1
|
Barbalho SM, Méndez-Sánchez N, Fornari Laurindo L. AdipoRon and ADP355, adiponectin receptor agonists, in Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH): A systematic review. Biochem Pharmacol 2023; 218:115871. [PMID: 37866803 DOI: 10.1016/j.bcp.2023.115871] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Adiponectin replacement therapy holds the potential to benefit numerous human diseases, and ongoing research applies particular interest in how adiponectin acts against Metabolic-associated Fatty Liver Disease (MAFLD) and Nonalcoholic Steatohepatitis (NASH). However, the pharmacological limitations of the intact protein have prompted a focus on alternative options, specifically peptidic and small molecule agonists targeting the adiponectin receptor. AdipoRon is an extensively researched non-peptidic drug candidate in adiponectin replacement therapy. In turn, ADP355 is an adiponectin-based active short peptide. They have garnered significant attention due to their potential as substitutes for adiponectin. Researchers have studied AdipoRon's and ADP355's efficacy and therapeutic applications in various disease conditions. However, the effects of AdipoRon and ADP355 against NAFLD and NASH models advanced more, and no systematic review explored this area before. This systematic review was conceived to address the deficiency mentioned above and consider the lack of clinical evidence. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were utilized. To assess the risk of bias in systematic review, The Joanna Briggs Institute (JBI) Critical Appraisal Checklist was employed. Results from pre-clinical evidence show that AdipoRon and ADP355 represent promising effects in NAFLD and NASH-related models, including reducing hepatic steatosis, modulating inflammation, improving insulin sensitivity, enhancing mitochondrial function, and protecting against liver fibrosis. While AdipoRon and ADP355 exhibit promise in pre-clinical studies and experimental models, additional clinical trials are necessary to assess their effectiveness, safety, and potential translational therapeutic potential uses in NAFLD and NASH human cases.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), São Paulo, Brazil.
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, Brazil
| |
Collapse
|
2
|
Elnagdy M, Wang Y, Rodriguez W, Zhang J, Bauer P, Wilkey DW, Merchant M, Pan J, Farooqui Z, Cannon R, Rai S, Maldonado C, Barve S, McClain CJ, Gobejishvili L. Increased expression of phosphodiesterase 4 in activated hepatic stellate cells promotes cytoskeleton remodeling and cell migration. J Pathol 2023; 261:361-371. [PMID: 37735782 PMCID: PMC10653049 DOI: 10.1002/path.6194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 07/30/2023] [Indexed: 09/23/2023]
Abstract
Activation and transdifferentiation of hepatic stellate cells (HSC) into migratory myofibroblasts is a key process in liver fibrogenesis. Cell migration requires an active remodeling of the cytoskeleton, which is a tightly regulated process coordinated by Rho-specific guanine nucleotide exchange factors (GEFs) and the Rho family of small GTPases. Rho-associated kinase (ROCK) promotes assembly of focal adhesions and actin stress fibers by regulating cytoskeleton organization. GEF exchange protein directly activated by cAMP 1 (EPAC1) has been implicated in modulating TGFβ1 and Rho signaling; however, its role in HSC migration has never been examined. The aim of this study was to evaluate the role of cAMP-degrading phosphodiesterase 4 (PDE4) enzymes in regulating EPAC1 signaling, HSC migration, and fibrogenesis. We show that PDE4 protein expression is increased in activated HSCs expressing alpha smooth muscle actin and active myosin light chain (MLC) in fibrotic tissues of human nonalcoholic steatohepatitis cirrhosis livers and mouse livers exposed to carbon tetrachloride. In human livers, TGFβ1 levels were highly correlated with PDE4 expression. TGFβ1 treatment of LX2 HSCs decreased levels of cAMP and EPAC1 and increased PDE4D expression. PDE4 specific inhibitor, rolipram, and an EPAC-specific agonist decreased TGFβ1-mediated cell migration in vitro. In vivo, targeted delivery of rolipram to the liver prevented fibrogenesis and collagen deposition and decreased the expression of several fibrosis-related genes, and HSC activation. Proteomic analysis of mouse liver tissues identified the regulation of actin cytoskeleton by the kinase effectors of Rho GTPases as a major pathway impacted by rolipram. Western blot analyses confirmed that PDE4 inhibition decreased active MLC and endothelin 1 levels, key proteins involved in cytoskeleton remodeling and contractility. The current study, for the first time, demonstrates that PDE4 enzymes are expressed in hepatic myofibroblasts and promote cytoskeleton remodeling and HSC migration. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Mohamed Elnagdy
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Yali Wang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Walter Rodriguez
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - JingWen Zhang
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Philip Bauer
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
- EndoProtech, Inc., Louisville, Kentucky, USA
| | - Daniel W. Wilkey
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Michael Merchant
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Jianmin Pan
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Kentucky, USA
| | - Zainab Farooqui
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
| | - Robert Cannon
- Department of Surgery, School of Medicine, University of Louisville, Kentucky, USA
| | - Shesh Rai
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Bioinformatics and Biostatistics, School of Public Health and Information Sciences, University of Louisville, Kentucky, USA
| | - Claudio Maldonado
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
- EndoProtech, Inc., Louisville, Kentucky, USA
| | - Shirish Barve
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
| | - Craig J. McClain
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
- Robley Rex VA Medical Center, Louisville, Kentucky, USA
| | - Leila Gobejishvili
- University of Louisville Alcohol Research Center, University of Louisville, Kentucky, USA
- Hepatobiology and Toxicology Center, University of Louisville, Kentucky, USA
- Department of Medicine, School of Medicine, University of Louisville, Kentucky, USA
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Kentucky, USA
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA
| |
Collapse
|
3
|
Niknam B, Baghaei K, Mahmoud Hashemi S, Hatami B, Reza Zali M, Amani D. Human Wharton's jelly mesenchymal stem cells derived-exosomes enriched by miR-124 promote an anti-fibrotic response in an experimental model of liver fibrosis. Int Immunopharmacol 2023; 119:110294. [PMID: 37167639 DOI: 10.1016/j.intimp.2023.110294] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Liver fibrosis is a significant challenge to global health that results in organ failure through inflammation and the release of fibrotic biomarkers. Due to the lack of effective treatments for liver fibrosis, anti-fibrotic and anti-inflammatory therapies are being developed. Since there has been an association between aberrant expression of miR-124 and liver disease progression, we investigated whether delivery of miR-124 through human Wharton's jelly mesenchymal stem cells derived-exosomes (hWJMSC-Exo) can improve liver fibrosis. METHODS We established a 6-week carbon tetrachloride (CCl4)-induced mouse model of liver fibrosis, then we administered hWJMSC-Exo and miR-124-3p-enriched exosomes (ExomiR-124) for three weeks. The extent of fibrosis and inflammation was assessed by histology, biochemistry, Real-time PCR, immunohistochemistry, and Enzyme-linked immunoassays (ELISA). The inflammatory status of the spleen was also investigated using flow cytometry. RESULTS Based on the gene and protein expression measurement of IL-6, IL-17, TGF-β, STAT3, α-SMA, and COL1, In vivo administration of Exo and ExomiR-124 effectively reduce collagen accumulation and inhibition of inflammation. Regarding histopathology findings, the therapeutic effect of ExomiR-124 against liver fibrosis was significantly greater than hWJMSC-Exo. In addition, we found that Exo and ExomiR-124 was capable of phenotype switching of splenic monocytes from inflammatory Ly6Chi to restorative Ly6Clo. CONCLUSIONS MSC-derived exosomes demonstrated anti-inflammatory effect via different aspects. Aside from the therapeutic approach, enrichment of exosomes as a nanocarrier by miR-124 revealed the down-regulation of STAT3, which plays a crucial role in liver fibrosis. The anti-inflammatory and anti-fibrotic properties of ExomiR-124 could be a promising option in liver fibrosis combination therapies.
