1
|
Zhang ZS, Gao ZX, He JJ, Ma C, Tao HT, Zhu FY, Cheng YN, Xie CQ, Li JQ, Liu ZZ, Hou LL, Sun H, Xie SQ, Fang D. Andrographolide sensitizes glioma to temozolomide by inhibiting DKK1 expression. Br J Cancer 2024; 131:1387-1398. [PMID: 39266624 PMCID: PMC11473956 DOI: 10.1038/s41416-024-02842-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Temozolomide (TMZ) is the first-line chemotherapeutic drug for gliomas treatment. However, the clinical efficacy of TMZ in glioma patients was very limited. Therefore, it is urgently needed to discover a novel approach to increase the sensitivity of glioma cells to TMZ. METHODS Western blot, immunohistochemical staining, and qRT-PCR assays were used to explore the mechanisms underlying TMZ promoting DKK1 expression and andrographolide (AND) inhibiting DKK1 expression. HPLC was used to detect the ability of andrographolide (AND) to penetrate the blood-brain barrier. MTT assay, bioluminescence images, magnetic resonance imaging (MRI) and H&E staining were employed to measure the proliferative activity of glioma cells and the growth of intracranial tumors. RESULTS TMZ can promote DKK1 expression in glioma cells and brain tumors of an orthotopic model of glioma. DKK1 could promote glioma cell proliferation and tumor growth in an orthotopic model of glioma. Mechanistically, TMZ increased EGFR expression and subsequently induced the activation of its downstream MEK-ERK and PI3K-Akt pathways, thereby promoting DKK1 expression in glioma cells. Andrographolide inhibited TMZ-induced DKK1 expression through inactivating MEK-ERK and PI3K-Akt pathways. Andrographolide can cross the blood-brain barrier, the combination of TMZ and andrographolide not only improved the anti-tumor effects of TMZ but also showed a survival benefit in an orthotopic model of glioma. CONCLUSION Andrographolide can enhance anti-tumor activity of TMZ against glioma by inhibiting DKK1 expression.
Collapse
Affiliation(s)
- Zhan-Sheng Zhang
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zi-Xuan Gao
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Jin-Jin He
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Can Ma
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hang-Tian Tao
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Feng-Yi Zhu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Yu-Na Cheng
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Cui-Qing Xie
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Ji-Qin Li
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zhuang-Zhuang Liu
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Li-Li Hou
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Hua Sun
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
| | - Song-Qiang Xie
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng, 475004, China.
| | - Dong Fang
- Department of Pharmacy, The First Afffliated Hospital of Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China.
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Wu Y, Huang Z, Luo P, Xiang Z, Zhang M, Chen Z, Zhou Y, Li J. RNF2 promotes chondrosarcoma progression by regulating ubiquitination and degradation of CBX7. Cancer Metab 2024; 12:30. [PMID: 39456039 PMCID: PMC11520121 DOI: 10.1186/s40170-024-00359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVE Chondrosarcoma (CHS) is resistant to conventional chemotherapy and radiotherapy and currently lacks effective treatment options when in advanced stages. Accordingly, this research investigated the mechanism of RNF2/CBX7 in CHS to drive the development of molecularly targeted drugs for CHS. METHODS RNF2 and CBX7 levels were detected in CHS cells and tissues. RNF2 and CBX7 expression was modulated through cell transfection to examine their effects on cell proliferation, apoptosis, migration, and angiogenesis. The correlation between RNF2 and CBX7 levels was determined, and the ubiquitination level of CBX7 was tested. Protein synthesis was blocked in RNF2-knockdown/overexpressing cells with CHX to assess the effect of RNF2 on CBX7 stability. JJ012 cells transfected with LV-sh-RNF2 were subcutaneously injected into nu/nu nude mice to ascertain the action of RNF2 in the growth and metastasis of CHS. RESULTS RNF2 was highly expressed in CHS cells and tissues. RNF2 knockdown curbed CHS cell proliferation, migration, and angiogenesis while promoting apoptosis. RNF2 knockdown in JJ012 cells upregulated CBX7 protein levels and reduced CBX7 ubiquitination, whilst RNF2 had no effect on CBX7 mRNA expression. CBX7 knockdown partially nullified the repressing effects of RNF2 knockdown on CHS cell proliferation, migration, and angiogenesis, and CBX7 overexpression partially abolished the promotional effects of RNF2 overexpression. LV-sh-RNF2 prominently restricted tumor growth and weight and declined lung metastatic nodules and Ki-67-positive cells in mice. CONCLUSION RNF2 fosters CHS progression by elevating CBX7 degradation via the ubiquitination pathway.
Collapse
Affiliation(s)
- Yue Wu
- Department of Orthopedics, Beijing Chaoyang Hospital, No.8 Gongti South Rd, Chaoyang District, Beijing, 100020, China
| | - Zheng Huang
- Department of Orthopedics, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen City, 210009, Guangdong, China
| | - Ping Luo
- Department of Spinal Surgery, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, No.70 Lushan Road, Yuelu District, Changsha, 410006, Hunan, China.
| | - Zhong Xiang
- Department of Spinal Surgery, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, No.70 Lushan Road, Yuelu District, Changsha, 410006, Hunan, China
| | - Meng Zhang
- Department of Spinal Surgery, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, No.70 Lushan Road, Yuelu District, Changsha, 410006, Hunan, China
| | - Zhiwu Chen
- Department of Spinal Surgery, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, No.70 Lushan Road, Yuelu District, Changsha, 410006, Hunan, China
| | - Yalu Zhou
- Department of Spinal Surgery, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, No.70 Lushan Road, Yuelu District, Changsha, 410006, Hunan, China
| | - Jiameng Li
- Department of Spinal Surgery, The Fourth Hospital of Changsha, Changsha Hospital of Hunan Normal University, No.70 Lushan Road, Yuelu District, Changsha, 410006, Hunan, China
| |
Collapse
|
3
|
Axemaker H, Plesselova S, Calar K, Jorgensen M, Wollman J, de la Puente P. Reprogramming of normal fibroblasts into ovarian cancer-associated fibroblasts via non-vesicular paracrine signaling induces an activated fibroblast phenotype. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119801. [PMID: 39038611 PMCID: PMC11365755 DOI: 10.1016/j.bbamcr.2024.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are key contributors to ovarian cancer (OC) progression and therapeutic resistance through dysregulation of the extracellular matrix (ECM). CAFs are a heterogenous population derived from different cell types through activation and reprogramming. Current studies rely on uncharacterized heterogenous primary CAFs or normal fibroblasts that fail to recapitulate CAF-like tumor behavior. Here, we present that conditioned media from ovarian cancer lines leads to an increase in the activated state of fibroblasts demonstrated by functional assays and up-regulation of known CAF-related genes and ECM pathways. Phenotypic and functional characterization demonstrated that the conditioned CAFs expressed a CAF-like phenotype, strengthened proliferation, secretory, contractility, and ECM remodeling properties when compared to resting normal fibroblasts, consistent with an activated fibroblast status. Moreover, conditioned CAFs significantly enhanced drug resistance and tumor progression. Critically, the conditioned CAFs resemble a transcriptional signature with involvement of ECM remodeling. The present study provides mechanistic and functional insights about the activation and reprogramming of CAFs in the ovarian tumor microenvironment mediated by non-vesicular paracrine signaling. Moreover, it provides a translational based approach to reprogram normal fibroblasts from both uterine and ovarian origin into CAFs using tumor-derived conditioned media. Using these resources, further development of therapeutics that possess potentiality and specificity towards CAF/ECM-mediated chemoresistance in OC are further warranted.
Collapse
Affiliation(s)
- Hailey Axemaker
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Simona Plesselova
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Kristin Calar
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Megan Jorgensen
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jared Wollman
- Flow Cytometry Core, Sanford Research, Sioux Falls, SD 57104, USA
| | - Pilar de la Puente
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA; Flow Cytometry Core, Sanford Research, Sioux Falls, SD 57104, USA; Department of Obstetrics and Gynecology, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA; Department of Surgery, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA.
| |
Collapse
|
4
|
Park S, Choi J, Song JK, Jang B, Maeng YH. Subcellular expression pattern and clinical significance of CBX2 and CBX7 in breast cancer subtypes. Med Mol Morphol 2024; 57:11-22. [PMID: 37553450 DOI: 10.1007/s00795-023-00368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Chromobox (CBX)2 and CBX7, members of CBX family protein, show diverse expression patterns and contrasting roles in certain cancers. We aimed to investigate the subcellular expression patterns and clinical significances of CBXs in breast cancer (BC) subtypes, which have heterogeneous clinical course and therapeutic responses. Among the subtypes, the triple-negative BC (TNBC) is a heterogeneous group that lacks specific markers. We categorized TNBC into quadruple-negative BC (QNBC) and TNBC, based on androgen receptor (AR) status, to make the groups more homogeneous. Immunohistochemistry for CBX proteins was performed on 323 primary invasive BC tissues and their clinical significances were analyzed. Cytoplasmic CBX2 (CBX2-c) was linked to adverse clinicopathological factors and TNBC and QNBC subtypes. In contrast, nuclear CBX7 (CBX7-n) was associated with favorable parameters and luminal A subtype. CBX2-c expression increased progressively from that in benign lesions to that in in situ carcinomas and invasive cancers, whereas CBX7-n and AR expressions showed sequential downregulation. AR was lower in metastatic tissues compared to matched primary cancer tissues. We speculate that the upregulation of CBX2-c and downregulation of CBX7-n could play a role in breast oncogenesis and an adverse clinical course, suggesting them as potential prognostic markers and therapeutic targets in invasive BCs.
Collapse
Affiliation(s)
- Sungjoon Park
- Department of Pathology, Jeju National University Hospital, Jeju, 63241, South Korea
| | - Jaehyuck Choi
- Department of Surgery, Jeju National University School of Medicine, Jeju, 63241, South Korea
| | - Jung-Kook Song
- Department of Preventive Medicine, Jeju National University School of Medicine, Jeju, 63241, South Korea
| | - Bogun Jang
- Department of Pathology, Jeju National University Hospital, Jeju, 63241, South Korea
- Department of Pathology, Jeju National University School of Medicine, Aran 13-gil 15, Jeju, 63241, South Korea
| | - Young Hee Maeng
- Department of Pathology, Jeju National University Hospital, Jeju, 63241, South Korea.
- Department of Pathology, Jeju National University School of Medicine, Aran 13-gil 15, Jeju, 63241, South Korea.
| |
Collapse
|
5
|
Zhang X, Wang J, Li H. RTKN2 knockdown alleviates the malignancy of breast cancer cells by regulating the Wnt/β-catenin pathway. Sci Rep 2023; 13:23023. [PMID: 38155217 PMCID: PMC10754922 DOI: 10.1038/s41598-023-50153-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
RTKN2 is a new effector protein of Rho GTPase, and has been indicated to be a tumor inhibitor in colon cancer. In this article, we explored the function of RTKN2 in BC cell development. RTKN2 expression in BC tissues and BC cell lines was evaluated by RT-qPCR and Western blot assay. CCK-8, Wound-healing and Transwell assays were carried out to examine the role of RTKN2 knockdown on proliferation, the migratory ability and the invasive ability of BC cells. FCM and Western blot assay were performed to measure the function of RTKN2 silencing on BC cell apoptosis. In addition, the regulatory effect of RTKN2 on Wnt/β-catenin pathway was studied via Western blot assay. RTKN2 expression was elevated in BC tissues and BC cells. Down-regulation of RTKN2 restrained BC cell progression by suppressing cell proliferation, migratory ability, invasive ability, and inducing apoptosis. In addition, reduced of RTKN2 sharply reduced the expressing levels of Wnt3A, β-catenin, C-Myc, and Cyclin D1, suggesting that RTKN2 silencing blocked the motivation of Wnt/β-catenin pathway in BC development. The in vivo experiment also confirmed the inhibitory effect of RTKN2 on BC tumors. Our study confirmed that RTKN2 was highly expressed in BC. Moreover, RTKN2 knockdown suppressed the development of BC through affecting the Wnt/β-catenin pathway. Hence, we deduced that RTKN2 was a possible treatment target for BC.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Radiotherapy, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Jian Wang
- Department of Ultrasound, Shandong Province Coal Taishan Sanatorium, Taian, 271000, Shandong, China
| | - Haiying Li
- Department of Ultrasound, Qilu Hospital of Shandong Univesity, No. 107, Wenhuaxi Rd., Jinan, 250012, Shandong, China.
