1
|
Zhong Y, Zhang X, Feng R, Fan Y, Zhang Z, Zhang QW, Wan JB, Wang Y, Yu H, Li G. OGG1: An emerging multifunctional therapeutic target for the treatment of diseases caused by oxidative DNA damage. Med Res Rev 2024; 44:2825-2848. [PMID: 39119702 DOI: 10.1002/med.22068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
Oxidative DNA damage-related diseases, such as incurable inflammation, malignant tumors, and age-related disorders, present significant challenges in modern medicine due to their complex molecular mechanisms and limitations in identifying effective treatment targets. Recently, 8-oxoguanine DNA glycosylase 1 (OGG1) has emerged as a promising multifunctional therapeutic target for the treatment of these challenging diseases. In this review, we systematically summarize the multiple functions and mechanisms of OGG1, including pro-inflammatory, tumorigenic, and aging regulatory mechanisms. We also highlight the potential of OGG1 inhibitors and activators as potent therapeutic agents for the aforementioned life-limiting diseases. We conclude that OGG1 serves as a multifunctional hub; the inhibition of OGG1 may provide a novel approach for preventing and treating inflammation and cancer, and the activation of OGG1 could be a strategy for preventing age-related disorders. Furthermore, we provide an extensive overview of successful applications of OGG1 regulation in treating inflammatory, cancerous, and aging-related diseases. Finally, we discuss the current challenges and future directions of OGG1 as an emerging multifunctional therapeutic marker for the aforementioned challenging diseases. The aim of this review is to provide a robust reference for scientific researchers and clinical drug developers in the development of novel clinical targeted drugs for life-limiting diseases, especially for incurable inflammation, malignant tumors, and age-related disorders.
Collapse
Affiliation(s)
- Yunxiao Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, China
| | - Xinya Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, China
| | - Ruibing Feng
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yu Fan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MoE) of People's Republic of China, College of Pharmacy, Jinan University, Guangzhou, China
- Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Qing-Wen Zhang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jian-Bo Wan
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yitao Wang
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Hua Yu
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Guodong Li
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
- Zhuhai UM Science and Technology Research Institute, Zhuhai, China
| |
Collapse
|
2
|
Wu T, Lu Y, Yu Y, Hua Y, Ge G, Zhao W, Chen K, Zhong Z, Zhang F. Long noncoding RNA AK144717 exacerbates pathological cardiac hypertrophy through modulating the cellular distribution of HMGB1 and subsequent DNA damage response. Cell Mol Life Sci 2024; 81:432. [PMID: 39395058 PMCID: PMC11470913 DOI: 10.1007/s00018-024-05464-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024]
Abstract
DNA damage induced by oxidative stress during cardiac hypertrophy activates the ataxia telangiectasia mutated (ATM)-mediated DNA damage response (DDR) signaling, in turn aggravating the pathological cardiomyocyte growth. This study aims to identify the functional associations of long noncoding RNA (lncRNAs) with cardiac hypertrophy and DDR. The altered ventricular lncRNAs in the mice between sham and transverse aortic constriction (TAC) group were identified by microarray analysis, and a novel lncRNA AK144717 was found to gradually upregulate during the development of pathological cardiac hypertrophy induced by TAC surgery or angiotensin II (Ang II) stimulation. Silencing AK144717 had a similar anti-hypertrophic effect to that of ATM inhibitor KU55933 and also suppressed the activated ATM-DDR signaling induced by hypertrophic stimuli. The involvement of AK144717 in DDR and cardiac hypertrophy was closely related to its interaction with HMGB1, as silencing HMGB1 abolished the effects of AK144717 knockdown. The binding of AK144717 to HMGB1 prevented the interaction between HMGB1 and SIRT1, contributing to the increased acetylation and then cytosolic translocation of HMGB1. Overall, our study highlights the role of AK144717 in the hypertrophic response by interacting with HMGB1 and regulating DDR, hinting that AK144717 is a promising therapeutic target for pathological cardiac growth.
Collapse
Affiliation(s)
- Tianyu Wu
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Yao Lu
- Department of Cardiology, Xuzhou Central Hospital, The Xuzhou School of Clinical Medicine of Nanjing Medical University, No.199 Jiefang South Road, Xuzhou, 221009, PR China
| | - Yue Yu
- Department of Cardiology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Zhongshan Road 321, Nanjing, 210029, PR China
| | - Yan Hua
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Gaoyuan Ge
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Wei Zhao
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Kaiyan Chen
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Zhuen Zhong
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China
| | - Fengxiang Zhang
- Section of Pacing and Electrophysiology, Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Guangzhou Road 300, Nanjing, 210029, PR China.
| |
Collapse
|
3
|
Tong R, Li Y, Yu X, Zhang N, Liao Q, Pan L. The mechanism of reactive oxygen species generation, DNA damage and apoptosis in hemocytes of Litopenaeus vannamei under ammonia nitrogen exposure. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106958. [PMID: 38776609 DOI: 10.1016/j.aquatox.2024.106958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Ammonia-N poses a significant threat to aquatic animals. However, the mechanism of ROS production leading to DNA damage in hemocytes of crustaceans is still unclear. Additionally, the mechanism that cells respond to DNA damage by activating complex signaling networks has not been well studied. Therefore, we exposed shrimp to 0, 2, 10, and 20 mg/L NH4Cl for 0, 3, 6, 12, 24, 48, and 72 h, and explored the alterations in endoplasmic reticulum stress and mitochondrial fission, DNA damage, repair, autophagy and apoptosis. The findings revealed that ammonia exposure led to an increase in plasma ammonia content and neurotransmitter content (DA, 5-HT, ACh), and significant changes in gene expression of PLC and Ca2+ levels. The expression of disulfide bond formation-related genes (PDI, ERO1) and mitochondrial fission-related genes (Drp1, FIS1) were significantly increased, and the unfolded protein response was initiated. Simultaneously, ammonia-N exposure leads to an increase in ROS levels in hemocytes, resulting in DNA damage. DNA repair and autophagy were considerably influenced by ammonia-N exposure, as evidenced by changes in DNA repair and autophagy-related genes in hemocytes. Subsequently, apoptosis was induced by ammonia-N exposure, and this activation was associated with a caspase-dependent pathway and caspase-independent pathway, ultimately leading to a decrease in total hemocytes count. Overall, we hypothesized that neurotransmitters in the plasma of shrimp after ammonia-N exposure bind to receptors on hemocytes membrane, causing endoplasmic reticulum stress through the PLC-IP3R-Ca2+ signaling pathway and leading to mitochondrial fission. Consequently, this process resulted in increased ROS levels, hindered DNA repair, suppressed autophagy, and activated apoptosis. These cascading effects ultimately led to a reduction in total hemocytes count. The present study provides a molecular support for the understanding of the detrimental toxicity of ammonia-N exposure to crustaceans.
Collapse
Affiliation(s)
- Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yaobing Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Xin Yu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Ning Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qilong Liao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
4
|
Cao L, Wang X, Li X, Ma L, Li Y. Identification of Co-diagnostic Genes for Heart Failure and Hepatocellular Carcinoma Through WGCNA and Machine Learning Algorithms. Mol Biotechnol 2024; 66:1229-1245. [PMID: 38236461 DOI: 10.1007/s12033-023-01025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
This research delves into the intricate relationship between hepatocellular carcinoma (HCC) and heart failure (HF) by exploring shared genetic characteristics and molecular processes. Employing advanced methodologies such as differential analysis, weighted correlation network analysis (WGCNA), and algorithms like Random Forest (RF), Least Absolute Shrinkage Selection (LASSO), and XGBoost, we meticulously identified modular differential genes (DEGs) associated with both HF and HCC. Gene Set Variation Analysis (GSVA) and single sample gene set enrichment analysis (ssGSEA) were employed to unveil underlying biological mechanisms. The study revealed 88 core genes shared between HF and HCC, indicating a common mechanism. Enrichment analysis emphasized the roles of immune responses and inflammation in both diseases. Leveraging XGBoost, we crafted a robust multigene diagnostic model (including FCN3, MAP2K1, AP3M2, CDH19) with an area under the curve (AUC) > 0.9, showcasing exceptional predictive accuracy. GSVA and ssGSEA analyses unveiled the involvement of immune cells and metabolic pathways in the pathogenesis of HF and HCC. This research uncovers a pivotal interplay between HF and HCC, highlighting shared pathways and key genes, offering promising insights for future clinical treatments and experimental research endeavors.
Collapse
Affiliation(s)
- Lizhi Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaoying Wang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China
| | - Xin Li
- Physical Examination Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Linlin Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China.
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
5
|
Cherbuin N, Patel H, Walsh EI, Ambikairajah A, Burns R, Brüstle A, Rasmussen LJ. Cognitive Function Is Associated with the Genetically Determined Efficiency of DNA Repair Mechanisms. Genes (Basel) 2024; 15:153. [PMID: 38397143 PMCID: PMC10888195 DOI: 10.3390/genes15020153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Several modifiable risk factors for neurodegeneration and dementia have been identified, although individuals vary in their vulnerability despite a similar risk of exposure. This difference in vulnerability could be explained at least in part by the variability in DNA repair mechanisms' efficiency between individuals. Therefore, the aim of this study was to test associations between documented, prevalent genetic variation (single nucleotide polymorphism, SNP) in DNA repair genes, cognitive function, and brain structure. Community-living participants (n = 488,159; 56.54 years (8.09); 54.2% female) taking part in the UK Biobank study and for whom cognitive and genetic measures were available were included. SNPs in base excision repair (BER) genes of the bifunctional DNA glycosylases OGG1 (rs1052133, rs104893751), NEIL1 (rs7402844, rs5745906), NEIL2 (rs6601606), NEIL3 (rs10013040, rs13112390, rs13112358, rs1395479), MUTYH (rs34612342, rs200165598), NTHL1 (rs150766139, rs2516739) were considered. Cognitive measures included fluid intelligence, the symbol-digit matching task, visual matching, and trail-making. Hierarchical regression and latent class analyses were used to test the associations between SNPs and cognitive measures. Associations between SNPs and brain measures were also tested in a subset of 39,060 participants. Statistically significant associations with cognition were detected for 12 out of the 13 SNPs analyzed. The strongest effects amounted to a 1-6% difference in cognitive function detected for NEIL1 (rs7402844), NEIL2 (rs6601606), and NTHL1 (rs2516739). Associations varied by age and sex, with stronger effects detected in middle-aged women. Weaker associations with brain measures were also detected. Variability in some BER genes is associated with cognitive function and brain structure and may explain variability in the risk for neurodegeneration and dementia.
Collapse
Affiliation(s)
- Nicolas Cherbuin
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (E.I.W.); (A.A.); (R.B.)
| | - Hardip Patel
- John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia; (H.P.); (A.B.)
| | - Erin I. Walsh
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (E.I.W.); (A.A.); (R.B.)
| | - Ananthan Ambikairajah
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (E.I.W.); (A.A.); (R.B.)
