1
|
Mendes FC, Garcia-Larsen V, Moreira A. Obesity and Asthma: Implementing a Treatable Trait Care Model. Clin Exp Allergy 2024; 54:881-894. [PMID: 38938020 DOI: 10.1111/cea.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Recognition of obesity as a treatable trait of asthma, impacting its development, clinical presentation and management, is gaining widespread acceptance. Obesity is a significant risk factor and disease modifier for asthma, complicating treatment. Epidemiological evidence highlights that obese asthma correlates with poorer disease control, increased severity and persistence, compromised lung function and reduced quality of life. Various mechanisms contribute to the physiological and clinical complexities observed in individuals with obesity and asthma. These encompass different immune responses, including Type IVb, where T helper 2 cells are pivotal and driven by cytokines like interleukins 4, 5, 9 and 13, and Type IVc, characterised by T helper 17 cells and Type 3 innate lymphoid cells producing interleukin 17, which recruits neutrophils. Additionally, Type V involves immune response dysregulation with significant activation of T helper 1, 2 and 17 responses. Finally, Type VI is recognised as metabolic-induced immune dysregulation associated with obesity. Body mass index (BMI) stands out as a biomarker of a treatable trait in asthma, readily identifiable and targetable, with significant implications for disease management. There exists a notable gap in treatment options for individuals with obese asthma, where asthma management guidelines lack specificity. For example, there is currently no evidence supporting the use of incretin mimetics to improve asthma outcomes in asthmatic individuals without Type 2 diabetes mellitus (T2DM). In this review, we advocate for integrating BMI into asthma care models by establishing clear target BMI goals, promoting sustainable weight loss via healthy dietary choices and physical activity and implementing regular reassessment and referral as necessary.
Collapse
Affiliation(s)
- Francisca Castro Mendes
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Vanessa Garcia-Larsen
- Program in Human Nutrition, Department of International Health, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, Maryland, USA
| | - André Moreira
- EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório Para a Investigação Integrativa e Translacional Em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
- Basic and Clinical Immunology Unit, Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
- Serviço de Imunoalergologia, Centro Hospitalar Universitário São João, Porto, Portugal
| |
Collapse
|
2
|
Hartsoe P, Holguin F, Chu HW. Mitochondrial Dysfunction and Metabolic Reprogramming in Obesity and Asthma. Int J Mol Sci 2024; 25:2944. [PMID: 38474191 PMCID: PMC10931700 DOI: 10.3390/ijms25052944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Mitochondrial dysfunction and metabolic reprogramming have been extensively studied in many disorders ranging from cardiovascular to neurodegenerative disease. Obesity has previously been associated with mitochondrial fragmentation, dysregulated glycolysis, and oxidative phosphorylation, as well as increased reactive oxygen species production. Current treatments focus on reducing cellular stress to restore homeostasis through the use of antioxidants or alterations of mitochondrial dynamics. This review focuses on the role of mitochondrial dysfunction in obesity particularly for those suffering from asthma and examines mitochondrial transfer from mesenchymal stem cells to restore function as a potential therapy. Mitochondrial targeted therapy to restore healthy metabolism may provide a unique approach to alleviate dysregulation in individuals with this unique endotype.
