (IPO13) is a key member of the importin β superfamily, which can transport cargoes both into and out of the nucleus to contribute to a variety of important cellular processes. IPO13 is known to undergo phosphorylation, but the impact of this on function has not been investigated. Here, we show for the first time that IPO13 is phosphorylated by cAMP-dependent protein kinase A specifically at serine 193. Results from fluorescence recovery after photobleaching and fluorescence loss in photobleaching approaches establish that negative charge at serine 193 through phosphorylation or point mutation both reduces IPO13 nuclear import and increases its nuclear export. Importantly, phosphorylation also appears to enhance cargo interaction on the part of IPO13, with significant impact on localization, as shown for the Pax6 homeobox-containing transcription partner. This is the first report that IPO13 can be phosphorylated at Ser193 and that this modification regulates IPO13 subcellular localization and nucleocytoplasmic transport function, with important implications for IPO13's role in development and other processes.
Collapse
|
16
|
Stelma T, Leaner VD. KPNB1-mediated nuclear import is required for motility and inflammatory transcription factor activity in cervical cancer cells. Oncotarget 2018; 8:32833-32847. [PMID: 28427184 PMCID: PMC5464831 DOI: 10.18632/oncotarget.15834] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
Karyopherin β1 is a nuclear import protein involved in the transport of proteins containing a nuclear localisation sequence. Elevated Karyopherin β1 expression has been reported in cancer and transformed cells and is essential for cancer cell proliferation and survival. Transcription factors such as NFĸB and AP-1 contain a nuclear localisation sequence and initiate the expression of multiple factors associated with inflammation and cancer cell biology. Our study investigated the effect of inhibiting nuclear import via Karyopherin β1 on cancer cell motility and inflammatory signaling using siRNA and the novel small molecule, Inhibitor of Nuclear Import-43, INI-43. Inhibition of Karyopherin β1 led to reduced migration and invasion of cervical cancer cells. Karyopherin β1 is essential for the translocation of NFĸB into the nucleus as nuclear import inhibition caused its cytoplasmic retention and decreased transcriptional activity. A similar decrease was seen in AP-1 transcriptional activity upon Karyopherin β1 inhibition. Consequently reduced interleukin-6, interleukin-1 beta, tumour necrosis factor alpha and granulocyte macrophage colony stimulating factor expression, target genes of NFkB and AP-1, was observed. Migration studies inhibiting individual transcription factors suggested that INI-43 may affect a combination of signaling events. Our study provides further evidence that inhibiting KPNB1 has anti-cancer effects and shows promise as a chemotherapeutic target.
Collapse
Affiliation(s)
- Tamara Stelma
- Division of Medical Biochemistry and Structural Biology, SAMRC Gynaecology Cancer Research Centre, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, SAMRC Gynaecology Cancer Research Centre, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Jusu S, Presley JF, Williams C, Das SK, Jean-Claude B, Kremer R. Examination of VDR/RXR/DRIP205 Interaction, Intranuclear Localization, and DNA Binding in Ras-Transformed Keratinocytes and Its Implication for Designing Optimal Vitamin D Therapy in Cancer. Endocrinology 2018; 159:1303-1327. [PMID: 29300860 DOI: 10.1210/en.2017-03098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 12/19/2017] [Indexed: 11/19/2022]
Abstract
Retinoid X receptor (RXR) occupies a central position within the nuclear receptor superfamily, serving as an obligatory partner to numerous other nuclear receptors, including vitamin D receptor (VDR). In the current study, we examined whether phosphorylation of RXRα at serine 260 affects VDR/RXR and VDR interacting protein (DRIP) 205 coactivator recruitment, interactions, and binding of the VDR/human RXRα (hRXRα)/DRIP205 complex to chromatin. Serine 260 is a critical amino acid on the hRXRα that is located in close spatial proximity to regions of coactivator and corepressor interactions. Using fluorescence resonance energy transfer and immunofluorescence studies, we showed that the physical interaction between hRXRα and DRIP205 coactivator was impaired in human keratinocytes with the ras oncogene (HPK1Aras) or transfected with the wild-type hRXRα. Furthermore, the nuclear colocalization of VDR/DRIP205, hRXRα/DRIP205, and VDR/hRXRα/DRIP205 complex binding to chromatin is impaired in the HPK1Aras cells when compared with the normal human keratinocytes (HPK1A cells). However, transfection with the nonphosphorylatable hRXRα (S260A) mutant or treatment with the mitogen-activated protein kinase (MAPK) inhibitor UO126 rescued their nuclear localization, interaction, and binding of the complex to chromatin in the HPK1Aras cells. In summary, we have demonstrated, using highly specific intracellular tagging methods in live and fixed cells, important alterations of the vitamin D signaling system in cancer cells in which the ras-raf-MAPK system is activated, suggesting that specific inhibition of this commonly activated pathway could be targeted therapeutically to enhance vitamin D efficacy.
Collapse
Affiliation(s)
- Sylvester Jusu
- Department of Medicine and Calcium Research Laboratory, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Metabolic Diseases and Complications Program, Research institute-McGill University Health Centre, Montreal, Quebec, Canada
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | | | - Sanjoy Kumar Das
- Drug Discovery Core, Research Institute-McGill University Health Centre, Montreal, Quebec H3A 3J1, Canada
| | - Bertrand Jean-Claude
- Metabolic Diseases and Complications Program, Research institute-McGill University Health Centre, Montreal, Quebec, Canada
- Drug Discovery Core, Research Institute-McGill University Health Centre, Montreal, Quebec H3A 3J1, Canada
| | - Richard Kremer
- Department of Medicine and Calcium Research Laboratory, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Metabolic Diseases and Complications Program, Research institute-McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Identification of novel antivirals inhibiting recognition of Venezuelan equine encephalitis virus capsid protein by the Importin α/β1 heterodimer through high-throughput screening. Antiviral Res 2018; 151:8-19. [PMID: 29337164 DOI: 10.1016/j.antiviral.2018.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 11/24/2022]
Abstract
Although the alphavirus Venezuelan equine encephalitis virus (VEEV) has been the cause of multiple outbreaks resulting in extensive human and equine mortality and morbidity, there are currently no anti-VEEV therapeutics available. VEEV pathogenicity is largely dependent on targeting of the viral capsid protein (CP) to the host cell nucleus through the nuclear transporting importin (Imp) α/β1 heterodimer. Here we perform a high-throughput screen, combined with nested counterscreens to identify small molecules able to inhibit the Impα/β1:CP interaction for the first time. Several compounds were able to significantly reduce viral replication in infected cells. Compound G281-1564 in particular could inhibit VEEV replication at low μM concentration, while showing minimal toxicity, with steady state and dynamic quantitative microscopic measurements confirming its ability to inhibit CP nuclear import. This study establishes the principle that inhibitors of CP nucleocytoplasmic trafficking can have potent antiviral activity against VEEV, and represents a platform for future development of safe anti-VEEV compounds with high efficacy and specificity.