| |
Collapse
|
6
|
Cho KW, Andrade M, Bae S, Kim S, Kim JE, Jang EY, Lee S, Husain A, Sutliff RL, Calvert JW, Park C, Yoon YS. Polycomb Group Protein CBX7 Represses Cardiomyocyte Proliferation Through Modulation of the TARDBP/RBM38 Axis. Circulation 2023; 147:1823-1842. [PMID: 37158107 PMCID: PMC10330362 DOI: 10.1161/circulationaha.122.061131] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Shortly after birth, cardiomyocytes exit the cell cycle and cease proliferation. At present, the regulatory mechanisms for this loss of proliferative capacity are poorly understood. CBX7 (chromobox 7), a polycomb group (PcG) protein, regulates the cell cycle, but its role in cardiomyocyte proliferation is unknown. METHODS We profiled CBX7 expression in the mouse hearts through quantitative real-time polymerase chain reaction, Western blotting, and immunohistochemistry. We overexpressed CBX7 in neonatal mouse cardiomyocytes through adenoviral transduction. We knocked down CBX7 by using constitutive and inducible conditional knockout mice (Tnnt2-Cre;Cbx7fl/+ and Myh6-MCM;Cbx7fl/fl, respectively). We measured cardiomyocyte proliferation by immunostaining of proliferation markers such as Ki67, phospho-histone 3, and cyclin B1. To examine the role of CBX7 in cardiac regeneration, we used neonatal cardiac apical resection and adult myocardial infarction models. We examined the mechanism of CBX7-mediated repression of cardiomyocyte proliferation through coimmunoprecipitation, mass spectrometry, and other molecular techniques. RESULTS We explored Cbx7 expression in the heart and found that mRNA expression abruptly increased after birth and was sustained throughout adulthood. Overexpression of CBX7 through adenoviral transduction reduced proliferation of neonatal cardiomyocytes and promoted their multinucleation. On the other hand, genetic inactivation of Cbx7 increased proliferation of cardiomyocytes and impeded cardiac maturation during postnatal heart growth. Genetic ablation of Cbx7 promoted regeneration of neonatal and adult injured hearts. Mechanistically, CBX7 interacted with TARDBP (TAR DNA-binding protein 43) and positively regulated its downstream target, RBM38 (RNA Binding Motif Protein 38), in a TARDBP-dependent manner. Overexpression of RBM38 inhibited the proliferation of CBX7-depleted neonatal cardiomyocytes. CONCLUSIONS Our results demonstrate that CBX7 directs the cell cycle exit of cardiomyocytes during the postnatal period by regulating its downstream targets TARDBP and RBM38. This is the first study to demonstrate the role of CBX7 in regulation of cardiomyocyte proliferation, and CBX7 could be an important target for cardiac regeneration.
Collapse
Affiliation(s)
- Kyu-Won Cho
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mark Andrade
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Seongho Bae
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sangsung Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jin Eyun Kim
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Er Yearn Jang
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sangho Lee
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ahsan Husain
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Roy L. Sutliff
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John W. Calvert
- Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308, USA
| | - Changwon Park
- Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center, Shreveport, LA 71103, USA
| | - Young-sup Yoon
- Department of Medicine, Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Wang L, Zhao L, Zhang Y, Shao S, Ning Q, Zhao X, Luo M. Comprehensive Analysis of the Expression and Prognosis of chromobox Family Members in Breast Cancer. Clin Breast Cancer 2023; 23:e206-e218. [PMID: 36890004 DOI: 10.1016/j.clbc.2023.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
BACKGROUND Chromobox proteins are canonical components of the Polycomb group family and play pivotal roles in several cancers. However, little is known about the function, prognostic value and drug sensitivity of CBX family members in breast cancer. METHODS In this study we investigated the expression, prognosis value and drug sensitivity of CBX family in breast cancer using the ONCOMINE, GEPIA, Human Protein Atlas and Kaplan-Meier Plotter databases, etc. and preliminary verified the expression of CBX family in breast cancer cell lines by RT-qPCR. RESULTS We found that the expression levels of CBX1/2/3/4/8 members were elevated in breast cancer tissues compared to adjacent normal breast tissues, while the expression levels of CBX6/7 genes were reduced in breast cancer tissue. In vitro qRT-PCR validated the expression differences of CBX1/2/3/4/8 in breast cancer cell lines. Further analysis showed expression of CBX family members was remarkably correlated with cancer subgroups. As nodal metastasis status increased, the mRNA expression of CBX1/2/3/4/8 members tended to be higher, while CBX6/7 tended to be lower. The expression of CBX1/2/3 was higher in patients with TP53 mutation and CBX6/7 expression tended to be lower in patients with TP53 mutation groups. High transcription levels of CBX2/3 were significantly associated with shorter overall survival in breast cancer patients, while lower expression of CBX4/5/6/7 members was associated with unfavorable overall survival. Moreover, a high mutation rate of CBX gene members (43%) was observed in breast cancer patients, and genetic alterations in CBX genes was associated with poor prognosis. CONCLUSION Taken together, our results indicated that CBX2/3/6/7/8 could be considered prognostic and therapeutic biomarkers of breast cancer and are worthy of further study.
Collapse
Affiliation(s)
- Lu Wang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Lin Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Yujiao Zhang
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Shan Shao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Qian Ning
- Department of Respiratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China
| | - Xinhan Zhao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| | - Minna Luo
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province 710061, China.
| |
Collapse
|
8
|
Tian H, Zhao T, Li Y, Sun N, Ma D, Shi Q, Zhang G, Chen Q, Zhang K, Chen C, Zhang Y, Qi X. Chromobox Family Proteins as Putative Biomarkers for Breast Cancer Management: A Preliminary Study Based on Bioinformatics Analysis and qRT-PCR Validation. BREAST CANCER (DOVE MEDICAL PRESS) 2022; 14:515-535. [PMID: 36605919 PMCID: PMC9809168 DOI: 10.2147/bctt.s381856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
Background Epigenetic modification of chromatin is an important step in the regulation of gene expression. The chromobox family proteins (CBXs), as epigenetic modifier, may play a vital role in tumorigenesis and cancer progression. Herein we explored the correlation between CBXs and breast cancer (BC) via the bioinformatics approach and qRT-PCR validation. Methods Several databases, including GEPIA, TCGA, GEO, K-M plotter, STRING, DAVID, cBioPortal, CIBERSORT, and HPA were employed to analyze the expression levels of CBXs and the correlations between CBXs and prognosis (overall and recurrence-free survival) in BC. We analyzed molecular functions, genetic variations, transcription factors of CBXs, and immune cell infiltration status. ROC curve analysis was performed to determine the predictive value of CBXs. RNA extracted from 11 human BC and paired adjacent normal tissues were subjected to qRT-PCR. Results The mRNA expression level of CBX1-5 was significantly upregulated, while that of CBX7 was significantly downregulated in BC; no expression disparities were observed in CBX6/8 expression. Further, high mRNA expression of CBX1/2/3/4/8 correlated with advanced BC, whereas high mRNA expression of CBX6/7 correlated with early BC. High mRNA expressions of CBX1/2/3/5 predict poor OS and RFS, while higher mRNA expressions of CBX6/7 predict better OS and RFS in patients with BC. ROC curve analysis revealed that CBX3 showed excellent discriminatory ability. Gene ontology enrichment analysis showed that CBXs primarily participated in SUMOylation and post-/transcriptional regulation. Moreover, they presented varying degrees of amplification in BC tissues and were related to the infiltration of various immune cells. Conclusion CBXs can serve as putative biomarkers for BC. Further studies are warranted to determine the exact molecular mechanisms underlying the action of CBXs in BC, particularly CBX1/2/3/5/7.
Collapse
Affiliation(s)
- Hao Tian
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Tingting Zhao
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Yanling Li
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Na Sun
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Dandan Ma
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qiyun Shi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Guozhi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Qingqiu Chen
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Kongyong Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China
| | - Yi Zhang
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China
| | - Xiaowei Qi
- Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Chongqing, People’s Republic of China,Correspondence: Xiaowei Qi; Yi Zhang, Department of Breast and Thyroid Surgery, Southwest Hospital, Army Medical University, Gaotanyan Street 29, Chongqing, 400038, People’s Republic of China, Tel/Fax +86-23-68754160, Email ;
| |
Collapse
|
9
|
Jimenez MT, Clark ML, Wright JM, Michieletto MF, Liu S, Erickson I, Dohnalova L, Uhr GT, Tello-Cajiao J, Joannas L, Williams A, Gagliani N, Bewtra M, Tomov VT, Thaiss CA, Henao-Mejia J. The miR-181 family regulates colonic inflammation through its activity in the intestinal epithelium. J Exp Med 2022; 219:213450. [PMID: 36074090 PMCID: PMC9462864 DOI: 10.1084/jem.20212278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/02/2022] [Accepted: 08/11/2022] [Indexed: 11/04/2022] Open
Abstract
The intestinal epithelium is a key physical interface that integrates dietary and microbial signals to regulate nutrient uptake and mucosal immune cell function. The transcriptional programs that regulate intestinal epithelial cell (IEC) quiescence, proliferation, and differentiation have been well characterized. However, how gene expression networks critical for IECs are posttranscriptionally regulated during homeostasis or inflammatory disease remains poorly understood. Herein, we show that a conserved family of microRNAs, miR-181, is significantly downregulated in IECs from patients with inflammatory bowel disease and mice with chemical-induced colitis. Strikingly, we showed that miR-181 expression within IECs, but not the hematopoietic system, is required for protection against severe colonic inflammation in response to epithelial injury in mice. Mechanistically, we showed that miR-181 expression increases the proliferative capacity of IECs, likely through the regulation of Wnt signaling, independently of the gut microbiota composition. As epithelial reconstitution is crucial to restore intestinal homeostasis after injury, the miR-181 family represents a potential therapeutic target against severe intestinal inflammation.
Collapse
Affiliation(s)
- Monica T Jimenez
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Megan L Clark
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jasmine M Wright
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Suying Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Isabel Erickson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lenka Dohnalova
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Giulia T Uhr
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - John Tello-Cajiao
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Leonel Joannas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Adam Williams
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nicola Gagliani
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Meenakshi Bewtra
- Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.,Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA.,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA
| | - Vesselin T Tomov
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Medicine, Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Christoph A Thaiss
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.,Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
10
|
Mining Transcriptomic Data to Uncover the Association between CBX Family Members and Cancer Stemness. Int J Mol Sci 2022; 23:ijms232113083. [PMID: 36361869 PMCID: PMC9656300 DOI: 10.3390/ijms232113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 12/31/2022] Open
Abstract
Genetic and epigenetic changes might facilitate the acquisition of stem cell-like phenotypes of tumors, resulting in worse patients outcome. Although the role of chromobox (CBX) domain proteins, a family of epigenetic factors that recognize specific histone marks, in the pathogenesis of several tumor types is well documented, little is known about their association with cancer stemness. Here, we have characterized the relationship between the CBX family members' expression and cancer stemness in liver, lung, pancreatic, and uterine tumors using publicly available TCGA and GEO databases and harnessing several bioinformatic tools (i.e., Oncomine, GEPIA2, TISIDB, GSCA, UALCAN, R2 platform, Enrichr, GSEA). We demonstrated that significant upregulation of CBX3 and downregulation of CBX7 are consistently associated with enriched cancer stem-cell-like phenotype across distinct tumor types. High CBX3 expression is observed in higher-grade tumors that exhibit stem cell-like traits, and CBX3-associated gene expression profiles are robustly enriched with stemness markers and targets for c-Myc transcription factor regardless of the tumor type. Similar to high-stemness tumors, CBX3-overexpressing cancers manifest a higher mutation load. On the other hand, higher-grade tumors are characterized by the significant downregulation of CBX7, and CBX7-associated gene expression profiles are significantly depleted with stem cell markers. In contrast to high-stemness tumors, cancer with CBX7 upregulation exhibit a lower mutation burden. Our results clearly demonstrate yet unrecognized association of high CBX3 and low CBX7 expression with cancer stem cell-like phenotype of solid tumors.
Collapse
|
11
|
CBX Family Members in Two Major Subtypes of Renal Cell Carcinoma: A Comparative Bioinformatic Analysis. Diagnostics (Basel) 2022; 12:diagnostics12102452. [PMID: 36292141 PMCID: PMC9600067 DOI: 10.3390/diagnostics12102452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/17/2022] Open
Abstract
The biological function and clinical values of Chromobox (CBX) family proteins in renal cell carcinoma (RCC) are still poorly investigated. This study aimed to compare the expression profiles and clinical relevance of CBXs between the two most frequent subtypes of RCC, clear cell renal cell carcinomas (ccRCC) and papillary renal cell carcinomas (pRCC), and to investigate whether CBXs would play a more or less similar role in the pathogenesis and progression of these RCC subtypes. Considering these two RCC populations in the TCGA database, we built a bioinformatics framework by integrating a computational pipeline with several online tools. CBXs showed a similar trend in ccRCC and pRCC tissues but with some features specific for each subtype. Specifically, the relative expressions of CBX3 and CBX2 were, respectively, the highest and lowest among all CBXs in both RCC subtypes. These data also found confirmation in cellular validation. Except for CBX4 and CBX8, all others were deregulated in the ccRCC subtype. CBX1, CBX6, and CBX7 were also significantly associated with the tumor stage. Further, low expression levels of CBX1, CBX5, CBX6, CBX7, and high expression of CBX8 were associated with poor prognosis. Otherwise, in the pRCC subtype, CBX2, CBX3, CBX7, and CBX8 were deregulated, and CBX2, CBX6, and CBX7 were associated with the tumor stage. In addition, in pRCC patients, low expression levels of CBX2, CBX4, and CBX7 were associated with an unfavorable prognosis. Similarly, CBX3, CBX6, and CBX7 presented the highest alteration rate in both subtypes and were found to be functionally related to histone binding, nuclear chromosomes, and heterochromatin. Furthermore, CBX gene expression levels correlated with immune cell infiltration, suggesting that CBXs might reflect the immune status of RCC subtypes. Our results highlight similarities and differences of CBXs within the two major RCC subtypes, providing new insights for future eligible biomarkers or possible molecular therapeutic targets for these diseases.