Collapse
Affiliation(s)
- Bahare Niknam
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Hatami
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davar Amani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Gong P, Yin K, Luo X, Gu J, Tan R, Wu Y, Li D. Tandem mass tag-based proteomics analysis reveals the multitarget mechanisms of Phyllanthus emblica against liver fibrosis. Front Pharmacol 2022; 13:989995. [PMID: 36313326 PMCID: PMC9606415 DOI: 10.3389/fphar.2022.989995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
Phyllanthus emblica (PE), a traditional multiethnic herbal medicine, is commonly applied to treat liver diseases. Our previous study demonstrated that aqueous extract of PE (AEPE) could alleviate carbon tetrachloride (CCl4)-induced liver fibrosis in vivo, but the underlying molecular mechanisms are still unclear. The present study was undertaken to clarify the multitarget mechanisms of PE in treating liver fibrosis by proteomics clues. A CCl4-induced liver fibrosis rat model was established. The anti-liver fibrosis effects of chemical fractions from AEPE were evaluated by serum biochemical indicators and pathological staining. Additionally, tandem mass tag (TMT) - based quantitative proteomics technology was used to detect the hepatic differentially expressed proteins (DEPs). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, gene ontology (GO) enrichment and protein-protein interaction (PPI) network were used to perform bioinformatics analysis of DEPs. Western blot analysis was used to verify the key potential targets regulated by the effective fraction of AEPE. The low-molecular-weight fraction of AEPE (LWPE) was determined to be the optimal anti-liver fibrosis active fraction, that could significantly improve ALT, AST, HA, Col IV, PCIII, LN, Hyp levels and reduce the pathological fibrotic lesion of liver tissue in model rats. A total of 195 DEPs were screened after LWPE intervention. GO analysis showed that the DEPs were related mostly to extracellular matrix organization, actin binding, and extracellular exosomes. KEGG pathway analysis showed that DEPs are mainly related to ECM-receptor interactions, focal adhesion and PI3K-Akt signaling pathway. Combined with the GO, KEGG and Western blot results, COL1A2, ITGAV, TLR2, ACE, and PDGFRB may be potential targets for PE treatment of liver fibrosis. In conclusion, LWPE exerts therapeutic effects through multiple pathways and multiple targets regulation in the treatment of liver fibrosis. This study may provide proteomics clues for the continuation of research on liver fibrosis treatment with PE.
Collapse
Affiliation(s)
- Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Kehuan Yin
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Xiaomin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, China
- *Correspondence: Jian Gu, ; Yan Wu,
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yan Wu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
- *Correspondence: Jian Gu, ; Yan Wu,
| | - Dapeng Li
- West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Wu JC, Chen R, Luo X, Li ZH, Luo SZ, Xu MY. MicroRNA-194 inactivates hepatic stellate cells and alleviates liver fibrosis by inhibiting AKT2. World J Gastroenterol 2019; 25:4468-4480. [PMID: 31496625 PMCID: PMC6710173 DOI: 10.3748/wjg.v25.i31.4468] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Activation of hepatic stellate cells (HSCs) is a pivotal event in the onset and progression of liver fibrosis. Loss of microRNA-194 (miR-194) has been reported in activated HSCs, but the actual role of miR-194 in liver fibrosis remains uncertain.
AIM To explore the role and potential mechanism of miR-194-mediated regulation of liver fibrosis in vitro and in vivo.
METHODS The expression of miR-194 was examined in human fibrotic liver tissues, activated HSCs, and a carbon tetrachloride (CCl4) mouse model by qPCR. The effects of AKT2 regulation by miR-194 on the activation and proliferation of HSCs were assessed in vitro. For in vivo experiments, we reintroduced miR-194 in mice using a miR-194 agomir to investigate the functions of miR-194 in liver fibrosis.
RESULTS MiR-194 expression was notably lacking in activated HSCs from both humans and mice. Overexpression of miR-194 (OV-miR-194) inhibited α-smooth muscle actin (α-SMA) and type I collagen (Col I) expression and suppressed cell proliferation in HSCs by causing cell cycle arrest in G0/G1 phase. AKT2 was predicted to be a target of miR-194. Notably, the effects of miR-194 knockdown in HSCs were almost blocked by AKT2 deletion, indicating that miR-194 plays a role in HSCs via regulation of AKT2. Finally, miR-194 agomir treatment dramatically ameliorated liver fibrosis in CCl4-treated mice.
CONCLUSION We revealed that miR-194 plays a protective role by inhibiting the activation and proliferation of HSCs via AKT2 suppression. Our results further propose miR-194 as a potential therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Jun-Cheng Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Rong Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xin Luo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zheng-Hong Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Sheng-Zheng Luo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Ming-Yi Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| |
Collapse
|
6
|
Chen W, Wu X, Yan X, Xu A, Yang A, You H. Multitranscriptome analyses reveal prioritized genes specifically associated with liver fibrosis progression independent of etiology. Am J Physiol Gastrointest Liver Physiol 2019; 316:G744-G754. [PMID: 30920297 DOI: 10.1152/ajpgi.00339.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elimination or suppression of causative factors can raise the possibility of liver fibrosis regression. However, different injurious stimuli will give fibrosis from somewhat different etiologies, which, in turn, may hamper the discovery of liver fibrosis-specific therapeutic drugs. Therefore, the analogical cellular and molecular events shared by various etiology-evoked liver fibrosis should be clarified. Our present study systematically integrated five publicly available transcriptomic data sets regarding liver fibrosis with different etiologies from the Gene Expression Omnibus database and performed a series of bioinformatics analyses and experimental verifications. A total of 111 significantly upregulated and 16 downregulated genes were identified specific to liver fibrosis independent of any etiology. These genes were predominately enriched in some Kyoto Encyclopedia of Genes and Genomes pathways, including the "PI3K-AKT signaling pathway," "Focal adhesion," and "ECM-receptor interaction." Subsequently, five prioritized liver fibrosis-specific genes, including COL4A2, THBS2, ITGAV, LAMB1, and PDGFRA, were screened. These genes were positively associated with each other and liver fibrosis progression. In addition, they could robustly separate all stages of samples in both training and validation data sets with diverse etiologies when they were regarded as observed variables applied to principal component analysis plots. Expressions of all five genes were confirmed in activated primary mouse hepatic stellate cells (HSCs) and transforming growth factor β1-treated LX-2 cells. Moreover, THBS2 protein was enhanced in liver fibrosis rodent models, which could promote HSC activation and proliferation and facilitate NOTCH1/JAG1 expression in HSCs. Overall, our current study may provide potential targets for liver fibrosis therapy and aid to a deeper understanding of the molecular underpinnings of liver fibrosis. NEW & NOTEWORTHY Prioritized liver fibrosis-specific genes THBS2, COL4A2, ITGAV, LAMB1, and PDGFRA were identified and significantly associated with liver fibrosis progression and could be combined to discriminate liver fibrosis stages regardless of any etiology. Among the identified prioritized liver fibrosis-specific targets, THBS2 protein was confirmed to be enhanced in liver fibrosis rodent models, which could promote hepatic stellate cell (HSC) activation and proliferation and facilitate NOTCH1/JAG1 expression in HSCs.
