1
|
Liang YX, Sun XY, Xu DZ, Gao YN, Tang Q, Lu ZL, Liu Y. Codelivery of CPT and siPHB1 with GSH/ROS Dual-Responsive Hybrid Nanoparticles Based on a [12]aneN 3-Derived Lipid for Synergistic Lung Cancer Therapy. ACS APPLIED BIO MATERIALS 2024; 7:3202-3214. [PMID: 38651918 DOI: 10.1021/acsabm.4c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The combination of small-interfering RNA (siRNA)-mediated gene silencing and chemotherapeutic agents for lung cancer treatment has attracted widespread attention in terms of a greater therapeutic effect, minimization of systemic toxicity, and inhibition of multiple drug resistance (MDR). In this work, three amphiphiles, CBN1-CBN3, were first designed and synthesized as a camptothecin (CPT) conjugate and gene condensation agents by the combination of CPT prodrugs and di(triazole-[12]aneN3) through the ROS-responsive phenylborate ester and different lengths of alkyl chains (with 6, 9, 12 carbon chains for CBN1-CBN3, respectively). CBN1-CBN3 were able to be self-assembled into liposomes with an average diameter in the range of 320-240 nm, showing the ability to effectively condense siRNA. Among them, CBN2, with a nine-carbon alkyl chain, displayed the best anticancer efficiency in A549 cells. In order to give nanomedicines a stealth property and PEGylation/dePEGylation transition, a GSH-responsive PEGylated TPE derivative containing a disulfide linkage (TSP) was further designed and prepared. A combination of CBN2/siRNA complexes and DOPE with TSP resulted in GSH/ROS dual-responsive lipid-polymer hybrid nanoparticles (CBN2-DP/siRNA NPs). In present GSH and H2O2, CBN2-DP/siRNA NPs were decomposed, resulting in the controlled release of CPT drug and siRNA. In vitro, CBN2-DP/siPHB1 NPs showed the best anticancer activity for suppression of about 75% of A549 cell proliferation in a serum medium. The stability of CBN2-DP/siRNA NPs was significantly prolonged in blood circulation, and they showed effective accumulation in the A549 tumor site through an enhanced permeability and retention (EPR) effect. In vivo, CBN2-DP/siPHB1 NPs demonstrated enhanced synergistic cancer therapy efficacy and tumor inhibition as high as 71.2%. This work provided a strategy for preparing lipid-polymer hybrid NPs with GSH/ROS dual-responsive properties and an intriguing method for lung cancer therapy.
Collapse
Affiliation(s)
- Ya-Xuan Liang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xue-Yi Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Zhong Xu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi-Nan Gao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Quan Tang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yang Liu
- China National Institute for Food and Drug Control, Institute of Chemical Drug Control, HuaTuo Road 29, Beijing 100050, China
| |
Collapse
|
2
|
Vlashi R, Zhang X, Li H, Chen G. Potential therapeutic strategies for osteoarthritis via CRISPR/Cas9 mediated gene editing. Rev Endocr Metab Disord 2024; 25:339-367. [PMID: 38055160 DOI: 10.1007/s11154-023-09860-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 12/07/2023]
Abstract
Osteoarthritis (OA) is an incapacitating and one of the most common physically degenerative conditions with an assorted etiology and a highly complicated molecular mechanism that to date lacks an efficient treatment. The capacity to design biological networks and accurately modify existing genomic sites holds an apt potential for applications across medical and biotechnological sciences. One of these highly specific genomes editing technologies is the CRISPR/Cas9 mechanism, referred to as the clustered regularly interspaced short palindromic repeats, which is a defense mechanism constituted by CRISPR associated protein 9 (Cas9) directed by small non-coding RNAs (sncRNA) that bind to target DNA through Watson-Crick base pairing rules where subsequent repair of the target DNA is initiated. Up-to-date research has established the effectiveness of the CRISPR/Cas9 mechanism in targeting the genetic and epigenetic alterations in OA by suppressing or deleting gene expressions and eventually distributing distinctive anti-arthritic properties in both in vitro and in vivo osteoarthritic models. This review aims to epitomize the role of this high-throughput and multiplexed gene editing method as an analogous therapeutic strategy that could greatly facilitate the clinical development of OA-related treatments since it's reportedly an easy, minimally invasive technique, and a comparatively less painful method for osteoarthritic patients.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China.