- Discipline of Psychology, University of Canberra, Canberra 2617, Australia
- Centre for Ageing Research and Translation, Faculty of Health, University of Canberra, Canberra 2617, Australia
| | - Richard Burns
- National Centre for Epidemiology and Population Health, Australian National University, Canberra 2601, Australia; (E.I.W.); (A.A.); (R.B.)
| | - Anne Brüstle
- John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia; (H.P.); (A.B.)
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark;
| |
Collapse
|
6
|
Nikfarjam S, Singh KK. DNA damage response signaling: A common link between cancer and cardiovascular diseases. Cancer Med 2023; 12:4380-4404. [PMID: 36156462 PMCID: PMC9972122 DOI: 10.1002/cam4.5274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
DNA damage response (DDR) signaling ensures genomic and proteomic homeostasis to maintain a healthy genome. Dysregulation either in the form of down- or upregulation in the DDR pathways correlates with various pathophysiological states, including cancer and cardiovascular diseases (CVDs). Impaired DDR is studied as a signature mechanism for cancer; however, it also plays a role in ischemia-reperfusion injury (IRI), inflammation, cardiovascular function, and aging, demonstrating a complex and intriguing relationship between cancer and pathophysiology of CVDs. Accordingly, there are increasing number of reports indicating higher incidences of CVDs in cancer patients. In the present review, we thoroughly discuss (1) different DDR pathways, (2) the functional cross talk among different DDR mechanisms, (3) the role of DDR in cancer, (4) the commonalities and differences of DDR between cancer and CVDs, (5) the role of DDR in pathophysiology of CVDs, (6) interventional strategies for targeting genomic instability in CVDs, and (7) future perspective.
Collapse
Affiliation(s)
- Sepideh Nikfarjam
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Krishna K Singh
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
7
|
OGG1 in the Kidney: Beyond Base Excision Repair. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5774641. [PMID: 36620083 PMCID: PMC9822757 DOI: 10.1155/2022/5774641] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/01/2023]
Abstract
8-Oxoguanine DNA glycosylase (OGG1) is a repair protein for 8-oxoguanine (8-oxoG) in eukaryotic atopic DNA. Through the initial base excision repair (BER) pathway, 8-oxoG is recognized and excised, and subsequently, other proteins are recruited to complete the repair. OGG1 is primarily located in the cytoplasm and can enter the nucleus and mitochondria to repair damaged DNA or to exert epigenetic regulation of gene transcription. OGG1 is involved in a wide range of physiological processes, such as DNA repair, oxidative stress, inflammation, fibrosis, and autophagy. In recent years, studies have found that OGG1 plays an important role in the progression of kidney diseases through repairing DNA, inducing inflammation, regulating autophagy and other transcriptional regulation, and governing protein interactions and functions during disease and injury. In particular, the epigenetic effects of OGG1 in kidney disease have gradually attracted widespread attention. This study reviews the structure and biological functions of OGG1 and the regulatory mechanism of OGG1 in kidney disease. In addition, the possibility of OGG1 as a potential therapeutic target in kidney disease is discussed.
Collapse
|
8
|
Stadiotti I, Santoro R, Scopece A, Pirola S, Guarino A, Polvani G, Maione AS, Ascione F, Li Q, Delia D, Foiani M, Pompilio G, Sommariva E. Pressure Overload Activates DNA-Damage Response in Cardiac Stromal Cells: A Novel Mechanism Behind Heart Failure With Preserved Ejection Fraction? Front Cardiovasc Med 2022; 9:878268. [PMID: 35811699 PMCID: PMC9259931 DOI: 10.3389/fcvm.2022.878268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome characterized by impaired left ventricular (LV) diastolic function, with normal LV ejection fraction. Aortic valve stenosis can cause an HFpEF-like syndrome by inducing sustained pressure overload (PO) and cardiac remodeling, as cardiomyocyte (CM) hypertrophy and fibrotic matrix deposition. Recently, in vivo studies linked PO maladaptive myocardial changes and DNA damage response (DDR) activation: DDR-persistent activation contributes to mouse CM hypertrophy and inflammation, promoting tissue remodeling, and HF. Despite the wide acknowledgment of the pivotal role of the stromal compartment in the fibrotic response to PO, the possible effects of DDR-persistent activation in cardiac stromal cell (C-MSC) are still unknown. Finally, this novel mechanism was not verified in human samples. This study aims to unravel the effects of PO-induced DDR on human C-MSC phenotypes. Human LV septum samples collected from severe aortic stenosis with HFpEF-like syndrome patients undergoing aortic valve surgery and healthy controls (HCs) were used both for histological tissue analyses and C-MSC isolation. PO-induced mechanical stimuli were simulated in vitro by cyclic unidirectional stretch. Interestingly, HFpEF tissue samples revealed DNA damage both in CM and C-MSC. DDR-activation markers γH2AX, pCHK1, and pCHK2 were expressed at higher levels in HFpEF total tissue than in HC. Primary C-MSC isolated from HFpEF and HC subjects and expanded in vitro confirmed the increased γH2AX and phosphorylated checkpoint protein expression, suggesting a persistent DDR response, in parallel with a higher expression of pro-fibrotic and pro-inflammatory factors respect to HC cells, hinting to a DDR-driven remodeling of HFpEF C-MSC. Pressure overload was simulated in vitro, and persistent activation of the CHK1 axis was induced in response to in vitro mechanical stretching, which also increased C-MSC secreted pro-inflammatory and pro-fibrotic molecules. Finally, fibrosis markers were reverted by the treatment with a CHK1/ATR pathway inhibitor, confirming a cause-effect relationship. In conclusion we demonstrated that, in severe aortic stenosis with HFpEF-like syndrome patients, PO induces DDR-persistent activation not only in CM but also in C-MSC. In C-MSC, DDR activation leads to inflammation and fibrosis, which can be prevented by specific DDR targeting.
Collapse
Affiliation(s)
- Ilaria Stadiotti
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Rosaria Santoro
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
- Department of Electronics, Information and Biomedical Engineering, Politecnico di Milano, Milan, Italy
- *Correspondence: Rosaria Santoro
| | - Alessandro Scopece
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Sergio Pirola
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Anna Guarino
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Gianluca Polvani
- Department of Cardiovascular Surgery, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
- Cardiovascular Tissue Bank of Milan, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| | - Flora Ascione
- IFOM (Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Qingsen Li
- IFOM (Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Domenico Delia
- IFOM (Istituto FIRC di Oncologia Molecolare), Milan, Italy
| | - Marco Foiani
- IFOM (Istituto FIRC di Oncologia Molecolare), Milan, Italy
- Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Giulio Pompilio
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Sommariva
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico), Milan, Italy
| |
Collapse
|
9
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
10
|
8-Oxoguanine DNA Glycosylase (OGG1) Deficiency Exacerbates Doxorubicin-Induced Cardiac Dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9180267. [PMID: 35391931 PMCID: PMC8981022 DOI: 10.1155/2022/9180267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/13/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
Abstract
Doxorubicin is an anthracycline widely used for the treatment of various cancers; however, the drug has a common deleterious side effect, namely a dose-dependent cardiotoxicity. Doxorubicin treatment increases the generation of reactive oxygen species, which leads to oxidative stress in the cardiac cells and ultimately DNA damage and cell death. The most common DNA lesion produced by oxidative stress is 7,8-dihydro-8-oxoguanine (8-oxoguanine), and the enzyme responsible for its repair is the 8-oxoguanine DNA glycosylase (OGG1), a base excision repair enzyme. Here, we show that the OGG1 deficiency has no major effect on cardiac function at baseline or with pressure overload; however, we found an exacerbation of cardiac dysfunction as well as a higher mortality in Ogg1 knockout mice treated with doxorubicin. Our transcriptomic analysis also showed a more extensive dysregulation of genes in the hearts of Ogg1 knockout mice with an enrichment of genes involved in inflammation. These results demonstrate that OGG1 attenuates doxorubicin-induced cardiotoxicity and thus plays a role in modulating drug-induced cardiomyopathy.
Collapse
|
11
|
Wu L, Sowers JR, Zhang Y, Ren J. OUP accepted manuscript. Cardiovasc Res 2022; 119:691-709. [PMID: 35576480 DOI: 10.1093/cvr/cvac080] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) arise from a complex interplay among genomic, proteomic, and metabolomic abnormalities. Emerging evidence has recently consolidated the presence of robust DNA damage in a variety of cardiovascular disorders. DNA damage triggers a series of cellular responses termed DNA damage response (DDR) including detection of DNA lesions, cell cycle arrest, DNA repair, cellular senescence, and apoptosis, in all organ systems including hearts and vasculature. Although transient DDR in response to temporary DNA damage can be beneficial for cardiovascular function, persistent activation of DDR promotes the onset and development of CVDs. Moreover, therapeutic interventions that target DNA damage and DDR have the potential to attenuate cardiovascular dysfunction and improve disease outcome. In this review, we will discuss molecular mechanisms of DNA damage and repair in the onset and development of CVDs, and explore how DDR in specific cardiac cell types contributes to CVDs. Moreover, we will highlight the latest advances regarding the potential therapeutic strategies targeting DNA damage signalling in CVDs.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - James R Sowers
- Diabetes and Cardiovascular Research Center, University of Missouri Columbia, Columbia, MO 65212, USA
| | - Yingmei Zhang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Epiney DG, Salameh C, Cassidy D, Zhou LT, Kruithof J, Milutinović R, Andreani TS, Schirmer AE, Bolterstein E. Characterization of Stress Responses in a Drosophila Model of Werner Syndrome. Biomolecules 2021; 11:1868. [PMID: 34944512 PMCID: PMC8699552 DOI: 10.3390/biom11121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
As organisms age, their resistance to stress decreases while their risk of disease increases. This can be shown in patients with Werner syndrome (WS), which is a genetic disease characterized by accelerated aging along with increased risk of cancer and metabolic disease. WS is caused by mutations in WRN, a gene involved in DNA replication and repair. Recent research has shown that WRN mutations contribute to multiple hallmarks of aging including genomic instability, telomere attrition, and mitochondrial dysfunction. However, questions remain regarding the onset and effect of stress on early aging. We used a fly model of WS (WRNexoΔ) to investigate stress response during different life stages and found that stress sensitivity varies according to age and stressor. While larvae and young WRNexoΔ adults are not sensitive to exogenous oxidative stress, high antioxidant activity suggests high levels of endogenous oxidative stress. WRNexoΔ adults are sensitive to stress caused by elevated temperature and starvation suggesting abnormalities in energy storage and a possible link to metabolic dysfunction in WS patients. We also observed higher levels of sleep in aged WRNexoΔ adults suggesting an additional adaptive mechanism to protect against age-related stress. We suggest that stress response in WRNexoΔ is multifaceted and evokes a systemic physiological response to protect against cellular damage. These data further validate WRNexoΔ flies as a WS model with which to study mechanisms of early aging and provide a foundation for development of treatments for WS and similar diseases.
