1
|
Hussain S, Yates C, Campbell MJ. Vitamin D and Systems Biology. Nutrients 2022; 14:5197. [PMID: 36558356 PMCID: PMC9782494 DOI: 10.3390/nu14245197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The biological actions of the vitamin D receptor (VDR) have been investigated intensively for over 100 years and has led to the identification of significant insights into the repertoire of its biological actions. These were initially established to be centered on the regulation of calcium transport in the colon and deposition in bone. Beyond these well-known calcemic roles, other roles have emerged in the regulation of cell differentiation processes and have an impact on metabolism. The purpose of the current review is to consider where applying systems biology (SB) approaches may begin to generate a more precise understanding of where the VDR is, and is not, biologically impactful. Two SB approaches have been developed and begun to reveal insight into VDR biological functions. In a top-down SB approach genome-wide scale data are statistically analyzed, and from which a role for the VDR emerges in terms of being a hub in a biological network. Such approaches have confirmed significant roles, for example, in myeloid differentiation and the control of inflammation and innate immunity. In a bottom-up SB approach, current biological understanding is built into a kinetic model which is then applied to existing biological data to explain the function and identify unknown behavior. To date, this has not been applied to the VDR, but has to the related ERα and identified previously unknown mechanisms of control. One arena where applying top-down and bottom-up SB approaches may be informative is in the setting of prostate cancer health disparities.
Collapse
Affiliation(s)
- Shahid Hussain
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Moray J. Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Tomar M, Somvanshi PR, Kareenhalli V. Physiological significance of bistable circuit design in metabolic homeostasis: role of integrated insulin-glucagon signalling network. Mol Biol Rep 2022; 49:5017-5028. [DOI: 10.1007/s11033-022-07175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022]
|
3
|
Quintas-Granados LI, Cortés H, Carmen MGD, Leyva-Gómez G, Bustamante-Montes LP, Rodríguez-Morales M, Villegas-Vazquez EY, López-Reyes I, Alcaraz-Estrada SL, Sandoval-Basilio J, Soto-Reyes E, Sharifi-Rad J, Figueroa-González G, Reyes-Hernández OD. The high methylation level of a novel 151-bp CpG island in the ESR1 gene promoter is associated with a poor breast cancer prognosis. Cancer Cell Int 2021; 21:649. [PMID: 34863151 PMCID: PMC8645138 DOI: 10.1186/s12935-021-02343-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The ESR1 gene suffers methylation changes in many types of cancers, including breast cancer (BC), the most frequently diagnosed cancer in women that is also present in men. Methylation at promoter A of ESR1 is the worse prognosis in terms of overall survival; thus, the early detection, prognostic, and prediction of therapy involve some methylation biomarkers. METHODS Therefore, our study aimed to examine the methylation levels at the ESR1 gene in samples from Mexican BC patients and its possible association with menopausal status. RESULTS We identified a novel 151-bp CpG island in the promoter A of the ESR1 gene. Interestingly, methylation levels at this CpG island in positive ERα tumors were approximately 50% less than negative ERα or control samples. Furthermore, methylation levels at ESR1 were associated with menopausal status. In postmenopausal patients, the methylation levels were 1.5-fold higher than in premenopausal patients. Finally, according to tumor malignancy, triple-negative cancer subtypes had higher ESR1 methylation levels than luminal/HER2+ or luminal A subtypes. CONCLUSIONS Our findings suggest that methylation at this novel CpG island might be a promising prognosis marker.
Collapse
Affiliation(s)
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, 14389, Mexico City, Mexico
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | | | | | - Edgar Yebran Villegas-Vazquez
- Departamento de Biotecnología y Bioingeniería del Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Israel López-Reyes
- Colegio de Ciencias y Humanidades, Plantel Cuautepec, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| | - Sofía Lizeth Alcaraz-Estrada
- División de Medicina Genomica, Centro Médico Nacional "20 de Noviembre"-ISSSTE, Mexico, 03100, Mexico City, Mexico
| | - Jorge Sandoval-Basilio
- Laboratorio de Biología Molecular, Universidad Hipócrates, Acapulco, Gro., México
- Laboratorio de Investigación Clínica, Facultad de Medicina, Universidad Autónoma de Guerrero, Acapulco, Gro., México
| | - Ernesto Soto-Reyes
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa (UAM-C), Mexico City, Mexico
| | | | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230, Mexico City, México.