Collapse
|
12
|
Zhang Y, Yu B, Tian Y, Ren P, Lyu B, Fu L, Chen H, Li J, Gong S. A novel risk score model based on fourteen chromatin regulators-based genes for predicting overall survival of patients with lower-grade gliomas. Front Genet 2022; 13:957059. [PMID: 36246611 PMCID: PMC9554745 DOI: 10.3389/fgene.2022.957059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/31/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Low grade gliomas(LGGs) present vexatious management issues for neurosurgeons. Chromatin regulators (CRs) are emerging as a focus of tumor research due to their pivotal role in tumorigenesis and progression. Hence, the goal of the current work was to unveil the function and value of CRs in patients with LGGs. Methods: RNA-Sequencing and corresponding clinical data were extracted from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) database. A single-cell RNA-seq dataset was sourced from the Gene Expression Omnibus (GEO) database. Altogether 870 CRs were retrieved from the published articles in top academic journals. The least absolute shrinkage and selection operator (LASSO) algorithm and Cox regression analysis were applied to construct the prognostic risk model. Patients were then assigned into high- and low-risk groups based on the median risk score. The Kaplan–Meier (K-M) survival curve and receiver operating characteristic curve (ROC) were performed to assess the prognostic value. Sequentially, functional enrichment, tumor immune microenvironment, tumor mutation burden, drug prediction, single cell analysis and so on were analyzed to further explore the value of CR-based signature. Finally, the expression of signature genes were validated by immunohistochemistry (IHC) and quantitative real-time PCR (qRT-PCR). Results: We successfully constructed and validated a 14 CRs-based model for predicting the prognosis of patients with LGGs. Moreover, we also found 14 CRs-based model was an independent prognostic factor. Functional analysis revealed that the differentially expressed genes were mainly enriched in tumor and immune related pathways. Subsequently, our research uncovered that LGGs patients with higher risk scores exhibited a higher TMB and were less likely to be responsive to immunotherapy. Meanwhile, the results of drug analysis offered several potential drug candidates. Furthermore, tSNE plots highlighting the magnitude of expression of the genes of interest in the cells from the scRNA-seq assay. Ultimately, transcription expression of six representative signature genes at the mRNA level was consistent with their protein expression changes. Conclusion: Our findings provided a reliable biomarker for predicting the prognosis, which is expected to offer new insight into LGGs management and would hopefully become a promising target for future research.
Collapse
Affiliation(s)
- Yongfeng Zhang
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Beibei Yu
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Yunze Tian
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Pengyu Ren
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Boqiang Lyu
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Longhui Fu
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Huangtao Chen
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Jianzhong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
- *Correspondence: Jianzhong Li, ; Shouping Gong,
| | - Shouping Gong
- Department of Neurourgery, The Second Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
- *Correspondence: Jianzhong Li, ; Shouping Gong,
| |
Collapse
|
13
|
Expression and Prognostic Value of Chromobox Family Proteins in Esophageal Cancer. Genes (Basel) 2022; 13:genes13091582. [PMID: 36140750 PMCID: PMC9498422 DOI: 10.3390/genes13091582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Esophageal cancer (EC) is one of the most common human malignant tumors worldwide. Chromobox (CBX) family proteins are significant components of epigenetic regulatory complexes. It is reported that CBXs play critical roles in the oncogenesis and development of various tumors. Nonetheless, their functions and specific roles in EC remain vague and obscure. Methods and Materials: We used multiple bioinformatics tools, including Oncomine, Gene Expression Profiling Interactive Analysis 2 (GEPIA2), UALCAN, Kaplan–Meier plotter, cBioPortal, Metascape, TIMER2 and TISIDB, to investigate the expression profile, gene alterations and prognostic roles of CBX family proteins, as well as their association with clinicopathologic parameters, immune cells and immune regulators. In addition, RT-qPCR, Western blot, CCK8, colony formation, wound healing and transwell assays were performed to investigate the biological functions of CBX3 in EC cells. Results: CBX3 and CBX5 were overexpressed in EC compared to normal tissues. Survival analysis revealed that high expression of CBX1 predicted worse disease-free survival (DFS) in EC patients. Functionally, CBXs might participate in mismatch repair, spliceosome, cell cycle, the Fanconi anemia pathway, tight junction, the mRNA surveillance pathway and the Hippo signaling pathway in EC development. Furthermore, CBXs were related to distinct immune cells infiltration and immune regulators. Additionally, depletion of CBX3 inhibited the proliferation, migration and invasion abilities of EC cells. Conclusions: Our study comprehensively investigated the expression pattern, prognostic value, and gene alterations of CBXs in EC, as well as their relationships with clinicopathologic variables, immune cells infiltration and immune regulators. These results suggested that CBX family proteins, especially CBX3, might be potential biomarkers in the progression of EC.
Collapse
|
14
|
Fang X, Wang J, Chen J, Zhuang M, Huang T, Chen Z, Huang Y, Zheng B, Wang X. Identification and Validation of Chromobox Family Members as Potential Prognostic Biomarkers and Therapeutic Targets for Human Esophageal Cancer. Front Genet 2022; 13:851390. [PMID: 35464847 PMCID: PMC9019303 DOI: 10.3389/fgene.2022.851390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/11/2022] [Indexed: 01/17/2023] Open
Abstract
Background: Chromobox family proteins (CBXs) are vital components of epigenetic regulation complexes and transcriptionally inhibit target genes by modifying the chromatin. Accumulating evidence indicates that CBXs are involved in the initiation and progression of multiple malignancies. However, the expression, function, and clinical relevance such as the prognostic and diagnostic values of different CBXs in esophageal carcinoma (ESCA) are still unclear. Methods: We applied Oncomine, TCGA, GEO, GEPIA, UALCAN, Kaplan–Meier plotter, cBioPortal, Metascape, and TIMER to investigate the roles of CBX family members in ESCA. Additionally, quantitative real-time PCR (RT-PCR), western blot, and immunofluorescence were used to verify the expression of CBX family members in ESCA clinical samples. Results: Compared with normal tissues, the mRNA expression levels of CBX1/3/8 were significantly increased in ESCA, whereas CBX7 mRNA expression was reduced in both the TCGA cohort and GEO cohort. In the TCGA cohort, ROC curves suggested that CBX1/2/3/4/8 had great diagnostic value in ESCA, and the AUCs were above 0.9. Furthermore, upregulation of CBX1/3/8 and downregulation of CBX7 were closely related to the clinicopathological parameters in ESCA patients, such as tumor grades, tumor nodal metastasis status, and TP53 mutation status. The survival analysis indicated that higher CBX1/3/8 mRNA expressions and lower CBX7 expression suggested an unfavorable prognosis in ESCA. High genetic change rate (52%) of CBXs was found in ESCA patients. Functions and pathways of mutations in CBXs and their 50 frequently altered neighbor genes in ESCA patients were investigated; the results showed that DNA repair and DNA replication were correlated to CBX alterations. Moreover, we found a significant correlation between the expression level of CBX family members and the infiltration of immune cells in ESCA. Finally, we verified the expression of CBX family members in clinical samples and found the results were consistent with the databases. Conclusion: Our study implied that CBX1/3/7/8 are potential targets of precision therapy for ESCA patients and new biomarkers for the prognosis.
Collapse
Affiliation(s)
- Xuefen Fang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Junjun Wang
- Department of Clinical Laboratory, Fujian Provincial Hospital Southern Branch, Fuzhou, China
| | - Jiabing Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Mingkai Zhuang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Tingxuan Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Zhixin Chen
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Yuehong Huang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| | - Biyun Zheng
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China.,Department of Endoscopy Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaozhong Wang
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Medical University Cancer Center, Fujian Medical University, Fuzhou, China
| |
Collapse
|
15
|
The Expression of Signaling Genes in Breast Cancer Cells. BIOLOGY 2022; 11:biology11040555. [PMID: 35453754 PMCID: PMC9025738 DOI: 10.3390/biology11040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The aim of the study was to investigate the effect of a drug for cancer—paclitaxel—on the expression of genes encoding the signaling factors in breast cancer cells outside organisms. The tested cells were harvested from the mammary glands of 36 women with breast cancer. The microarray technology —the carrier with applied DNA samples—was employed for the identification of gene expression. A significant effect of paclitaxel on the genome of breast cancer cells was confirmed. Paclitaxel changed the functions of cancer cell by increasing the expression of the genes encoding signaling proteins. This is the molecule of intercellular communication. The analysis of the results suggests that this cytostatic agent produces a beneficial therapeutic effect at a lower dose (60 ng/mL). In contrast, a high dose of paclitaxel (300 ng/mL) was associated with higher cytotoxicity and this had a negative effect on the tested tumor cells. Abstract The aim of the study was to investigate the effect of paclitaxel on the expression of genes encoding signaling factors in breast cancer cells in in vitro conditions after incubation with the said chemotherapeutic. The tested cells were harvested from the mammary glands of 36 patients with early breast cancer. The microarray technology was employed for the identification of gene expression. For this purpose, mRNA isolated from tumor cells was used. A significant effect of paclitaxel on the genome of breast cancer cells was confirmed. Paclitaxel changed the functions of cancer cells by increasing the expression of most genes encoding signaling proteins and receptors. The analysis of the results suggested that this cytostatic agent produces a beneficial therapeutic effect at a lower dose (60 ng/mL). In contrast, a high dose of paclitaxel (300 ng/mL) was associated with a high cytotoxicity.
Collapse
|
16
|
Shen F, Shi Y. Recent Advances in Single-Cell View of Mesenchymal Stem Cell in Osteogenesis. Front Cell Dev Biol 2022; 9:809918. [PMID: 35071243 PMCID: PMC8766509 DOI: 10.3389/fcell.2021.809918] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Osteoblasts continuously replenished by osteoblast progenitor cells form the basis of bone development, maintenance, and regeneration. Mesenchymal stem cells (MSCs) from various tissues can differentiate into the progenitor cell of osteogenic lineage and serve as the main source of osteoblasts. They also respond flexibly to regenerative and anabolic signals emitted by the surrounding microenvironment, thereby maintaining bone homeostasis and participating in bone remodeling. However, MSCs exhibit heterogeneity at multiple levels including different tissue sources and subpopulations which exhibit diversified gene expression and differentiation capacity, and surface markers used to predict cell differentiation potential remain to be further elucidated. The rapid advancement of lineage tracing methods and single-cell technology has made substantial progress in the characterization of osteogenic stem/progenitor cell populations in MSCs. Here, we reviewed the research progress of scRNA-seq technology in the identification of osteogenic markers and differentiation pathways, MSC-related new insights drawn from single-cell technology combined with experimental technology, and recent findings regarding the interaction between stem cell fate and niche in homeostasis and pathological process.
Collapse
Affiliation(s)
- Fangyuan Shen
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
The interaction of canonical Wnt/β-catenin signaling with protein lysine acetylation. Cell Mol Biol Lett 2022; 27:7. [PMID: 35033019 PMCID: PMC8903542 DOI: 10.1186/s11658-021-00305-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Canonical Wnt/β-catenin signaling is a complex cell-communication mechanism that has a central role in the progression of various cancers. The cellular factors that participate in the regulation of this signaling are still not fully elucidated. Lysine acetylation is a significant protein modification which facilitates reversible regulation of the target protein function dependent on the activity of lysine acetyltransferases (KATs) and the catalytic function of lysine deacetylases (KDACs). Protein lysine acetylation has been classified into histone acetylation and non-histone protein acetylation. Histone acetylation is a kind of epigenetic modification, and it can modulate the transcription of important biological molecules in Wnt/β-catenin signaling. Additionally, as a type of post-translational modification, non-histone acetylation directly alters the function of the core molecules in Wnt/β-catenin signaling. Conversely, this signaling can regulate the expression and function of target molecules based on histone or non-histone protein acetylation. To date, various inhibitors targeting KATs and KDACs have been discovered, and some of these inhibitors exert their anti-tumor activity via blocking Wnt/β-catenin signaling. Here, we discuss the available evidence in understanding the complicated interaction of protein lysine acetylation with Wnt/β-catenin signaling, and lysine acetylation as a new target for cancer therapy via controlling this signaling.