Collapse
|
19
|
Novel inhibitors targeting Venezuelan equine encephalitis virus capsid protein identified using In Silico Structure-Based-Drug-Design. Sci Rep 2017; 7:17705. [PMID: 29255256 PMCID: PMC5735092 DOI: 10.1038/s41598-017-17672-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/29/2017] [Indexed: 11/09/2022] Open
Abstract
Therapeutics are currently unavailable for Venezuelan equine encephalitis virus (VEEV), which elicits flu-like symptoms and encephalitis in humans, with an estimated 14% of cases resulting in neurological disease. Here we identify anti-VEEV agents using in silico structure-based-drug-design (SBDD) for the first time, characterising inhibitors that block recognition of VEEV capsid protein (C) by the host importin (IMP) α/β1 nuclear transport proteins. From an initial screen of 1.5 million compounds, followed by in silico refinement and screening for biological activity in vitro, we identified 21 hit compounds which inhibited IMPα/β1:C binding with IC50s as low as 5 µM. Four compounds were found to inhibit nuclear import of C in transfected cells, with one able to reduce VEEV replication at µM concentration, concomitant with reduced C nuclear accumulation in infected cells. Further, this compound was inactive against a mutant VEEV that lacks high affinity IMPα/β1:C interaction, supporting the mode of its antiviral action to be through inhibiting C nuclear localization. This successful application of SBDD paves the way for lead optimization for VEEV antivirals, and is an exciting prospect to identify inhibitors for the many other viral pathogens of significance that require IMPα/β1 in their infectious cycle.
Collapse
|
20
|
Winkler J, Roessler S, Sticht C, DiGuilio AL, Drucker E, Holzer K, Eiteneuer E, Herpel E, Breuhahn K, Gretz N, Schirmacher P, Ori A, Singer S. Cellular apoptosis susceptibility (CAS) is linked to integrin β1 and required for tumor cell migration and invasion in hepatocellular carcinoma (HCC). Oncotarget 2017; 7:22883-92. [PMID: 27015362 PMCID: PMC5008409 DOI: 10.18632/oncotarget.8256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 02/23/2016] [Indexed: 01/26/2023] Open
Abstract
Importins and exportins represent an integral part of the nucleocytoplasmic transport machinery with fundamental importance for eukaryotic cell function. A variety of malignancies including hepatocellular carcinoma (HCC) show de-regulation of nuclear transport factors such as overexpression of the exportin Cellular Apoptosis Susceptibility (CAS). The functional implications of CAS in hepatocarcinogenesis remain, however, poorly understood. Here we integrated proteomics, transcriptomics and functional assays with patient data to further characterize the role of CAS in HCC. By analyzing ∼ 1700 proteins using quantitative mass spectrometry in HCC cells we found that CAS depletion by RNAi leads to de-regulation of integrins, particularly down-regulation of integrin β1. Consistent with this finding, CAS knockdown resulted in substantially reduced migration and invasion of HCC cell lines as analyzed by 2D ‘scratch’ and invasion chamber assays, respectively. Supporting the potential in vivo relevance, high expression levels of CAS in HCC tissue samples were associated with macroangioinvasion and poorer patient outcome. Our data suggest a previously unanticipated link between CAS and integrin signaling which correlates with an aggressive HCC phenotype.
Collapse
Affiliation(s)
- Juliane Winkler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Carsten Sticht
- Medical Research Centre, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Amanda L DiGuilio
- Department of Chemistry, Chemical Biology and Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Elisabeth Drucker
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kerstin Holzer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Eva Eiteneuer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Norbert Gretz
- Medical Research Centre, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Alessandro Ori
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany.,Leibniz Institute on Aging - Fritz-Lipmann-Institute e.V. (FLI), Jena, Germany
| | - Stephan Singer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany
| |
Collapse
|
21
|
Jusu S, Presley JF, Kremer R. Phosphorylation of Human Retinoid X Receptor α at Serine 260 Impairs Its Subcellular Localization, Receptor Interaction, Nuclear Mobility, and 1α,25-Dihydroxyvitamin D3-dependent DNA Binding in Ras-transformed Keratinocytes. J Biol Chem 2017; 292:1490-1509. [PMID: 27852823 PMCID: PMC5270490 DOI: 10.1074/jbc.m116.758185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/14/2016] [Indexed: 11/06/2022] Open
Abstract
Human retinoid X receptor α (hRXRα) plays a critical role in DNA binding and transcriptional activity through heterodimeric association with several members of the nuclear receptor superfamily, including the human vitamin D receptor (hVDR). We previously showed that hRXRα phosphorylation at serine 260 through the Ras-Raf-MAPK ERK1/2 activation is responsible for resistance to the growth inhibitory effects of 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), the biologically active metabolite of vitamin D3 To further investigate the mechanism of this resistance, we studied intranuclear dynamics of hVDR and hRXRα-tagged constructs in living cells together with endogenous and tagged protein in fixed cells. We find that hVDR-, hRXRα-, and hVDR-hRXRα complex accumulate in the nucleus in 1α,25(OH)2D3-treated HPK1A cells but to a lesser extent in HPK1ARas-treated cells. Also, by using fluorescence resonance energy transfer (FRET), we demonstrate increased interaction of the hVDR-hRXRα complex in 1α,25(OH)2D3-treated HPK1A but not HPK1ARas cells. In HPK1ARas cells, 1α,25(OH)2D3-induced nuclear localization and interaction of hRXRα are restored when cells are treated with the MEK1/2 inhibitor UO126 or following transfection of the non-phosphorylatable hRXRα Ala-260 mutant. Finally, we demonstrate using fluorescence loss in photobleaching and quantitative co-localization with chromatin that RXR immobilization and co-localization with chromatin are significantly increased in 1α,25(OH)2D3-treated HPK1ARas cells transfected with the non-phosphorylatable hRXRα Ala-260 mutant. This suggests that hRXRα phosphorylation significantly disrupts its nuclear localization, interaction with VDR, intra-nuclear trafficking, and binding to chromatin of the hVDR-hRXR complex.