Collapse
Affiliation(s)
- Derek G. Epiney
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Charlotte Salameh
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Deirdre Cassidy
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Luhan T. Zhou
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Joshua Kruithof
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Rolan Milutinović
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Tomas S. Andreani
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA;
| | - Aaron E. Schirmer
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| | - Elyse Bolterstein
- Department of Biology, Northeastern Illinois University, Chicago, IL 60625, USA; (D.G.E.); (C.S.); (D.C.); (L.T.Z.); (J.K.); (R.M.); (A.E.S.)
| |
Collapse
|
13
|
Mesquita A, Glenn J, Jenny A. Differential activation of eMI by distinct forms of cellular stress. Autophagy 2021; 17:1828-1840. [PMID: 32559125 PMCID: PMC8386722 DOI: 10.1080/15548627.2020.1783833] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
As one of the major, highly conserved catabolic pathways, autophagy delivers cytosolic components to lysosomes for degradation. It is essential for development, cellular homeostasis, and coping with stress. Reduced autophagy increases susceptibility to protein aggregation diseases and leads to phenotypes associated with aging. Of the three major forms of autophagy, macroautophagy (MA) can degrade organelles or aggregated proteins, and chaperone-mediated autophagy is specific for soluble proteins containing KFERQ-related targeting motifs. During endosomal microautophagy (eMI), cytoplasmic proteins are engulfed into late endosomes in an ESCRT machinery-dependent manner. eMI can be KFERQ-specific or occur in bulk and be induced by prolonged starvation. Its physiological regulation and function, however, are not understood. Here, we show that eMI in the Drosophila fat body, akin to the mammalian liver, is induced upon oxidative or genotoxic stress in an ESCRT and partially Hsc70-4-dependent manner. Interestingly, eMI activation is selective, as ER stress fails to elicit a response. Intriguingly, we find that reducing MA leads to a compensatory enhancement of eMI, suggesting a tight interplay between these degradative processes. Furthermore, we show that mutations in DNA damage response genes are sufficient to trigger eMI and that the response to oxidative stress is under the control of MAPK/JNK signaling. Our data suggest that, controlled by various signaling pathways, eMI allows an organ to react and adapt to specific types of stress and is thus likely critical to prevent disease.Abbreviations:Atg: autophagy-related; CMA: chaperone-mediated autophagy; DDR: DNA damage repair; Df: deficiency (deletion); (E)GFP: (enhanced) green fluorescent protein; eMI: endosomal microautophagy; ER: endoplasmatic reticulum; ESCRT: endosomal sorting complexes required for transport; Eto: etoposide; FLP: flipase; Hsc: heat shock cognate protein; LAMP2A: lysosomal-associated membrane protein 2A; LE: late endosome; MA: macroautophagy; MI: microautophagy; MVB: multivesicular body; PA: photoactivatable; Para: paraquat; ROS: reactive oxygen species; SEM: standard error of means; Tor: target of rapamycin [serine/threonine kinase]; UPR: unfolded protein response; Vps: vacuolar protein sorting.
Collapse
Affiliation(s)
- Ana Mesquita
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, US
| | - James Glenn
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, US
| | - Andreas Jenny
- Department of Developmental and Molecular Biology, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, US
- Department of Genetics, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, US
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, New York, NY, US
| |
Collapse
|
14
|
Onoue K, Wakimoto H, Jiang J, Parfenov M, DePalma S, Conner D, Gorham J, McKean D, Seidman JG, Seidman CE, Saito Y. Cardiomyocyte Proliferative Capacity Is Restricted in Mice With Lmna Mutation. Front Cardiovasc Med 2021; 8:639148. [PMID: 34250035 PMCID: PMC8260675 DOI: 10.3389/fcvm.2021.639148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/21/2021] [Indexed: 02/01/2023] Open
Abstract
LMNA is one of the leading causative genes of genetically inherited dilated cardiomyopathy (DCM). Unlike most DCM-causative genes, which encode sarcomeric or sarcomere-related proteins, LMNA encodes nuclear envelope proteins, lamin A and C, and does not directly associate with contractile function. However, a mutation in this gene could lead to the development of DCM. The molecular mechanism of how LMNA mutation contributes to DCM development remains largely unclear and yet to be elucidated. The objective of this study was to clarify the mechanism of developing DCM caused by LMNA mutation. Methods and Results: We assessed cardiomyocyte phenotypes and characteristics focusing on cell cycle activity in mice with Lmna mutation. Both cell number and cell size were reduced, cardiomyocytes were immature, and cell cycle activity was retarded in Lmna mutant mice at both 5 weeks and 2 years of age. RNA-sequencing and pathway analysis revealed "proliferation of cells" had the most substantial impact on Lmna mutant mice. Cdkn1a, which encodes the cell cycle regulating protein p21, was strongly upregulated in Lmna mutants, and upregulation of p21 was confirmed by Western blot and immunostaining. DNA damage, which is known to upregulate Cdkn1a, was more abundantly detected in Lmna mutant mice. To assess the proliferative capacity of cardiomyocytes, the apex of the neonate mouse heart was resected, and recovery from the insult was observed. A restricted cardiomyocyte proliferating capacity after resecting the apex of the heart was observed in Lmna mutant mice. Conclusions: Our results strongly suggest that loss of lamin function contributes to impaired cell proliferation through cell cycle defects. The inadequate inborn or responsive cell proliferation capacity plays an essential role in developing DCM with LMNA mutation.
Collapse
Affiliation(s)
- Kenji Onoue
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Jiangming Jiang
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Michael Parfenov
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Steven DePalma
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - David Conner
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - David McKean
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, United States.,Division of Cardiovascular Medicine, Howard Hughes Medical Institute, Brigham and Women's Hospital, Boston, MA, United States
| | - Yoshihiko Saito
- Department of Cardiovascular Medicine, Nara Medical University, Kashihara, Japan
| |
Collapse
|
15
|
Demirbağ-Sarikaya S, Çakir H, Gözüaçik D, Akkoç Y. Crosstalk between autophagy and DNA repair systems. ACTA ACUST UNITED AC 2021; 45:235-252. [PMID: 34377049 PMCID: PMC8313936 DOI: 10.3906/biy-2103-51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Autophagy and DNA repair are two essential biological mechanisms that maintain cellular homeostasis. Impairment of these mechanisms was associated with several pathologies such as premature aging, neurodegenerative diseases, and cancer. Intrinsic or extrinsic stress stimuli (e.g., reactive oxygen species or ionizing radiation) cause DNA damage. As a biological stress response, autophagy is activated following insults that threaten DNA integrity. Hence, in collaboration with DNA damage repair and response mechanisms, autophagy contributes to the maintenance of genomic stability and integrity. Yet, connections and interactions between these two systems are not fully understood. In this review article, current status of the associations and crosstalk between autophagy and DNA repair systems is documented and discussed.
Collapse
Affiliation(s)
| | - Hatice Çakir
- SUNUM Nanotechnology Research and Application Center, İstanbul Turkey
| | - Devrim Gözüaçik
- SUNUM Nanotechnology Research and Application Center, İstanbul Turkey.,Koç University School of Medicine, İstanbul Turkey.,Koç University Research Center for Translational Medicine (KUTTAM), İstanbul Turkey
| | - Yunus Akkoç
- Koç University Research Center for Translational Medicine (KUTTAM), İstanbul Turkey
| |
Collapse
|
16
|
Sato M, Kadomatsu T, Miyata K, Warren JS, Tian Z, Zhu S, Horiguchi H, Makaju A, Bakhtina A, Morinaga J, Sugizaki T, Hirashima K, Yoshinobu K, Imasaka M, Araki M, Komohara Y, Wakayama T, Nakagawa S, Franklin S, Node K, Araki K, Oike Y. The lncRNA Caren antagonizes heart failure by inactivating DNA damage response and activating mitochondrial biogenesis. Nat Commun 2021; 12:2529. [PMID: 33953175 PMCID: PMC8099897 DOI: 10.1038/s41467-021-22735-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
In the past decade, many long noncoding RNAs (lncRNAs) have been identified and their in vitro functions defined, although in some cases their functions in vivo remain less clear. Moreover, unlike nuclear lncRNAs, the roles of cytoplasmic lncRNAs are less defined. Here, using a gene trapping approach in mouse embryonic stem cells, we identify Caren (short for cardiomyocyte-enriched noncoding transcript), a cytoplasmic lncRNA abundantly expressed in cardiomyocytes. Caren maintains cardiac function under pathological stress by inactivating the ataxia telangiectasia mutated (ATM)-DNA damage response (DDR) pathway and activating mitochondrial bioenergetics. The presence of Caren transcripts does not alter expression of nearby (cis) genes but rather decreases translation of an mRNA transcribed from a distant gene encoding histidine triad nucleotide-binding protein 1 (Hint1), which activates the ATM-DDR pathway and reduces mitochondrial respiratory capacity in cardiomyocytes. Therefore, the cytoplasmic lncRNA Caren functions in cardioprotection by regulating translation of a distant gene and maintaining cardiomyocyte homeostasis.
Collapse
Affiliation(s)
- Michio Sato
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
- Division of Kumamoto Mouse Clinic (KMC), Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Kadomatsu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishi Miyata
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Immunity, Allergy, and Vascular Biology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junco S Warren
- Division of Kumamoto Mouse Clinic (KMC), Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Zhe Tian
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shunshun Zhu
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Haruki Horiguchi
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Aman Makaju
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Anna Bakhtina
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - Jun Morinaga
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Taichi Sugizaki
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kaname Hirashima
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kumiko Yoshinobu
- Division of Bioinformatics, Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Mai Imasaka
- Division of Developmental Genetics, Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Masatake Araki
- Division of Bioinformatics, Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomohiko Wakayama
- Department of Histology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Koichi Node
- Department of Cardiovascular Medicine, School of Medicine, Saga University, Saga, Japan
| | - Kimi Araki
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Division of Developmental Genetics, Institute of Resource Developmental and Analysis (IRDA), Kumamoto University, Kumamoto, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
- Center for Metabolic Regulation of Healthy Aging (CMHA), Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
- Department of Aging and Geriatric Medicine, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
17
|
Chen S, Wu Y, Qin X, Wen P, Liu J, Yang M. Global gene expression analysis using RNA-seq reveals the new roles of Panax notoginseng Saponins in ischemic cardiomyocytes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113639. [PMID: 33301914 DOI: 10.1016/j.jep.2020.113639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/10/2020] [Accepted: 11/23/2020] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax notoginseng saponins (PNS), the main active ingredients of Panax notoginseng (Burkill) F.H.Chen, have been clinically used for cardiovascular diseases treatment in China as the Traditional Chinese Medicine (TCM) (Duan et al., 2017). Evidence demonstrated that PNS protected cardiomyocytes from myocardial ischemia, but the more underlying molecular mechanisms of the protective effect are still unclear. The aims of this study are to systematically know the function of PNS and discover new roles of PNS in ischemic cardiomyocytes. MATERIALS AND METHODS To confirm PNS function on ischemic cardiomyopathy, we established in vitro myocardial ischemia model on H9C2 cardiomyocyte line, which was induced by oxygen-glucose depletion (OGD). Then RNA-seq was carried out to systematically analyze global gene expression. This study was aimed to systematically investigate the protective effect and more potential molecular mechanisms of PNS on H9C2 cardiomyocytes in vitro through whole-transcriptome analysis with total RNA sequencing (RNA-Seq). RESULTS PNS exhibited anti-apoptotic effect in H9C2 cardiomyocytes in OGD-induced myocardial ischemia model. Through RNA-seq, we found that OGD affected expression profiling of many genes, including upregulated and downregulated genes. PNS inhibited cardiomyocyte apoptosis and death through rescuing cell cycle arrest, the DNA double-strand breakage repair process and chromosome segregation. Interestingly, for the canonical signaling pathways regulation, RNA-seq showed PNS could inhibit cardiac hypertrophy, MAPK signaling pathway, and re-activate PI3K/AKT and AMPK signaling pathways. Experimental data also confirmed the PNS could protect cardiomyocytes from OGD-induced apoptosis through activating PI3K/AKT and AMPK signaling pathways. Moreover, RNA-seq demonstrated that the expression levels of many non-coding RNAs, such as miRNAs and lncRNAs, were significantly affected after PNS treatment, suggesting that PNS could protect cardiomyocytes through regulating non-coding RNAs. CONCLUSION RNA-seq systematically revealed different novel roles of Panax Notoginseng Saponins (PNS) in protecting cardiomyocytes from apoptosis, induced by myocardial ischemia, through rescuing cell cycle arrest and cardiac hypertrophy, re-activating the DNA double-strand breakage repair process, chromosome segregation, PI3K/Akt and AMPK signaling pathways and regulating non-coding RNAs.