Collapse
|
18
|
Di M, Zhang Y, Zeng R, Liu X, Chen W, Zhang M, Zhang C, Li M, Zhang M. The pro-angiogenesis effect of miR33a-5p/Ets-1/DKK1 signaling in ox-LDL induced HUVECs. Int J Biol Sci 2021; 17:4122-4139. [PMID: 34803487 PMCID: PMC8579465 DOI: 10.7150/ijbs.60302] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/21/2021] [Indexed: 12/22/2022] Open
Abstract
Objective: Angiogenesis is involved in multiple biological processes, including atherosclerosis (AS) and cancer. Dickkopf1 (DKK1) plays many roles in both tumors and AS and has emerged as a potential biomarker of cancer progression and prognosis. Targeting DKK1 is a good choice for oncological treatments. Many anticancer therapies are associated with specific cardiovascular toxicity. However, the effects of DKK1 neutralizing therapy on AS are unclear. We focused on how DKK1 affected angiogenesis in AS and ox-LDL-induced human umbilical vein endothelial cells (HUVECs). Methods: ApoE-/- mice were fed a high-fat diet and then injected with DKK1i or DKK1 lentivirus to study the effects of DKK1. In vitro, promoter assays, protein analysis, database mining, dual-luciferase reporter assay (DLR), electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), and coimmunoprecipitation (co-IP) were used to study the mechanism of DKK1 biogenesis. Cell migration and angiogenesis assays were performed to investigate the function and regulatory mechanisms of DKK1. Results: DKK1 participated in angiogenesis both in the plaques of ApoE-/- mice by knockdown or overexpression of DKK1 and ox-LDL-induced HUVECs. DKK1 induced angiogenesis (increasing migration and capillary formation, inducing expression of VEGFR-2/VEGF-A/MMP) via the CKAP4/PI3K pathway, independent of Wnt/β-catenin. ox-LDL increased the expression and nuclear transfer of Ets-1 and c-jun, and induced the transcriptional activity of DKK1 in HUVECs. Ets-1, along with c-jun and CBP, could bind to the promoter of DKK1 and enhance DKK1 transcription. MiR33a-5p was downregulated in ox-LDL induced HUVECs and aortic artery of high-fat diet ApoE-/- mice. Ets-1 was a direct target of miR33a-5p. MiR33a-5p/Ets-1/ DKK1 axis contributed to angiogenesis. Conclusions: MiR33a-5p/Ets-1/DKK1 signaling participated in ox-LDL-induced angiogenesis of HUVECs via the CKAP4/PI3K pathway. These new findings provide a rationale and notable method for tumor therapy and cardiovascular protection.
Collapse
Affiliation(s)
- Mingxue Di
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.,Department of Gerontology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital
| | - Yu Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Renya Zeng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaolin Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Weijia Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mengmeng Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
19
|
Li J, Ouyang T, Li M, Hong T, Alriashy M, Meng W, Zhang N. CBX7 is Dualistic in Cancer Progression Based on its Function and Molecular Interactions. Front Genet 2021; 12:740794. [PMID: 34659360 PMCID: PMC8517511 DOI: 10.3389/fgene.2021.740794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Chromobox protein homolog 7 (CBX7) is a member of the Chromobox protein family and participates in the formation of the polycomb repressive complex 1(PRC1). In cells, CBX7 often acts as an epigenetic regulator to regulate gene expression. However, pathologically, abnormal expression of CBX7 can lead to an imbalance of gene expression, which is closely related to the occurrence and progression of cancers. In cancers, CBX7 plays a dual role; On the one hand, it contributes to cancer progression in some cancers by inhibiting oncosuppressor genes. On the other hand, it suppresses cancer progression by interacting with different molecules to regulate the synthesis of cell cycle-related proteins. In addition, CBX7 protein may interact with different RNAs (microRNAs, long noncoding RNAs, circular RNAs) in different cancer environments to participate in a variety of pathways, affecting the development of cancers. Furthermore, CBX7 is involved in cancer-related immune response and DNA repair. In conclusion, CBX7 expression is a key factor in the occurrence and progression of cancers.
Collapse
Affiliation(s)
- Jun Li
- Department of the Second Clinical Medical College of Nanchang University, Jiangxi Province, China
| | - Taohui Ouyang
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Meihua Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Tao Hong
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Mhs Alriashy
- Department of Neurosurgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Wei Meng
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| | - Na Zhang
- Department of Neurology, the First Affiliated Hospital of Nanchang University, Jiangxi Province, China
| |
Collapse
|
20
|
Jo S, Nam B, Lee YL, Park H, Weon S, Choi SH, Park YS, Kim TH. The TNF-NF-kB-DKK1 Axis Promoted Bone Formation in the Enthesis of Ankylosing Spondylitis. JOURNAL OF RHEUMATIC DISEASES 2021; 28:216-224. [PMID: 37476360 PMCID: PMC10324906 DOI: 10.4078/jrd.2021.28.4.216] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 07/22/2023]
Abstract
Objective This study aimed to determine the serum Dickkopf 1 (DKK1) levels in ankylosing spondylitis (AS) patients and decipher the mechanism of tumor necrosis factor (TNF)-mediated DKK1 regulation in human AS enthesis cells. Methods The sera were obtained from 103 patients with AS and 30 healthy controls (HCs) The enthesis of facet joints were obtained from 4 AS patients and 5 controls The serum levels of DKK1 were measured using ELISA and compared between AS and HCs The impact of TNF on DKK1 expression in human primary spinal enthesis cells was evaluated using various molecular biology techniques and bone formation indicators. Results AS patients showed higher serum DKK1 levels than HCs after adjusting for age (9174 [6153∼1,3100] pg/mL vs 8262 [6703∼9278] pg/mL, p=0043) TNF treatment promoted bone formation and DKK1 expression in both control enthesis cells and those of AS This enhanced bone formation by TNF was pronounced in AS-enthesis than those of controls Mechanically, TNF induced NF-kB activation upregulates the DKK1 transcript level While, NF-kB inhibitor led to downregulate DKK1 expression in the enthesis Besides, DKK1 overexpression promoted bone formation in enthesis. Conclusion TNF induced DKK1 expression in the enthesis through NF-kB activation TNF-induced DKK1 expression may play a bone formation in the radiologic progression of ankylosing spondylitis.
Collapse
Affiliation(s)
- Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Bora Nam
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Young Lim Lee
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Hyosun Park
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Subin Weon
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Sung-Hoon Choi
- Department of Orthopedic Surgery, Hanyang University Hospital, Seoul, Korea
| | - Ye-Soo Park
- Department of Orthopedic Surgery, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| |
Collapse
|
21
|
Sharma A, Mir R, Galande S. Epigenetic Regulation of the Wnt/β-Catenin Signaling Pathway in Cancer. Front Genet 2021; 12:681053. [PMID: 34552611 PMCID: PMC8450413 DOI: 10.3389/fgene.2021.681053] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies over the past four decades have elucidated the role of Wnt/β-catenin mediated regulation in cell proliferation, differentiation and migration. These processes are fundamental to embryonic development, regeneration potential of tissues, as well as cancer initiation and progression. In this review, we focus on the epigenetic players which influence the Wnt/β-catenin pathway via modulation of its components and coordinated regulation of the Wnt target genes. The role played by crosstalk with other signaling pathways mediating tumorigenesis is also elaborated. The Hippo/YAP pathway is particularly emphasized due to its extensive crosstalk via the Wnt destruction complex. Further, we highlight the recent advances in developing potential therapeutic interventions targeting the epigenetic machinery based on the characterization of these regulatory networks for effective treatment of various cancers and also for regenerative therapies.
Collapse
Affiliation(s)
- Ankita Sharma
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India
| | - Rafeeq Mir
- Centre for Interdisciplinary Research and Innovations, University of Kashmir, Srinagar, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science Education and Research, Pune, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
22
|
Multi-Omic Approaches to Breast Cancer Metabolic Phenotyping: Applications in Diagnosis, Prognosis, and the Development of Novel Treatments. Cancers (Basel) 2021; 13:cancers13184544. [PMID: 34572770 PMCID: PMC8470181 DOI: 10.3390/cancers13184544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BC) is characterized by high disease heterogeneity and represents the most frequently diagnosed cancer among women worldwide. Complex and subtype-specific gene expression alterations participate in disease development and progression, with BC cells known to rewire their cellular metabolism to survive, proliferate, and invade. Hence, as an emerging cancer hallmark, metabolic reprogramming holds great promise for cancer diagnosis, prognosis, and treatment. Multi-omics approaches (the combined analysis of various types of omics data) offer opportunities to advance our understanding of the molecular changes underlying metabolic rewiring in complex diseases such as BC. Recent studies focusing on the combined analysis of genomics, epigenomics, transcriptomics, proteomics, and/or metabolomics in different BC subtypes have provided novel insights into the specificities of metabolic rewiring and the vulnerabilities that may guide therapeutic development and improve patient outcomes. This review summarizes the findings of multi-omics studies focused on the characterization of the specific metabolic phenotypes of BC and discusses how they may improve clinical BC diagnosis, subtyping, and treatment.
Collapse
|
23
|
He M, Yue L, Wang H, Yu F, Yu M, Ni P, Zhang K, Chen S, Duan G, Zhang R. Evaluation of the prognostic value of CBXs in gastric cancer patients. Sci Rep 2021; 11:12375. [PMID: 34117289 PMCID: PMC8196000 DOI: 10.1038/s41598-021-91649-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Chromobox (CBX) proteins were suggested to exert epigenetic regulatory and transcriptionally repressing effects on target genes and might play key roles in the carcinogenesis of a variety of carcinomas. Nevertheless, the functions and prognostic significance of CBXs in gastric cancer (GC) remain unclear. The current study investigated the roles of CBXs in the prognosis of GC using the Oncomine, The Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, The Cancer Genome Atlas (TCGA), and cBioPortal databases. CBX1/2/3/4/5 were significantly upregulated in GC tissues compared with normal tissues, and CBX7 was downregulated. Multivariate analysis showed that high mRNA expression levels of CBX3/8 were independent prognostic factors for prolonged OS in GC patients. In addition, the genetic mutation rate of CBXs was 37% in GC patients, and genetic alterations in CBXs showed no association with OS or disease-free survival (DFS) in GC patients. These results indicated that CBX3/8 can be prognostic biomarkers for the survival of GC patients.
Collapse
Affiliation(s)
- Mengya He
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Limin Yue
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China.
| | - Haiyan Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Feiyan Yu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Mingyang Yu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Peng Ni
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Ke Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China.
| | - Rongguang Zhang
- Department of Epidemiology, College of Public Health, Hainan Medical University, Longhua District, No.3 Xueyuan Road, Haikou, 570216, China. .,Department of Experimentation Center, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
24
|
CBX7 suppresses urinary bladder cancer progression via modulating AKR1B10-ERK signaling. Cell Death Dis 2021; 12:537. [PMID: 34035231 PMCID: PMC8149849 DOI: 10.1038/s41419-021-03819-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/10/2023]
Abstract
The chromobox (CBX) proteins mediate epigenetic gene silencing and have been implicated in the cancer development. By analyzing eight CBX family members in TCGA dataset, we found that chromobox 7 (CBX7) was the most strikingly downregulated CBX family member in urinary bladder cancer (UBC), as compared to normal tissues. Though dysregulation of CBX7 has been reported in multiple cancers, its specific role and clinical relevance in UBC remain unclear. Herein, we found that frequent downregulation of CBX7 in UBC specimens, which was due to its promoter hypermethylation, was correlated with poor prognosis. The ectopic expression of CBX7 suppressed UBC cell proliferation, migration, invasion, and cancer stemness, whereas CBX7 depletion promoted cancer cell aggressiveness. Importantly, CBX7 overexpression in UBC cells inhibited tumorigenicity, whereas CBX7 depletion promoted the tumor development, indicating its tumor-suppressive role in UBC. Using RNA-seq and chromosome immunoprecipitation (ChIP) assays, we identified aldo-keto reductase family 1 member 10 (AKR1B10) as a novel downstream target of CBX7, which was negatively modulated by CBX7 in a PRC1-dependent manner and involved in stimulating ERK signaling. Consistently, AKR1B10 overexpression induced cancer cell aggressiveness, whereas suppression of AKR1B10 by siRNA or its small molecular inhibitor, oleanolic acid, reversed the CBX7 deficiency-induced cellular effects. AKR1B10 overexpression was negatively associated with CBX7 downregulation and predicted poor clinical outcomes in UBC patients. Taken together, our results indicate that CBX7 functions as a tumor suppressor to downregulate AKR1B10 and further inactivates ERK signaling. This CBX7/AKR1B10/ERK signaling axis may provide a new therapeutic strategy against UBC.