- Ningbo Key Laboratory for the Prevention and Treatment of Embryogenic Diseases, Ningbo Women and Children's Hospital, Ningbo, China.
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
3
|
Borrás T, Stepankoff M, Danias J. Genes as drugs for glaucoma: latest advances. Curr Opin Ophthalmol 2024; 35:131-137. [PMID: 38117663 DOI: 10.1097/icu.0000000000001025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
PURPOSE OF REVIEW To provide the latest advances on the future use of gene therapy for the treatment of glaucoma. RECENT FINDINGS In preclinical studies, a number of genes have been shown to be able to reduce elevated intraocular pressure (IOP), and to exert neuroprotection of the retinal ganglion cells. These genes target various mechanisms of action and include among others: MMP3 , PLAT, IκB, GLIS, SIRT, Tie-2, AQP1. Some of these as well as some previously identified genes ( MMP3, PLAT, BDNF, C3, TGFβ, MYOC, ANGPTL7 ) are starting to move onto drug development. At the same time, progress has been made in the methods to deliver and control gene therapeutics (advances in these areas are not covered in this review). SUMMARY While preclinical efforts continue in several laboratories, an increasing number of start-up and large pharmaceutical companies are working on developing gene therapeutics for glaucoma ( Sylentis, Quetera/Astellas, Exhaura, Ikarovec, Genentech, Regeneron, Isarna, Diorasis Therapeutics ). Despite the presence of generic medications to treat glaucoma, given the size of the potential world-wide market (∼$7B), it is likely that the number of companies developing glaucoma gene therapies will increase further in the near future.
Collapse
Affiliation(s)
- Teresa Borrás
- University of North Carolina at Chapel Hill, North Carolina
| | | | - John Danias
- Downstate Health Science University, SUNY, New York, USA
| |
Collapse
|
4
|
Upreti A, Mukherjee S. Therapeutic Potential of CRISPR/Cas in Hashimoto's Thyroiditis: A Comprehensive Review. Curr Gene Ther 2024; 24:179-192. [PMID: 38310457 DOI: 10.2174/0115665232266508231210154930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/26/2023] [Accepted: 11/09/2023] [Indexed: 02/05/2024]
Abstract
Hashimoto's thyroiditis (HT) is a commonly occurring illness of autoimmune endocrine origin. It is usually present in the pediatric age group along with other well-known diseases, such as type 1 insulin-dependent diabetes. The defining feature of this disease is the immune-- mediated attack on the thyroid gland resulting in the destruction of thyroid tissues and cells. Given that HT frequently affects family members, it is well-recognized that individuals are genetically predisposed to this disease. Patients with HT also display a significantly increased risk for several different cancers, justifying the eminent need for the development of therapies for managing and treating HT. Gene editing has made several advancements in the field of molecular biology and has turned out to become a promising approach to correct several autoimmune diseases. Currently, CRISPR/Cas, a nuclease-based editing technique, is publicized as a promising tool for curing several genetic diseases and cancers. However, very limited research has been conducted as of now on autoimmune disease management and cure via CRISPR/Cas technique. This review provides an account of the potential candidate genes associated with Hashimoto's thyroiditis, and only a few animal and human models have been generated via the CRISPR/Cas gene editing technique. Mouse models of autoimmune thyroiditis generated through the CRISPR/Cas gene editing technique by targeting the candidate genes will provide us with a deeper insight into the pathophysiology of HT and further pave the way for the immunomodulation of HT via gene editing.