Collapse
Affiliation(s)
- Paige Hartsoe
- Department of Medicine, National Jewish Health, Denver, CO 80222, USA
| | - Fernando Holguin
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO 80222, USA
| |
Collapse
|
3
|
Visser E, Ten Brinke A, Sizoo D, Pepels JJS, Ten Have L, van der Wiel E, van Zutphen T, Kerstjens HAM, de Jong K. Effect of dietary interventions on markers of type 2 inflammation in asthma: A systematic review. Respir Med 2024; 221:107504. [PMID: 38141862 DOI: 10.1016/j.rmed.2023.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
INTRODUCTION Type 2 (T2) inflammation is a key mechanism in the pathophysiology of asthma. Diet may have immunomodulatory effects, and a role for diet in T2 inflammation has been suggested in the literature. Indeed, diet and food allergies play a role in children with atopic asthma, but less is known about diet in relation to adult asthma, which is often non-atopic. OBJECTIVE To review the effect of dietary interventions on markers of T2 inflammation in adults with asthma. METHODS The databases PubMed, Embase, Cochrane Library, and CINAHL were searched for eligible studies until December 2022. We included studies of all types of foods, nutrients, diets or supplements, either as an exposure or as an intervention, in adults and adolescents with asthma. Outcomes of interest included the T2 biomarkers FeNO, eosinophils, IL-4, IL-5, IL-13, eosinophil cationic protein and eosinophil peroxidase. The methodological quality of eligible studies was systematically evaluated, and the results were summarised according to dietary clusters. RESULTS The systematic search identified studies on the dietary clusters antioxidants (n = 14), fatty acids, (n = 14), Mediterranean-style diets (n = 5), phytotherapy (n = 7), prebiotics & probiotics (n = 8), vitamin D (n = 7), and other dietary factors (n = 5). Studies within the phytotherapy and omega-3 poly-unsaturated fatty acids (PUFA) clusters showed possible improvements in T2 inflammation. Furthermore, we found little evidence for an effect of antioxidants, prebiotics & probiotics, and Mediterranean-style diets on T2 inflammation. However, heterogeneity in study protocols, methodological shortcomings and limited power of almost all studies make it difficult to fully determine the impact of different dietary approaches on T2 inflammation in asthma. CONCLUSIONS Overall, the current evidence does not support a specific dietary intervention to improve T2 inflammation in asthma. Interventions involving phytotherapy and omega-3 PUFA currently have the best evidence and warrant further evaluation in well-designed and adequately powered studies, while taking into account T2-high phenotypes of asthma.
Collapse
Affiliation(s)
- Edith Visser
- Department of Epidemiology, Medical Centre Leeuwarden, Leeuwarden, the Netherlands; Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, the Netherlands.
| | - Anneke Ten Brinke
- Department of Pulmonary Medicine, Medical Centre Leeuwarden, Leeuwarden, the Netherlands.
| | - Dionne Sizoo
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, the Netherlands; Centre Obesity Northern Netherlands (CON), Department of Surgery, Medical Centre Leeuwarden, Leeuwarden, the Netherlands.
| | - Janneke J S Pepels
- Department of Epidemiology, Medical Centre Leeuwarden, Leeuwarden, the Netherlands.
| | - Lianne Ten Have
- Department of Epidemiology, Medical Centre Leeuwarden, Leeuwarden, the Netherlands.
| | - Erica van der Wiel
- Department of Pulmonary Medicine, Martini Hospital, Groningen, the Netherlands.
| | - Tim van Zutphen
- Department of Sustainable Health, Faculty Campus Fryslân, University of Groningen, Leeuwarden, the Netherlands.
| | - Huib A M Kerstjens
- Department of Pulmonary Medicine, University of Groningen, University Medical Centre Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
| | - Kim de Jong
- Department of Epidemiology, Medical Centre Leeuwarden, Leeuwarden, the Netherlands.
| |
Collapse
|
4
|
Averill SH, Forno E. Management of the pediatric patient with asthma and obesity. Ann Allergy Asthma Immunol 2024; 132:30-39. [PMID: 37827386 PMCID: PMC10760917 DOI: 10.1016/j.anai.2023.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Asthma and obesity are 2 of the most significant chronic diseases of childhood. Both are major public health problems that have been increasing in prevalence. Obesity increases the risk of developing asthma in children, and in children with asthma, obesity increases asthma severity and morbidity. The nature of this relationship is complex and not fully understood, but some pediatric patients with "obesity-related asthma" may represent a phenotype that differs from the more classical, atopic pediatric asthma. In this review, we investigate and discuss some of the currently available literature regarding treatment for asthma complicated by obesity in the pediatric population. We cover the importance of healthy lifestyle modifications, management of obesity-related comorbidities, and the potential role of nutritional supplementation or modification. We then review recent literature, mostly in adults, investigating the potential role of obesity or diabetes medications in the management of patients with asthma who have obesity. Finally, we discuss some of the necessary next steps before these potential new treatments can be considered as part of the standard clinical management of asthma.