Collapse
Affiliation(s)
- Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases , Beijing , China
| | - Xuzhen Yan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases , Beijing , China
| | - Anjian Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China
| | - Hong You
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University , Beijing , China.,Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases , Beijing , China
| |
Collapse
|
7
|
Du Y, Liu P, Chen Z, He Y, Zhang B, Dai G, Xia W, Liu Y, Chen X. PTEN improve renal fibrosis in vitro and in vivo through inhibiting FAK/AKT signaling pathway. J Cell Biochem 2019; 120:17887-17897. [PMID: 31144376 DOI: 10.1002/jcb.29057] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Yongchao Du
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Peihua Liu
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Yao He
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Bo Zhang
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Guoyu Dai
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Weiping Xia
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Yuhang Liu
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital Central South University Changsha Hunan PR China
| |
Collapse
|
8
|
Navarro-Corcuera A, López-Zabalza MJ, Martínez-Irujo JJ, Álvarez-Sola G, Ávila MA, Iraburu MJ, Ansorena E, Montiel-Duarte C. Role of AGAP2 in the profibrogenic effects induced by TGFβ in LX-2 hepatic stellate cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:673-685. [PMID: 30660615 DOI: 10.1016/j.bbamcr.2019.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/21/2018] [Accepted: 01/14/2019] [Indexed: 11/15/2022]
Abstract
Liver damage induces hepatic stellate cells (HSC) activation, characterised by a fibrogenic, proliferative and migratory phenotype. Activated HSC are mainly regulated by transforming growth factor β 1 (TGFβ1), which increases the production of extracellular matrix proteins (e.g. collagen-I) promoting the progression of hepatic fibrosis. AGAP2 (ArfGAP with GTPase domain, ankyrin repeat and PH domain 2) is a GTPase/GTP-activating protein involved in the actin remodelling system and receptor recycling. In the present work the role of AGAP2 in human HSC in response to TGFβ1 was investigated. LX-2 HSC were transfected with AGAP2 siRNA and treated with TGFβ1. AGAP2 knockdown prevented to some extent the proliferative and migratory TGFβ1-induced capacities of LX-2 cells. An array focused on human fibrosis revealed that AGAP2 knockdown partially prevented TGFβ1-mediated gene expression of the fibrogenic genes ACTA2, COL1A2, EDN1, INHBE, LOX, PDGFB, TGFΒ12, while favored the expression of CXCR4, IL1A, MMP1, MMP3 and MMP9 genes. Furthermore, TGFβ1 induced AGAP2 promoter activation and its protein expression in LX-2. Moreover, AGAP2 protein levels were significantly increased in liver samples from rats with thioacetamide-induced fibrosis. In addition, AGAP2 silencing affected TGFβ1-receptor 2 (TGFR2) trafficking in U2OS cells, blocking its effective recycling to the membrane. AGAP2 silencing in LX-2 cells prevented the TGFβ1-induced increase of collagen-I protein levels, while its overexpression enhanced collagen-I protein expression in the presence or absence of the cytokine. AGAP2 overexpression also increased focal adhesion kinase (FAK) phosphorylated levels in LX-2 cells. FAK and MEK1 inhibitors prevented the increase of collagen-I expression caused by TGFβ1 in LX-2 overexpressing AGAP2. In summary, the present work shows for the first time, that AGAP2 is a potential new target involved in TGFβ1 signalling, contributing to the progression of hepatic fibrosis.
Collapse
Affiliation(s)
| | - María J López-Zabalza
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain.
| | - Juan J Martínez-Irujo
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain.
| | - Gloria Álvarez-Sola
- Hepatology Program. CIMA, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain.
| | - Matías A Ávila
- Hepatology Program. CIMA, University of Navarra, Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain.
| | - María J Iraburu
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain.
| | - Eduardo Ansorena
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; IdiSNA, Navarra Institute for Health Research, Spain.
| | | |
Collapse
|
9
|
Otvos L. Potential Adiponectin Receptor Response Modifier Therapeutics. Front Endocrinol (Lausanne) 2019; 10:539. [PMID: 31456747 PMCID: PMC6700268 DOI: 10.3389/fendo.2019.00539] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022] Open
Abstract
Many human diseases may benefit from adiponectin replacement therapy, but due to pharmacological disadvantages of the intact protein, druggable options focus on peptidic, and small molecule agonists of the adiponectin receptor. Peptide-based adiponectin replacement drug leads are derived from, or resemble, the active site of globular adiponectin. ADP355, the first-in-class such peptide, exhibits low nanomolar cellular activities, and clinically acceptable efficacies in a series of fibrotic and inflammation-derived diseases. The advantage of small molecule therapies, spearheaded by AdipoRon, is oral availability and extension of utility to a series of metabolic conditions. It is exactly the difficulties in the reliability and readout of the in vitro measures and the wealth of in vivo models that make comparison of the various drug classes complicated, if not impossible. While only a fewer number of maladies could take advantage of adiponectin receptor antagonists, the limited number of these available can be very useful tools in target validation studies. Alternative approaches to direct adiponectin signaling control use upstream adiponectin production inducing therapies but currently these offer relatively limited success compared to direct receptor agonists.
Collapse
Affiliation(s)
- Laszlo Otvos
- OLPE LLC, Audubon, PA, United States
- Allysta Pharmaceuticals, San Mateo, CA, United States
- Institute of Medical Microbiology, Semmelweis University, Budapest, Hungary
- *Correspondence: Laszlo Otvos Jr.
| |
Collapse
|
10
|
Ma L, Li X, Bai Z, Lin X, Lin K. AdipoRs- a potential therapeutic target for fibrotic disorders. Expert Opin Ther Targets 2018; 23:93-106. [PMID: 30569772 DOI: 10.1080/14728222.2019.1559823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Fibrotic disorders are a leading cause of morbidity and mortality; hence effective treatments are still vigorously sought. AdipoRs (AdipoR1 and Adipo2) are responsible for the antifibrotic effects of adiponectin (APN). APN exerts antifibrotic effects by binding to its receptors. APN concentration and AdipoR expression are closely associated with fibrotic disorders. Decreased AdipoR expression may reduce APN-AdipoR signaling, while the upregulation of AdipoR expression may restore the anti-fibrotic effects of APN. Loss of APN signaling exacerbates fibrosis in vivo and in vitro. Areas covered: We assess the relationship between APN and fibrotic disorders, the structure of receptors for APN and the pathways accounting for APN or its analogs blocking fibrotic disorders. This article also discusses designed APN products and their therapeutic prospects for fibrotic disorders. Expert opinion: AdipoRs have a critical role in blocking fibrosis. The development of small-molecule agonists toward this target represents a valid drug development pathway.