Collapse
Affiliation(s)
- Shaoxian Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China; Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Yueheng Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China; Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Xianyu Qin
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Pengju Wen
- Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Juli Liu
- Department of Pediatrics, Indiana University School of Medicine, 1044 W Walnut St, Indianapolis, 46202, IN, USA.
| | - Min Yang
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
18
|
Deligiorgi MV, Liapi C, Trafalis DT. How Far Are We from Prescribing Fasting as Anticancer Medicine? Int J Mol Sci 2020; 21:ijms21239175. [PMID: 33271979 PMCID: PMC7730661 DOI: 10.3390/ijms21239175] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
(1) Background: the present review provides a comprehensive and up-to date overview of the potential exploitation of fasting as an anticancer strategy. The rationale for this concept is that fasting elicits a differential stress response in the setting of unfavorable conditions, empowering the survival of normal cells, while killing cancer cells. (2) Methods: the present narrative review presents the basic aspects of the hormonal, molecular, and cellular response to fasting, focusing on the interrelationship of fasting with oxidative stress. It also presents nonclinical and clinical evidence concerning the implementation of fasting as adjuvant to chemotherapy, highlighting current challenges and future perspectives. (3) Results: there is ample nonclinical evidence indicating that fasting can mitigate the toxicity of chemotherapy and/or increase the efficacy of chemotherapy. The relevant clinical research is encouraging, albeit still in its infancy. The path forward for implementing fasting in oncology is a personalized approach, entailing counteraction of current challenges, including: (i) patient selection; (ii) fasting patterns; (iii) timeline of fasting and refeeding; (iv) validation of biomarkers for assessment of fasting; and (v) establishment of protocols for patients’ monitoring. (4) Conclusion: prescribing fasting as anticancer medicine may not be far away if large randomized clinical trials consolidate its safety and efficacy.
Collapse
|
19
|
Ambrosio S, Majello B. Autophagy Roles in Genome Maintenance. Cancers (Basel) 2020; 12:E1793. [PMID: 32635505 PMCID: PMC7407194 DOI: 10.3390/cancers12071793] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, a considerable correlation has emerged between autophagy and genome integrity. A range of mechanisms appear to be involved where autophagy participates in preventing genomic instability, as well as in DNA damage response and cell fate decision. These initial findings have attracted particular attention in the context of malignancy; however, the crosstalk between autophagy and DNA damage response is just beginning to be explored and key questions remain that need to be addressed, to move this area of research forward and illuminate the overall consequence of targeting this process in human therapies. Here we present current knowledge on the complex crosstalk between autophagy and genome integrity and discuss its implications for cancer cell survival and response to therapy.
Collapse
Affiliation(s)
- Susanna Ambrosio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Naples, Italy;
| | - Barbara Majello
- Department of Biology, University of Naples ‘Federico II’, 80138 Naples, Italy
| |
Collapse
|
20
|
|
21
|
Autophagy as a Cellular Stress Response Mechanism in the Nervous System. J Mol Biol 2020; 432:2560-2588. [PMID: 31962122 DOI: 10.1016/j.jmb.2020.01.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/11/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022]
Abstract
Cells of an organism face with various types of insults during their lifetime. Exposure to toxins, metabolic problems, ischaemia/reperfusion, physical trauma, genetic diseases, neurodegenerative diseases are among the conditions that trigger cellular stress responses. In this context, autophagy is one of the mechanisms that supports cell survival under stressful conditions. Autophagic vesicle engulfs the cargo and transports it to lysosome for degradation and turnover. As such, autophagy eliminates abnormal proteins, clears damaged organelles, limits oxidative stress and helps to improve metabolic balance. Nervous system cells and particularly postmitotic neurons are highly sensitive to a spectrum of insults, and autophagy emerges as one of the key stress response mechanism, ensuring health and survival of these vulnerable cell types. In this review, we will overview mechanisms through which cells cope with stress, and how these stress responses regulate autophagy, with a special focus on the nervous system.
Collapse
|
22
|
Giorgio M, Dellino GI, Gambino V, Roda N, Pelicci PG. On the epigenetic role of guanosine oxidation. Redox Biol 2020; 29:101398. [PMID: 31926624 PMCID: PMC6926346 DOI: 10.1016/j.redox.2019.101398] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/23/2019] [Accepted: 12/02/2019] [Indexed: 01/14/2023] Open
Abstract
Chemical modifications of DNA and RNA regulate genome functions or trigger mutagenesis resulting in aging or cancer. Oxidations of macromolecules, including DNA, are common reactions in biological systems and often part of regulatory circuits rather than accidental events. DNA alterations are particularly relevant since the unique role of nuclear and mitochondrial genome is coding enduring and inheritable information. Therefore, an alteration in DNA may represent a relevant problem given its transmission to daughter cells. At the same time, the regulation of gene expression allows cells to continuously adapt to the environmental changes that occur throughout the life of the organism to ultimately maintain cellular homeostasis. Here we review the multiple ways that lead to DNA oxidation and the regulation of mechanisms activated by cells to repair this damage. Moreover, we present the recent evidence suggesting that DNA damage caused by physiological metabolism acts as epigenetic signal for regulation of gene expression. In particular, the predisposition of guanine to oxidation might reflect an adaptation to improve the genome plasticity to redox changes.
Collapse
Affiliation(s)
- Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy.
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Gambino
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Niccolo' Roda
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Via Adamello 16, 20139, Milano, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
23
|
Ko T, Fujita K, Nomura S, Uemura Y, Yamada S, Tobita T, Katoh M, Satoh M, Ito M, Domoto Y, Hosoya Y, Amiya E, Hatano M, Morita H, Fukayama M, Aburatani H, Komuro I. Quantification of DNA Damage in Heart Tissue as a Novel Prediction Tool for Therapeutic Prognosis of Patients With Dilated Cardiomyopathy. ACTA ACUST UNITED AC 2019; 4:670-680. [PMID: 31709317 PMCID: PMC6834953 DOI: 10.1016/j.jacbts.2019.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/29/2022]
Abstract
This study evaluated myocardial nuclear staining for the DNA damage markers poly(ADP-ribose) (PAR) and γ-H2A.X in 58 patients with dilated cardiomyopathy. Patients with left ventricular reverse remodeling (LVRR) showed a significantly smaller proportion of PAR-positive nuclei and γ-H2A.X-positive nuclei in biopsy specimens compared with those without LVRR. Propensity analysis showed that the proportion of both PAR-positive and γ-H2A.X-positive nuclei were independent prognostic factors for LVRR. In conclusion, we showed the utility of DNA damage-marker staining to predict the probability of LVRR, thus revealing a novel prognostic predictor of medical therapy for dilated cardiomyopathy.
Collapse
Key Words
- BMI, body mass index
- BNP, B-type natriuretic peptide
- CI, confidence interval
- DAPI, 4′,6-diamidino-2-phenylindole
- DCM, dilated cardiomyopathy
- DNA damage
- IQR, interquartile range
- LVAD, left ventricular assist device
- LVEF, left ventricular ejection fraction
- LVRR, left ventricular reverse remodeling
- NYHA, New York Heart Association
- PAR, poly(ADP-ribose)
- ROC, receiver-operating characteristic
- WGA, wheat germ agglutinin
- dilated cardiomyopathy
- left ventricular reverse remodeling
- poly ADP-ribose
Collapse
Affiliation(s)
- Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Kanna Fujita
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yukari Uemura
- Biostatistics Division, Clinical Research Support Center, University of Tokyo Hospital, Tokyo, Japan
| | - Shintaro Yamada
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takashige Tobita
- Department of Cardiology, Tokyo Women's Medical University, Tokyo, Japan
| | - Manami Katoh
- Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Masahiro Satoh
- Department of Cardiovascular Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masamichi Ito
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yukako Domoto
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yumiko Hosoya
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Eisuke Amiya
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masaru Hatano
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Takahashi T, Shishido T, Kinoshita D, Watanabe K, Toshima T, Sugai T, Narumi T, Otaki Y, Tamura H, Nishiyama S, Arimoto T, Takahashi H, Miyamoto T, Watanabe T, Woo CH, Abe JI, Takeishi Y, Kubota I, Watanabe M. Cardiac Nuclear High-Mobility Group Box 1 Ameliorates Pathological Cardiac Hypertrophy by Inhibiting DNA Damage Response. ACTA ACUST UNITED AC 2019; 4:234-247. [PMID: 31061925 PMCID: PMC6488753 DOI: 10.1016/j.jacbts.2018.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/19/2018] [Accepted: 11/19/2018] [Indexed: 01/12/2023]
Abstract
HMGB1 is a DNA-binding protein associated with nuclear homeostasis and DNA repair. Decreased nuclear HMGB1 expression is observed in human failing hearts, which is associated with cardiomyocyte hypertrophy and fibrosis. Cardiac nuclear HMGB1 overexpression ameliorates Ang II–induced pathological cardiac remodeling by inhibiting cardiomyocyte DNA damage and following ataxia telangiectasia mutated activation in mice. Ataxia telangiectasia mutated inhibitor treatment provided a cardioprotective effect on Ang II–induced cardiac remodeling in mice.