Collapse
|
25
|
Tian P, Zhang C, Ma C, Ding L, Tao N, Ning L, Wang Y, Yong X, Yan Q, Lin X, Wang J, Li R. Decreased chromobox homologue 7 expression is associated with epithelial-mesenchymal transition and poor prognosis in cervical cancer. Open Med (Wars) 2021; 16:410-418. [PMID: 33748425 PMCID: PMC7957191 DOI: 10.1515/med-2021-0015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 01/20/2023] Open
Abstract
The aim of this study was to evaluate the association of the chromobox homologue 7 (CBX7) expression with the epithelial–mesenchymal transition in cervical cancer (CC), as well as with the disease prognosis. CBX7, E-cadherin (E-cad), and vimentin (VIM) expression levels were detected with immunohistochemistry. The relationship between the expression of CBX7, E-cad, and VIM expression and conventional clinicopathological characteristics of CC were evaluated. The positive expression rates of CBX7 and E-cad in the CC tissues were lower than the adjacent non-tumorous cervical tissues. Moreover, the VIM expression level was higher. The CBX7 expression was positively correlated with the E-cad expression, whereas was negatively correlated with the VIM expression. Furthermore, CBX7 was associated with the disease clinical staging, histological differentiation, lymph node metastasis, and vascular invasion. Patients with negative CBX7 expression showed decreased overall survival rates compared with those with low or high CBX7 expression. Multivariate Cox regression analysis indicated that the decreased CBX7 expression was an independent predictor for the poor prognosis of CC. In conclusion, the absence of CBX7 is associated with the histologic differentiation, lymphatic metastasis, vascular invasion, and poor prognosis of CC. CBX7 may be an independent prognostic factor for the prognosis of CC patients.
Collapse
Affiliation(s)
- Ping Tian
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China.,The Fifth Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, Xinjiang, China.,State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia (PPTHIDCA), Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| | - Chen Zhang
- The Fifth Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Cailing Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia (PPTHIDCA), Xinjiang Medical University, Urumqi 830054, Xinjiang, China.,Department of Gynecology, The First Affiliated Hospital, Urumqi, Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| | - Lu Ding
- The Fifth Affiliated Hospital, Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Ning Tao
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China
| | - Li Ning
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China
| | - Yan Wang
- Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi 830011, Xinjiang, China
| | - Xianting Yong
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China
| | - Qi Yan
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China
| | - Xin Lin
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China
| | - Jing Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia (PPTHIDCA), Xinjiang Medical University, Urumqi 830054, Xinjiang, China.,Department of Gynecology, The First Affiliated Hospital, Urumqi, Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| | - Rong Li
- College of Public Health, Xinjiang Medical University, No. 393, Xinyi Road, Urumqi 830054, Xinjiang, China.,Postdoctoral Research Center on Clinical Medicine, The First Affiliated Hospital, Xinjiang Medical University, Urumqi 830054, Xinjiang, China
| |
Collapse
|
26
|
Iqbal MA, Siddiqui S, Ur Rehman A, Siddiqui FA, Singh P, Kumar B, Saluja D. Multiomics integrative analysis reveals antagonistic roles of CBX2 and CBX7 in metabolic reprogramming of breast cancer. Mol Oncol 2021; 15:1450-1465. [PMID: 33400401 PMCID: PMC8096797 DOI: 10.1002/1878-0261.12894] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/07/2020] [Accepted: 12/31/2020] [Indexed: 12/24/2022] Open
Abstract
Striking similarity exists between metabolic changes associated with embryogenesis and tumorigenesis. Chromobox proteins‐CBX2/4/6/7/8, core components of canonical polycomb repressor complex 1, play essential roles in embryonic development and aberrantly expressed in breast cancer. Understanding how altered CBX expression relates to metabolic reprogramming in breast cancer may reveal vulnerabilities of therapeutic pertinence. Using transcriptomic and metabolomic data from breast cancer patients (N > 3000 combined), we performed pathway‐based analysis and identified outstanding roles of CBX2 and CBX7 in positive and negative regulation of glucose metabolism, respectively. Genetic ablation experiments validated the contrasting roles of two isoforms in cancer metabolism and cell growth. Furthermore, we provide evidence for the role of mammalian target of rapamycin complex 1 signaling in mediating contrary effects of CBX2 and CBX7 on breast cancer metabolism. Underpinning the biological significance of metabolic roles, CBX2 and CBX7 were found to be the most up‐ and downregulated isoforms, respectively, in breast tumors compared with normal tissues. Moreover, CBX2 and CBX7 expression (not other isoforms) correlated strongly, but oppositely, with breast tumor subtype aggressiveness and the proliferation markers. Consistently, genomic data also showed higher amplification frequency of CBX2, not CBX7, in breast tumors. Highlighting the clinical significance of findings, disease‐specific survival and drug sensitivity analysis revealed that CBX2 and CBX7 predicted patient outcome and sensitivity to FDA‐approved/investigational drugs. In summary, this work identifies novel cross talk between CBX2/7 and breast tumor metabolism, and the results presented may have implications in strategies targeting breast cancer.
Collapse
Affiliation(s)
- Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Shumaila Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Asad Ur Rehman
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, India
| | - Farid Ahmad Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Turku Centre for Biotechnology, BioCity, University of Turku and Abo Akademi, Finland
| | - Prithvi Singh
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Bhupender Kumar
- Department of Biochemistry, Institute of Home Economics, University of Delhi, India
| | - Daman Saluja
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, India
| |
Collapse
|
27
|
Azbazdar Y, Karabicici M, Erdal E, Ozhan G. Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol 2021; 9:631623. [PMID: 33585487 PMCID: PMC7873896 DOI: 10.3389/fcell.2021.631623] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is one of the key signaling pathways that govern numerous physiological activities such as growth, differentiation and migration during development and homeostasis. As pathway misregulation has been extensively linked to pathological processes including malignant tumors, a thorough understanding of pathway regulation is essential for development of effective therapeutic approaches. A prominent feature of cancer cells is that they significantly differ from healthy cells with respect to their plasma membrane composition and lipid organization. Here, we review the key role of membrane composition and lipid order in activation of Wnt signaling pathway by tightly regulating formation and interactions of the Wnt-receptor complex. We also discuss in detail how plasma membrane components, in particular the ligands, (co)receptors and extracellular or membrane-bound modulators, of Wnt pathways are affected in lung, colorectal, liver and breast cancers that have been associated with abnormal activation of Wnt signaling. Wnt-receptor complex components and their modulators are frequently misexpressed in these cancers and this appears to correlate with metastasis and cancer progression. Thus, composition and organization of the plasma membrane can be exploited to develop new anticancer drugs that are targeted in a highly specific manner to the Wnt-receptor complex, rendering a more effective therapeutic outcome possible.
Collapse
Affiliation(s)
- Yagmur Azbazdar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Mustafa Karabicici
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, İzmir, Turkey
| | - Gunes Ozhan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, İzmir, Turkey.,Izmir International Biomedicine and Genome Institute (IBG-Izmir), Dokuz Eylul University, İzmir, Turkey
| |
Collapse
|
28
|
Wang H, Cui G, Yu B, Sun M, Yang H. Cancer Stem Cell Niche in Colorectal Cancer and Targeted Therapies. Curr Pharm Des 2020; 26:1979-1993. [PMID: 32268862 DOI: 10.2174/1381612826666200408102305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are a sub-population of tumor cells found in many human cancers that are endowed with self-renewal and pluripotency. CSCs may be more resistant to conventional anticancer therapies than average cancer cells, as they can easily escape the cytotoxic effects of standard chemotherapy, thereby resulting in tumor relapse. Despite significant progress in related research, effective elimination of CSCs remains an unmet clinical need. CSCs are localized in a specialized microenvironment termed the niche, which plays a pivotal role in cancer multidrug resistance. The niche components of CSCs, such as the extracellular matrix, also physically shelter CSCs from therapeutic agents. Colorectal cancer is the most common malignancy worldwide and presents a relatively transparent process of cancer initiation and development, making it an ideal model for CSC niche research. Here, we review recent advances in the field of CSCs using colorectal cancer as an example to illustrate the potential therapeutic value of targeting the CSC niche. These findings not only provide a novel theoretical basis for in-depth discussions on tumor occurrence, development, and prognosis evaluation, but also offer new strategies for the targeted treatment of cancer.
Collapse
Affiliation(s)
- Hao Wang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China.,Laboratory medical college, Jilin Medical University, Jilin, China
| | - Guihua Cui
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Meiyan Sun
- Laboratory medical college, Jilin Medical University, Jilin, China
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China
| |
Collapse
|
29
|
Niu J, Li W, Liang C, Wang X, Yao X, Yang RH, Zhang ZS, Liu HF, Liu FY, Pei SH, Li WQ, Sun H, Fang D, Xie SQ. EGF promotes
DKK1
transcription in hepatocellular carcinoma by enhancing the phosphorylation and acetylation of histone H3. Sci Signal 2020; 13:13/657/eabb5727. [DOI: 10.1126/scisignal.abb5727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Niu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Wei Li
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Chao Liang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Xiao Wang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Xin Yao
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Ruo-Han Yang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Zhan-Sheng Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Han-Fang Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Fan-Ye Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Shu-Hua Pei
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Wen-Qi Li
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Hua Sun
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Dong Fang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| | - Song-Qiang Xie
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
- Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave., Kaifeng 475004, China
| |
Collapse
|
30
|
Li X, Gou J, Li H, Yang X. Bioinformatic analysis of the expression and prognostic value of chromobox family proteins in human breast cancer. Sci Rep 2020; 10:17739. [PMID: 33082469 PMCID: PMC7576141 DOI: 10.1038/s41598-020-74792-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
Chromobox (CBX) family proteins control chromatin structure and gene expression. However, the functions of CBXs in cancer progression, especially breast cancer, are inadequately studied. We assessed the significance of eight CBX proteins in breast cancer. We performed immunohistochemistry and bioinformatic analysis of data from Oncomine, GEPIA Dataset, bcGenExMiner, Kaplan–Meier Plotter, and cBioPortal. We compared mRNA and protein expression levels of eight CBX proteins between breast tumor and normal tissue. The expression difference of CBX7 was the greatest, and CBX7 was downregulated in breast cancer tissues compared with normal breast tissues. The expression of CBX2 was strongly associated with tumor stage. We further analyzed the association between the eight CBX proteins and the following clinicopathological features: menopause age, estrogen receptor (ER), progesterone receptor (PR) and HER-2 receptor status, nodal status, P53 status, triple-negative status, and the Scarff–Bloom–Richardson grade (SBR) and Nottingham prognostic index (NPI). Survival analysis in the Kaplan–Meier Plotter database showed that the eight CBX proteins were significantly associated with prognosis. Moreover, CBX genes in breast cancer patients had a high net alteration frequency of 57%. There were significant co-expression correlations between the following CBX protein pairs: CBX4 positively with CBX8, CBX6 positively with CBX7, and CBX2 negatively with CBX7. We also analyzed the Gene Ontology enrichment of the CBX proteins, including biological processes, cellular components, and molecular functions. CBX 1/2/3/5/8 may be oncogenes for breast cancer, whereas CBX 6 and 7 may be tumor suppressors for breast cancer. All eight CBX proteins may be predictive for prognosis. Clinical trials are needed to confirm the significance of the eight CBX proteins in breast cancer.
Collapse
Affiliation(s)
- Xiaomin Li
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Department of Breast Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Junhe Gou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hongjiang Li
- Department of Breast Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China
| | - Xiaoqin Yang
- Department of Breast Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Wuhou District, Chengdu City, Sichuan Province, People's Republic of China.
| |
Collapse
|
31
|
Ma T, Ma N, Chen JL, Tang FX, Zong Z, Yu ZM, Chen S, Zhou TC. Expression and prognostic value of Chromobox family members in gastric cancer. J Gastrointest Oncol 2020; 11:983-998. [PMID: 33209492 DOI: 10.21037/jgo-20-223] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The Chromobox (CBX) protein family, which is a crucial part of the epigenetic regulatory complex, plays an important role in the occurrence and development of cancer; however, the function and prognostic value of CBX family members in gastric cancer is not clear. Methods we investigated the relationship between CBX members and gastric cancer using a range of tools and databases: Oncomine, Kaplan-Meier plotter, cBioPortal, ULCAN, Metascape, and GEPIA. Results The results showed that, relative to normal gastric tissue, mRNA expression levels of CBX1-6 were significantly higher in gastric cancer tissue, whereas the level of CBX7 was significantly lower. Furthermore, overexpression of CBX3-6 and underexpression of CBX7 mRNAs was significantly related to the poor prognosis and survival of gastric cancer patients, making these CBX family members useful biomarkers. Finally, overexpression of CBX1 mRNA was significantly related to the poor prognosis of gastric cancer patients treated with adjuvant 5-fluorouracil-based chemotherapy. Conclusions The members of the CBX family can be used as prognosis and survival biomarkers for gastric cancer and CBX1 may be a biomarker for choosing the chemotherapy regimen of gastric cancer patients.