Collapse
Affiliation(s)
- Sylvester Jusu
- From the Department of Medicine, Calcium Research Laboratory, Royal Victoria Hospital, McGill University, Montreal, Quebec H4A 3J1
- the Department of Medicine, Experimental Therapeutics and Metabolism Program, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| | - John F Presley
- the Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, and
| | - Richard Kremer
- From the Department of Medicine, Calcium Research Laboratory, Royal Victoria Hospital, McGill University, Montreal, Quebec H4A 3J1,
- the Department of Medicine, Experimental Therapeutics and Metabolism Program, McGill University Health Center, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
22
|
Lee J, An YS, Kim MR, Kim YA, Lee JK, Hwang CS, Chung E, Park IC, Yi JY. Heat Shock Protein 90 Regulates Subcellular Localization of Smads in Mv1Lu Cells. J Cell Biochem 2016; 117:230-8. [PMID: 26104915 DOI: 10.1002/jcb.25269] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/19/2015] [Indexed: 01/19/2023]
Abstract
Heat shock protein 90 (HSP90) regulates the stability of various proteins and plays an essential role in cellular homeostasis. Many client proteins of HSP90 are involved in cell growth, survival, and migration; processes that are generally accepted as participants in tumorigenesis. HSP90 is also up-regulated in certain tumors. Indeed, the inhibition of HSP90 is known to be effective in cancer treatment. Recently, studies showed that HSP90 regulates transforming growth factor β1 (TGF-β1)-induced transcription by increasing the stability of the TGF-β receptor. TGF-β signaling also has been implicated in cancer, suggesting the possibility that TGF-β1 and HSP90 function cooperatively during the cancer cell progression. Here in this paper, we investigated the role of HSP90 in TGF-β1-stimulated Mv1Lu cells. Treatment of Mv1Lu cells with the HSP90 inhibitor, 17-allylamino-demethoxy-geldanamycin (17AAG), or transfection with truncated HSP90 (ΔHSP90) significantly reduced TGF-β1-induced cell migration. Pretreatment with 17AAG or transfection with ΔHSP90 also reduced the levels of phosphorylated Smad2 and Smad3. In addition, the HSP90 inhibition interfered the nuclear localization of Smads induced by constitutively active Smad2 (S2EE) or Smad3 (S3EE). We also found that the HSP90 inhibition decreased the protein level of importin-β1 which is known to regulate R-Smad nuclear translocation. These data clearly demonstrate a novel function of HSP90; HSP90 modulates TGF-β signaling by regulating Smads localization. Overall, our data could provide a detailed mechanism linking HSP90 and TGF-β signaling. The extension of our understanding of HSP90 would offer a better strategy for treating cancer.
Collapse
Affiliation(s)
- Jeeyong Lee
- Division of Radiation Effects, Korea Institute of Radiation and Medical Sciences, Seoul, Korea
| | - You Sun An
- Division of Radiation Effects, Korea Institute of Radiation and Medical Sciences, Seoul, Korea
| | - Mi-Ra Kim
- Division of Radiation Effects, Korea Institute of Radiation and Medical Sciences, Seoul, Korea
| | - Ye-Ah Kim
- Division of Radiation Effects, Korea Institute of Radiation and Medical Sciences, Seoul, Korea
| | - Jin Kyung Lee
- Radiation Blood Specimen Biobank, Korea Institute of Radiation and Medical Sciences, Seoul, Korea
| | - Chang Sun Hwang
- Human Resource Biobank, Cheil General Hospital, Catholic Kwandong University, College of Medicine, Seoul, Korea
| | - Eunkyung Chung
- Department of Genetic Engineering, College of Life Science, Kyung Hee University, Yongin, Gyeonggi-do, Korea
| | - In-Chul Park
- Division of Radiation Cancer Research, Korea Institute of Radiation and Medical Sciences, Seoul, Korea
| | - Jae Youn Yi
- Division of Radiation Effects, Korea Institute of Radiation and Medical Sciences, Seoul, Korea
| |
Collapse
|
23
|
Ha S, Oh J, Jang JM, Kim DK, Ham SW. Synthesis and Biological Evaluation of 2-Aminothiazole Derivative Having Anticancer Activity as a KPNB1 Inhibitor. B KOREAN CHEM SOC 2016. [DOI: 10.1002/bkcs.10968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Siyoung Ha
- Department of Chemistry; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Jiwon Oh
- Department of Chemistry; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Ji Min Jang
- College of Pharmacy; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Dae Kyong Kim
- College of Pharmacy; Chung-Ang University; Seoul 06974 Republic of Korea
| | - Seung Wook Ham
- Department of Chemistry; Chung-Ang University; Seoul 06974 Republic of Korea
| |
Collapse
|
24
|
Chen C, Wang JCY, Pierson EE, Keifer DZ, Delaleau M, Gallucci L, Cazenave C, Kann M, Jarrold MF, Zlotnick A. Importin β Can Bind Hepatitis B Virus Core Protein and Empty Core-Like Particles and Induce Structural Changes. PLoS Pathog 2016; 12:e1005802. [PMID: 27518410 PMCID: PMC4982637 DOI: 10.1371/journal.ppat.1005802] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 07/11/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) capsids are found in many forms: immature single-stranded RNA-filled cores, single-stranded DNA-filled replication intermediates, mature cores with relaxed circular double-stranded DNA, and empty capsids. A capsid, the protein shell of the core, is a complex of 240 copies of core protein. Mature cores are transported to the nucleus by a complex that includes both importin α and importin β (Impα and Impβ), which bind to the core protein's C-terminal domains (CTDs). Here we have investigated the interactions of HBV core protein with importins in vitro. Strikingly, empty capsids and free core protein can bind Impβ without Impα. Cryo-EM image reconstructions show that the CTDs, which are located inside the capsid, can extrude through the capsid to be bound by Impβ. Impβ density localized on the capsid exterior near the quasi-sixfold vertices, suggested a maximum of 30 Impβ per capsid. However, examination of complexes using single molecule charge-detection mass spectrometry indicate that some complexes include over 90 Impβ molecules. Cryo-EM of capsids incubated with excess Impβ shows a population of damaged particles and a population of "dark" particles with internal density, suggesting that Impβ is effectively swallowed by the capsids, which implies that the capsids transiently open and close and can be destabilized by Impβ. Though the in vitro complexes with great excess of Impβ are not biological, these results have implications for trafficking of empty capsids and free core protein; activities that affect the basis of chronic HBV infection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Joseph Che-Yen Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Elizabeth E. Pierson
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - David Z. Keifer
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Mildred Delaleau
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Lara Gallucci
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Christian Cazenave
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
| | - Michael Kann
- Universite de Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, Bordeaux, France
- CHU de Bordeaux, Bordeaux, France
| | - Martin F. Jarrold
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Chemistry, Indiana University, Bloomington, Indiana, United States of America
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
25
|
Martin RM, Ter-Avetisyan G, Herce HD, Ludwig AK, Lättig-Tünnemann G, Cardoso MC. Principles of protein targeting to the nucleolus. Nucleus 2016; 6:314-25. [PMID: 26280391 PMCID: PMC4615656 DOI: 10.1080/19491034.2015.1079680] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of rRNA synthesis and assembly of ribosomes. Nucleolar proteins dynamically localize and accumulate in this nuclear compartment relative to the surrounding nucleoplasm. In this study, we have assessed the molecular requirements that are necessary and sufficient for the localization and accumulation of peptides and proteins inside the nucleoli of living cells. The data showed that positively charged peptide entities composed of arginines alone and with an isoelectric point at and above 12.6 are necessary and sufficient for mediating significant nucleolar accumulation. A threshold of 6 arginines is necessary for peptides to accumulate in nucleoli, but already 4 arginines are sufficient when fused within 15 amino acid residues of a nuclear localization signal of a protein. Using a pH sensitive dye, we found that the nucleolar compartment is particularly acidic when compared to the surrounding nucleoplasm and, hence, provides the ideal electrochemical environment to bind poly-arginine containing proteins. In fact, we found that oligo-arginine peptides and GFP fusions bind RNA in vitro. Consistent with RNA being the main binding partner for arginines in the nucleolus, we found that the same principles apply to cells from insects to man, indicating that this mechanism is highly conserved throughout evolution.