High-mobility group box 1 (HMGB1) is a deoxyribonucleic acid (DNA)–binding protein associated with DNA repair. Decreased nuclear HMGB1 expression and increased DNA damage response (DDR) were observed in human failing hearts. DNA damage and DDR as well as cardiac remodeling were suppressed in cardiac-specific HMGB1 overexpression transgenic mice after angiotensin II stimulation as compared with wild-type mice. In vitro, inhibition of HMGB1 increased phosphorylation of extracellular signal-related kinase 1/2 and nuclear factor kappa B, which was rescued by DDR inhibitor treatment. DDR inhibitor treatment provided a cardioprotective effect on angiotensin II–induced cardiac remodeling in mice.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- ATM, ataxia telangiectasia mutated
- Ang II, angiotensin II
- BNP, brain natriuretic peptide
- CVF, collagen volume fraction
- DAMP, damage-associated molecular pattern
- DDR, deoxyribonucleic acid damage response
- DNA damage response
- DNA, deoxyribonucleic acid
- E/A ratio, ratio of early to atrial wave
- ERK1/2, extracellular signal-related kinase 1/2
- HMGB1
- HMGB1, high-mobility group box 1
- HMGB1-Tg, high-mobility group box 1 transgenic
- HW/TL, heart weight to tibial length
- IVSd, interventricular septum diameter
- LVDd, left ventricular diastolic dimension
- LVDs, left ventricular systolic dimension
- MyD, cardiomyocyte diameter
- NF-κB, nuclear factor kappa B
- NRCM, neonatal rat cardiomyocyte
- PWd, posterior wall diameter
- WT, wild-type
- p-ATM, phosphorylation of ataxia telangiectasia mutated
- pathological cardiac hypertrophy
Collapse
Affiliation(s)
- Tetsuya Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsuro Shishido
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Daisuke Kinoshita
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Ken Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Taku Toshima
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takayuki Sugai
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Taro Narumi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Yoichiro Otaki
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Harutoshi Tamura
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Satoshi Nishiyama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takanori Arimoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Hiroki Takahashi
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Takuya Miyamoto
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Tetsu Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Chang-Hoon Woo
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jun-Ichi Abe
- Department of Cardiology - Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasuchika Takeishi
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan
| | - Isao Kubota
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| | - Masafumi Watanabe
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Yamagata, Japan
| |
Collapse
|
25
|
Affiliation(s)
- Angela Raucci
- Unit of Experimental Cardio-Oncology and Cardiovascular Aging, Centro Cardiologico Monzino-IRCCS, Milan, Italy
| | - Maurizio C. Capogrossi
- Division of Cardiology, Johns Hopkins Bayview Medical Center, Baltimore, Maryland
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
26
|
Abstract
High-mobility group box 1 (HMGB1) is one of the most abundant proteins in eukaryotes and the best characterized damage-associated molecular pattern (DAMP). The biological activities of HMGB1 depend on its subcellular location, context and post-translational modifications. Inside the nucleus, HMGB1 is engaged in many DNA events such as DNA repair, transcription regulation and genome stability; in the cytoplasm, its main function is to regulate the autophagic flux while in the extracellular environment, it possesses more complicated functions and it is involved in a large variety of different processes such as inflammation, migration, invasion, proliferation, differentiation and tissue regeneration. Due to this pleiotropy, the role of HMGB1 has been vastly investigated in various pathological diseases and a large number of studies have explored its function in cardiovascular pathologies. However, in this contest, the precise mechanism of action of HMGB1 and its therapeutic potential are still very controversial since is debated whether HMGB1 is involved in tissue damage or plays a role in tissue repair and regeneration. The main focus of this review is to provide an overview of the effects of HMGB1 in different ischemic heart diseases and to discuss its functions in these pathological conditions.
Collapse
|
27
|
Abstract
The molecular pathophysiology of heart failure, which is one of the leading causes of mortality, is not yet fully understood. Heart failure can be regarded as a systemic syndrome of aging-related phenotypes. Wnt/β-catenin signaling and the p53 pathway, both of which are key regulators of aging, have been demonstrated to play a critical role in the pathogenesis of heart failure. Circulating C1q was identified as a novel activator of Wnt/β-catenin signaling, promoting systemic aging-related phenotypes including sarcopenia and heart failure. On the other hand, p53 induces the apoptosis of cardiomyocytes in the failing heart. In these molecular mechanisms, the cross-talk between cardiomyocytes and non-cardiomyocytes (e,g,. endothelial cells, fibroblasts, smooth muscle cells, macrophages) deserves mentioning. In this review, we summarize recent advances in the understanding of the molecular pathophysiology underlying heart failure, focusing on Wnt/β-catenin signaling and the p53 pathway.
Collapse
Affiliation(s)
- Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
28
|
Autophagy Roles in the Modulation of DNA Repair Pathways. Int J Mol Sci 2017; 18:ijms18112351. [PMID: 29112132 PMCID: PMC5713320 DOI: 10.3390/ijms18112351] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/27/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023] Open
Abstract
Autophagy and DNA repair are biological processes vital for cellular homeostasis maintenance and when dysfunctional, they lead to several human disorders including premature aging, neurodegenerative diseases, and cancer. The interchange between these pathways is complex and it may occur in both directions. Autophagy is activated in response to several DNA lesions types and it can regulate different mechanisms and molecules involved in DNA damage response (DDR), such as cell cycle checkpoints, cell death, and DNA repair. Thus, autophagy may modulate DNA repair pathways, the main focus of this review. In addition to the already well-documented autophagy positive effects on homologous recombination (HR), autophagy has also been implicated with other DNA repair mechanisms, such as base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Given the relevance of these cellular processes, the clinical applications of drugs targeting this autophagy-DNA repair interface emerge as potential therapeutic strategies for many diseases, especially cancer.
Collapse
|
29
|
Tan WLW, Lim BTS, Anene-Nzelu CGO, Ackers-Johnson M, Dashi A, See K, Tiang Z, Lee DP, Chua WW, Luu TDA, Li PYQ, Richards AM, Foo RSY. A landscape of circular RNA expression in the human heart. Cardiovasc Res 2017; 113:298-309. [PMID: 28082450 DOI: 10.1093/cvr/cvw250] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/06/2016] [Indexed: 12/17/2022] Open
Abstract
Aims Circular RNA (circRNA) is a newly validated class of single-stranded RNA, ubiquitously expressed in mammalian tissues and possessing key functions including acting as microRNA sponges and as transcriptional regulators by binding to RNA-binding proteins. While independent studies confirm the expression of circRNA in various tissue types, genome-wide circRNA expression in the heart has yet to be described in detail. Methods and results We performed deep RNA-sequencing on ribosomal-depleted RNA isolated from 12 human hearts, 25 mouse hearts and across a 28-day differentiation time-course of human embryonic stem cell-derived cardiomyocytes. Using purpose-designed bioinformatics tools, we uncovered a total of 15 318 and 3017 cardiac circRNA within human and mouse, respectively. Their abundance generally correlates with the abundance of their cognate linear RNA, but selected circRNAs exist at disproportionately higher abundance. Top highly expressed circRNA corresponded to key cardiac genes including Titin (TTN), RYR2, and DMD. The most abundant cardiac-expressed circRNA is a cytoplasmic localized single-exon circSLC8A1-1. The longest human transcript TTN alone generates up to 415 different exonic circRNA isoforms, the majority (83%) of which originates from the I-band domain. Finally, we confirmed the expression of selected cardiac circRNA by RT-PCR, Sanger sequencing and single molecule RNA-fluorescence in situ hybridization. Conclusions Our data provide a detailed circRNA expression landscape in hearts. There is a high-abundance of specific cardiac-expressed circRNA. These findings open up a new avenue for future investigation into this emerging class of RNA.
Collapse
Affiliation(s)
- Wilson L W Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Benson T S Lim
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Chukwuemeka G O Anene-Nzelu
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Matthew Ackers-Johnson
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Albert Dashi
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Kelvin See
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Zenia Tiang
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Dominic Paul Lee
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore
| | - Wee Woon Chua
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Tuan D A Luu
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Peter Y Q Li
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Arthur Mark Richards
- Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| | - Roger S Y Foo
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Singapore.,Cardiovascular Research Institute, National University Health System, Centre for Translational Medicine, 14 Medical Drive, Singapore 117599, Singapore
| |
Collapse
|
30
|
Higo T, Naito AT, Sumida T, Shibamoto M, Okada K, Nomura S, Nakagawa A, Yamaguchi T, Sakai T, Hashimoto A, Kuramoto Y, Ito M, Hikoso S, Akazawa H, Lee JK, Shiojima I, McKinnon PJ, Sakata Y, Komuro I. DNA single-strand break-induced DNA damage response causes heart failure. Nat Commun 2017; 8:15104. [PMID: 28436431 PMCID: PMC5413978 DOI: 10.1038/ncomms15104] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 02/27/2017] [Indexed: 12/30/2022] Open
Abstract
The DNA damage response (DDR) plays a pivotal role in maintaining genome integrity. DNA damage and DDR activation are observed in the failing heart, however, the type of DNA damage and its role in the pathogenesis of heart failure remain elusive. Here we show the critical role of DNA single-strand break (SSB) in the pathogenesis of pressure overload-induced heart failure. Accumulation of unrepaired SSB is observed in cardiomyocytes of the failing heart. Unrepaired SSB activates DDR and increases the expression of inflammatory cytokines through NF-κB signalling. Pressure overload-induced heart failure is more severe in the mice lacking XRCC1, an essential protein for SSB repair, which is rescued by blocking DDR activation through genetic deletion of ATM, suggesting the causative role of SSB accumulation and DDR activation in the pathogenesis of heart failure. Prevention of SSB accumulation or persistent DDR activation may become a new therapeutic strategy against heart failure.
Collapse
Affiliation(s)
- Tomoaki Higo
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Atsuhiko T. Naito
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
- CREST, Sanbanmachi-building, 5 Sanbanmachi, Tokyo 102-0075, Japan
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Tomokazu Sumida
- CREST, Sanbanmachi-building, 5 Sanbanmachi, Tokyo 102-0075, Japan
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Masato Shibamoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Katsuki Okada
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Seitaro Nomura
- CREST, Sanbanmachi-building, 5 Sanbanmachi, Tokyo 102-0075, Japan
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Akito Nakagawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Toshihiro Yamaguchi
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Taku Sakai
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Akihito Hashimoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Masamichi Ito
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Shungo Hikoso
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
- CREST, Sanbanmachi-building, 5 Sanbanmachi, Tokyo 102-0075, Japan
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Tokyo 113-8655, Japan
| | - Jong-Kook Lee
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
- CREST, Sanbanmachi-building, 5 Sanbanmachi, Tokyo 102-0075, Japan
| | - Ichiro Shiojima
- CREST, Sanbanmachi-building, 5 Sanbanmachi, Tokyo 102-0075, Japan
- Department of Medicine II, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1191, Japan
| | - Peter J. McKinnon
- Department of Genetics and Tumor Cell Biology, ST. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
| | - Issei Komuro
- CREST, Sanbanmachi-building, 5 Sanbanmachi, Tokyo 102-0075, Japan
- Department of Cardiovascular Medicine, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Tokyo 113-8655, Japan
- Institute for Academic Initiatives, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
31
|
Ye Y, Lin P, Zhang W, Tan S, Zhou X, Li R, Pu Q, Koff JL, Dhasarathy A, Ma F, Deng X, Jiang J, Wu M. DNA Repair Interacts with Autophagy To Regulate Inflammatory Responses to Pulmonary Hyperoxia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2844-2853. [PMID: 28202616 PMCID: PMC5360514 DOI: 10.4049/jimmunol.1601001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/23/2017] [Indexed: 12/11/2022]
Abstract
Oxygen is supplied as a supportive treatment for patients suffering from acute respiratory distress syndrome. Unfortunately, high oxygen concentration increases reactive oxygen species generation, which causes DNA damage and ultimately cell death in the lung. Although 8-oxoguanine-DNA glycosylase (OGG-1) is involved in repairing hyperoxia-mediated DNA damage, the underlying molecular mechanism remains elusive. In this study, we report that ogg-1-deficient mice exhibited a significant increase of proinflammatory cytokines (TNF-α, IL-6, and IFN-γ) in the lung after being exposed to 95% oxygen. In addition, we found that ogg-1 deficiency downregulated (macro)autophagy when exposed to hyperoxia both in vitro and in vivo, which was evident by decreased conversion of LC3-I to LC3-II, reduced LC3 punctate staining, and lower Atg7 expression compared with controls. Using a chromatin immunoprecipitation assay, we found that OGG-1 associated with the promoter of Atg7, suggesting a role for OGG1 in regulation of Atg7 activity. Knocking down OGG-1 decreased the luciferase reporter activity of Atg7. Further, inflammatory cytokine levels in murine lung epithelial cell line cells were downregulated following autophagy induction by starvation and rapamycin treatment, and upregulated when autophagy was blocked using 3-methyladenine and chloroquine. atg7 knockout mice and Atg7 small interfering RNA-treated cells exhibited elevated levels of phospho-NF-κB and intensified inflammatory cytokines, suggesting that Atg7 impacts inflammatory responses to hyperoxia. These findings demonstrate that OGG-1 negatively regulates inflammatory cytokine release by coordinating molecular interaction with the autophagic pathway in hyperoxia-induced lung injury.