Collapse
Affiliation(s)
- Apoorva Upreti
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| | - Sayali Mukherjee
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
5
|
Butala-Flores E, Nguyen T, Selvan N, Armstrong L, Miller M, Kamen L, Lester T, Wernyj R, Khanna R, McNally J, Hays A. Validation of Anti-Adeno Associated Virus Serotype rh10 (AAVrh.10) Total and Neutralizing Antibody Immunogenicity Assays. Pharm Res 2023; 40:2383-2397. [PMID: 37880551 PMCID: PMC10661749 DOI: 10.1007/s11095-023-03625-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Immunogenicity assessment of Adeno-Associated Virus (AAV) vectors is a critical part of gene therapy drug development. Whether the assays are used for inclusion/exclusion criteria or to monitor the safety and efficacy of the gene therapy, they are critical bioanalytical assessments. While total anti-AAV assays are perceived as easier to develop and implement than neutralizing anti-AAV assays, the gene therapy field is still nascent, and it is not yet clear which of the assays should be implemented at what stage of drug development. Recently AAVrh.10 has gained interest for use in gene therapies targeting cardiac, neurological, and other diseases due to its enhanced transduction efficiency. There is limited information on anti-AAVrh.10 antibodies and their clinical impact; thus, the information presented herein documents the validation of both a total antibody assay (TAb) and a neutralizing antibody (NAb) assay for anti-AAVrh.10 antibodies. In this manuscript, the validation was performed in accordance with the 2019 FDA immunogenicity guidance with additional evaluations to comply with CLIA where applicable. The AAVrh.10 TAb and NAb assays were compared in terms of sensitivity, drug tolerance, and precision, along with a concordance analysis using the same individual serum samples. This comparison gave insight into the utility of each format as a screening assay for inclusion into clinical studies.
Collapse
|
6
|
Santoscoy MC, Espinoza P, De La Cruz D, Mahamdeh M, Starr JR, Patel N, Maguire CA. An AAV capsid increases transduction of striatum and a ChAT promoter allows selective cholinergic neuron transduction. Mol Ther Methods Clin Dev 2023; 29:532-540. [PMID: 37359416 PMCID: PMC10285237 DOI: 10.1016/j.omtm.2023.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 06/28/2023]
Abstract
Adeno-associated virus (AAV) vectors are currently the most efficient option for intracranial gene therapies to treat neurodegenerative disease. Increased efficacy and safety will depend upon robust and specific expression of therapeutic genes into target cell-types within the human brain. In this study, we set out with two objectives: (1) to identify capsids with broader transduction of the striatum upon intracranial injection in mice and (2) to test a truncated human choline acetyltransferase (ChAT) promoter that would allow efficient and selective transduction of cholinergic neurons. We compared AAV9 and an engineered capsid, AAV-S, to mediate widespread reporter gene expression throughout the striatum. We observed that AAV-S transduced a significantly greater area of the injected hemisphere primarily in the rostral direction compared with AAV9 (CAG promoter). We tested AAV9 vectors packaging a reporter gene expression cassette driven by either the ChAT or CAG promoter. Specificity of transgene expression of ChAT neurons over other cells was 7-fold higher, and efficiency was 3-fold higher for the ChAT promoter compared with the CAG promoter. The AAV-ChAT transgene expression cassette should be a useful tool for the study of cholinergic neurons in mice, and the broader transduction area of AAV-S warrants further evaluation of this capsid.