Collapse
Affiliation(s)
- Tao Ma
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Ning Ma
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Jia-Lin Chen
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Fu-Xin Tang
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Zhen Zong
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhuo-Min Yu
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Shuang Chen
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Tai-Cheng Zhou
- Department of Gastrointestinal Surgery and Hernia Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| |
Collapse
|
32
|
Mammalian CBX7 isoforms p36 and p22 exhibit differential responses to serum, varying functions for proliferation, and distinct subcellular localization. Sci Rep 2020; 10:8061. [PMID: 32415167 PMCID: PMC7228926 DOI: 10.1038/s41598-020-64908-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/20/2020] [Indexed: 01/04/2023] Open
Abstract
CBX7 is a polycomb group protein, and despite being implicated in many diseases, its role in cell proliferation has been controversial: some groups described its pro-proliferative properties, but others illustrated its inhibitory effects on cell growth. To date, the reason for the divergent observations remains unknown. While several isoforms for CBX7 were reported, no studies investigated whether the divergent roles of CBX7 could be due to distinct functions of CBX7 isoforms. In this study, we newly identified mouse CBX7 transcript variant 1 (mCbx7v1), which is homologous to the human CBX7 gene (hCBX7v1) and is expressed in various mouse organs. We revealed that mCbx7v1 and hCBX7v1 encode a 36 kDa protein (p36CBX7) whereas mCbx7 and hCBX7v3 encode a 22 kDa protein (p22CBX7). This study further demonstrated that p36CBX7 was localized to the nucleus and endogenously expressed in proliferating cells whereas p22CBX7 was localized to the cytoplasm, induced by serum starvation in both human and mouse cells, and inhibited cell proliferation. Together, these data indicate that CBX7 isoforms are localized in different locations in a cell and play differing roles in cell proliferation. This varying function of CBX7 isoforms may help us understand the distinct function of CBX7 in various studies.
Collapse
|
33
|
The Crosstalk between lncRNA-SNHG7/miRNA-181/cbx7 Modulates Malignant Character in Lung Adenocarcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1343-1354. [PMID: 32201260 DOI: 10.1016/j.ajpath.2020.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/29/2020] [Accepted: 02/18/2020] [Indexed: 01/14/2023]
Abstract
Lung adenocarcinoma (LUAD) is a malignant tumor with poor patient survival and high patient mortality. Long noncoding RNA is profoundly involved in the tumorigenesis of LUAD. The present study explores the effect of small nucleolar RNA host gene 7 (SNHG7) on the progression of LUAD and its underlying mechanisms. SNHG7 was found to be down-regulated in LUAD tissues compared with normal tissues. Altered SNHG7 expression induced changes in cell proliferation and migration both in vitro and in vivo. Mechanistically, it was found that SNHG7 interacted with microRNA mir-181 and sequentially up-regulated cbx7. cbx7, which suppresses the Wnt/β-catenin pathway in LUAD, was found to be a direct target of mir-181. Taken together, loss of SNHG7 in LUAD up-regulated mir-181 and then down-regulated the tumor suppressor cbx7.
Collapse
|
34
|
Jo S, Yoon S, Lee SY, Kim SY, Park H, Han J, Choi SH, Han JS, Yang JH, Kim TH. DKK1 Induced by 1,25D3 Is Required for the Mineralization of Osteoblasts. Cells 2020; 9:cells9010236. [PMID: 31963554 PMCID: PMC7017072 DOI: 10.3390/cells9010236] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
1α,25-dihydroxyvitamin D3 (1,25D3), the most popular drug for osteoporosis treatment, drives osteoblast differentiation and bone mineralization. Wnt/β-catenin signaling is involved in commitment and differentiation of osteoblasts, but the role of the Dickkopf-related protein 1 (DKK1), a Wnt antagonist, in osteoblasts remains unknown. Here, we demonstrate the molecular mechanism of DKK1 induction by 1,25D3 and its physiological role during osteoblast differentiation. 1,25D3 markedly promoted the expression of both CCAAT/enhancer binding protein beta (C/EBPβ) and DKK1 at day 7 during osteoblast differentiation. Interestingly, mRNA and protein levels of C/EBPβ and DKK1 in osteoblasts were elevated by 1,25D3. We also found that C/EBPβ, in response to 1,25D3, directly binds to the human DKK1 promoter. Knockdown of C/EBPβ downregulated the expression of DKK1 in osteoblasts, which was partially reversed by 1,25D3. In contrast, overexpression of C/EBPβ upregulated DKK1 expression in osteoblasts, which was enhanced by 1,25D3. Furthermore, 1,25D3 treatment in osteoblasts stimulated secretion of DKK1 protein within the endoplasmic reticulum to extracellular. Intriguingly, blocking DKK1 attenuated calcified nodule formation in mineralized osteoblasts, but not ALP activity or collagen synthesis. Taken together, these observations suggest that 1,25D3 promotes the mineralization of osteoblasts through activation of DKK1 followed by an increase of C/EBPβ.
Collapse
Affiliation(s)
- Sungsin Jo
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | - Subin Yoon
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - So Young Lee
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (S.Y.L.); (J.-S.H.)
| | - So Yeon Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | - Hyosun Park
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
| | | | - Sung Hoon Choi
- Department of Orthopaedic Surgery, Hanyang University Seoul Hospital, Seoul 04763, Korea;
| | - Joong-Soo Han
- Department of Biomedical Sciences, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (S.Y.L.); (J.-S.H.)
- Biomedical Research Institute and Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Jae-Hyuk Yang
- Department of Orthopaedic Surgery, Hanyang University Guri Hospital, Gyeonggi-do 11923, Korea;
| | - Tae-Hwan Kim
- Hanyang University Institute for Rheumatology Research, Seoul 04763, Korea; (S.J.); (S.Y.); (S.Y.K.); (H.P.)
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2290-9245; Fax: +82-2-2298-8231
| |
Collapse
|
35
|
Tapia C, Suares A, De Genaro P, González-Pardo V. In vitro studies revealed a downregulation of Wnt/β-catenin cascade by active vitamin D and TX 527 analog in a Kaposi's sarcoma cellular model. Toxicol In Vitro 2019; 63:104748. [PMID: 31838186 DOI: 10.1016/j.tiv.2019.104748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 01/29/2023]
Abstract
The Kaposi's sarcoma-associated herpesvirus G-protein-coupled receptor (vGPCR) is a key molecule in the pathogenesis of Kaposi's sarcoma. We have previously demonstrated that 1α,25(OH)2D3 or its less calcemic analog TX 527 exerts antiproliferative effects in endothelial cells stable expressing vGPCR. Since it is well documented that vGPCR activates the canonical Wnt/β-catenin signaling pathway, the aim of this study was to evaluate if Wnt/β-catenin cascade is target of 1α,25(OH)2D3 or TX 527 as part of their antineoplastic mechanism. Firstly, Western blot studies showed an increase in β-catenin protein levels in a dose and time dependent manner; and when VDR was knockdown, β-catenin protein levels were significantly decreased. Secondly, β-catenin localization, investigated by immunofluorescence and subcellular fractionation techniques, was found increased in the nucleus and plasma membrane after 1α,25(OH)2D3 treatment. VE-cadherin protein levels were also increased in the plasma membrane fraction. Furthermore, β-catenin interaction with VDR was observed by co-immunoprecipitation and mRNA expression of β-catenin target genes was found decreased. Finally, DKK-1, the extracellular inhibitor of Wnt/β-catenin pathway, showed an initial upregulation of mRNA expression. Altogether, the results obtained by different techniques revealed a downregulation of Wnt/β-catenin cascade after 1α,25(OH)2D3 or TX 527 treatment, showing the foundation for a potential chemotherapeutic agent.
Collapse
Affiliation(s)
- Cinthya Tapia
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Alejandra Suares
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Pablo De Genaro
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000 Bahía Blanca, Argentina
| | - Verónica González-Pardo
- Instituto de Ciencias Biológicas y Biomédicas del Sur (INBIOSUR), Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 670, 8000 Bahía Blanca, Argentina.
| |
Collapse
|
36
|
Niu J, Li XM, Wang X, Liang C, Zhang YD, Li HY, Liu FY, Sun H, Xie SQ, Fang D. DKK1 inhibits breast cancer cell migration and invasion through suppression of β-catenin/MMP7 signaling pathway. Cancer Cell Int 2019; 19:168. [PMID: 31285694 PMCID: PMC6591985 DOI: 10.1186/s12935-019-0883-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background DKK1 has been reported to act as a tumor suppressor in breast cancer. However, the mechanism of DKK1 inhibits breast cancer migration and invasion was still unclear. Methods Western blot and real time PCR was used to detect the expression of DKK1, β-catenin and MMP7 in breast cancer cells. Wound scratch assay and transwell assay was employed to examine migration and invasion of breast cancer cell. Results DKK1 overexpression dramatically inhibits breast cancer cell migration and invasion. Knockdown of DKK1 promotes migration and invasion of breast cancer cells. DKK1 suppressed breast cancer cell migration and invasion through suppression of β-catenin and MMP7 expression. XAV-939, an inhibitor of β-catenin accumulation could reverse DKK1 silencing-induced MMP7 expression in breast cancer cells. Meanwhile, XAV-939 also could reverse the increase in the cell number invaded through Matrigel when DKK1 was knockdown. Furthermore, depletion of MMP7 also could reverse DKK1 knockdown-induced increase in the cell number invaded through Matrigel. Conclusions DKK1 inhibits migration and invasion of breast cancer cell through suppression of β-catenin/MMP7 pathway, our findings offered a potential alternative for breast cancer prevention and treatment.
Collapse
Affiliation(s)
- Jie Niu
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Xiao-Meng Li
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Xiao Wang
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Chao Liang
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Yi-Dan Zhang
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Hai-Ying Li
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Fan-Ye Liu
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Hua Sun
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Song-Qiang Xie
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China.,2Institute of Chemical Biology, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| | - Dong Fang
- 1Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004 China
| |
Collapse
|
37
|
CBX6 is negatively regulated by EZH2 and plays a potential tumor suppressor role in breast cancer. Sci Rep 2019; 9:197. [PMID: 30655550 PMCID: PMC6336801 DOI: 10.1038/s41598-018-36560-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022] Open
Abstract
Chromobox 6 (CBX6) is a subunit of Polycomb Repressive Complex 1 (PRC1) that mediates epigenetic gene repression and acts as an oncogene or tumor suppressor in a cancer type-dependent manner. The specific function of CBX6 in breast cancer is currently undefined. In this study, a comprehensive analysis of The Cancer Genome Atlas (TCGA) dataset led to the identification of CBX6 as a consistently downregulated gene in breast cancer. We provided evidence showing enhancer of zeste homolog 2 (EZH2) negatively regulated CBX6 expression in a Polycomb Repressive Complex 2 (PRC2)-dependent manner. Exogenous overexpression of CBX6 inhibited cell proliferation and colony formation, and induced cell cycle arrest along with suppression of migration and invasion of breast cancer cells in vitro. Microarray analyses revealed that CBX6 governs a complex gene expression program. Moreover, CBX6 induced significant downregulation of bone marrow stromal cell antigen-2 (BST2), a potential therapeutic target, via interactions with its promoter region. Our collective findings support a tumor suppressor role of CBX6 in breast cancer.