Collapse
Affiliation(s)
- Yan Ye
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China
| | - Weidong Zhang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Shirui Tan
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Xikun Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, People's Republic of China
| | - Rongpeng Li
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 2211116, People's Republic of China
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Jonathan L Koff
- Department of Medicine, Yale University, New Haven, CT 06510
| | - Archana Dhasarathy
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 100005, People's Republic of China; and
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China;
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203;
| |
Collapse
|
32
|
Cangemi A, Fanale D, Rinaldi G, Bazan V, Galvano A, Perez A, Barraco N, Massihnia D, Castiglia M, Vieni S, Bronte G, Mirisola M, Russo A. Dietary restriction: could it be considered as speed bump on tumor progression road? Tumour Biol 2016; 37:7109-18. [PMID: 27043958 DOI: 10.1007/s13277-016-5044-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023] Open
Abstract
Dietary restrictions, including fasting (or long-term starvation), calorie restriction (CR), and short-term starvation (STS), are considered a strong rationale that may protect against various diseases, including age-related diseases and cancer. Among dietary approaches, STS, in which food is not consumed during designed fasting periods but is typically not restricted during designated feeding periods, seems to be more suitable, because other dietary regimens involving prolonged fasting periods could worsen the health conditions of cancer patients, being they already naturally prone to weight loss. Until now, the limited amount of available data does not point to a single gene, pathway, or molecular mechanism underlying the benefits to the different dietary approaches. It is well known that the healthy effect is mediated in part by the reduction of nutrient-related pathways. The calorie restriction and starvation (long- and short-term) also suppress the inflammatory response reducing the expression, for example, of IL-10 and TNF-α, mitigating pro-inflammatory gene expression and increasing anti-inflammatory gene expression. The dietary restriction may regulate both genes involved in cellular proliferation and factors associated to apoptosis in normal and cancer cells. Finally, dietary restriction is an important tool that may influence the response to chemotherapy in preclinical models. However, further data are needed to correlate dietary approaches with chemotherapeutic treatments in human models. The aim of this review is to discuss the effects of various dietary approaches on the cancer progression and therapy response, mainly in preclinical models, describing some signaling pathways involved in these processes.
Collapse
Affiliation(s)
- Antonina Cangemi
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Gaetana Rinaldi
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Daniela Massihnia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Marta Castiglia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Salvatore Vieni
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Giuseppe Bronte
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Mario Mirisola
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Via del Vespro 129, 90127, Palermo, Italy.
| |
Collapse
|
33
|
Zhou J, Ahmad F, Parikh S, Hoffman NE, Rajan S, Verma VK, Song J, Yuan A, Shanmughapriya S, Guo Y, Gao E, Koch W, Woodgett JR, Madesh M, Kishore R, Lal H, Force T. Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy. Circ Res 2016; 118:1208-22. [PMID: 26976650 DOI: 10.1161/circresaha.116.308544] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/14/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3β leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. OBJECTIVE To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3β in heart function. METHODS AND RESULTS We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe-induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. CONCLUSIONS Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy.
Collapse
Affiliation(s)
- Jibin Zhou
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Firdos Ahmad
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Shan Parikh
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Nichole E Hoffman
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Sudarsan Rajan
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Vipin K Verma
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Jianliang Song
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Ancai Yuan
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Santhanam Shanmughapriya
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Yuanjun Guo
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Erhe Gao
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Walter Koch
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - James R Woodgett
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Muniswamy Madesh
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Raj Kishore
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.)
| | - Hind Lal
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.).
| | - Thomas Force
- From the Division of Cardiovascular Medicine (F.A., V.K.V., Y.G., H.L., T.F.) and Department of Pharmacology (S.P., Y.G.), Vanderbilt University Medical Center, Nashville, TN; Department of Medicine, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (J.Z., N.E.H., S.R., J.S., A.Y., S.S., E.G., W.K., M.M., R.K.); and Department of Medical Biophysics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada (J.R.W.).
| |
Collapse
|
34
|
WANG NAN, CAO YUNSHAN, ZHU YAN. Netrin-1 prevents the development of cardiac hypertrophy and heart failure. Mol Med Rep 2016; 13:2175-81. [DOI: 10.3892/mmr.2016.4755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 02/10/2015] [Indexed: 11/06/2022] Open
|
35
|
Shaposhnikov M, Proshkina E, Shilova L, Zhavoronkov A, Moskalev A. Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes. Sci Rep 2015; 5:15299. [PMID: 26477511 PMCID: PMC4609912 DOI: 10.1038/srep15299] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/22/2015] [Indexed: 12/22/2022] Open
Abstract
DNA repair declines with age and correlates with longevity in many animal species. In this study, we investigated the effects of GAL4-induced overexpression of genes implicated in DNA repair on lifespan and resistance to stress factors in Drosophila melanogaster. Stress factors included hyperthermia, oxidative stress, and starvation. Overexpression was either constitutive or conditional and either ubiquitous or tissue-specific (nervous system). Overexpressed genes included those involved in recognition of DNA damage (homologs of HUS1, CHK2), nucleotide and base excision repair (homologs of XPF, XPC and AP-endonuclease-1), and repair of double-stranded DNA breaks (homologs of BRCA2, XRCC3, KU80 and WRNexo). The overexpression of different DNA repair genes led to both positive and negative effects on lifespan and stress resistance. Effects were dependent on GAL4 driver, stage of induction, sex, and role of the gene in the DNA repair process. While the constitutive/neuron-specific and conditional/ubiquitous overexpression of DNA repair genes negatively impacted lifespan and stress resistance, the constitutive/ubiquitous and conditional/neuron-specific overexpression of Hus1, mnk, mei-9, mus210, and WRNexo had beneficial effects. This study demonstrates for the first time the effects of overexpression of these DNA repair genes on both lifespan and stress resistance in D. melanogaster.
Collapse
Affiliation(s)
- Mikhail Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russia
| | - Ekaterina Proshkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russia
| | - Lyubov Shilova
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, 167982, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, Johns Hopkins University, ETC, B301, Baltimore, MD, 21218, USA
| | - Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
36
|
Göder A, Nagel G, Kraus A, Dörsam B, Seiwert N, Kaina B, Fahrer J. Lipoic acid inhibits the DNA repair protein O 6-methylguanine-DNA methyltransferase (MGMT) and triggers its depletion in colorectal cancer cells with concomitant autophagy induction. Carcinogenesis 2015; 36:817-31. [PMID: 25998848 DOI: 10.1093/carcin/bgv070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/10/2015] [Indexed: 11/13/2022] Open
Abstract
Alkylating agents are present in food and tobacco smoke, but are also used in cancer chemotherapy, inducing the DNA lesion O (6)-methylguanine. This critical adduct is repaired by O (6)-methylguanine-DNA methyltransferase (MGMT), resulting in MGMT inactivation and degradation. In the present study, we analyzed the effects of the natural disulfide compound lipoic acid (LA) on MGMT in vitro and in colorectal cancer cells. We show that LA, but not its reduced form dihydrolipoic acid, potently inhibits the activity of recombinant MGMT by interfering with its catalytic Cys-145 residue, which was partially reversible by N-acetyl cysteine. Incubation of HCT116 colorectal cancer cells with LA altered their glutathione pool and caused a decline in MGMT activity. This was mirrored by LA-induced depletion of MGMT protein, which was not attributable to changes in MGMT messenger RNA levels. Loss of MGMT protein coincided with LA-induced autophagy, a process resulting in lysosomal degradation of proteins, including presumably MGMT. LA-stimulated autophagy in a p53-independent manner as revealed by the response of isogenic HCT116 cell lines. Knockdown of the crucial autophagy component beclin-1 and chemical inhibitors blocked LA-induced autophagy, but did not abrogate LA-triggered MGMT degradation. Concomitant with MGMT depletion, LA pretreatment resulted in enhanced O (6)-methylguanine levels in DNA. It also increased the cytotoxicity of the alkylating anticancer drug temozolomide in temozolomide-resistant colorectal cancer cells. Taken together, our study showed that the natural compound LA inhibits MGMT and induces autophagy. Furthermore, LA enhanced the cytotoxic effects of temozolomide, which makes it a candidate for a supplement in cancer therapy.
Collapse
Affiliation(s)
- Anja Göder
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Georg Nagel
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Alexander Kraus
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Bastian Dörsam
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Nina Seiwert
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Bernd Kaina
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| |
Collapse
|
37
|
Zhang D, Tang B, Xie X, Xiao YF, Yang SM, Zhang JW. The interplay between DNA repair and autophagy in cancer therapy. Cancer Biol Ther 2015; 16:1005-13. [PMID: 25985143 DOI: 10.1080/15384047.2015.1046022] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
DNA is the prime target of anticancer treatments. DNA damage triggers a series of signaling cascades promoting cellular survival, including DNA repair, cell cycle arrest, and autophagy. The elevated basal and/or stressful levels of both DNA repair and autophagy observed in tumor cells, in contrast to normal cells, have been identified as the most important drug-responsive programs that impact the outcome of anticancer therapy. The exact relationship between DNA repair and autophagy in cancer cells remains unclear. On one hand, autophagy has been shown to regulate some of the DNA repair proteins after DNA damage by maintaining the balance between their synthesis, stabilization, and degradation. One the other hand, some evidence has demonstrated that some DNA repair molecular have a crucial role in the initiation of autophagy. In this review, we mainly discuss the interplay between DNA repair and autophagy in anticancer therapy and expect to enlighten some effective strategies for cancer treatment.