| | - Octavio Daniel Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, 09230, Mexico City, México.
| |
Collapse
|
4
|
Ludwik KA, Sandusky ZM, Stauffer KM, Li Y, Boyd KL, O'Doherty GA, Stricker TP, Lannigan DA. RSK2 Maintains Adult Estrogen Homeostasis by Inhibiting ERK1/2-Mediated Degradation of Estrogen Receptor Alpha. Cell Rep 2021; 32:107931. [PMID: 32697984 PMCID: PMC7465694 DOI: 10.1016/j.celrep.2020.107931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/17/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
In response to estrogens, estrogen receptor alpha (ERα), a critical regulator of homeostasis, is degraded through the 26S proteasome. However, despite the continued presence of estrogen before menopause, ERα protein levels are maintained. We discovered that ERK1/2-RSK2 activity oscillates during the estrous cycle. In response to high estrogen levels, ERK1/2 is activated and phosphorylates ERα to drive ERα degradation and estrogen-responsive gene expression. Reduction of estrogen levels results in ERK1/2 deactivation. RSK2 maintains redox homeostasis, which prevents sustained ERK1/2 activation. In juveniles, ERK1/2-RSK2 activity is not required. Mammary gland regeneration demonstrates that ERK1/2-RSK2 regulation of ERα is intrinsic to the epithelium. Reduced RSK2 and enrichment in an estrogen-regulated gene signature occur in individuals taking oral contraceptives. RSK2 loss enhances DNA damage, which may account for the elevated breast cancer risk with the use of exogenous estrogens. These findings implicate RSK2 as a critical component for the preservation of estrogen homeostasis. Ludwik et al. find that ERK1/2-RSK2 activity oscillates with each reproductive cycle. The estrogen surge activates ERK1/2, which phosphorylates estrogen receptor alpha to drive estrogen responsiveness. Active RSK2 acts as a brake on the estrogen response by maintaining redox homeostasis. Oral contraceptive use correlates with disruption of ERK1/2-RSK2 regulation.
Collapse
Affiliation(s)
- Katarzyna A Ludwik
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Zachary M Sandusky
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Kimberly M Stauffer
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Yu Li
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Kelli L Boyd
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - George A O'Doherty
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Thomas P Stricker
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA
| | - Deborah A Lannigan
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Fetke JK, Martinson JW, Flick RW, Huang W, Bencic DC, See MJ, Pilgrim EM, Debry RW, Biales AD. DNA methylation and expression of estrogen receptor alpha in fathead minnows exposed to 17α-ethynylestradiol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105788. [PMID: 33662878 PMCID: PMC8317993 DOI: 10.1016/j.aquatox.2021.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 05/12/2023]
Abstract
The gene expression response thought to underlie the negative apical effects resulting from estrogen exposure have been thoroughly described in fish. Although epigenetics are believed to play a critical role translating environmental exposures into the development of adverse apical effects, they remain poorly characterized in fish species. This study investigated alterations of DNA methylation of estrogen receptor alpha (esr1) in brain and liver tissues from 8 to 10 month old male fathead minnows (Pimephales promelas) after a 2d exposure to either 2.5 ng/L or 10 ng/L 17α-ethynylestradiol (EE2). Changes in the patterns of methylation were evaluated using targeted deep sequencing of bisulfite treated DNA in the 5' region of esr1. Methylation and gene expression were assessed at 2d of exposure and after a 7 and 14d depuration period. After 2d EE2 exposure, males exhibited significant demethylation in the 5' upstream region of esr1 in liver tissue, which was inversely correlated to gene expression. This methylation pattern reflected what was seen in females. No gene body methylation (GBM) was observed for liver of exposed males. Differential methylation was observed for a single upstream CpG site in the liver after the 14d depuration. A less pronounced methylation response was observed in the upstream region in brain tissue, however, several CpGs were necessarily excluded from the analysis. In contrast to the liver, a significant GBM response was observed across the entire gene body, which was sustained until at least 7d post-exposure. No differential expression was observed in the brain, limiting functional interpretation of methylation changes. The identification of EE2-dependent changes in methylation levels strongly suggests the importance of epigenetic mechanisms as a mediator of the organismal response to environmental exposures and the need for further characterization of the epigenome. Further, differential methylation following depuration indicates estrogenic effects persist well after the active exposure, which has implications for the risk posed by repeated exposures..