Collapse
Affiliation(s)
- Robert M Martin
- a Instituto de Medicina Molecular ; Faculdade de Medicina ; Universidade de Lisboa ; Lisboa , Portugal
| | | | | | | | | | | |
Collapse
|
26
|
Stelma T, Chi A, van der Watt PJ, Verrico A, Lavia P, Leaner VD. Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential. IUBMB Life 2016; 68:268-80. [PMID: 26970212 DOI: 10.1002/iub.1484] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 01/10/2023]
Abstract
The Karyopherin superfamily is a major class of soluble transport receptors consisting of both import and export proteins. The trafficking of proteins involved in transcription, cell signalling and cell cycle regulation among other functions across the nuclear membrane is essential for normal cellular functioning. However, in cancer cells, the altered expression or localization of nuclear transporters as well as the disruption of endogenous nuclear transport inhibitors are some ways in which the Karyopherin proteins are dysregulated. The value of nuclear transporters in the diagnosis, prognosis and treatment of cancer is currently being elucidated with recent studies highlighting their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tamara Stelma
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alicia Chi
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pauline J van der Watt
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Annalisa Verrico
- Institute of Molecular Biology and Pathology, National Research Council of Italy, C/O University of Roma "La Sapienza", Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology, National Research Council of Italy, C/O University of Roma "La Sapienza", Rome, Italy
| | - Virna D Leaner
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
27
|
Li Y, Wang X, He B, Cai H, Gao Y. Downregulation and tumor-suppressive role of XPO5 in hepatocellular carcinoma. Mol Cell Biochem 2016. [PMID: 27000860 DOI: 10.1007/s1100-016-2692-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
XPO5 (Exp5, Exportin-5) is a transporter protein mainly mediating pre-microRNAs' nuclear export. Recent studies have demonstrated that XPO5 may play crucial roles in a few of cancers. However, little is known about XPO5 in hepatocellular carcinoma (HCC). In the present study, we elucidated the expression of XPO5 by quantitative real-time PCR (qRT-PCR) and immunohistochemical staining in HCC samples and conducted several functional analyses to address its effects on HCC development. The results demonstrated that both mRNA and protein levels of XPO5 were downregulated in HCC tissues compared to adjacent non-cancerous livers. Ectopic expression of XPO5 significantly suppressed cell proliferation, colony formation, growth in soft agar, and tumorigenicity in nude mice, whereas knockdown of XPO5 by RNA inference showed opposite phenotypes. Moreover, XPO5 knockdown promoted HCC cell migration and decreased the expression of E-cadherin and p53. Additionally, after treatment with DAC and TSA, the mRNA level of XPO5 was upregulated in HCC cells tested, implicating that epigenetic modulation may be involved in the transcription of XPO5. Collectively, our findings suggest that XPO5 functions as a potential tumor suppressor in the development and progression of HCC as well as a promising molecular target for HCC therapy.
Collapse
Affiliation(s)
- Yandong Li
- Department of Oncology and Hematology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, China.
| | - Xiao Wang
- Department of Oncology, East Hospital, Dalian Medical University, Shanghai, 200120, China
| | - Bin He
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Cai
- Department of Oncology and Hematology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, China
| | - Yong Gao
- Department of Oncology and Hematology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, China
| |
Collapse
|
28
|
Li Y, Wang X, He B, Cai H, Gao Y. Downregulation and tumor-suppressive role of XPO5 in hepatocellular carcinoma. Mol Cell Biochem 2016; 415:197-205. [PMID: 27000860 DOI: 10.1007/s11010-016-2692-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/17/2016] [Indexed: 01/07/2023]
Abstract
XPO5 (Exp5, Exportin-5) is a transporter protein mainly mediating pre-microRNAs' nuclear export. Recent studies have demonstrated that XPO5 may play crucial roles in a few of cancers. However, little is known about XPO5 in hepatocellular carcinoma (HCC). In the present study, we elucidated the expression of XPO5 by quantitative real-time PCR (qRT-PCR) and immunohistochemical staining in HCC samples and conducted several functional analyses to address its effects on HCC development. The results demonstrated that both mRNA and protein levels of XPO5 were downregulated in HCC tissues compared to adjacent non-cancerous livers. Ectopic expression of XPO5 significantly suppressed cell proliferation, colony formation, growth in soft agar, and tumorigenicity in nude mice, whereas knockdown of XPO5 by RNA inference showed opposite phenotypes. Moreover, XPO5 knockdown promoted HCC cell migration and decreased the expression of E-cadherin and p53. Additionally, after treatment with DAC and TSA, the mRNA level of XPO5 was upregulated in HCC cells tested, implicating that epigenetic modulation may be involved in the transcription of XPO5. Collectively, our findings suggest that XPO5 functions as a potential tumor suppressor in the development and progression of HCC as well as a promising molecular target for HCC therapy.