Collapse
Affiliation(s)
- Miguel C. Santoscoy
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Paula Espinoza
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Demitri De La Cruz
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mohammed Mahamdeh
- Harvard Medical School, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jacqueline R. Starr
- Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Nikita Patel
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| | - Casey A. Maguire
- Harvard Medical School, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
7
|
Li X, Shen L, Deng Z, Huang Z. New treatment for osteoarthr: pbad014itis: Gene therapy. PRECISION CLINICAL MEDICINE 2023; 6:pbad014. [PMID: 37333626 PMCID: PMC10273835 DOI: 10.1093/pcmedi/pbad014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/24/2023] [Indexed: 06/20/2023] Open
Abstract
Osteoarthritis is a complex degenerative disease that affects the entire joint tissue. Currently, non-surgical treatments for osteoarthritis focus on relieving pain. While end-stage osteoarthritis can be treated with arthroplasty, the health and financial costs associated with surgery have forced the search for alternative non-surgical treatments to delay the progression of osteoarthritis and promote cartilage repair. Unlike traditional treatment, the gene therapy approach allows for long-lasting expression of therapeutic proteins at specific sites. In this review, we summarize the history of gene therapy in osteoarthritis, outlining the common expression vectors (non-viral, viral), the genes delivered (transcription factors, growth factors, inflammation-associated cytokines, non-coding RNAs) and the mode of gene delivery (direct delivery, indirect delivery). We highlight the application and development prospects of the gene editing technology CRISPR/Cas9 in osteoarthritis. Finally, we identify the current problems and possible solutions in the clinical translation of gene therapy for osteoarthritis.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Leyao Shen
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | | | |
Collapse
|
8
|
Delivery Systems for Mitochondrial Gene Therapy: A Review. Pharmaceutics 2023; 15:pharmaceutics15020572. [PMID: 36839894 PMCID: PMC9964608 DOI: 10.3390/pharmaceutics15020572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
Mitochondria are membrane-bound cellular organelles of high relevance responsible for the chemical energy production used in most of the biochemical reactions of cells. Mitochondria have their own genome, the mitochondrial DNA (mtDNA). Inherited solely from the mother, this genome is quite susceptible to mutations, mainly due to the absence of an effective repair system. Mutations in mtDNA are associated with endocrine, metabolic, neurodegenerative diseases, and even cancer. Currently, therapeutic approaches are based on the administration of a set of drugs to alleviate the symptoms of patients suffering from mitochondrial pathologies. Mitochondrial gene therapy emerges as a promising strategy as it deeply focuses on the cause of mitochondrial disorder. The development of suitable mtDNA-based delivery systems to target and transfect mammalian mitochondria represents an exciting field of research, leading to progress in the challenging task of restoring mitochondria's normal function. This review gathers relevant knowledge on the composition, targeting performance, or release profile of such nanosystems, offering researchers valuable conceptual approaches to follow in their quest for the most suitable vectors to turn mitochondrial gene therapy clinically feasible. Future studies should consider the optimization of mitochondrial genes' encapsulation, targeting ability, and transfection to mitochondria. Expectedly, this effort will bring bright results, contributing to important hallmarks in mitochondrial gene therapy.
Collapse
|
9
|
ElKhatib MAW, Isse FA, El-Kadi AOS. Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metab Rev 2022; 55:50-74. [PMID: 36573379 DOI: 10.1080/03602532.2022.2162075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.
Collapse
Affiliation(s)
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
10
|
Chern KJ, Nettesheim ER, Reid CA, Li NW, Marcoe GJ, Lipinski DM. Prostaglandin-based rAAV-mediated glaucoma gene therapy in Brown Norway rats. Commun Biol 2022; 5:1169. [PMID: 36329259 PMCID: PMC9633612 DOI: 10.1038/s42003-022-04134-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin analogs are first-line treatments for open angle glaucoma and while effective at lowering intraocular pressure, they are undermined by patient non-compliance, causing atrophy of the optic nerve and severe visual impairment. Herein, we evaluate the safety and efficacy of a recombinant adeno-associated viral vector-mediated gene therapy aimed at permanently lowering intraocular pressure through de novo biosynthesis of prostaglandin F2α within the anterior chamber. This study demonstrated a dose dependent reduction in intraocular pressure in normotensive Brown Norway rats maintained over 12-months. Crucially, therapy could be temporarily halted through off-type riboswitch activation, reverting intraocular pressure to normal. Longitudinal multimodal imaging, electrophysiology, and post-mortem histology revealed the therapy was well tolerated at low and medium doses, with no major adverse effects to anterior chamber health, offering a promising alternative to current treatment strategies leading to clinically relevant reductions in intraocular pressure without the need for adherence to a daily treatment regimen.