Collapse
Affiliation(s)
- J K Fetke
- Oak Ridge Institute for Science and Education (ORISE) Research Participant at US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States; Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - J W Martinson
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - R W Flick
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - W Huang
- US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27709, United States
| | - D C Bencic
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - M J See
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - E M Pilgrim
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - R W Debry
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - A D Biales
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States.
| |
Collapse
|
6
|
Intrinsic and Extrinsic Factors Governing the Transcriptional Regulation of ESR1. Discov Oncol 2020; 11:129-147. [PMID: 32592004 DOI: 10.1007/s12672-020-00388-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Transcriptional regulation of ESR1, the gene that encodes for estrogen receptor α (ER), is critical for regulating the downstream effects of the estrogen signaling pathway in breast cancer such as cell growth. ESR1 is a large and complex gene that is regulated by multiple regulatory elements, which has complicated our understanding of how ESR1 expression is controlled in the context of breast cancer. Early studies characterized the genomic structure of ESR1 with subsequent studies focused on identifying intrinsic (chromatin environment, transcription factors, signaling pathways) and extrinsic (tumor microenvironment, secreted factors) mechanisms that impact ESR1 gene expression. Currently, the introduction of genomic sequencing platforms and additional genome-wide technologies has provided additional insight on how chromatin structures may coordinate with these intrinsic and extrinsic mechanisms to regulate ESR1 expression. Understanding these interactions will allow us to have a clearer understanding of how ESR1 expression is regulated and eventually provide clues on how to influence its regulation with potential treatments. In this review, we highlight key studies concerning the genomic structure of ESR1, mechanisms that affect the dynamics of ESR1 expression, and considerations towards affecting ESR1 expression and hormone responsiveness in breast cancer.
Collapse
|
7
|
Fleurot E, Goudin C, Hanoux V, Bonnamy PJ, Levallet J. Estrogen receptor α regulates the expression of syndecan-1 in human breast carcinoma cells. Endocr Relat Cancer 2019; 26:615-628. [PMID: 30978702 DOI: 10.1530/erc-18-0285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/11/2019] [Indexed: 01/27/2023]
Abstract
Breast cancer (BC) is the primary cause of cancer-related mortality among women. Patients who express the estrogen receptor (ER), which mediates the tumorigenic effects of estrogens, respond to antihormonal therapy. Loss of ER expression or acquired resistance to E2 is associated with aggressive malignant phenotypes, which lead to relapse. These BC subtypes overexpress syndecan-1 (SDC1), a transmembrane heparan sulfate proteoglycan that mediates angiogenesis as well as the proliferation and invasiveness of cancer cells. We showed here that the activation of ER-alpha (ERα) by estrogens induces downregulation of SDC1 expression in ER(+) MCF7 cells but not in T47D cells. Loss of ERα expression, induced by RNA interference or a selective ER downregulator, led to subsequent SDC1 overexpression. E2-dependent downregulation of SDC1 expression required de novo protein synthesis and was antagonized by treatment with BAY 11-7085, an irreversible inhibitor of IκBα phosphorylation, which inhibits the activation of NFκB. Downregulation of SDC1 expression required ERα and activation of IKK, but was independent to downstream transcriptional regulators of NFκB. BAY 11-7085 prevented E2-mediated phosphorylation of ERα on Ser118, increasing its proteasomal degradation, suggesting that IKK stabilized E2-activated ERα, leading to subsequent downregulation of SDC1 expression. Our results showed that sustained ER signaling inhibits SDC1 expression. Such antagonism elucidates the inverse correlation between SDC1 and ER expression in ER(+) BC as well as the overexpression of SDC1 in hormone receptor-negative BC subtypes with the most aggressive phenotypes. These results identify SDC1 as an attractive therapeutic target for BC as well as for other endocrine-associated cancers.