Collapse
Affiliation(s)
- Yandong Li
- Department of Oncology and Hematology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, China.
| | - Xiao Wang
- Department of Oncology, East Hospital, Dalian Medical University, Shanghai, 200120, China
| | - Bin He
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Cai
- Department of Oncology and Hematology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, China
| | - Yong Gao
- Department of Oncology and Hematology, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, China
| |
Collapse
|
29
|
van der Watt PJ, Chi A, Stelma T, Stowell C, Strydom E, Carden S, Angus L, Hadley K, Lang D, Wei W, Birrer MJ, Trent JO, Leaner VD. Targeting the Nuclear Import Receptor Kpnβ1 as an Anticancer Therapeutic. Mol Cancer Ther 2016; 15:560-73. [PMID: 26832790 DOI: 10.1158/1535-7163.mct-15-0052] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/15/2016] [Indexed: 11/16/2022]
Abstract
Karyopherin beta 1 (Kpnβ1) is a nuclear transport receptor that imports cargoes into the nucleus. Recently, elevated Kpnβ1 expression was found in certain cancers and Kpnβ1 silencing with siRNA was shown to induce cancer cell death. This study aimed to identify novel small molecule inhibitors of Kpnβ1, and determine their anticancer activity. An in silico screen identified molecules that potentially bind Kpnβ1 and Inhibitor of Nuclear Import-43, INI-43 (3-(1H-benzimidazol-2-yl)-1-(3-dimethylaminopropyl)pyrrolo[5,4-b]quinoxalin-2-amine) was investigated further as it interfered with the nuclear localization of Kpnβ1 and known Kpnβ1 cargoes NFAT, NFκB, AP-1, and NFY and inhibited the proliferation of cancer cells of different tissue origins. Minimum effect on the proliferation of noncancer cells was observed at the concentration of INI-43 that showed a significant cytotoxic effect on various cervical and esophageal cancer cell lines. A rescue experiment confirmed that INI-43 exerted its cell killing effects, in part, by targeting Kpnβ1. INI-43 treatment elicited a G2-M cell-cycle arrest in cancer cells and induced the intrinsic apoptotic pathway. Intraperitoneal administration of INI-43 significantly inhibited the growth of subcutaneously xenografted esophageal and cervical tumor cells. We propose that Kpnβ1 inhibitors could have therapeutic potential for the treatment of cancer. Mol Cancer Ther; 15(4); 560-73. ©2016 AACR.
Collapse
Affiliation(s)
- Pauline J van der Watt
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alicia Chi
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Tamara Stelma
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Catherine Stowell
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Erin Strydom
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sarah Carden
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Liselotte Angus
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Kate Hadley
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dirk Lang
- Confocal and Light Microscope Imaging Facility, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Wei Wei
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Michael J Birrer
- Center for Cancer Research, The Gillette Center for Gynecologic Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - John O Trent
- Department of Medicine, J.G. Brown Cancer Center, University of Louisville, Louisville, Kentucky
| | - Virna D Leaner
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, SAMRC/UCT Gynaecological Cancer Research Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
30
|
Abstract
Mechanistic target of rapamycin (mTOR) is a central component of the essential signaling pathway that regulates cell growth and proliferation by controlling anabolic processes in cells. mTOR exists in two distinct mTOR complexes known as mTORC1 and mTORC2 that reside mostly in cytoplasm. In our study, the biochemical characterization of mTOR led to discovery of its novel localization on nuclear envelope where it associates with a critical regulator of nuclear import Ran Binding Protein 2 (RanBP2). We show that association of mTOR with RanBP2 is dependent on the mTOR kinase activity that regulates the nuclear import of ribosomal proteins. The mTOR kinase inhibitors within thirty minutes caused a substantial decrease of ribosomal proteins in the nuclear but not cytoplasmic fraction. Detection of a nuclear accumulation of the GFP-tagged ribosomal protein rpL7a also indicated its dependence on the mTOR kinase activity. The nuclear abundance of ribosomal proteins was not affected by inhibition of mTOR Complex 1 (mTORC1) by rapamycin or deficiency of mTORC2, suggesting a distinctive role of the nuclear envelope mTOR complex in the nuclear import. Thus, we identified that mTOR in association with RanBP2 mediates the active nuclear import of ribosomal proteins.
Collapse
|
31
|
Hyper-dependence of breast cancer cell types on the nuclear transporter Importin β1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1870-8. [PMID: 25960398 DOI: 10.1016/j.bbamcr.2015.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/28/2015] [Accepted: 05/03/2015] [Indexed: 12/27/2022]
Abstract
We previously reported that overexpression of members of the Importin (Imp) superfamily of nuclear transporters results in increased nuclear trafficking through conventional transport pathways in tumour cells. Here we show for the first time that the extent of overexpression of Impβ1 correlates with disease state in the MCF10 human breast tumour progression system. Excitingly, we find that targeting Impβ1 activity through siRNA is >30 times more efficient in decreasing the viability of malignant ductal carcinoma cells compared to isogenic non-transformed counterparts, and is highly potent and tumour selective at subnanomolar concentrations. Tumour cell selectivity of the siRNA effects was unique to Impβ1 and not other Imps, with flow cytometric analysis showing >60% increased cell death compared to controls concomitant with reduced nuclear import efficiency as indicated by confocal microscopic analysis. This hypersensitivity of malignant cell types to Impβ1 knockdown raises the exciting possibility of anti-cancer therapies targeted at Impβ1.
Collapse
|
32
|
Hughes MLR, Liu B, Halls ML, Wagstaff KM, Patil R, Velkov T, Jans DA, Bunnett NW, Scanlon MJ, Porter CJH. Fatty Acid-binding Proteins 1 and 2 Differentially Modulate the Activation of Peroxisome Proliferator-activated Receptor α in a Ligand-selective Manner. J Biol Chem 2015; 290:13895-906. [PMID: 25847235 DOI: 10.1074/jbc.m114.605998] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 01/01/2023] Open
Abstract
Nuclear hormone receptors (NHRs) regulate the expression of proteins that control aspects of reproduction, development and metabolism, and are major therapeutic targets. However, NHRs are ubiquitous and participate in multiple physiological processes. Drugs that act at NHRs are therefore commonly restricted by toxicity, often at nontarget organs. For endogenous NHR ligands, intracellular lipid-binding proteins, including the fatty acid-binding proteins (FABPs), can chaperone ligands to the nucleus and promote NHR activation. Drugs also bind FABPs, raising the possibility that FABPs similarly regulate drug activity at the NHRs. Here, we investigate the ability of FABP1 and FABP2 (intracellular lipid-binding proteins that are highly expressed in tissues involved in lipid metabolism, including the liver and intestine) to influence drug-mediated activation of the lipid regulator peroxisome proliferator-activated receptor (PPAR) α. We show by quantitative fluorescence imaging and gene reporter assays that drug binding to FABP1 and FABP2 promotes nuclear localization and PPARα activation in a drug- and FABP-dependent manner. We further show that nuclear accumulation of FABP1 and FABP2 is dependent on the presence of PPARα. Nuclear accumulation of FABP on drug binding is driven largely by reduced nuclear egress rather than an increased rate of nuclear entry. Importin binding assays indicate that nuclear access occurs via an importin-independent mechanism. Together, the data suggest that specific drug-FABP complexes can interact with PPARα to effect nuclear accumulation of FABP and NHR activation. Because FABPs are expressed in a regionally selective manner, this may provide a means to tailor the patterns of NHR drug activation in a tissue-specific manner.