Collapse
Affiliation(s)
- Kristina J Chern
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emily R Nettesheim
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Christopher A Reid
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nathan W Li
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gavin J Marcoe
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel M Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
11
|
Ross M, Obolensky A, Averbukh E, Desrosiers M, Ezra-Elia R, Honig H, Yamin E, Rosov A, Dvir H, Gootwine E, Banin E, Dalkara D, Ofri R. Outer retinal transduction by AAV2-7m8 following intravitreal injection in a sheep model of CNGA3 achromatopsia. Gene Ther 2022; 29:624-635. [PMID: 34853444 DOI: 10.1038/s41434-021-00306-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 01/09/2023]
Abstract
Sheep carrying a mutated CNGA3 gene exhibit diminished cone function and provide a naturally occurring large animal model of achromatopsia. Subretinal injection of a vector carrying the CNGA3 transgene resulted in long-term recovery of cone function and photopic vision in these sheep. Research is underway to develop efficacious vectors that would enable safer transgene delivery, while avoiding potential drawbacks of subretinal injections. The current study evaluated two modified vectors, adeno-associated virus 2-7m8 (AAV2-7m8) and AAV9-7m8. Intravitreal injection of AAV2-7m8 carrying enhanced green fluorescent protein under a cone-specific promoter resulted in moderate photoreceptor transduction in wild-type sheep, whereas peripheral subretinal delivery of AAV9-7m8 resulted in the radial spread of the vector beyond the point of deposition. Intravitreal injection of AAV2-7m8 carrying human CNGA3 in mutant sheep resulted in mild photoreceptor transduction, but did not lead to the clinical rescue of photopic vision, while day-blind sheep treated with a subretinal injection exhibited functional recovery of photopic vision. Transgene messenger RNA levels in retinas of intravitreally treated eyes amounted to 4-23% of the endogenous CNGA3 levels, indicating that expression levels >23% are needed to achieve clinical rescue. Overall, our results indicate intravitreal injections of AAV2.7m8 transduce ovine photoreceptors, but not with sufficient efficacy to achieve clinical rescue in CNGA3 mutant sheep.
Collapse
Affiliation(s)
- M Ross
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - A Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - E Averbukh
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - M Desrosiers
- Department of Therapeutics, Institut de la Vision, Paris, France
| | - R Ezra-Elia
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel
| | - H Honig
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Yamin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - A Rosov
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - H Dvir
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Gootwine
- Department of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - E Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - D Dalkara
- Department of Therapeutics, Institut de la Vision, Paris, France
| | - R Ofri
- Koret School of Veterinary Medicine, Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
12
|
Engineering off-the-shelf universal CAR T cells: A silver lining in the cloud. Cytokine 2022; 156:155920. [DOI: 10.1016/j.cyto.2022.155920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
|
13
|
Blocking phospholamban with VHH intrabodies enhances contractility and relaxation in heart failure. Nat Commun 2022; 13:3018. [PMID: 35641497 PMCID: PMC9156741 DOI: 10.1038/s41467-022-29703-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 03/28/2022] [Indexed: 12/19/2022] Open
Abstract
The dysregulated physical interaction between two intracellular membrane proteins, the sarco/endoplasmic reticulum Ca2+ ATPase and its reversible inhibitor phospholamban, induces heart failure by inhibiting calcium cycling. While phospholamban is a bona-fide therapeutic target, approaches to selectively inhibit this protein remain elusive. Here, we report the in vivo application of intracellular acting antibodies (intrabodies), derived from the variable domain of camelid heavy-chain antibodies, to modulate the function of phospholamban. Using a synthetic VHH phage-display library, we identify intrabodies with high affinity and specificity for different conformational states of phospholamban. Rapid phenotypic screening, via modified mRNA transfection of primary cells and tissue, efficiently identifies the intrabody with most desirable features. Adeno-associated virus mediated delivery of this intrabody results in improvement of cardiac performance in a murine heart failure model. Our strategy for generating intrabodies to investigate cardiac disease combined with modified mRNA and adeno-associated virus screening could reveal unique future therapeutic opportunities. Here the authors use modified RNA and VHH libraries to generate intrabodies that target dysregulated interactions between two calcium handling proteins in failing cardiomyocytes. Heart specific expression of the intrabodies in a murine heart failure model results in improved cardiac function.