Collapse
Affiliation(s)
- Lingman Ma
- a School of Life Science and Technology , China Pharmaceutical University , Nanjing , China
| | - Xuanyi Li
- b Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| | - Zhaoshi Bai
- c Department of pharmacy , Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University , Nanjing , China
| | - Xinhao Lin
- d Department of pharmacy , Class 154010, China Pharmaceutical University , Nanjing , China
| | - Kejiang Lin
- b Department of Medicinal Chemistry, School of Pharmacy , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
11
|
Kumar P, Raeman R, Chopyk DM, Smith T, Verma K, Liu Y, Anania FA. Adiponectin inhibits hepatic stellate cell activation by targeting the PTEN/AKT pathway. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3537-3545. [PMID: 30293572 PMCID: PMC6529190 DOI: 10.1016/j.bbadis.2018.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 02/08/2023]
Abstract
Adiponectin inhibits hepatic stellate cell (HSC) activation and subsequent development of liver fibrosis via multiple mechanisms. Phosphatase and tensin homolog deletion 10 (PTEN) plays a crucial role in suppression of HSC activation, but its regulation by adiponectin is not fully understood. Here, we investigated the effect of adiponectin on PTEN in LX-2 cells, a human cell line and examined the underlying molecular mechanisms involved in adiponectin-mediated upregulation of PTEN activity during fibrosis. PTEN expression was found to be significantly reduced in the livers of mice treated with CCl4, whereas its expression was rescued by adiponectin treatment. The DNA methylation proteins DNMT1, DNMT3A, and DNMT3B are all highly expressed in activated primary HSCs compared to quiescent HSCs, and thus represent additional regulatory targets during liver fibrogenesis. Expression of DNMT proteins was significantly induced in the presence of fibrotic stimuli; however, only DNMT3B expression was reduced in the presence of adiponectin. Adiponectin-induced suppression of DNMT3B was found to be mediated by enhanced miR-29b expression. Furthermore, PTEN expression was significantly increased by overexpression of miR-29b, whereas its expression was markedly reduced by a miR-29b inhibitor in LX-2 cells. These findings suggest that adiponectin-induced upregulation of miR-29b can suppress DNMT3B transcription in LX-2 cells, thus resulting in reduced methylation of PTEN CpG islands and ultimately suppressing the PI3K/AKT pathway. Together, these data suggest a possible new explanation for the inhibitory effect of adiponectin on HSC activation and liver fibrogenesis.
Collapse
Affiliation(s)
- Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA.
| | - Reben Raeman
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel M Chopyk
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Kiran Verma
- Labratory of Biochemical Pharmacology, Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Wu JC, Luo SZ, Liu T, Lu LG, Xu MY. linc-SCRG1 accelerates liver fibrosis by decreasing RNA-binding protein tristetraprolin. FASEB J 2018; 33:2105-2115. [PMID: 30226813 DOI: 10.1096/fj.201800098rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The biologic roles of long noncoding RNAs (lncRNAs) in liver fibrosis remained unknown. Through microarray analysis, linc-SCRG1 (a lncRNA with transcript length 3118 bp) was found up-regulated 13.62-fold in human cirrhotic tissues. Quantitative PCR verified that linc-SCRG1 increased along with liver fibrosis progression in human tissues and in activated LX2 cells induced by TGF-β1. Knockdown of linc-SCRG1 significantly reversed the effects of TGF-β1 on LX2, including inhibiting activation, promoting apoptosis, reducing proliferation, lessening invasion, and down-regulating genes [fibrosis-related mRNA: α-smooth muscle actin ( α-SMA), type I collagen, and B-cell lymphoma-2; invasion-related mRNA: matrix metallopeptidase-2 ( MMP-2), MMP-9, and MMP-13; inflammation-related mRNA: TNF-α, IL-6, and IL-10]. linc-SCRG1 had binding sites with tristetraprolin (TTP), a kind of RNA-binding protein, and specifically combined to TTP proteins. Overexpression of linc-SCRG1 would cause TTP mRNA unstably and proteins decreasing. TTP mRNA was proved having negative relevance with linc-SCRG1 and was gradually reduced during human liver fibrosis progression. Overexpressing TTP resulted in knockdown of lincSCRG1 and degraded downstream target genes ( MMP-2 and TNF-α) in activated LX2. Overexpressing TTP had the same effects as small interfering RNA-lincSCRG1 (si- lincSCRG1), whereas knockdown of TTP had reversal effects on si- lincSCRG1 in activated LX2. In summary, linc-SCRG1 reduced TTP and restricted its degradation of target genes TNF-α and MMP-2. Therefore, linc-SCRG1 had a repressing TTP-elicited inactivation effect on hepatic stellate cell (HSC) phenotypes. Inhibition of linc-SCRG1 may be a novel therapeutic approach to inactivate HSCs and extenuate human liver fibrosis.-Wu, J.-C., Luo, S.-Z., Liu, T., Lu, L.-G., Xu, M.-Y. linc-SCRG1 accelerates liver fibrosis by decreasing RNA-binding protein tristetraprolin.
Collapse
Affiliation(s)
- Jun-Cheng Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Zheng Luo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Liu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lun-Gen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Yi Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Kumar P, Smith T, Raeman R, Chopyk DM, Brink H, Liu Y, Sulchek T, Anania FA. Periostin promotes liver fibrogenesis by activating lysyl oxidase in hepatic stellate cells. J Biol Chem 2018; 293:12781-12792. [PMID: 29941453 DOI: 10.1074/jbc.ra117.001601] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/20/2018] [Indexed: 12/29/2022] Open
Abstract
Liver fibrosis arises from dysregulated wound healing due to persistent inflammatory hepatic injury. Periostin is a nonstructural extracellular matrix protein that promotes organ fibrosis in adults. Here, we sought to identify the molecular mechanisms in periostin-mediated hepatic fibrosis. Hepatic fibrosis in periostin-/- mice was attenuated as evidenced by significantly reduced collagen fibril density and liver stiffness compared with those in WT controls. A single dose of carbon tetrachloride caused similar acute liver injury in periostin-/- and WT littermates, and we did not detect significant differences in transaminases and major fibrosis-related hepatic gene expression between these two genotypes. Activated hepatic stellate cells (HSCs) are the major periostin-producing liver cell type. We found that in primary rat HSCs in vitro, periostin significantly increases the expression levels and activities of lysyl oxidase (LOX) and lysyl oxidase-like (LOXL) isoforms 1-3. Periostin also induced expression of intra- and extracellular collagen type 1 and fibronectin in HSCs. Interestingly, periostin stimulated phosphorylation of SMAD2/3, which was sustained despite short hairpin RNA-mediated knockdown of transforming growth factor β (TGFβ) receptor I and II, indicating that periostin-mediated SMAD2/3 phosphorylation is independent of TGFβ receptors. Moreover, periostin induced the phosphorylation of focal adhesion kinase (FAK) and AKT in HSCs. Notably, siRNA-mediated FAK knockdown failed to block periostin-induced SMAD2/3 phosphorylation. These results suggest that periostin promotes enhanced matrix stiffness in chronic liver disease by activating LOX and LOXL, independently of TGFβ receptors. Hence, targeting periostin may be of therapeutic benefit in combating hepatic fibrosis.