Collapse
|
38
|
Sato A, Ueno H, Fusegi M, Kaneko S, Kohno K, Virgona N, Ando A, Sekine Y, Yano T. A Succinate Ether Derivative of Tocotrienol Enhances Dickkopf-1 Gene Expression through Epigenetic Alterations in Malignant Mesothelioma Cells. Pharmacology 2018; 102:26-36. [PMID: 29763912 DOI: 10.1159/000489128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/11/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Wnt signaling plays an essential role in tumor cell growth, including the development of malignant mesothelioma (MM). Epigenetic silencing of negative Wnt regulators leading to constitutive Wnt signaling has been observed in various cancers and warrants further attention. We have reported that a succinate ether derivative of α-tocotrienol (T3E) has potent cytotoxic effects in MM cells. Thus, in this study, we investigated whether the anti-MM effect of T3E could be mediated via the epigenetic alteration of the Wnt antagonist gene, Dickkopf-1 (DKK1). METHODS WST-1 and cell analyzers were employed to analyze the effects of T3E on cell viability and apoptosis of human MM cell lines (H2452, H28). Real-time PCR and Western blot were performed to evaluate the expression at mRNA and protein levels. Methylation status and epigenetic modifications of DKK1's promoter regions after T3E treatment in MM cells were studied using methylation-specific PCR and Chromatin immunoprecipitation. Small interfering RNA-mediated knockdown -(siRNA), and specific inhibitors, were used to validate DKK1 as a target of T3E. RESULTS T3E markedly impaired MM cell viability, increased the expression of phosphorylated-JNK and DKK1 and suppressed cyclin D, a downstream target gene of Wnt signaling. Knockdown of DKK1 expression by siRNA or a specific JNK inhibitor confirmed the contribution of DKK1 and JNK to T3E-induced cytotoxicity in MM cells. On the other hand, cytoskeleton-associated protein 4 (CKAP4) expression, which promotes cell proliferation as a Wnt-independent DKK1 receptor was inhibited by T3E. Silencing CKAP4 by -siRNA did not appear to directly affect MM cell viability, thereby indicating that expression of both DKK1 and CKAP4 is required. Furthermore, T3E-mediated inhibition of both DNA methyltransferases (DNMT1, 3A, and 3B) and histone deacetylases (HDAC1, 2, 3, and 8) in MM cells leads to increased DKK1 expression, thereby promoting tumor growth inhibition. MM cells treated with Zebularine (a DNMT inhibitor) and sodium butyrate (an HDAC inhibitor) exhibited cytotoxic effects, which may explain the inhibitory action of T3E on MM cells. In addition, an enhanced expression of DKK1 in MM cells following T3E treatment is positively correlated with the methylation status of its promoter; T3E decreased DNA methylation and increased histone acetylation. Moreover, T3E specifically increased histone H3 lysine 4 (H3K4) methylation activity, whereas no effects were observed on histone H3K9 and H3K27. CONCLUSIONS Targeting the epigenetic induction of DKK1 may lead to effective treatment of MM, and T3E has great potential to induce anti-MM activity.
Collapse
Affiliation(s)
- Ayami Sato
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan.,Research Institute of Life Innovation, Toyo University, Gunma, Japan
| | - Haruka Ueno
- Graduate School of Food Life Sciences, Toyo University, Gunma, Japan
| | - Momoka Fusegi
- Graduate School of Food Life Sciences, Toyo University, Gunma, Japan
| | - Saki Kaneko
- Graduate School of Food Life Sciences, Toyo University, Gunma, Japan
| | - Kakeru Kohno
- Graduate School of Food Life Sciences, Toyo University, Gunma, Japan
| | - Nantiga Virgona
- Research Institute of Life Innovation, Toyo University, Gunma, Japan
| | - Akira Ando
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | - Yuko Sekine
- Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tomohiro Yano
- Graduate School of Food Life Sciences, Toyo University, Gunma, Japan.,Research Institute of Life Innovation, Toyo University, Gunma, Japan
| |
Collapse
|
39
|
Yu T, Wu Y, Hu Q, Zhang J, Nie E, Wu W, Wang X, Wang Y, Liu N. CBX7 is a glioma prognostic marker and induces G1/S arrest via the silencing of CCNE1. Oncotarget 2018; 8:26637-26647. [PMID: 28460453 PMCID: PMC5432285 DOI: 10.18632/oncotarget.15789] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/15/2017] [Indexed: 02/06/2023] Open
Abstract
Chromobox homolog 7 (CBX7) cooperates with other polycomb group (PcG) proteins to maintain target genes in a silenced state. However, the precise role of CBX7 in tumor progression is still controversial. We found that the expression of CBX7 in four public databases was significantly lower in high grade glioma (HGG). The reduced expression of CBX7 correlated with poor outcome in HGG patients. Both KEGG and GO analyses indicated that genes that were negatively correlated to CBX7 were strongly associated with the cell cycle pathway. We observed that decreased CBX7 protein levels enhanced glioma cells proliferation, migration and invasion. Then, we verified that CBX7 overexpression arrested cells in the G0/G1 phase. Moreover, we demonstrated that the underlying mechanism involved in CBX7 induced repression of CCNE1 promoter requiring the recruitment of histone deacetylase 2 (HADC2). Finally, in vivo bioluminescence imaging and survival times of nude mice revealed that CBX7 behaved as a tumor suppressor in gliomas. In summary, our results validate the assumption that CBX7 is a tumor suppressor of gliomas. Moreover, CBX7 is a potential and novel prognostic biomarker in glioma patients. We also clarified that CBX7 silences CCNE1 via the combination of CCNE1 promoter and the recruitment of HDAC2.
Collapse
Affiliation(s)
- Tianfu Yu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Youzhi Wu
- Department of Neurosurgery, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Qi Hu
- Department of Neurosurgery, First People's Hospital of Yueyang, Yueyang 414000, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Er Nie
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weining Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiefeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
40
|
Ni S, Wang H, Zhu X, Wan C, Xu J, Lu C, Xiao L, He J, Jiang C, Wang W, He Z. CBX7 suppresses cell proliferation, migration, and invasion through the inhibition of PTEN/Akt signaling in pancreatic cancer. Oncotarget 2018; 8:8010-8021. [PMID: 28030829 PMCID: PMC5352378 DOI: 10.18632/oncotarget.14037] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 11/21/2016] [Indexed: 02/06/2023] Open
Abstract
Chromobox protein homolog 7 (CBX7), one of the polycomb group (PcG) proteins, is a transcriptional repressor involved in the regulation of cell proliferation and senescence. In the present study, we showed that CBX7 negatively regulates the proliferation, viability, chemoresistance, and migration of pancreatic cancer cells. Overexpression of CBX7 significantly inhibited the proliferation of pancreatic cancer cells in vitro and in vivo. Depletion of CBX7 facilitated their growth. CBX7 also impaired the viability and chemoresistance of pancreatic cancer cells. Transwell assays showed that CBX7 reduces the migratory capacity of pancreatic cancer cells. Of note, CBX7 reduced PTEN/Akt signaling in pancreatic cancer cells by increasing PTEN transcription, suggesting involvement of PTEN/Akt pathway in the tumor suppressive activity of CBX7. In addition, immunohistochemical analysis the CBX7 and PTEN expression in 74 surgically resected pancreatic ductal adenocarcinoma (PDAC) specimens revealed that CBX7 expression is significantly downregulated in pancreatic ductal adenocarcinoma, compared to normal pancreatic tissues. Reduced expression of CBX7 and PTEN was associated with increased malignancy grade in pancreatic adenocarcinoma, whereas maintenance of CBX7 and PTEN expression showed a trend toward a longer survival. These findings suggest CBX7 is an important tumor suppressor that negatively modulates PTEN/Akt signaling during pancreatic tumorigenesis.
Collapse
Affiliation(s)
- Sujie Ni
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Hongwei Wang
- Department of Medical Oncology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China.,Bilary and Pancreatic Center, Huadong Hospital of Fudan University, Fudan University, Shanghai 200040, China
| | - Xiaolin Zhu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226001, China
| | - Junfei Xu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| | - Chen Lu
- Department of Pathology, Huadong Hospital of Fudan University, Fudan University, Shanghai 200040, China
| | - Li Xiao
- Department of Pathology, Huadong Hospital of Fudan University, Fudan University, Shanghai 200040, China
| | - Jiaqi He
- Bilary and Pancreatic Center, Huadong Hospital of Fudan University, Fudan University, Shanghai 200040, China
| | - Chongyi Jiang
- Bilary and Pancreatic Center, Huadong Hospital of Fudan University, Fudan University, Shanghai 200040, China
| | - Wei Wang
- Bilary and Pancreatic Center, Huadong Hospital of Fudan University, Fudan University, Shanghai 200040, China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong University, Nantong 226001, China
| |
Collapse
|
41
|
Polycomb protein family member CBX7 regulates intrinsic axon growth and regeneration. Cell Death Differ 2018; 25:1598-1611. [PMID: 29459770 PMCID: PMC6143612 DOI: 10.1038/s41418-018-0064-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 12/25/2017] [Accepted: 01/08/2018] [Indexed: 01/28/2023] Open
Abstract
Neurons in the central nervous system (CNS) lose their intrinsic ability and fail to regenerate, but the underlying mechanisms are largely unknown. Polycomb group (PcG) proteins, which include PRC1 and PRC2 complexes function as gene repressors and are involved in many biological processes. Here we report that PRC1 components (polycomb chromobox (CBX) 2, 7, and 8) are novel regulators of axon growth and regeneration. Especially, knockdown of CBX7 in either embryonic cortical neurons or adult dorsal root ganglion (DRG) neurons enhances their axon growth ability. Two important transcription factors GATA4 and SOX11 are functional downstream targets of CBX7 in controlling axon regeneration. Moreover, knockdown of GATA4 or SOX11 in cultured DRG neurons inhibits axon regeneration response from CBX7 downregulation in DRG neurons. These findings suggest that targeting CBX signaling pathway may be a novel approach for promoting the intrinsic regenerative capacity of damaged CNS neurons.
Collapse
|
42
|
Pickl JMA, Tichy D, Kuryshev VY, Tolstov Y, Falkenstein M, Schüler J, Reidenbach D, Hotz-Wagenblatt A, Kristiansen G, Roth W, Hadaschik B, Hohenfellner M, Duensing S, Heckmann D, Sültmann H. Ago-RIP-Seq identifies Polycomb repressive complex I member CBX7 as a major target of miR-375 in prostate cancer progression. Oncotarget 2018; 7:59589-59603. [PMID: 27449098 PMCID: PMC5312160 DOI: 10.18632/oncotarget.10729] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/09/2016] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a heterogeneous disease. MiR-375 is a marker for prostate cancer progression, but its cellular function is not characterized. Here, we provide the first comprehensive investigation of miR-375 in prostate cancer. We show that miR-375 is enriched in prostate cancer compared to normal cells. Furthermore, miR-375 enhanced proliferation, migration and invasion in vitro and induced tumor growth and reduced survival in vivo showing that miR-375 has oncogenic properties in prostate cancer. On the molecular level, we provide the targetome and genome-wide transcriptional changes of miR-375 expression by applying a generalized linear model for Ago-RIP-Seq and RNA-Seq, and show that miR-375 is involved in tumorigenic networks and Polycomb regulation. Integration of tissue and gene ontology data prioritized miR-375 targets and identified the tumor suppressor gene CBX7, a member of Polycomb repressive complex 1, as a major miR-375 target. MiR-375-mediated repression of CBX7 was accompanied by increased expression of its homolog CBX8 and activated transcriptional programs linked to malignant progression in prostate cancer cells. Tissue analysis showed association of CBX7 loss with advanced prostate cancer. Our study indicates that miR-375 exerts its tumor-promoting role in prostate cancer by influencing the epigenetic regulation of transcriptional programs through its ability to directly target the Polycomb complex member CBX7.
Collapse
Affiliation(s)
- Julia M A Pickl
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Diana Tichy
- Department of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Vladimir Y Kuryshev
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Yanis Tolstov
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Michael Falkenstein
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Julia Schüler
- Oncotest GmbH, Institute for Experimental Oncology, Freiburg, Germany
| | - Daniel Reidenbach
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Bioinformatics Group, Core Facility Genomics & Proteomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Glen Kristiansen
- Institute of Pathology, Center for Integrated Oncology, University of Bonn, Bonn, Germany
| | - Wilfried Roth
- NCT Tissue Bank of The National Center of Tumor Diseases (NCT) and Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Boris Hadaschik
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Stefan Duensing
- Section of Molecular Urooncology, Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - Doreen Heckmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Holger Sültmann
- Cancer Genome Research Group, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
43
|
Wils LJ, Bijlsma MF. Epigenetic regulation of the Hedgehog and Wnt pathways in cancer. Crit Rev Oncol Hematol 2018; 121:23-44. [DOI: 10.1016/j.critrevonc.2017.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/17/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022] Open
|
44
|
Liang YK, Lin HY, Chen CF, Zeng D. Prognostic values of distinct CBX family members in breast cancer. Oncotarget 2017; 8:92375-92387. [PMID: 29190923 PMCID: PMC5696189 DOI: 10.18632/oncotarget.21325] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/17/2017] [Indexed: 02/05/2023] Open
Abstract
Chromobox (CBX) family proteins are canonical components in polycomb repressive complexes 1 (PRC1), with epigenetic regulatory function and transcriptionally repressing target genes via chromatin modification. A plethora of studies have highlighted the function specifications among CBX family members in various cancer, including lung cancer, colon cancer and breast cancer. Nevertheless, the functions and prognostic roles of distinct CBX family members in breast cancer (BC) remain elusive. In this study, we reported the prognostic values of CBX family members in patients with BC through analysis of a series of databases, including CCLE, ONCOMINE, Xena Public Data Hubs, and Kaplan-Meier plotter. It was found that the mRNA expression of CBX family members were noticeably higher in BC than normal counterparts. CBX2 was highly expressed in Basal-like and HER-2 subtypes, while CBX4 and CBX7 expressions were enriched in Luminal A and Luminal B subtypes of BC. Survival analysis revealed that CBX1, CBX2 and CBX3 mRNA high expression was correlated to worsen relapse-free survival (RFS) for all BC patients, while CBX4, CBX5, CBX6 and CBX7 high expression was correlated to better RFS in this setting. Noteworthily, CBX1 and CBX2 were associated with chemoresistance whereas CBX7 was associated with tamoxifen sensitivity, as well as chemosensitivity in breast tumors. Therefore, we propose that CBX1, CBX2 and CBX7 are potential targets for BC treatment. The results might be beneficial for better understanding the complexity and heterogeneity in the molecular underpinning of BC, and to develop tools to more accurately predict the prognosis of patients with BC.