Collapse
Affiliation(s)
- Samantha H Averill
- Division of Pulmonary, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Erick Forno
- Division of Pulmonary, Allergy, and Sleep Medicine, Riley Hospital for Children, Indianapolis, Indiana; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
5
|
Venter C, Meyer RW, Greenhawt M, Pali-Schöll I, Nwaru B, Roduit C, Untersmayr E, Adel-Patient K, Agache I, Agostoni C, Akdis CA, Feeney M, Hoffmann-Sommergruber K, Lunjani N, Grimshaw K, Reese I, Smith PK, Sokolowska M, Vassilopoulou E, Vlieg-Boerstra B, Amara S, Walter J, O'Mahony L. Role of dietary fiber in promoting immune health-An EAACI position paper. Allergy 2022; 77:3185-3198. [PMID: 35801383 DOI: 10.1111/all.15430] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 01/28/2023]
Abstract
Microbial metabolism of specific dietary components, such as fiber, contributes to the sophisticated inter-kingdom dialogue in the gut that maintains a stable environment with important beneficial physiological, metabolic, and immunological effects on the host. Historical changes in fiber intake may be contributing to the increase of allergic and hypersensitivity disorders as fiber-derived metabolites are evolutionarily hardwired into the molecular circuitry governing immune cell decision-making processes. In this review, we highlight the importance of fiber as a dietary ingredient, its effects on the microbiome, its effects on immune regulation, the importance of appropriate timing of intervention to target any potential window of opportunity, and potential mechanisms for dietary fibers in the prevention and management of allergic diseases. In addition, we review the human studies examining fiber or prebiotic interventions on asthma and respiratory outcomes, allergic rhinitis, atopic dermatitis, and overall risk of atopic disorders. While exposures, interventions, and outcomes were too heterogeneous for meta-analysis, there is significant potential for using fiber in targeted manipulations of the gut microbiome and its metabolic functions in promoting immune health.
Collapse
Affiliation(s)
- Carina Venter
- Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Children's Hospital Colorado, Aurora, Colorado, USA
| | | | - Matthew Greenhawt
- Section of Allergy and Immunology, University of Colorado School of Medicine, Aurora, Colorado, USA.,Children's Hospital Colorado, Aurora, Colorado, USA
| | - Isabella Pali-Schöll
- Comparative Medicine, Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna, Vienna, Austria
| | - Bright Nwaru
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Caroline Roduit
- University Children's Hospital Zurich, Zurich, Switzerland.,Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Karine Adel-Patient
- Université Paris-Saclay, CEA, INRAE, UMR MTS/SPI/Laboratoire d'Immuno-Allergie Alimentaire (LIAA), INRA, CEA, Université Paris Saclay, Gif sur Yvette Cedex, France
| | | | - Carlo Agostoni
- Pediatric Unit, De Marchi Clinic, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy.,Dipartimento di Scienze Cliniche e di Comunita, Universita' degli Studi, Milan, Italy
| | - Cezmi A Akdis
- Christine Kühne-Center for Allergy Research and Education, Davos, Switzerland.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Mary Feeney
- Division of Asthma, Allergy and Lung Biology, Department of Paediatric Allergy, King's College London, London, UK.,Guy's & St Thomas' Hospital, London, UK
| | - Karin Hoffmann-Sommergruber
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nonhlanhla Lunjani
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland.,University of Cape Town, Cape Town, South Africa
| | - Kate Grimshaw
- Dietetic Department, Salford Royal NHS Foundation Trust, Salford, UK
| | - Imke Reese
- Private Practice for Dietary Advice and Nutrition Therapy, Munich, Germany
| | - Peter K Smith
- School of Medicine, Griffith University, Southport, Australia
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Emilia Vassilopoulou
- Department of Nutritonal Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Berber Vlieg-Boerstra
- OLVG, Department of Paediatrics, Amsterdam, the Netherlands.,Rijnstate Hospital, Department of Paediatrics, Arnhem, The Netherlands
| | - Shriya Amara
- Undergraduate, University College Los Angeles, Los Angeles, California, USA
| | - Jens Walter
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland.,Department of Medicine, National University of Ireland, Cork, Ireland.,School of Microbiology, National University of Ireland, Cork, Ireland
| | - Liam O'Mahony
- APC Microbiome Ireland, National University of Ireland, Cork, Ireland.,Department of Medicine, National University of Ireland, Cork, Ireland.,School of Microbiology, National University of Ireland, Cork, Ireland