Collapse
Key Words
- AMPK, adenosine monophosphate-activated protein kinase
- ATG5, autophagy-related gene 5
- ATM, ataxia-telangiectasia mutated
- ATR, ATM and Rad3-related
- BER, base excision repair
- Chk1, check-point kinase 1
- Chk2, check-point kinase 2
- DDR, DNA damage response
- DNA damage
- DNA damage response
- DNA repair
- DNA-PKcs, DNA-dependent protein kinase catalytic subunit
- DSBs, double-strand breaks
- HDAC, histone deacetylases
- HR, homologous recombination
- IR, ionizing radiation
- MGMT, O6 methylguanine –DNA methyltransferase
- MMR, mismatch repair
- MRN, Mre11-Rad50-Nbs1
- NER, nucleotide excision recombination
- NHEJ, non-homologous end joining
- OGG1, 8-oxoguannine DNA glycosidase
- PARP-1, poly (ADP-ribose) polymerase 1
- PI3K, phosphoinositide 3-kinase
- PML, promyelocytic leukemia
- SSBs, single-strand break
- TMZ, temozolomide
- TSC2, tuberous sclerosis complex 2
- anticancer therapy
- apoptosis
- autophagy
- cell cycle arrest
- mTOR, mammalian target of rapamycin
- γ-H2AX, phosphorylated histone
Collapse
Affiliation(s)
- Dan Zhang
- a Department of Gastroenterology; Xinqiao Hospital; Third Military Medical University ; Chongqing , China
| | | | | | | | | | | |
Collapse
|
38
|
Vujic A, Robinson EL, Ito M, Haider S, Ackers-Johnson M, See K, Methner C, Figg N, Brien P, Roderick HL, Skepper J, A Ferguson-Smith, Foo RS. Experimental heart failure modelled by the cardiomyocyte-specific loss of an epigenome modifier, DNMT3B. J Mol Cell Cardiol 2015; 82:174-83. [PMID: 25784084 DOI: 10.1016/j.yjmcc.2015.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/18/2022]
Abstract
Differential DNA methylation exists in the epigenome of end-stage failing human hearts but whether it contributes to disease progression is presently unknown. Here, we report that cardiac specific deletion of Dnmt3b, the predominant DNA methyltransferase in adult mouse hearts, leads to an accelerated progression to severe systolic insufficiency and myocardial thinning without a preceding hypertrophic response. This was accompanied by widespread myocardial interstitial fibrosis and myo-sarcomeric disarray. By targeted candidate gene quantitative RT-PCR, we discovered an over-activity of cryptic splice sites in the sarcomeric gene Myh7, resulting in a transcript with 8 exons missing. Moreover, a region of differential methylation overlies the splice site locus in the hearts of the cardiac-specific conditional knockout (CKO) mice. Although abundant and complex forms of alternative splice variants have been reported in diseased hearts and the contribution of each remains to be understood in further detail, our results demonstrate for the first time that a link may exist between alternative splicing and the cardiac epigenome. In particular, this gives the novel evidence whereby the loss of an epigenome modifier promotes the development and progression of heart disease.
Collapse
Affiliation(s)
- A Vujic
- Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation Building, University of Cambridge, Cambridge CB2 0QQ, UK; Cardiovascular Research Institute, Centre for Translational Medicine MD6, National University Health System, 117599 Singapore
| | - E L Robinson
- Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation Building, University of Cambridge, Cambridge CB2 0QQ, UK
| | - M Ito
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - S Haider
- Centre for Molecular Oncology, Barts Cancer Institute, London EC1M 6BQ, UK
| | - M Ackers-Johnson
- Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation Building, University of Cambridge, Cambridge CB2 0QQ, UK; Cardiovascular Research Institute, Centre for Translational Medicine MD6, National University Health System, 117599 Singapore; Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore
| | - K See
- Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore
| | - C Methner
- Clinical Pharmacology Unit, Addenbrooke's Centre for Clinical Investigation Building, University of Cambridge, Cambridge CB2 0QQ, UK
| | - N Figg
- Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation Building, University of Cambridge, Cambridge CB2 0QQ, UK
| | - P Brien
- Epigenetics ISP, Babraham Institute, Cambridge CB22 3AT, UK
| | - H L Roderick
- Epigenetics ISP, Babraham Institute, Cambridge CB22 3AT, UK
| | - J Skepper
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - A Ferguson-Smith
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - R S Foo
- Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation Building, University of Cambridge, Cambridge CB2 0QQ, UK; Cardiovascular Research Institute, Centre for Translational Medicine MD6, National University Health System, 117599 Singapore; Genome Institute of Singapore, 60 Biopolis Street, 138672 Singapore.
| |
Collapse
|
39
|
Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat Commun 2015; 6:6823. [PMID: 25880015 PMCID: PMC4400843 DOI: 10.1038/ncomms7823] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/03/2015] [Indexed: 01/09/2023] Open
Abstract
Chaperone-mediated autophagy (CMA) is activate in response to cellular stressors to prevent cellular proteotoxicity through selective degradation of altered proteins in lysosomes. Reduced CMA activity contributes to the decrease in proteome quality in disease and aging. Here, we report that CMA is also upregulated in response to genotoxic insults and that declined CMA functionality leads to reduced cell survival and genomic instability. This role of CMA in genome quality control is exerted through regulated degradation of activated checkpoint kinase 1 (Chk1) by this pathway after the genotoxic insult. Nuclear accumulation of Chk1 in CMA-deficient cells compromises cell cycle progression and prolongs the time that DNA damage persists in these cells. Furthermore, blockage of CMA leads to hyperphosphorylation and destabilization of the MRN (Mre11-Rad50-Nbs1) complex, which participates in early steps of particular DNA repair pathways. We propose that CMA contributes to maintain genome stability by assuring nuclear proteostasis.
Collapse
|
40
|
Xie L, Pi X, Wang Z, He J, Willis MS, Patterson C. Depletion of PHD3 protects heart from ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. J Mol Cell Cardiol 2015; 80:156-65. [PMID: 25633836 PMCID: PMC4374643 DOI: 10.1016/j.yjmcc.2015.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 01/12/2023]
Abstract
PHD3, a member of a family of Prolyl-4 Hydroxylase Domain (PHD) proteins, has long been considered a pro-apoptotic protein. Although the pro-apoptotic effect of PHD3 requires its prolyl hydroxylase activity, it may be independent of HIF-1α, the common substrate of PHDs. PHD3 is highly expressed in the heart, however, its role in cardiomyocyte apoptosis remains unclear. This study was undertaken to determine whether inhibition or depletion of PHD3 inhibits cardiomyocyte apoptosis and attenuates myocardial injury induced by ischemia-reperfusion (I/R). PHD3 knockout mice and littermate controls were subjected to left anterior descending (LAD) coronary artery ligation for 40 minutes followed by reperfusion. Histochemical analysis using Evan’s Blue, triphenyl-tetrazolium chloride and TUNEL staining, demonstrated that myocardial injury and cardiomyocyte apoptosis induced I/R injury were significantly attenuated in PHD3 knockout mice. PHD3 knockout mice exhibited no changes in HIF-1α protein level, the expression of some HIF target genes or the myocardium capillary density at physiological condition. However, depletion of PHD3 further enhanced the induction of HIF-1α protein at hypoxic condition and increased expression of HIF-1α inhibited cardiomyocyte apoptosis induced by hypoxia. In addition, it has been demonstrated that PHD3 plays an important role in ATR/Chk1/p53 pathway. Consistently, a prolyl hydroxylase inhibitor or depletion of PHD3 significantly inhibits the activation of Chk1 and p53 in cardiomyocytes and the subsequent apoptosis induced by doxorubicin, hydrogen peroxide or hypoxia/re-oxygenation. Taken together, these data suggest that depletion of PHD3 leads to increased stabilization of HIF-1α and inhibition of DNA damage response, both of which may contribute to the cardioprotective effect seen with depletion of PHD3.
Collapse
Affiliation(s)
- Liang Xie
- Cardiovascular Research Institute, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Xinchun Pi
- Cardiovascular Research Institute, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongjing Wang
- UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jun He
- UNC McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Monte S Willis
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Cam Patterson
- NewYork-Presbyterian Hospital/Weill-Cornell Medical Center, New York, NY 10065, USA
| |
Collapse
|
41
|
Puente BN, Kimura W, Muralidhar SA, Moon J, Amatruda JF, Phelps KL, Grinsfelder D, Rothermel BA, Chen R, Garcia JA, Santos CX, Thet S, Mori E, Kinter MT, Rindler PM, Zacchigna S, Mukherjee S, Chen DJ, Mahmoud AI, Giacca M, Rabinovitch PS, Aroumougame A, Shah AM, Szweda LI, Sadek HA. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response. Cell 2014; 157:565-79. [PMID: 24766806 DOI: 10.1016/j.cell.2014.03.032] [Citation(s) in RCA: 642] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/17/2014] [Accepted: 03/21/2014] [Indexed: 12/15/2022]
Abstract
The mammalian heart has a remarkable regenerative capacity for a short period of time after birth, after which the majority of cardiomyocytes permanently exit cell cycle. We sought to determine the primary postnatal event that results in cardiomyocyte cell-cycle arrest. We hypothesized that transition to the oxygen-rich postnatal environment is the upstream signal that results in cell-cycle arrest of cardiomyocytes. Here, we show that reactive oxygen species (ROS), oxidative DNA damage, and DNA damage response (DDR) markers significantly increase in the heart during the first postnatal week. Intriguingly, postnatal hypoxemia, ROS scavenging, or inhibition of DDR all prolong the postnatal proliferative window of cardiomyocytes, whereas hyperoxemia and ROS generators shorten it. These findings uncover a protective mechanism that mediates cardiomyocyte cell-cycle arrest in exchange for utilization of oxygen-dependent aerobic metabolism. Reduction of mitochondrial-dependent oxidative stress should be an important component of cardiomyocyte proliferation-based therapeutic approaches.
Collapse
Affiliation(s)
- Bao N Puente
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wataru Kimura
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shalini A Muralidhar
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jesung Moon
- Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James F Amatruda
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pediatrics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kate L Phelps
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Grinsfelder
- Department of Clinical Science, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Beverly A Rothermel
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rui Chen
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph A Garcia
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Celio X Santos
- Cardiovascular Division, King's College London BHF Centre of Research Excellence, School of Medicine, James Black Centre, London SE5 9NU, UK
| | - SuWannee Thet
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eiichiro Mori
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael T Kinter
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Paul M Rindler
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Serena Zacchigna
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Shibani Mukherjee
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David J Chen
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ahmed I Mahmoud
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Cambridge, MA 02115, USA
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | | | - Asaithamby Aroumougame
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ajay M Shah
- Department of Clinical Science, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Luke I Szweda
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Hesham A Sadek
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
42
|
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality worldwide, even despite recent scientific and technological advances and comprehensive preventive strategies. The cardiac myocyte is a voracious consumer of energy, and alterations in metabolic substrate availability and consumption are hallmark features of these disorders. Autophagy, an evolutionarily ancient response to metabolic insufficiency, has been implicated in the pathogenesis of a wide range of heart pathologies. However, the precise role of autophagy in these contexts remains obscure owing to its multifarious actions. Here, we review recently derived insights regarding the role of autophagy in cardiac hypertrophy and heart failure, highlighting its effects on metabolism.