Collapse
Affiliation(s)
| | - Bonan Liu
- From Drug Delivery, Disposition and Dynamics
| | | | - Kylie M Wagstaff
- the Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria 3800, and
| | | | - Tony Velkov
- From Drug Delivery, Disposition and Dynamics
| | - David A Jans
- the Department of Biochemistry and Molecular Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Victoria 3800, and
| | - Nigel W Bunnett
- Drug Discovery Biology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, the Department of Pharmacology, University of Melbourne, Victoria 3010, Australia
| | | | - Christopher J H Porter
- From Drug Delivery, Disposition and Dynamics, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052,
| |
Collapse
|
33
|
Nastasie MS, Thissen H, Jans DA, Wagstaff KM. Enhanced tumour cell nuclear targeting in a tumour progression model. BMC Cancer 2015; 15:76. [PMID: 25885577 PMCID: PMC4342815 DOI: 10.1186/s12885-015-1045-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 01/27/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND There is an urgent need for new approaches to deliver bioactive molecules to cancer cells efficiently and specifically. METHODS Here we fuse the cancer cell nuclear targeting module of the Chicken Anaemia Virus Apoptin protein to the core histones H2B and H3 and utilise them in transfection, protein transduction and DNA binding assays. RESULTS We found subsequent nuclear accumulation of these proteins to be 2-3 fold higher in tumour compared to normal cells in transfected isogenic human osteosarcoma and breast tumour progression models. This represents the first demonstration of enhanced nuclear targeting by Apoptin in a tumour progression model, and its functionality in a heterologous protein context. Excitingly, we found that the innate transduction ability of histones could be exploited in combination with the Apoptin nuclear targeting module to effect an overall 13-fold higher delivery of protein to osteosarcoma cancer cell nuclei compared to their isogenic normal counterparts. CONCLUSIONS This is the first report of cancer-cell specificity by a cell penetrating protein, with important implications for the use of protein transduction as a vehicle for gene/drug delivery in the future, and in particular in the development of highly specific and effective anti-cancer agents.
Collapse
Affiliation(s)
- Michael S Nastasie
- Nuclear Signalling Laboratory, Department Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| | - Helmut Thissen
- CSIRO Molecular and Health Technologies, Bayview Avenue, Clayton, Victoria, 3168, Australia.
| | - David A Jans
- Nuclear Signalling Laboratory, Department Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| | - Kylie M Wagstaff
- Nuclear Signalling Laboratory, Department Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
34
|
Kodiha M, Wang YM, Hutter E, Maysinger D, Stochaj U. Off to the organelles - killing cancer cells with targeted gold nanoparticles. Am J Cancer Res 2015; 5:357-70. [PMID: 25699096 PMCID: PMC4329500 DOI: 10.7150/thno.10657] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022] Open
Abstract
Gold nanoparticles (AuNPs) are excellent tools for cancer cell imaging and basic research. However, they have yet to reach their full potential in the clinic. At present, we are only beginning to understand the molecular mechanisms that underlie the biological effects of AuNPs, including the structural and functional changes of cancer cells. This knowledge is critical for two aspects of nanomedicine. First, it will define the AuNP-induced events at the subcellular and molecular level, thereby possibly identifying new targets for cancer treatment. Second, it could provide new strategies to improve AuNP-dependent cancer diagnosis and treatment. Our review summarizes the impact of AuNPs on selected subcellular organelles that are relevant to cancer therapy. We focus on the nucleus, its subcompartments, and mitochondria, because they are intimately linked to cancer cell survival, growth, proliferation and death. While non-targeted AuNPs can damage tumor cells, concentrating AuNPs in particular subcellular locations will likely improve tumor cell killing. Thus, it will increase cancer cell damage by photothermal ablation, mechanical injury or localized drug delivery. This concept is promising, but AuNPs have to overcome multiple hurdles to perform these tasks. AuNP size, morphology and surface modification are critical parameters for their delivery to organelles. Recent strategies explored all of these variables, and surface functionalization has become crucial to concentrate AuNPs in subcellular compartments. Here, we highlight the use of AuNPs to damage cancer cells and their organelles. We discuss current limitations of AuNP-based cancer research and conclude with future directions for AuNP-dependent cancer treatment.
Collapse
|
35
|
Rosenkranz AA, Ulasov AV, Slastnikova TA, Khramtsov YV, Sobolev AS. Use of intracellular transport processes for targeted drug delivery into a specified cellular compartment. BIOCHEMISTRY (MOSCOW) 2014; 79:928-46. [DOI: 10.1134/s0006297914090090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
van der Watt PJ, Zemanay W, Govender D, Hendricks DT, Parker MI, Leaner VD. Elevated expression of the nuclear export protein, Crm1 (exportin 1), associates with human oesophageal squamous cell carcinoma. Oncol Rep 2014; 32:730-8. [PMID: 24898882 DOI: 10.3892/or.2014.3231] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/29/2014] [Indexed: 11/06/2022] Open
Abstract
The nuclear export receptor, Crm1 (exportin 1), is involved in the nuclear translocation of proteins and certain RNAs from the nucleus to the cytoplasm and is thus crucial for the correct localisation of cellular components. Crm1 has recently been reported to be highly expressed in certain types of cancers, yet its expression in oesophageal cancer has not been investigated to date. We investigated the expression of Crm1 in normal and tumour tissues derived from 56 patients with human oesophageal squamous cell carcinoma and its functional significance in oesophageal cancer cell line models. Immunohistochemistry revealed that Crm1 expression was significantly elevated in oesophageal tumour tissues compared to normal tissues and its localisation shifted from predominantly nuclear to nuclear and cytoplasmic. Real‑time RT‑PCR revealed that Crm1 expression was elevated at the mRNA level. To determine the functional significance of elevated Crm1 expression in oesophageal cancer, its expression was inhibited using siRNA, and a significant decrease in cell proliferation was observed associated with G1 cell cycle arrest and the induction of apoptosis. Similarly, leptomycin B (LMB) treatment resulted in the effective killing of oesophageal cancer cells at nanomolar concentrations. Normal oesophageal epithelial cells, however, were much less sensitive to Crm1 inhibition with siRNA and LMB. Together, this study reveals that Crm1 expression is increased in oesophageal cancer and is required for the proliferation and survival of oesophageal cancer cells.
Collapse
Affiliation(s)
- Pauline J van der Watt
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Widaad Zemanay
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dhirendra Govender
- Division of Anatomical Pathology, Faculty of Health Sciences, University of Cape Town, NHLS-Groote Schuur Hospital, Cape Town, South Africa
| | - Denver T Hendricks
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - M I Parker
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
37
|
Overlapping binding sites for importin β1 and suppressor of fused (SuFu) on glioma-associated oncogene homologue 1 (Gli1) regulate its nuclear localization. Biochem J 2014; 461:469-76. [DOI: 10.1042/bj20130709] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The hedgehog signalling protein Gli1 has overlapping binding sites for the proteins importin β1 and SuFu at its N-terminus. These proteins compete to regulate the nuclear/cytoplasmic localization of Gli1, with importin β promoting nuclear import and SuFu preventing it.