| |
Collapse
|
6
|
The Impact of Dietary Intervention in Obese Children on Asthma Prevention and Control. Nutrients 2022; 14:nu14204322. [PMID: 36297006 PMCID: PMC9611787 DOI: 10.3390/nu14204322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
The prevalence of both asthma and obesity in the pediatric population is steadily increasing, and even the obese-asthma phenotypes are postulated. Obese children with asthma experience more asthma symptoms, more frequent exacerbations, and worse response to treatment; they also report a lower quality of life compared with lean asthmatics. Some of the etiological factors for asthma and obesity may overlap. Perhaps asthma and obesity share a common genetic and immunologic origin. Diet is a compelling modifiable factor in obesity and asthma prevention and control, although the relationship between these two diseases is certainly multifactorial. In this article, we analyze the impact of dietary intervention and weight loss in obese children on asthma prevention and control.
Collapse
|
7
|
Williams EJ, Berthon BS, Stoodley I, Williams LM, Wood LG. Nutrition in Asthma. Semin Respir Crit Care Med 2022; 43:646-661. [PMID: 35272384 DOI: 10.1055/s-0042-1742385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An emerging body of evidence suggests that diet plays an important role in both the development and management of asthma. The relationship between dietary intake and asthma risk has been explored in epidemiological studies, though intervention trials examining the effects of nutrient intake and dietary patterns on asthma management are scarce. Evidence for diets high in fruits and vegetables, antioxidants, omega-3 fatty acids and soluble fiber such as the Mediterranean diet is conflicting. However, some studies suggest that these diets may reduce the risk of asthma, particularly in young children, and could have positive effects on disease management. In contrast, a Westernized dietary pattern, high in saturated fatty acids, refined grains, and sugars may promote an inflammatory environment resulting in the onset of disease and worsening of asthma outcomes. This review will summarize the state of the evidence for the impact of whole dietary patterns, as well as individual nutrients on the prevalence and management of asthma.
Collapse
Affiliation(s)
- Evan J Williams
- Hunter Medical Research Institute and School of Biomedical Science and Pharmacy, The University of Newcastle, Callaghan, Australia
| | - Bronwyn S Berthon
- Hunter Medical Research Institute and School of Biomedical Science and Pharmacy, The University of Newcastle, Callaghan, Australia
| | - Isobel Stoodley
- Hunter Medical Research Institute and School of Biomedical Science and Pharmacy, The University of Newcastle, Callaghan, Australia
| | - Lily M Williams
- Hunter Medical Research Institute and School of Biomedical Science and Pharmacy, The University of Newcastle, Callaghan, Australia
| | - Lisa G Wood
- Hunter Medical Research Institute and School of Biomedical Science and Pharmacy, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
8
|
Ames BN. Musings in the twilight of my career. Free Radic Biol Med 2022; 178:219-225. [PMID: 34863877 DOI: 10.1016/j.freeradbiomed.2021.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
I present a summary of my research during the last few decades of research which focused on understanding the biochemical basis for maintaining an optimum metabolism to support long-term health. I realized that adequate levels of ∼40 vitamins and minerals needed as cofactors in thousands of metabolic reactions were critical for maintaining a healthy metabolism, and thus for longevity and prevention of chronic disease. Inadequate dietary intake of vitamins and minerals accelerates the risk of aging-associated diseases, leading to insidious damage. The Triage Theory provides a mechanistic rationale for such damage: shortage of a nutrient triggers a built-in rationing mechanism that allocates the scarce nutrient to proteins needed for immediate survival (survival proteins), at the expense of those needed for long-term survival (longevity proteins). Many as-yet-unknown longevity vitamins and proteins likely remain to be discovered. The fiber and nutrient-rich CHORI-bar was developed to fill gaps in inadequate diets; it yielded broadscale metabolic improvements. The health-related damages resulting from vitamin D deficiency and the positive effects of vitamin D supplementation were connected to numerous health-related problems, including the higher level of deficiency in people of color residing at northern latitudes. In general, prevention of degenerative diseases of aging requires expertise in metabolism, nutrition, biochemistry and regulatory functions.