Collapse
Affiliation(s)
- Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322.
| | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Reben Raeman
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Daniel M Chopyk
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Hannah Brink
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Yunshan Liu
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Todd Sulchek
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
14
|
|
15
|
Liu X, Shi Y, Hu Y, Luo K, Guo Y, Meng W, Deng Y, Dai R. Bupleurum marginatum Wall.ex DC in Liver Fibrosis: Pharmacological Evaluation, Differential Proteomics, and Network Pharmacology. Front Pharmacol 2018; 9:524. [PMID: 29867514 PMCID: PMC5968385 DOI: 10.3389/fphar.2018.00524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022] Open
Abstract
Liver fibrosis is a common pathological feature of many chronic liver diseases. Bupleurum marginatum Wall.ex DC (ZYCH) is a promising therapeutic for liver fibrosis. In this study, 25 compounds were isolated from ZYCH, and the effects of ZYCH on DMN-induced liver fibrosis in rats were evaluated. The optimal effect group (H-ZYCH group) was selected for further proteomic analysis, and 282 proteins were altered in comparison to the DMN model group (FC > 1.2 or < 0.83, p < 0.05). Based on GO annotation analysis, clusters of drug metabolism, oxidative stress, biomolecular synthesis and metabolism, positive regulation of cell growth, extracellular matrix deposition, and focal adhesion were significantly regulated. Then networks of the altered proteins and compounds was generated by Cytoscape. Importantly, triterpenoid saponins and lignans had possessed high libdock scores, numerous targets, important network positions, and strong inhibitory activity. These findings may suggest that triterpenoid saponins and lignans are important active compounds of ZYCH in liver fibrosis and targeted by proteins involved in liver fibrosis. The combination of network pharmacology with proteomic analysis may provide a forceful tool for exploring the effect mechanism of TCM and identifying bioactive ingredients and their targets.
Collapse
Affiliation(s)
- Xiujie Liu
- School of Life Science, Institute of Space Biology and Medical Engineering, Beijing Institute of Technology, Beijing, China
| | - Yu Shi
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yinghui Hu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Ke Luo
- School of Life Science, Institute of Space Biology and Medical Engineering, Beijing Institute of Technology, Beijing, China
| | - Ying Guo
- School of Life Science, Institute of Space Biology and Medical Engineering, Beijing Institute of Technology, Beijing, China
| | - Weiwei Meng
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Yulin Deng
- School of Life Science, Institute of Space Biology and Medical Engineering, Beijing Institute of Technology, Beijing, China
| | - Rongji Dai
- School of Life Science, Institute of Space Biology and Medical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
16
|
Hongtao C, Youling F, Fang H, Huihua P, Jiying Z, Jun Z. Curcumin alleviates ischemia reperfusion‐induced late kidney fibrosis through the APPL1/Akt signaling pathway. J Cell Physiol 2018; 233:8588-8596. [DOI: 10.1002/jcp.26536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/06/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Chen Hongtao
- Departmentof AnesthesiologyEighth People's Hospital of GuangzhouGuangzhouGuangdong ProvinceChina
| | - Fan Youling
- Department of AnesthesiologyPanyu Central HospitalGuangzhouGuangdong ProvinceChina
| | - Huang Fang
- Department of AnesthesiologyPanyu Central HospitalGuangzhouGuangdong ProvinceChina
| | - Peng Huihua
- Department of AnesthesiologyPanyu Central HospitalGuangzhouGuangdong ProvinceChina
| | - Zhong Jiying
- Department of AnesthesiologyThe First People's Hospital of FoshanFoshanGuangdong ProvinceChina
| | - Zhou Jun
- Department of AnesthesiologyThe First People's Hospital of FoshanFoshanGuangdong ProvinceChina
| |
Collapse
|
17
|
Alzahrani B, Iseli T, Ramezani-Moghadam M, Ho V, Wankell M, Sun EJ, Qiao L, George J, Hebbard LW. The role of AdipoR1 and AdipoR2 in liver fibrosis. Biochim Biophys Acta Mol Basis Dis 2017; 1864:700-708. [PMID: 29237572 DOI: 10.1016/j.bbadis.2017.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/17/2022]
Abstract
Activation of the adiponectin (APN) signaling axis retards liver fibrosis. However, understanding of the role of AdipoR1 and AdipoR2 in mediating this response is still rudimentary. Here, we sought to elucidate the APN receptor responsible for limiting liver fibrosis by employing AdipoR1 and AdipoR2 knock-out mice in the carbon tetrachloride (CCl4) model of liver fibrosis. In addition, we knocked down receptor function in primary hepatic stellate cells (HSCs) in vitro. Following the development of fibrosis, AdipoR1 and AdipoR2 KO mice had no quantitative difference in fibrosis by Sirius red staining. However, AdipoR2 KO mice had an enhanced fibrotic signature with increased Col1-α1, TGFß-1, TIMP-1, IL-10, MMP-2 and MMP-9. Knockdown of AdipoR1 or AdipoR2 in HSCs followed by APN treatment demonstrated that AdipoR1 and AdipoR2 did not affect proliferation or TIMP-1 gene expression, while AdipoR2 modulated Col1-α1 and α-SMA gene expression, HSC migration, and AMPK activity. These finding suggest that AdipoR2 is the major APN receptor on HSCs responsible for mediating its anti-fibrotic effects.
Collapse
Affiliation(s)
- Badr Alzahrani
- The Storr Liver Centre, Westmead Institute of Medical Research, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Tristan Iseli
- The Storr Liver Centre, Westmead Institute of Medical Research, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Mehdi Ramezani-Moghadam
- The Storr Liver Centre, Westmead Institute of Medical Research, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Vikki Ho
- The Storr Liver Centre, Westmead Institute of Medical Research, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Miriam Wankell
- Department of Molecular and Cell Biology, Centre for Comparative Genomics, The Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, QLD, 4811, Australia
| | - Eun Jin Sun
- Department of Molecular and Cell Biology, Centre for Comparative Genomics, The Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, QLD, 4811, Australia
| | - Liang Qiao
- The Storr Liver Centre, Westmead Institute of Medical Research, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Jacob George
- The Storr Liver Centre, Westmead Institute of Medical Research, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia
| | - Lionel W Hebbard
- Department of Molecular and Cell Biology, Centre for Comparative Genomics, The Centre for Biodiscovery and Molecular Development of Therapeutics, James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, QLD, 4811, Australia; The Storr Liver Centre, Westmead Institute of Medical Research, University of Sydney at Westmead Hospital, Westmead, New South Wales 2145, Australia.
| |
Collapse
|
18
|
Liu X, Dai R, Ke M, Suheryani I, Meng W, Deng Y. Differential Proteomic Analysis of Dimethylnitrosamine (DMN)-Induced Liver Fibrosis. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/27/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Xiujie Liu
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmceuticals; Beijing Institute of Technology; Beijing P. R. China
| | - Rongji Dai
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmceuticals; Beijing Institute of Technology; Beijing P. R. China
| | - Ming Ke
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Imran Suheryani
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Weiwei Meng
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
| | - Yulin Deng
- School of Life Science; Beijing Institute of Technology; Beijing P. R. China
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmceuticals; Beijing Institute of Technology; Beijing P. R. China
| |
Collapse
|
19
|
Hepatic stellate cells as key target in liver fibrosis. Adv Drug Deliv Rev 2017; 121:27-42. [PMID: 28506744 DOI: 10.1016/j.addr.2017.05.007] [Citation(s) in RCA: 925] [Impact Index Per Article: 132.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 05/09/2017] [Indexed: 02/06/2023]
Abstract
Progressive liver fibrosis, induced by chronic viral and metabolic disorders, leads to more than one million deaths annually via development of cirrhosis, although no antifibrotic therapy has been approved to date. Transdifferentiation (or "activation") of hepatic stellate cells is the major cellular source of matrix protein-secreting myofibroblasts, the major driver of liver fibrogenesis. Paracrine signals from injured epithelial cells, fibrotic tissue microenvironment, immune and systemic metabolic dysregulation, enteric dysbiosis, and hepatitis viral products can directly or indirectly induce stellate cell activation. Dysregulated intracellular signaling, epigenetic changes, and cellular stress response represent candidate targets to deactivate stellate cells by inducing reversion to inactivated state, cellular senescence, apoptosis, and/or clearance by immune cells. Cell type- and target-specific pharmacological intervention to therapeutically induce the deactivation will enable more effective and less toxic precision antifibrotic therapies.