Collapse
|
38
|
Ng IHW, Bogoyevitch MA, Jans DA. Cytokine-induced slowing of STAT3 nuclear import; faster basal trafficking of the STAT3β isoform. Traffic 2014; 15:946-60. [PMID: 24903907 DOI: 10.1111/tra.12181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 01/01/2023]
Abstract
The STAT3 signal transducer and activator of transcription is a key mediator of gene transcription in response to cytokines such as oncostatin M (OSM). We performed direct live cell imaging of GFP-tagged STAT3 proteins for the first time, showing transient relocalization of STAT3α to the nucleus following OSM exposure, in contrast to sustained nuclear relocalization of the shorter STAT3β spliceform. To explore this further, we applied fluorescence recovery after photobleaching (FRAP) to determine the nuclear import kinetics of STAT3α and β, as well as of a C-terminal truncation derivative STAT3ΔC comprising only the sequence shared by the spliceforms, in the absence or presence of OSM. The rates of basal nuclear import for STAT3β and STAT3ΔC were significantly faster than those for STAT3α. Strikingly, OSM slowed the import rates of all the three STAT3 proteins, whereas the import rates of GFP alone or a classical importin-mediated cargo were unaffected, with analysis of Y705F mutant derivatives for all the three STAT3 constructs, or of a S727A mutant within the unique C-terminus of STAT3α, reinforcing the contribution of specific phosphorylation to the cytokine-stimulated changes. The results introduce a new paradigm where cytokine treatment prolongs nuclear retention simultaneous with decreasing rather than increasing the rate of nuclear import.
Collapse
Affiliation(s)
- Ivan H W Ng
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, 3800, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | | | | |
Collapse
|
39
|
Lieu KG, Shim EH, Wang J, Lokareddy RK, Tao T, Cingolani G, Zambetti GP, Jans DA. The p53-induced factor Ei24 inhibits nuclear import through an importin β-binding-like domain. ACTA ACUST UNITED AC 2014; 205:301-12. [PMID: 24821838 PMCID: PMC4018778 DOI: 10.1083/jcb.201304055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The etoposide-induced protein Ei24 was initially identified as a p53-responsive, proapoptotic factor, but no clear function has been described. Here, we use a nonbiased proteomics approach to identify members of the importin (IMP) family of nuclear transporters as interactors of Ei24 and characterize an IMPβ-binding-like (IBBL) domain within Ei24. We show that Ei24 can bind specifically to IMPβ1 and IMPα2, but not other IMPs, and use a mutated IMPβ1 derivative to show that Ei24 binds to the same site on IMPβ1 as the IMPα IBB. Ectopic expression of Ei24 reduced the extent of IMPβ1- or IMPα/β1-dependent nuclear protein import specifically, whereas specific alanine substitutions within the IBBL abrogated this activity. Induction of endogenous Ei24 expression through etoposide treatment similarly inhibited nuclear import in a mouse embryonic fibroblast model. Thus, Ei24 can bind specifically to IMPβ1 and IMPα2 to impede their normal role in nuclear import, shedding new light on the cellular functions of Ei24 and its tumor suppressor role.
Collapse
Affiliation(s)
- Kim G Lieu
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Kim S, Elbaum M. A simple kinetic model with explicit predictions for nuclear transport. Biophys J 2014; 105:565-9. [PMID: 23931304 DOI: 10.1016/j.bpj.2013.04.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 04/05/2013] [Accepted: 04/08/2013] [Indexed: 11/29/2022] Open
Abstract
Molecular exchange between the cell nucleus and cytoplasm is one of the most fundamental features of eukaryotic cell biology. The nuclear pores act as a conduit of this transport, both for cargo that crosses the pore autonomously as well as that whose translocation requires an intermediary receptor. The major class of such receptors is regulated by the small GTPase Ran, via whose interaction the nucleo-cytoplasmic transport system functions as a selective molecular pump. We propose a simple analytical model for transport that includes both translocation and receptor binding kinetics. The model is suitable for steady-state kinetics such as fluorescence recovery after photobleaching. Time constants appear as a combination of parameters whose effects on measured kinetics are not separable. Competitive cargo binding to receptors and large cytoplasmic volume buffer the transport properties of any particular cargo. Specific limits to the solutions provide a qualitative insight and interpretation of nuclear transport in the cellular context. Most significantly, we find that under realistic conditions receptor binding, rather than permeability of the nuclear pores, may be rate-limiting for nucleo-cytoplasmic exchange.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
41
|
Angus L, van der Watt PJ, Leaner VD. Inhibition of the nuclear transporter, Kpnβ1, results in prolonged mitotic arrest and activation of the intrinsic apoptotic pathway in cervical cancer cells. Carcinogenesis 2014; 35:1121-31. [PMID: 24398670 DOI: 10.1093/carcin/bgt491] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The karyopherin β proteins are involved in nuclear-cytoplasmic trafficking and are crucial for protein and RNA subcellular localization. We previously showed that Kpnβ1, a nuclear importin protein, is overexpressed in cervical cancer and is critical for cervical cancer cell survival and proliferation, whereas non-cancer cells are less dependent on its expression. This study aimed to identify the mechanisms by which inhibition of Kpnβ1 results in cervical cancer cell death. We show that the inhibition of Kpnβ1 results in the induction of apoptosis and a prolonged mitotic arrest, accompanied by distinct mitotic defects in cervical cancer cells but not non-cancer cells. In cervical cancer cells, Kpnβ1 downregulation results in sustained degradation of the antiapoptotic protein, Mcl-1, and elevated Noxa expression, as well as mitochondrial membrane permeabilization resulting in the release of cytochrome C and activation of associated caspases. Although p53 becomes stabilized in Kpnβ1 knockdown cervical cancer cells, apoptosis occurs in a p53-independent manner. These results demonstrate that blocking Kpnβ1 has potential as an anticancer therapeutic approach.