Collapse
Affiliation(s)
- Bruce N Ames
- Emeritus, Department of Molecular and Cell Biology, University of California, Berkeley, USA.
| |
Collapse
|
9
|
Bayless AK, Wyatt TH, Raynor H. Obese-Asthma Phenotype Self-Management: A Literature Review. J Pediatr Nurs 2021; 60:154-163. [PMID: 33989853 DOI: 10.1016/j.pedn.2021.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/24/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
PROBLEM Recent identification of the early-onset obese-asthma phenotype has spurred exploration of ways to promote effective, long-term management behaviors for children with this comorbid presentation. Few studies have examined the needs of children with both asthma and obesity and little is known about optimal management options for this unique population. Therefore, the authors aimed to review, critique, and synthesize existing published research on health-management programs designed for children with comorbid asthma and obesity in order to describe the state of the science and recommend next steps in creating pediatric management programs. ELIGIBILITY CRITERIA Articles selected for a full-text review were pediatric-focused, included children with both asthma and obesity diagnoses, and discussed the implementation and evaluation of a management program or the evaluation of a management behavior. SAMPLE Fifteen articles were selected for review based on the inclusion criteria. RESULTS Studies that included current evidence-based elements had better results than those that did not include such elements. CONCLUSIONS Based on this review, it is recommended that researchers use theory based, multicomponent, multimodal, family-focused, behaviorally-based interventions that address systems-level influences, social determinates of health, and children's developmental needs over time. Additionally, there is a need for studies with sample sizes adequate for power analyses that include the youngest children with asthma and obesity. IMPLICATIONS The need for effective programs for pediatric obese-asthma phenotype management creates the opportunity for nursing-led research and interventions to foster long-term health promotion for affected children and families.
Collapse
Affiliation(s)
- Adaya Kirk Bayless
- University of Tennessee, Knoxville: College of Nursing, TN, United States of America.
| | - Tami H Wyatt
- University of Tennessee, Knoxville: College of Nursing, TN, United States of America.
| | - Hollie Raynor
- University of Tennessee, Knoxville: College of Education, Health, and Human Sciences, United States of America.
| |
Collapse
|
10
|
van Brakel L, Mensink RP, Wesseling G, Plat J. Nutritional Interventions to Improve Asthma-Related Outcomes through Immunomodulation: A Systematic Review. Nutrients 2020; 12:nu12123839. [PMID: 33339167 PMCID: PMC7765612 DOI: 10.3390/nu12123839] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Asthma is a chronic inflammatory disease of the airways, characterized by T-helper (Th) 2 inflammation. Current lifestyle recommendations for asthma patients are to consume a diet high in fruits and vegetables and to maintain a healthy weight. This raises the question of whether other nutritional interventions may also improve asthma-related outcomes and whether these changes occur via immunomodulation. Therefore, we systematically reviewed studies that reported both asthma-related outcomes as well as immunological parameters and searched for relations between these two domains. A systematic search identified 808 studies, of which 28 studies met the inclusion criteria. These studies were divided over six nutritional clusters: herbs, herbal mixtures and extracts (N = 6); supplements (N = 4); weight loss (N = 3); vitamin D3 (N = 5); omega-3 long-chain polyunsaturated fatty acids (LCPUFAs) (N = 5); and whole-food approaches (N = 5). Fifteen studies reported improvements in either asthma-related outcomes or immunological parameters, of which eight studies reported simultaneous improvements in both domains. Two studies reported worsening in either asthma-related outcomes or immunological parameters, of which one study reported a worsening in both domains. Promising interventions used herbs, herbal mixtures or extracts, and omega-3 LCPUFAs, although limited interventions resulted in clinically relevant results. Future studies should focus on further optimizing the beneficial effects of nutritional interventions in asthma patients, e.g., by considering the phenotypes and endotypes of asthma.