Collapse
|
20
|
Chen W, Zhao W, Yang A, Xu A, Wang H, Cong M, Liu T, Wang P, You H. Integrated analysis of microRNA and gene expression profiles reveals a functional regulatory module associated with liver fibrosis. Gene 2017; 636:87-95. [PMID: 28919164 DOI: 10.1016/j.gene.2017.09.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/13/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Liver fibrosis, characterized with the excessive accumulation of extracellular matrix (ECM) proteins, represents the final common pathway of chronic liver inflammation. Ever-increasing evidence indicates microRNAs (miRNAs) dysregulation has important implications in the different stages of liver fibrosis. However, our knowledge of miRNA-gene regulation details pertaining to such disease remains unclear. METHODS The publicly available Gene Expression Omnibus (GEO) datasets of patients suffered from cirrhosis were extracted for integrated analysis. Differentially expressed miRNAs (DEMs) and genes (DEGs) were identified using GEO2R web tool. Putative target gene prediction of DEMs was carried out using the intersection of five major algorithms: DIANA-microT, TargetScan, miRanda, PICTAR5 and miRWalk. Functional miRNA-gene regulatory network (FMGRN) was constructed based on the computational target predictions at the sequence level and the inverse expression relationships between DEMs and DEGs. DAVID web server was selected to perform KEGG pathway enrichment analysis. Functional miRNA-gene regulatory module was generated based on the biological interpretation. Internal connections among genes in liver fibrosis-related module were determined using String database. MiRNA-gene regulatory modules related to liver fibrosis were experimentally verified in recombinant human TGFβ1 stimulated and specific miRNA inhibitor treated LX-2 cells. RESULTS We totally identified 85 and 923 dysregulated miRNAs and genes in liver cirrhosis biopsy samples compared to their normal controls. All evident miRNA-gene pairs were identified and assembled into FMGRN which consisted of 990 regulations between 51 miRNAs and 275 genes, forming two big sub-networks that were defined as down-network and up-network, respectively. KEGG pathway enrichment analysis revealed that up-network was prominently involved in several KEGG pathways, in which "Focal adhesion", "PI3K-Akt signaling pathway" and "ECM-receptor interaction" were remarked significant (adjusted p<0.001). Genes enriched in these pathways coupled with their regulatory miRNAs formed a functional miRNA-gene regulatory module that contains 7 miRNAs, 22 genes and 42 miRNA-gene connections. Gene interaction analysis based on String database revealed that 8 out of 22 genes were highly clustered. Finally, we experimentally confirmed a functional regulatory module containing 5 miRNAs (miR-130b-3p, miR-148a-3p, miR-345-5p, miR-378a-3p, and miR-422a) and 6 genes (COL6A1, COL6A2, COL6A3, PIK3R3, COL1A1, CCND2) associated with liver fibrosis. CONCLUSIONS Our integrated analysis of miRNA and gene expression profiles highlighted a functional miRNA-gene regulatory module associated with liver fibrosis, which, to some extent, may provide important clues to better understand the underlying pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenshan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Aiting Yang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Anjian Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huan Wang
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hong You
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China.
| |
Collapse
|
21
|
Sun L, Yang X, Li Q, Zeng P, Liu Y, Liu L, Chen Y, Yu M, Ma C, Li X, Li Y, Zhang R, Zhu Y, Miao QR, Han J, Duan Y. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice. Arterioscler Thromb Vasc Biol 2017; 37:1290-1300. [DOI: 10.1161/atvbaha.117.309630] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/15/2017] [Indexed: 12/15/2022]
Abstract
Objective—
The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator–activated receptor γ) or SREBP2 (sterol regulatory element-binding protein 2). The effects of AdipoR agonists on PCSK9 and LDLR expression, serum lipid profiles, and atherosclerosis remain unknown.
Approach and Results—
At cellular levels, AdipoR agonists (ADP355 and AdipoRon) induced PCSK9 transcription/expression that solely depended on activation of PPAR-responsive element in the PCSK9 promoter. AdipoR agonists induced PPARγ expression; thus, the AdipoR agonist-activated PCSK9 expression/production was impaired in PPARγ deficient hepatocytes. Meanwhile, AdipoR agonists transcriptionally activated LDLR expression by activating SRE in the LDLR promoter. Moreover, AMP-activated protein kinase α (AMPKα) was involved in AdipoR agonist-activated PCSK9 expression. In wild-type mice, ADP355 increased PCSK9 and LDLR expression and serum PCSK9 levels, which was associated with activation of PPARγ, AMPKα and SREBP2 and reduction of LDL-cholesterol levels. In contrast, ADP355 reduced PCSK9 expression/secretion in apoE-deficient (apoE
−/−
) mice, but it still activated hepatic LDLR, PPARγ, AMPKα, and SREBP2. More importantly, ADP355 inhibited lesions in en face aortas and sinus lesions in aortic root in apoE
−/−
mice with amelioration of lipid profiles.
Conclusions—
Our study demonstrates that AdipoR activation by agonists regulated PCSK9 expression differently in wild-type and apoE
−/−
mice. However, ADP355 activated hepatic LDLR expression and ameliorated lipid metabolism in both types of mice and inhibited atherosclerosis in apoE
−/−
mice.
Collapse
Affiliation(s)
- Lei Sun
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Xiaoxiao Yang
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Qi Li
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Peng Zeng
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Ying Liu
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Lipei Liu
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Yuanli Chen
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Miao Yu
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Chuanrui Ma
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Xiaoju Li
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Yan Li
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Rongxin Zhang
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Yan Zhu
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Qing Robert Miao
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Jihong Han
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| | - Yajun Duan
- From the Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China (L.S., Q.L., P.Z., Y. Liu, L.L., M.Y., C.M., X.L., Y. Li); Department of Biomedical Sciences, College of Biomedical Engineering, Hefei University of Technology, China (X.Y., Y.C., J.H., Y.D.); Department of Physiology, Tianjin Medical University, China (R.Z.); Department of Pharmacology, Tianjin University of Traditional Chinese Medicine, China (Y.Z.); Departments of Surgery and
| |
Collapse
|
22
|
Marangoni RG, Masui Y, Fang F, Korman B, Lord G, Lee J, Lakota K, Wei J, Scherer PE, Otvos L, Yamauchi T, Kubota N, Kadowaki T, Asano Y, Sato S, Tourtellotte WG, Varga J. Adiponectin is an endogenous anti-fibrotic mediator and therapeutic target. Sci Rep 2017; 7:4397. [PMID: 28667272 PMCID: PMC5493638 DOI: 10.1038/s41598-017-04162-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Skin fibrosis in systemic sclerosis (SSc) is accompanied by attrition of dermal white adipose tissue (dWAT) and reduced levels of circulating adiponectin. Since adiponectin has potent regulatory effects on fibroblasts, we sought to assess adiponectin signaling in SSc skin biopsies, and evaluate fibrosis in mice with adiponectin gain- and loss-of-function mutations. Furthermore, we investigated the effects and mechanism of action of agonist peptides targeting adiponectin receptors in vitro and in vivo. We found that adiponectin pathway activity was significantly reduced in a subset of SSc skin biopsies. Mice lacking adiponectin mounted an exaggerated dermal fibrotic response, while transgenic mice with constitutively elevated adiponectin showed selective dWAT expansion and protection from skin and peritoneal fibrosis. Adiponectin receptor agonists abrogated ex vivo fibrotic responses in explanted normal and SSc fibroblasts and in 3D human skin equivalents, in part by attenuating focal adhesion complex assembly, and prevented and reversed experimentally-induced organ fibrosis in mice. These results implicate aberrant adiponectin pathway activity in skin fibrosis, identifying a novel function for this pleiotropic adipokine in regulation of tissue remodeling. Restoring adiponectin signaling in SSc patients therefore might represent an innovative pharmacological strategy for intractable organ fibrosis.