Collapse
Affiliation(s)
| | | | | | | | - Jérôme Levallet
- Normandie Univ, UNICAEN, OERECA, Caen, France
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| |
Collapse
|
8
|
Button B, Croessmann S, Chu D, Rosen DM, Zabransky DJ, Dalton WB, Cravero K, Kyker-Snowman K, Waters I, Karthikeyan S, Christenson ES, Donaldson J, Hunter T, Dennison L, Ramin C, May B, Roden R, Petry D, Armstrong DK, Visvanathan K, Park BH. The estrogen receptor-alpha S118P variant does not affect breast cancer incidence or response to endocrine therapies. Breast Cancer Res Treat 2019; 174:401-412. [PMID: 30560461 PMCID: PMC6447053 DOI: 10.1007/s10549-018-05087-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 01/15/2023]
Abstract
PURPOSE Estrogen receptor-alpha (ER) is a therapeutic target of ER-positive (ER+) breast cancers. Although ER signaling is complex, many mediators of this pathway have been identified. Specifically, phosphorylation of ER at serine 118 affects responses to estrogen and therapeutic ligands and has been correlated with clinical outcomes in ER+ breast cancer patients. We hypothesized that a newly described germline variant (S118P) at this residue would drive cellular changes consistent with breast cancer development and/or hormone resistance. METHODS Isogenic human breast epithelial cell line models harboring ER S118P were developed via genome editing and characterized to determine the functional effects of this variant. We also examined the frequency of ER S118P in a case-control study (N = 536) of women with and without breast cancer with a familial risk. RESULTS In heterozygous knock-in models, the S118P variant demonstrated no significant change in proliferation, migration, MAP Kinase pathway signaling, or response to the endocrine therapies tamoxifen and fulvestrant. Further, there was no difference in the prevalence of S118P between women with and without cancer relative to population registry databases. CONCLUSIONS This study suggests that the ER S118P variant does not affect risk for breast cancer or hormone therapy resistance. Germline screening and modification of treatments for patients harboring this variant are likely not warranted.
Collapse
Affiliation(s)
- Berry Button
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Croessmann
- Vanderbilt Ingram Cancer Center, Vanderbilt Universtiy Medical Center, 2220 Pierce Avenue, PRB 777, Nashville, TN, 37232, USA
| | - David Chu
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Marc Rosen
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel J Zabransky
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - W Brian Dalton
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karen Cravero
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly Kyker-Snowman
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ian Waters
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Swathi Karthikeyan
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eric S Christenson
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Josh Donaldson
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tasha Hunter
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren Dennison
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cody Ramin
- The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Betty May
- The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Richard Roden
- The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dana Petry
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deborah K Armstrong
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kala Visvanathan
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ben Ho Park
- The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Vanderbilt Ingram Cancer Center, Vanderbilt Universtiy Medical Center, 2220 Pierce Avenue, PRB 777, Nashville, TN, 37232, USA.
- Department of Chemical and Biomolecular Engineering, The Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Park J, Lee Y. Hypoxia induced phosphorylation of estrogen receptor at serine 118 in the absence of ligand. J Steroid Biochem Mol Biol 2017; 174:146-152. [PMID: 28847747 DOI: 10.1016/j.jsbmb.2017.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
Abstract
The estrogen receptor (ER) plays an important role in breast cancer development and progression. Hypoxia modulates the level of ERα expression and induces ligand-independent transcriptional activation of ERα, which is closely related with the biology of breast carcinomas. Since phosphorylation itself affects the transcriptional activity and stabilization of ERα, we examined changes in ERα phosphorylation under hypoxic conditions. Hypoxia induced phosphorylation of ERα at serine residue 118 (S118) in the absence of estrogen through the mitogen-activated protein kinase (MAPK)/ERK1/2 pathway. Cell proliferation was significantly decreased under normoxia or hypoxia when ERα harboring the S118A mutation was overexpressed. Our previous studies showed that ER degradation is the most prominent phenomenon under hypoxia. E2-induced ER protein downregulation is dependent on phosphorylation of S118. However, hypoxia-induced ERα degradation did not involve S118 phosphorylation. Our study implies the existence of a differential mechanism between E2 and hypoxia-mediated ERα protein degradation. Understanding the mechanistic behavior of ER under hypoxia will likely facilitate understanding of endocrine therapy resistance and development of treatment strategies for breast cancer.
Collapse
Affiliation(s)
- Joonwoo Park
- College of Life Science, Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 143-747, South Korea
| | - YoungJoo Lee
- College of Life Science, Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 143-747, South Korea.
| |
Collapse
|