Collapse
Affiliation(s)
- Lieve van Brakel
- Department of Nutrition and Movement Sciences, NUTRIM (School of Translational Research in Metabolism), Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Ronald P Mensink
- Department of Nutrition and Movement Sciences, NUTRIM (School of Translational Research in Metabolism), Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Geertjan Wesseling
- Department of Respiratory Medicine, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, NUTRIM (School of Translational Research in Metabolism), Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
11
|
Mietus-Snyder M, Narayanan N, Krauss RM, Laine-Graves K, McCann JC, Shigenaga MK, McHugh TH, Ames BN, Suh JH. Randomized nutrient bar supplementation improves exercise-associated changes in plasma metabolome in adolescents and adult family members at cardiometabolic risk. PLoS One 2020; 15:e0240437. [PMID: 33079935 PMCID: PMC7575082 DOI: 10.1371/journal.pone.0240437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 09/26/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Poor diets contribute to metabolic complications of obesity, insulin resistance and dyslipidemia. Metabolomic biomarkers may serve as early nutrition-sensitive health indicators. This family-based lifestyle change program compared metabolic outcomes in an intervention group (INT) that consumed 2 nutrient bars daily for 2-months and a control group (CONT). METHODS Overweight, predominantly minority and female adolescent (Teen)/parent adult caretaker (PAC) family units were recruited from a pediatric obesity clinic. CONT (8 Teen, 8 PAC) and INT (10 Teen, 10 PAC) groups randomized to nutrient bar supplementation attended weekly classes that included group nutrition counseling and supervised exercise. Pre-post physical and behavioral parameters, fasting traditional biomarkers, plasma sphingolipids and amino acid metabolites were measured. RESULTS In the full cohort, a baseline sphingolipid ceramide principal component composite score correlated with adiponectin, triglycerides, triglyceride-rich very low density lipoproteins, and atherogenic small low density lipoprotein (LDL) sublasses. Inverse associations were seen between a sphingomyelin composite score and C-reactive protein, a dihydroceramide composite score and diastolic blood pressure, and the final principal component that included glutathionone with fasting insulin and the homeostatic model of insulin resistance. In CONT, plasma ceramides, sphinganine, sphingosine and amino acid metabolites increased, presumably due to increased physical activity. Nutrient bar supplementation (INT) blunted this rise and significantly decreased ureagenic, aromatic and gluconeogenic amino acid metabolites. Metabolomic changes were positively correlated with improvements in clinical biomarkers of dyslipidemia. CONCLUSION Nutrient bar supplementation with increased physical activity in obese Teens and PAC elicits favorable metabolomic changes that correlate with improved dyslipidemia. The trial from which the analyses reported upon herein was part of a series of nutrient bar clinical trials registered at clinicaltrials.gov as NCT02239198.
Collapse
Affiliation(s)
- Michele Mietus-Snyder
- Division of Cardiology, Department of Pediatrics, Children’s National Hospital, George Washington University School of Medicine and Health Sciences, Washington DC, United States of America
| | - Nisha Narayanan
- Weill Cornell Medical College, Cornell University, New York, New York, United States of America
| | - Ronald M. Krauss
- University of California Benioff Children’s Hospital San Francisco, San Francisco, California, United States of America
- Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Kirsten Laine-Graves
- University of California Benioff Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Joyce C. McCann
- University of California Benioff Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Mark K. Shigenaga
- University of California Benioff Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Tara H. McHugh
- United States Department of Agriculture, Western Regional Research Center, Albany, California, United States of America
| | - Bruce N. Ames
- University of California Benioff Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| | - Jung H. Suh
- University of California Benioff Children’s Hospital Oakland Research Institute, Oakland, California, United States of America
| |
Collapse
|
12
|
Williams LM, Scott HA, Wood LG. Soluble fibre as a treatment for inflammation in asthma. JOURNAL OF NUTRITION & INTERMEDIARY METABOLISM 2019. [DOI: 10.1016/j.jnim.2019.100108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|