Collapse
Affiliation(s)
- Roberta G Marangoni
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Yuri Masui
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Feng Fang
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Benjamin Korman
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gabriel Lord
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Junghwa Lee
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia
| | - Jun Wei
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laszlo Otvos
- Department of Biology, Temple University, Philadelphia, PA, 19140, USA
| | - Toshimasa Yamauchi
- Department of Diabetes and Metabolic Diseases, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Naoto Kubota
- Department of Diabetes and Metabolic Diseases, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Warren G Tourtellotte
- Department of Pathology and Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - John Varga
- Northwestern Scleroderma Program, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
23
|
Abstract
Understanding the underlying molecular mechanisms of liver fibrosis is important to develop effective therapy. Herein, we show that focal-adhesion-kinse (FAK) plays a key role in promoting hepatic stellate cells (HSCs) activation in vitro and liver fibrosis progression in vivo. FAK activation is associated with increased expression of α-smooth muscle actin (α-SMA) and collagen in fibrotic live tissues. Transforming growth factor beta-1 (TGF-β1) induces FAK activation in a time and dose dependent manner. FAK activation precedes the α-SMA expression in HSCs. Inhibition of FAK activation blocks the α-SMA and collagen expression, and inhibits the formation of stress fibers in TGF-β1 treated HSCs. Furthermore, inhibition of FAK activation significantly reduces HSC migration and small GTPase activation, and induces apoptotic signaling in TGF-β1 treated HSCs. Importantly, FAK inhibitor attenuates liver fibrosis in vivo and significantly reduces collagen and α-SMA expression in an animal model of liver fibrosis. These data demonstrate that FAK plays an essential role in HSC activation and liver fibrosis progression, and FAK signaling pathway could be a potential target for liver fibrosis.
Collapse
|
24
|
Targeted inhibition of Focal Adhesion Kinase Attenuates Cardiac Fibrosis and Preserves Heart Function in Adverse Cardiac Remodeling. Sci Rep 2017; 7:43146. [PMID: 28225063 PMCID: PMC5320468 DOI: 10.1038/srep43146] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 11/16/2016] [Indexed: 12/02/2022] Open
Abstract
Cardiac fibrosis in post-myocardial infarction (MI), seen in both infarcted and non-infarcted myocardium, is beneficial to the recovery of heart function. But progressively pathological fibrosis impairs ventricular function and leads to poor prognosis. FAK has recently received attention as a potential mediator of fibrosis, our previous study reported that pharmacological inhibition of FAK can attenuate cardiac fibrosis in post MI models. However, the long-term effects on cardiac function and adverse cardiac remodelling were not clearly investigated. In this study, we tried to determine the preliminary mechanisms in regulating CF transformation to myofibroblasts and ECM synthesis relevant to the development of adverse cardiac remolding in vivo and in vitro. Our study provides even more evidence that FAK is directly related to the activation of CF in hypoxia condition in a dose-dependent and time-dependent manner. Pharmacological inhibition of FAK significantly reduces myofibroblast differentiation; our in vivo data demonstrated that a FAK inhibitor significantly decreases fibrotic score, and preserves partial left ventricular function. Both PI3K/AKT signalling and ERK1/2 are necessary for hypoxia-induced CF differentiation and ECM synthesis; this process also involves lysyl oxidase (LOX). These findings suggest that pharmacological inhibition of FAK may become an effective therapeutic strategy against adverse fibrosis.
Collapse
|
25
|
Ma JC, Huang X, Shen YW, Zheng C, Su QH, Xu JK, Zhao J. Tenascin-C promotes migration of hepatic stellate cells and production of type I collagen. Biosci Biotechnol Biochem 2016; 80:1470-7. [PMID: 27031437 DOI: 10.1080/09168451.2016.1165600] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Tenascin-C (TN-C) is an extracellular matrix glycoprotein markedly upregulated during liver fibrosis. The study is performed to explore the role of TN-C during the growth and activation of hepatic stellate cells (HSCs). We found that TN-C was accumulated accompanying with the HSC activation. Our data on cell migration assay revealed that the rTN-C treatment enhanced HSC migration in a dose- and time-dependent manner, but did not influence their proliferation. HSCs transfected with pTARGET-TN-C overexpression vector displayed increased the type I collagen (Col I) production. TN-C overexpression enhanced the process of HSC activation through TGF-β1 signaling. Moreover, the anti-α9β1 integrin antibody treatment blocked the TN-C-driven Col I increase in rat HSCs. Collectively, TN-C had a positive role in activation of HSCs mediated by TGF-β1 and α9β1 integrin, manifesting elevation of Col I production and promotion of cell migration. Our results provide a potential insight for the therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Jian-Cang Ma
- a Department of General Surgery , Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Xin Huang
- b Department of General Surgery , Xi'an Central Hospital, Xi'an Jiaotong University , Xi'an , China
| | - Ya-Wei Shen
- b Department of General Surgery , Xi'an Central Hospital, Xi'an Jiaotong University , Xi'an , China
| | - Chen Zheng
- b Department of General Surgery , Xi'an Central Hospital, Xi'an Jiaotong University , Xi'an , China
| | - Qing-Hua Su
- a Department of General Surgery , Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Jin-Kai Xu
- a Department of General Surgery , Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Jun Zhao
- a Department of General Surgery , Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
26
|
Surmacz E, Otvos L. Molecular targeting of obesity pathways in cancer. Horm Mol Biol Clin Investig 2016; 22:53-62. [PMID: 25879324 DOI: 10.1515/hmbci-2015-0007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/05/2015] [Indexed: 12/20/2022]
Abstract
Obesity is a significant risk factor for the development of different cancer types and has been associated with poorer response to oncotherapies and linked to earlier recurrence of the neoplastic disease. While molecular mechanisms of these associations are still under investigation, functional dysregulation of two major fat tissue-derived adipokines, leptin and adiponectin, appears to play an important role. Leptin is known to activate carcinogenic pathways, while adiponectin appears to exert antineoplastic activities and interfere with leptin-induced processes. Because excess body fat is associated with increased leptin expression and adiponectin downregulation, therapeutic rebalancing of these pathways may benefit cancer patients, especially the obese subpopulations. This review focuses on our novel leptin receptor antagonists and adiponectin receptor agonists designed for therapeutic modulation of obesity-associated pathways in cancer.