Collapse
Affiliation(s)
- Liselotte Angus
- Division of Medical Biochemistry, Faculty of Health Sciences, University of Cape Town, Institute of Infectious Disease and Molecular Medicine, Cape Town 7925, South Africa
| | | | | |
Collapse
|
42
|
Regulated transport into the nucleus of herpesviridae DNA replication core proteins. Viruses 2013; 5:2210-34. [PMID: 24064794 PMCID: PMC3798897 DOI: 10.3390/v5092210] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/11/2022] Open
Abstract
The Herpesvirdae family comprises several major human pathogens belonging to three distinct subfamilies. Their double stranded DNA genome is replicated in the nuclei of infected cells by a number of host and viral products. Among the latter the viral replication complex, whose activity is strictly required for viral replication, is composed of six different polypeptides, including a two-subunit DNA polymerase holoenzyme, a trimeric primase/helicase complex and a single stranded DNA binding protein. The study of herpesviral DNA replication machinery is extremely important, both because it provides an excellent model to understand processes related to eukaryotic DNA replication and it has important implications for the development of highly needed antiviral agents. Even though all known herpesviruses utilize very similar mechanisms for amplification of their genomes, the nuclear import of the replication complex components appears to be a heterogeneous and highly regulated process to ensure the correct spatiotemporal localization of each protein. The nuclear transport process of these enzymes is controlled by three mechanisms, typifying the main processes through which protein nuclear import is generally regulated in eukaryotic cells. These include cargo post-translational modification-based recognition by the intracellular transporters, piggy-back events allowing coordinated nuclear import of multimeric holoenzymes, and chaperone-assisted nuclear import of specific subunits. In this review we summarize these mechanisms and discuss potential implications for the development of antiviral compounds aimed at inhibiting the Herpesvirus life cycle by targeting nuclear import of the Herpesvirus DNA replicating enzymes.
Collapse
|
43
|
Jarboui MA, Bidoia C, Woods E, Roe B, Wynne K, Elia G, Hall WW, Gautier VW. Nucleolar protein trafficking in response to HIV-1 Tat: rewiring the nucleolus. PLoS One 2012; 7:e48702. [PMID: 23166591 PMCID: PMC3499507 DOI: 10.1371/journal.pone.0048702] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 10/03/2012] [Indexed: 12/20/2022] Open
Abstract
The trans-activator Tat protein is a viral regulatory protein essential for HIV-1 replication. Tat trafficks to the nucleoplasm and the nucleolus. The nucleolus, a highly dynamic and structured membrane-less sub-nuclear compartment, is the site of rRNA and ribosome biogenesis and is involved in numerous cellular functions including transcriptional regulation, cell cycle control and viral infection. Importantly, transient nucleolar trafficking of both Tat and HIV-1 viral transcripts are critical in HIV-1 replication, however, the role(s) of the nucleolus in HIV-1 replication remains unclear. To better understand how the interaction of Tat with the nucleolar machinery contributes to HIV-1 pathogenesis, we investigated the quantitative changes in the composition of the nucleolar proteome of Jurkat T-cells stably expressing HIV-1 Tat fused to a TAP tag. Using an organellar proteomic approach based on mass spectrometry, coupled with Stable Isotope Labelling in Cell culture (SILAC), we quantified 520 proteins, including 49 proteins showing significant changes in abundance in Jurkat T-cell nucleolus upon Tat expression. Numerous proteins exhibiting a fold change were well characterised Tat interactors and/or known to be critical for HIV-1 replication. This suggests that the spatial control and subcellular compartimentaliation of these cellular cofactors by Tat provide an additional layer of control for regulating cellular machinery involved in HIV-1 pathogenesis. Pathway analysis and network reconstruction revealed that Tat expression specifically resulted in the nucleolar enrichment of proteins collectively participating in ribosomal biogenesis, protein homeostasis, metabolic pathways including glycolytic, pentose phosphate, nucleotides and amino acids biosynthetic pathways, stress response, T-cell signaling pathways and genome integrity. We present here the first differential profiling of the nucleolar proteome of T-cells expressing HIV-1 Tat. We discuss how these proteins collectively participate in interconnected networks converging to adapt the nucleolus dynamic activities, which favor host biosynthetic activities and may contribute to create a cellular environment supporting robust HIV-1 production.
Collapse
Affiliation(s)
- Mohamed Ali Jarboui
- Centre for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland
| | - Carlo Bidoia
- Centre for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland
| | - Elena Woods
- Centre for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland
| | - Barbara Roe
- Centre for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland
| | - Kieran Wynne
- Mass Spectrometry Resource (MSR), Conway Institute for Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin, Ireland
| | - Giuliano Elia
- Mass Spectrometry Resource (MSR), Conway Institute for Biomolecular and Biomedical Research, University College Dublin (UCD), Dublin, Ireland
| | - William W. Hall
- Centre for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland
| | - Virginie W. Gautier
- Centre for Research in Infectious Diseases (CRID), School of Medicine and Medical Science (SMMS), University College Dublin (UCD), Dublin, Ireland
| |
Collapse
|
44
|
Henderson BR. The BRCA1 Breast Cancer Suppressor: Regulation of Transport, Dynamics, and Function at Multiple Subcellular Locations. SCIENTIFICA 2012; 2012:796808. [PMID: 24278741 PMCID: PMC3820561 DOI: 10.6064/2012/796808] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/18/2012] [Indexed: 06/02/2023]
Abstract
Inherited mutations in the BRCA1 gene predispose to a higher risk of breast/ovarian cancer. The BRCA1 tumor suppressor is a 1863 amino acid protein with multiple protein interaction domains that facilitate its roles in regulating DNA repair and maintenance, cell cycle progression, transcription, and cell survival/apoptosis. BRCA1 was first identified as a nuclear phosphoprotein, but has since been shown to contain different transport sequences including nuclear export and nuclear localization signals that enable it to shuttle between specific sites within the nucleus and cytoplasm, including DNA repair foci, centrosomes, and mitochondria. BRCA1 nuclear transport and ubiquitin E3 ligase enzymatic activity are tightly regulated by the BRCA1 dimeric binding partner BARD1 and further modulated by cancer mutations and diverse signaling pathways. This paper will focus on the transport, dynamics, and multiple intracellular destinations of BRCA1 with emphasis on how regulation of these events has impact on, and determines, a broad range of important cellular functions.
Collapse
Affiliation(s)
- Beric R. Henderson
- Westmead Institute for Cancer Research, Westmead Millennium Institute at Westmead Hospital, University of Sydney, Darcy Road, P.O. Box 412, Westmead, NSW 2145, Australia
| |
Collapse
|
45
|
Venuto A, de Marco A. Conflict of interests: multiple signal peptides with diverging goals. J Cell Biochem 2012; 114:510-3. [PMID: 22991307 DOI: 10.1002/jcb.24393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/04/2012] [Indexed: 11/07/2022]
Abstract
Peptide signal sequences attached to or embedded into a core protein sequence control its cellular localization and several post-translational modifications. However, misleading or cumbersome results may be generated when expressing recombinant proteins with modified signal peptides or single domains of larger proteins.
Collapse
Affiliation(s)
- Annunziata Venuto
- University of Nova Gorica (UNG), PO Box 301, Rožna Dolina (Nova Gorica) 5000, Slovenia
| | | |
Collapse
|