Collapse
Affiliation(s)
- Zhao V Wang
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, 75390-8573, USA
| | | | | |
Collapse
|
43
|
Morales CR, Pedrozo Z, Lavandero S, Hill JA. Oxidative stress and autophagy in cardiovascular homeostasis. Antioxid Redox Signal 2014; 20:507-18. [PMID: 23641894 PMCID: PMC3894700 DOI: 10.1089/ars.2013.5359] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Autophagy is an evolutionarily ancient process of intracellular protein and organelle recycling required to maintain cellular homeostasis in the face of a wide variety of stresses. Dysregulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) leads to oxidative damage. Both autophagy and ROS/RNS serve pathological or adaptive roles within cardiomyocytes, depending on the context. RECENT ADVANCES ROS/RNS and autophagy communicate with each other via both transcriptional and post-translational events. This cross talk, in turn, regulates the structural integrity of cardiomyocytes, promotes proteostasis, and reduces inflammation, events critical to disease pathogenesis. CRITICAL ISSUES Dysregulation of either autophagy or redox state has been implicated in many cardiovascular diseases. Cardiomyocytes are rich in mitochondria, which make them particularly sensitive to oxidative damage. Maintenance of mitochondrial homeostasis and elimination of defective mitochondria are each critical to the maintenance of redox homeostasis. FUTURE DIRECTIONS The complex interplay between autophagy and oxidative stress underlies a wide range of physiological and pathological events and its elucidation holds promise of potential clinical applicability.
Collapse
Affiliation(s)
- Cyndi R Morales
- 1 Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center , Dallas, Texas
| | | | | | | |
Collapse
|
44
|
Pan JB, Ji N, Pan W, Hong R, Wang H, Ji ZL. High-throughput identification of off-targets for the mechanistic study of severe adverse drug reactions induced by analgesics. Toxicol Appl Pharmacol 2013; 274:24-34. [PMID: 24176876 DOI: 10.1016/j.taap.2013.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/01/2013] [Accepted: 10/17/2013] [Indexed: 01/18/2023]
Abstract
Drugs may induce adverse drug reactions (ADRs) when they unexpectedly bind to proteins other than their therapeutic targets. Identification of these undesired protein binding partners, called off-targets, can facilitate toxicity assessment in the early stages of drug development. In this study, a computational framework was introduced for the exploration of idiosyncratic mechanisms underlying analgesic-induced severe adverse drug reactions (SADRs). The putative analgesic-target interactions were predicted by performing reverse docking of analgesics or their active metabolites against human/mammal protein structures in a high-throughput manner. Subsequently, bioinformatics analyses were undertaken to identify ADR-associated proteins (ADRAPs) and pathways. Using the pathways and ADRAPs that this analysis identified, the mechanisms of SADRs such as cardiac disorders were explored. For instance, 53 putative ADRAPs and 24 pathways were linked with cardiac disorders, of which 10 ADRAPs were confirmed by previous experiments. Moreover, it was inferred that pathways such as base excision repair, glycolysis/glyconeogenesis, ErbB signaling, calcium signaling, and phosphatidyl inositol signaling likely play pivotal roles in drug-induced cardiac disorders. In conclusion, our framework offers an opportunity to globally understand SADRs at the molecular level, which has been difficult to realize through experiments. It also provides some valuable clues for drug repurposing.
Collapse
Affiliation(s)
- Jian-Bo Pan
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Nan Ji
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Wen Pan
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Ru Hong
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Hao Wang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, PR China
| | - Zhi-Liang Ji
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, PR China; Department of Chemical Biology, College of Chemistry and Chemical Engineering, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, PR China.
| |
Collapse
|
45
|
Autophagy and genomic integrity. Cell Death Differ 2013; 20:1444-54. [PMID: 23933813 DOI: 10.1038/cdd.2013.103] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 06/07/2013] [Accepted: 07/02/2013] [Indexed: 01/25/2023] Open
Abstract
DNA lesions, constantly produced by endogenous and exogenous sources, activate the DNA damage response (DDR), which involves detection, signaling and repair of the damage. Autophagy, a lysosome-dependent degradation pathway that is activated by stressful situations such as starvation and oxidative stress, regulates cell fate after DNA damage and also has a pivotal role in the maintenance of nuclear and mitochondrial genomic integrity. Here, we review important evidence regarding the role played by autophagy in preventing genomic instability and tumorigenesis, as well as in micronuclei degradation. Several pathways governing autophagy activation after DNA injury and the influence of autophagy upon the processing of genomic lesions are also discussed herein. In this line, the mechanisms by which several proteins participate in both DDR and autophagy, and the importance of this crosstalk in cancer and neurodegeneration will be presented in an integrated fashion. At last, we present a hypothetical model of the role played by autophagy in dictating cell fate after genotoxic stress.
Collapse
|
46
|
Fam HK, Walton C, Mitra SA, Chowdhury M, Osborne N, Choi K, Sun G, Wong PC, O'Sullivan MJ, Turashvili G, Aparicio S, Triche TJ, Bond M, Pallen CJ, Boerkoel CF. TDP1 and PARP1 Deficiency Are Cytotoxic to Rhabdomyosarcoma Cells. Mol Cancer Res 2013; 11:1179-92. [DOI: 10.1158/1541-7786.mcr-12-0575] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Anafi RC, Pellegrino R, Shockley KR, Romer M, Tufik S, Pack AI. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues. BMC Genomics 2013; 14:362. [PMID: 23721503 PMCID: PMC3701596 DOI: 10.1186/1471-2164-14-362] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 05/22/2013] [Indexed: 12/12/2022] Open
Abstract
Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the influence of an artificial deprivation protocol, we identified a subset of these transcripts as specifically sleep-enhanced or sleep-repressed by requiring that their expression also change over the course of unperturbed sleep. 3% and 6% of the assayed transcripts showed “sleep specific” changes in the lung and heart respectively. Sleep specific transcripts in these tissues demonstrated highly significant overlap and shared temporal dynamics. Markers of cellular stress and the unfolded protein response were reduced during sleep in both tissues. These results mirror previous findings in brain. Sleep-enhanced pathways reflected the unique metabolic functions of each tissue. Transcripts related to carbohydrate and sulfur metabolic processes were enhanced by sleep in the lung, and collectively favor buffering from oxidative stress. DNA repair and protein metabolism annotations were significantly enriched among the sleep-enhanced transcripts in the heart. Our results also suggest that sleep may provide a Zeitgeber, or synchronizing cue, in the lung as a large cluster of transcripts demonstrated systematic changes in inter-animal variability as a function of both sleep duration and circadian time. Conclusion Our data support the notion that the molecular consequences of sleep/wake behavioral state extend beyond the brain to include peripheral tissues. Sleep state induces a highly overlapping response in both heart and lung. We conclude that sleep enhances organ specific molecular functions and that it has a ubiquitous role in reducing cellular metabolic stress in both brain and peripheral tissues. Finally, our data suggest a novel role for sleep in synchronizing transcription in peripheral tissues.
Collapse
Affiliation(s)
- Ron C Anafi
- Division of Sleep Medicine and Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Funayama A, Shishido T, Netsu S, Narumi T, Kadowaki S, Takahashi H, Miyamoto T, Watanabe T, Woo CH, Abe JI, Kuwahara K, Nakao K, Takeishi Y, Kubota I. Cardiac nuclear high mobility group box 1 prevents the development of cardiac hypertrophy and heart failure. Cardiovasc Res 2013; 99:657-64. [PMID: 23708738 PMCID: PMC3746952 DOI: 10.1093/cvr/cvt128] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Aims High mobility group box 1 (HMGB1) is an abundant and ubiquitous nuclear DNA-binding protein that has multiple functions dependent on its cellular location. HMGB1 binds to DNA, facilitating numerous nuclear functions including maintenance of genome stability, transcription, and repair. However, little is known about the effects of nuclear HMGB1 on cardiac hypertrophy and heart failure. The aim of this study was to examine whether nuclear HMGB1 plays a role in the development of cardiac hypertrophy induced by pressure overload. Methods and results Analysis of human biopsy samples by immunohistochemistry showed decreased nuclear HMGB1 expression in failing hearts compared with normal hearts. Nuclear HMGB1 decreased in response to both endothelin-1 (ET-1) and angiotensin II (Ang II) stimulation in neonatal rat cardiomyocytes, where nuclear HMGB1 was acetylated and translocated to the cytoplasm. Overexpression of nuclear HMGB1 attenuated ET-1 induced cardiomyocyte hypertrophy. Thoracic transverse aortic constriction (TAC) was performed in transgenic mice with cardiac-specific overexpression of HMGB1 (HMGB1-Tg) and wild-type (WT) mice. Cardiac hypertrophy after TAC was attenuated in HMGB1-Tg mice and the survival rate after TAC was higher in HMGB1-Tg mice than in WT mice. Induction of foetal cardiac genes was decreased in HMGB1-Tg mice compared with WT mice. Nuclear HMGB1 expression was preserved in HMGB1-Tg mice compared with WT mice and significantly attenuated DNA damage after TAC was attenuated in HMGB1-TG mice. Conclusion These results suggest that the maintenance of stable nuclear HMGB1 levels prevents hypertrophy and heart failure by inhibiting DNA damage.
Collapse
Affiliation(s)
- Akira Funayama
- Department of Cardiology, Pulmonology, and Nephrology, Yamagata University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Haider S, Cordeddu L, Robinson E, Movassagh M, Siggens L, Vujic A, Choy MK, Goddard M, Lio P, Foo R. The landscape of DNA repeat elements in human heart failure. Genome Biol 2012; 13:R90. [PMID: 23034148 PMCID: PMC3491418 DOI: 10.1186/gb-2012-13-10-r90] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/03/2012] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The epigenomes of healthy and diseased human hearts were recently examined by genome-wide DNA methylation profiling. Repetitive elements, heavily methylated in post-natal tissue, have variable methylation profiles in cancer but methylation of repetitive elements in the heart has never been examined. RESULTS We analyzed repetitive elements from all repeat families in human myocardial samples, and found that satellite repeat elements were significantly hypomethylated in end-stage cardiomyopathic hearts relative to healthy normal controls. Satellite repeat elements are almost always centromeric or juxtacentromeric, and their overexpression correlates with disease aggressiveness in cancer. Similarly, we found that hypomethylation of satellite repeat elements correlated with up to 27-fold upregulation of the corresponding transcripts in end-stage cardiomyopathic hearts. No other repeat family exhibited differential methylation between healthy and cardiomyopathic hearts, with the exception of the Alu element SINE1/7SL, for which a modestly consistent trend of increased methylation was observed. CONCLUSIONS Satellite repeat element transcripts, a form of non-coding RNA, have putative functions in maintaining genomic stability and chromosomal integrity. Further studies will be needed to establish the functional significance of these non-coding RNAs in the context of heart failure.
Collapse
|