Collapse
|
27
|
Yang JJ, Tao H, Deng ZY, Lu C, Li J. Non-coding RNA-mediated epigenetic regulation of liver fibrosis. Metabolism 2015; 64:1386-94. [PMID: 26362725 DOI: 10.1016/j.metabol.2015.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/06/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
Abstract
Hepatic stellate cells (HSC) activation plays a key role in liver fibrosis. Numerous studies have indicated that non-coding RNAs (ncRNAs) control liver fibrosis and fibroblasts proliferation. Greater knowledge of the role of the ncRNAs-mediated epigenetic mechanism in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the ncRNAs significantly participating in liver fibrosis and HSC activation, and look ahead on new perspectives of ncRNAs-mediated epigenetic mechanism research. Moreover, we will discuss examples of non-coding RNAs that interact with histone modification or DNA methylation to regulate gene expression in liver fibrosis. Diverse classes of ncRNAs, ranging from microRNAs (miRs) to long non-coding RNAs (LncRNAs), have emerged as key regulators of several important aspects of function, including cell proliferation, activation, etc. In addition, recent advances suggest the important role of ncRNAs transcripts in epigenetic gene regulation. Targeting the miRs and LncRNAs can be a promising direction in liver fibrosis treatment. We discuss new perspectives of miRs and LncRNAs in liver fibrosis and HSC activation, mainly including interaction with histone modification or DNA methylation to regulate gene expression. These epigenetic mechanisms form powerful ncRNAs surveillance systems that may represent new targets for liver fibrosis therapeutic intervention.
Collapse
Affiliation(s)
- Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Zi-Yu Deng
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, Hefei, China, 230601.
| | - Chao Lu
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China, 230032.
| |
Collapse
|
28
|
Adiponectin as an anti-fibrotic and anti-inflammatory adipokine in the liver. CURRENT PATHOBIOLOGY REPORTS 2015; 3:243-252. [PMID: 26858914 DOI: 10.1007/s40139-015-0094-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Hepatic fibrosis is a dynamic process resulting from excessive deposition of extracellular matrix in the liver; uncontrolled progression of fibrosis can eventually lead to liver cirrhosis and/or hepatocellular carcinoma. The fibrogenic process is complex and modulated by a number of both hepatic and extra-hepatic biological factors. Growing evidence indicates that adipokines, a group of cytokines produced by adipose tissue, impart dynamic functions in liver and are involved in modulation of hepatic fibrosis. In particular, two key adipokines, adiponectin and leptin, directly regulate many biological responses closely associated with development and progression of hepatic fibrosis. Leptin acts as a pro-fibrogenic cytokine, while adiponectin possesses anti-fibrogenic and anti-inflammatory properties. Adiponectin, acting via its cognate receptors, adiponectin receptors 1 and 2, potently suppresses fibrosis and inflammation in liver via multiple mechanisms. This review summarizes recent findings concerning the role of adiponectin in fibrogenic process in liver and addresses the underlying molecular mechanisms in modulation of fibrosis.
Collapse
|
29
|
Abstract
Obesity and metabolic syndrome pose significant risk for the progression of many types of chronic illness, including liver disease. Hormones released from adipocytes, adipocytokines, associated with obesity and metabolic syndrome, have been shown to control hepatic inflammation and fibrosis. Hepatic fibrosis is the final common pathway that can result in cirrhosis, and can ultimately require liver transplantation. Initially, two key adipocytokines, leptin and adiponectin, appeared to control many fundamental aspects of the cell and molecular biology related to hepatic fibrosis and its resolution. Leptin appears to act as a profibrogenic molecule, while adiponectin has strong-antifibrotic properties. In this review, we emphasize pertinent data associated with these and other recently discovered adipocytokines that may drive or halt the fibrogenic response in the liver.
Collapse
Affiliation(s)
- Neeraj K Saxena
- University of Maryland School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, Howard Hall, Room 301, 660W. Redwood Street, Baltimore, MD 21201, USA.
| | - Frank A Anania
- Emory University School of Medicine, Division of Digestive Diseases, Suite 201, 615 Michael Street, NE, Atlanta, GA 30322, USA.
| |
Collapse
|
30
|
Otvos L, Knappe D, Hoffmann R, Kovalszky I, Olah J, Hewitson TD, Stawikowska R, Stawikowski M, Cudic P, Lin F, Wade JD, Surmacz E, Lovas S. Development of second generation peptides modulating cellular adiponectin receptor responses. Front Chem 2014; 2:93. [PMID: 25368867 PMCID: PMC4201147 DOI: 10.3389/fchem.2014.00093] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 10/01/2014] [Indexed: 01/16/2023] Open
Abstract
The adipose tissue participates in the regulation of energy homeostasis as an important endocrine organ that secretes a number of biologically active adipokines, including adiponectin. Recently we developed and characterized a first-in-class peptide-based adiponectin receptor agonist by using in vitro and in vivo models of glioblastoma and breast cancer (BC). In the current study, we further explored the effects of peptide ADP355 in additional cellular models and found that ADP355 inhibited chronic myeloid leukemia (CML) cell proliferation and renal myofibroblast differentiation with mid-nanomolar IC50 values. According to molecular modeling calculations, ADP355 was remarkably flexible in the global minimum with a turn present in the middle of the peptide. Considering these structural features of ADP355 and the fact that adiponectin normally circulates as multimeric complexes, we developed and tested the activity of a linear branched dimer (ADP399). The dimer exhibited approximately 20-fold improved cellular activity inhibiting K562 CML and MCF-7 cell growth with high pM-low nM relative IC50 values. Biodistribution studies suggested superior tissue dissemination of both peptides after subcutaneous administration relative to intraperitoneal inoculation. After screening of a 397-member adiponectin active site library, a novel octapeptide (ADP400) was designed that counteracted 10-1000 nM ADP355- and ADP399-mediated effects on CML and BC cell growth at nanomolar concentrations. ADP400 induced mitogenic effects in MCF-7 BC cells perhaps due to antagonizing endogenous adiponectin actions or acting as an inverse agonist. While the linear dimer agonist ADP399 meets pharmacological criteria of a contemporary peptide drug lead, the peptide showing antagonist activity (ADP400) at similar concentrations will be an important target validation tool to study adiponectin functions.
Collapse
Affiliation(s)
- Laszlo Otvos
- Department of Biology, Temple University Philadelphia, PA, USA
| | - Daniel Knappe
- Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, Universität Leipzig Leipzig, Germany
| | - Ralf Hoffmann
- Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, Universität Leipzig Leipzig, Germany
| | - Ilona Kovalszky
- 1st Institute of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University Budapest, Hungary
| | - Julia Olah
- 1st Institute of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University Budapest, Hungary
| | - Tim D Hewitson
- Department of Medicine, The University of Melbourne Melbourne, VIC, Australia
| | - Roma Stawikowska
- Torrey Pines Institute for Molecular Studies Port St. Lucie, Florida, FL, USA
| | - Maciej Stawikowski
- Torrey Pines Institute for Molecular Studies Port St. Lucie, Florida, FL, USA
| | - Predrag Cudic
- Torrey Pines Institute for Molecular Studies Port St. Lucie, Florida, FL, USA
| | - Feng Lin
- Florey Institute of Neuroscience and Mental Health and School of Chemistry, The University of Melbourne Melbourne, VIC, Australia
| | - John D Wade
- Florey Institute of Neuroscience and Mental Health and School of Chemistry, The University of Melbourne Melbourne, VIC, Australia
| | - Eva Surmacz
- Sbarro Institute for Cancer Research and Molecular Medicine, Temple University Philadelphia, PA, USA
| | - Sandor Lovas
- Department of Biomedical Sciences, Creighton University NE, USA
| |
Collapse
|