Collapse
Affiliation(s)
- Yuan-Ke Liang
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hao-Yu Lin
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Chun-Fa Chen
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - De Zeng
- Department of Medical Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
45
|
Bao Z, Xu X, Liu Y, Chao H, Lin C, Li Z, You Y, Liu N, Ji J. CBX7 negatively regulates migration and invasion in glioma via Wnt/β-catenin pathway inactivation. Oncotarget 2017; 8:39048-39063. [PMID: 28388562 PMCID: PMC5503594 DOI: 10.18632/oncotarget.16587] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/09/2017] [Indexed: 01/05/2023] Open
Abstract
CBX7, a member of the Polycomb-group proteins, plays a significant role in normal and cancerous tissues and has been defined as a tumor suppressor in thyroid, breast and pancreatic cancers. However, its function in glioma remains undefined. CBX7 expression is decreased in glioma, especially in higher grade cases, according to data in the CGGA, GSE16001 and TCGA databases. Further experimental evidence has shown that exogenous CBX7 overexpression induced apoptosis and inhibited cell proliferation, colony formation and migration of glioma cells. In this study, we show that the invasive ability of glioma cells was decreased following CBX7 overexpression and CBX7 overexpression was associated with Wnt/β-catenin pathway inhibition, which also decreased downstream expression of ZEB1, a core epithelial-to-mesenchymal transition factor. This reduction in Wnt signaling is controlled by DKK1, a specific Wnt/β-catenin inhibitor. CBX7 enhances DKK1 expression by binding the DKK1 promoter, as shown in Luciferase reporter assays. Our data confirm that CBX7 inhibits EMT and invasion in glioma, which is manifested by influencing the expression of MMP2, MMP9, E-cadherin, N-cadherin and Vimentin in LN229, T98G cells and primary glioma cells (PGC). Furthermore, as a tumor suppressor, CBX7 expression is pivotal to reduce tumor invasion and evaluate prognosis.
Collapse
Affiliation(s)
- Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiupeng Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yinlong Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Honglu Chao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Lin
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
46
|
Chen MW, Yang ST, Chien MH, Hua KT, Wu CJ, Hsiao SM, Lin H, Hsiao M, Su JL, Wei LH. The STAT3-miRNA-92-Wnt Signaling Pathway Regulates Spheroid Formation and Malignant Progression in Ovarian Cancer. Cancer Res 2017; 77:1955-1967. [PMID: 28209618 DOI: 10.1158/0008-5472.can-16-1115] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 12/22/2016] [Accepted: 01/09/2017] [Indexed: 11/16/2022]
Abstract
Ovarian cancer spheroids constitute a metastatic niche for transcoelomic spread that also engenders drug resistance. Spheroid-forming cells express active STAT3 signaling and display stem cell-like properties that may contribute to ovarian tumor progression. In this study, we show that STAT3 is hyperactivated in ovarian cancer spheroids and that STAT3 disruption in this setting is sufficient to relieve chemoresistance. In an NSG murine model of human ovarian cancer, STAT3 signaling regulated spheroid formation and self-renewal properties, whereas STAT3 attenuation reduced tumorigenicity. Mechanistic investigations revealed that Wnt signaling was required for STAT3-mediated spheroid formation. Notably, the Wnt antagonist DKK1 was the most strikingly upregulated gene in response to STAT3 attenuation in ovarian cancer cells. STAT3 signaling maintained stemness and interconnected Wnt/β-catenin signaling via the miR-92a/DKK1-regulatory pathways. Targeting STAT3 in combination with paclitaxel synergistically reduced peritoneal seeding and prolonged survival in a murine model of intraperitoneal ovarian cancer. Overall, our findings define a STAT3-miR-92a-DKK1 pathway in the generation of cancer stem-like cells in ovarian tumors, with potential therapeutic applications in blocking their progression. Cancer Res; 77(8); 1955-67. ©2017 AACR.
Collapse
Affiliation(s)
- Min-Wei Chen
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Shu-Ting Yang
- National Institute of Cancer Research, National Health Research Institute, Zhunan, Miaoli County, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chin-Jui Wu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - S M Hsiao
- Department of Obstetrics and Gynecology, Far Eastern Memorial Hospital, New Taipei, Taiwan
| | - Hao Lin
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Michael Hsiao
- Medical Biology, Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jen-Liang Su
- National Institute of Cancer Research, National Health Research Institute, Zhunan, Miaoli County, Taiwan. .,Graduate Institute of Cancer Biology, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Lin-Hung Wei
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
47
|
Mihara N, Chiba T, Yamaguchi K, Sudo H, Yagishita H, Imai K. Minimal essential region for krüppel-like factor 5 expression and the regulation by specificity protein 3-GC box binding. Gene 2017; 601:36-43. [PMID: 27940107 DOI: 10.1016/j.gene.2016.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/28/2016] [Accepted: 12/02/2016] [Indexed: 11/22/2022]
Abstract
Krüppel-like factor 5 (KLF5) transcriptionally controls the proliferation-differentiation balance of epithelium and is overexpressed in carcinomas. Although genomic region modifying KLF5 expression is widespread in different types of cells, the region that commonly regulates basal expression of the genes across cell-types is uncertain. In this study we determined the minimal essential region for the expression and its regulatory transcription factors using oral carcinoma cells. A reporter assay defined a 186bp region downstream of the transcription start site and a cluster of six GC boxes (GC1-GC6) as the minimal essential region. Mutation in the GC1 or GC6 regions but not other GC boxes significantly decreased the reporter expression. The decrease by the GC1 mutation was reproduced in the 2kbp full-length promoter, but not by the GC6 mutation. Additionally, specificity proteins (Sp) that can be expressed in epithelial cells and bind GC box, Sp3 co-localized with KLF5 in oral epithelium and carcinomas and chromatin immunoprecipitation analyses showed Sp3 as the prime GC1-binding protein. Inhibition of Sp-GC box binding by mithramycin A and knockdown of Sp3 by the short interfering RNA decreased expression of the reporter gene and endogenous KLF5. These data demonstrate that a 186bp region is the minimal essential region and that Sp3-GC1 binding is essential to the basal expression of KLF5.
Collapse
Affiliation(s)
- Nozomi Mihara
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Tadashige Chiba
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Kosuke Yamaguchi
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Haruka Sudo
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| | - Hisao Yagishita
- Division of Oral Diagnosis, Dental and Maxillofacial Radiology and Oral Pathology Diagnostic Services, The Nippon Dental University Hospital, Tokyo, Japan.
| | - Kazushi Imai
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan.
| |
Collapse
|
48
|
Lee JY, Kong G. Roles and epigenetic regulation of epithelial-mesenchymal transition and its transcription factors in cancer initiation and progression. Cell Mol Life Sci 2016; 73:4643-4660. [PMID: 27460000 PMCID: PMC11108467 DOI: 10.1007/s00018-016-2313-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 02/07/2023]
Abstract
The epithelial-mesenchymal transition (EMT) is a crucial developmental process by which epithelial cells undergo a mesenchymal phenotypic change. During EMT, epigenetic mechanisms including DNA methylation and histone modifications are involved in the regulation of EMT-related genes. The epigenetic gene silencing of the epithelial marker E-cadherin has been well characterized. In particular, three major transcriptional repressors of E-cadherin, Snail, ZEB, and Twist families, also known as EMT-inducing transcription factors (EMT-TFs), play a crucial role in this process by cooperating with multiple epigenetic modifiers. Furthermore, recent studies have identified the novel epigenetic modifiers that control the expression of EMT-TFs, and these modifiers have emerged as critical regulators of cancer development and as novel therapeutic targets for human cancer. In this review, the diverse functions of EMT-TFs in cancer progression, the cooperative mechanisms of EMT-TFs with epigenetic modifiers, and epigenetic regulatory roles for the expression of EMT-TFs will be discussed.
Collapse
Affiliation(s)
- Jeong-Yeon Lee
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul, Republic of Korea
| | - Gu Kong
- Department of Pathology, College of Medicine, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
49
|
Wu K, Ma L, Zhu J. miR‑483‑5p promotes growth, invasion and self‑renewal of gastric cancer stem cells by Wnt/β‑catenin signaling. Mol Med Rep 2016; 14:3421-8. [PMID: 27511210 DOI: 10.3892/mmr.2016.5603] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
Gastric carcinoma (GC) ranks as the second most common cause of cancer‑associated mortality worldwide. Emerging evidence has suggested a potential novel therapeutic strategy based on the ability of cancer stem cells (CSCs) to trigger tumorigenesis. MicroRNAs (miRNAs) have previously been implicated in CSC formation and regulation of their functional characteristics. In the current study, a significant upregulation of miR‑483‑5p levels was demonstrated in spheroid body‑forming cells (P<0.01) by reverse transcription‑quantitative polymerase chain reaction, which were isolated from the MKN‑45 gastric cancer cell line and possessed gastric CSC (GCSC) properties. An MTT assay demonstrated that overexpression of miR‑483‑5p by transfection with miR‑483‑5p mimics significantly increased cell proliferation and Annexin V‑propidium iodide staining indicated the suppression of cell apoptosis, suggesting that miR‑483‑5p has an important function in GCSC growth. Notably, Transwell and sphere formation assays demonstrated that miR‑483‑5p elevation promoted GCSC invasion and cell self‑renewal ability, respectively. Further western blotting assays demonstrated that miR‑483‑5p upregulation induced an increase in the protein expression levels of β‑catenin and its downstream target molecules, including cyclin D1, Bcl‑2 and matrix metalloproteinase 2, indicating that miR‑483‑5p activates Wnt/β‑catenin signaling. Inhibition of this pathway by β‑catenin small interfering RNA transfection attenuated the miR‑483‑5p‑induced effects on cell growth, invasion and self‑renewal. These results demonstrate that miR‑483‑5p may act as an oncogene to promote the development of GC by regulating GCSC growth, invasion and self‑renewal via the Wnt/β‑catenin signaling pathway. Thus, the present study suggests that miR‑483‑5p may be a promising therapeutic target against GC.
Collapse
Affiliation(s)
- Kai Wu
- Department of General Surgery, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Longan Ma
- Department of General Surgery, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jinxiang Zhu
- Department of General Surgery, The Third Affiliated Hospital (Shaanxi Provincial People's Hospital), Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
50
|
Cui Y, Ma W, Lei F, Li Q, Su Y, Lin X, Lin C, Zhang X, Ye L, Wu S, Li J, Yuan Z, Song L. Prostate tumour overexpressed-1 promotes tumourigenicity in human breast cancer via activation of Wnt/β-catenin signalling. J Pathol 2016; 239:297-308. [PMID: 27060981 DOI: 10.1002/path.4725] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/04/2016] [Accepted: 03/30/2016] [Indexed: 01/28/2023]
Abstract
Breast cancer is the most common malignancy in females. The presence of cancer stem cells (CSCs) is the main cause of local and distant tumour recurrence and is associated with poor outcome in breast cancer. However, the molecular mechanisms underlying the maintenance of CSCs remain largely unknown. This study demonstrates that prostate tumour overexpressed-1 (PTOV1) enhances the CSC population and augments the tumourigenicity of breast cancer cells both in vitro and in vivo. Moreover, PTOV1 suppresses transcription of Dickkopf-1 (DKK1) by recruiting histone deacetylases and subsequently reducing DKK1 promoter histone acetylation, followed by activation of Wnt/β-catenin signalling. Restoration of DKK1 expression in PTOV1-overexpressing cells counteracts the effects of PTOV1 on Wnt/β-catenin activation and the CSC population. Collectively, these results suggest that PTOV1 positively regulates the Wnt/β-catenin signalling pathway and enhances tumourigenicity in breast cancer; this novel mechanism may represent a therapeutic target for breast cancer. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yanmei Cui
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Weifeng Ma
- Department of Microbiology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Fangyong Lei
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Qingyuan Li
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Guangdong Country Garden School, Shunde, Foshan, Guangdong, China
| | - Yanhong Su
- Department of Medical Oncology, State Key Laboratory of Oncology in Southern China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xi Lin
- Ultrasonic Department, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Chuyong Lin
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Xin Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Liping Ye
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shu Wu
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhongyu Yuan
- Department of Medical Oncology, State Key Laboratory of Oncology in Southern China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|