Collapse
|
14
|
Hickox AE, Valero MD, McLaughlin JT, Robinson GS, Wellman JA, McKenna MJ, Sewell WF, Simons EJ. Genetic Medicine for Hearing Loss: OTOF as Exemplar. J Am Acad Audiol 2022; 32:646-653. [PMID: 35609591 DOI: 10.1055/s-0041-1730410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Millions of people worldwide have disabling hearing loss because one of their genes generates an incorrect version of some specific protein the ear requires for hearing. In many of these cases, delivering the correct version of the gene to a specific target cell within the inner ear has the potential to restore cochlear function to enable high-acuity physiologic hearing. Purpose: In this review, we outline our strategy for the development of genetic medicines with the potential to treat hearing loss. We will use the example of otoferlin gene (OTOF)-mediated hearing loss, a sensorineural hearing loss due to autosomal recessive mutations of the OTOF gene.
Collapse
Affiliation(s)
| | | | | | | | | | | | - William F Sewell
- Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
15
|
Singh V, Khan N, Jayandharan GR. Vector engineering, strategies and targets in cancer gene therapy. Cancer Gene Ther 2022; 29:402-417. [PMID: 33859378 DOI: 10.1038/s41417-021-00331-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 02/23/2021] [Accepted: 03/24/2021] [Indexed: 02/02/2023]
Abstract
Understanding the molecular basis of disease and the design of rationally designed molecular therapies has been the holy grail in the management of human cancers. Gene-based therapies are an important avenue for achieving a possible cure. Focused research in the last three decades has provided significant clues to optimize the potential of cancer gene therapy. The development of gene therapies with a high potential to kill the target cells at the lowest effective dose possible, the development of vectors with significant ability to target cancer-associated antigen, the application of adjunct therapies to target dysregulated microRNA, and embracing a hybrid strategy with a combination of gene therapy and low-dose chemotherapy in a disease-specific manner will be pivotal. This article outlines the advances and challenges in the field with emphasis on the biology and scope of vectors used for gene transfer, newer targets identified, and their outcome in preclinical and clinical studies.
Collapse
Affiliation(s)
- Vijayata Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India
| | - Nusrat Khan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, UP, India. .,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, UP, India.
| |
Collapse
|
16
|
Glatz M, Riedl R, Glatz W, Schneider M, Wedrich A, Bolz M, Strauss RW. Blindness and visual impairment in Central Europe. PLoS One 2022; 17:e0261897. [PMID: 35025896 PMCID: PMC8758103 DOI: 10.1371/journal.pone.0261897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose To assess the prevalence and causes of visual impairment and blindness in a Central European country. The findings may have implications for the planning of further research and development of therapies in order to prevent blindness. Setting Department of Ophthalmology, Medical University of Graz, Austria. Design Retrospective, epidemiological study. Methods The database of the Main Confederation of Austrian Social Insurances was searched for patients with visual impairment, legal blindness or deaf-blindness. This database gathers data from patients of all insurance providers in the country who receive care due to visual impairment and blindness. To determine the prevalence of these conditions, the number of all entries recorded in February 2019 was evaluated. Additionally, all new entries between (January 1st,) 2017, and (December 31st,) 2018, were analysed for distinct characteristics, such as sex, the cause of blindness/visual impairment, and age. Since health care allowances can provide a considerable source of income (459.90€-936.90€ per month), good coverage of practically all patients who are blind and visually impaired in the country can be assumed. Results On February 2nd, 2019, 17,730 patients with visual impairments, blindness or deaf-blindness were registered in Austria, resulting in a prevalence of these diagnoses of 0.2% in the country. During the observational period from 2017 to 2018, 4040 persons met the inclusion criteria. Of these, 2877 were female (65.3%), and 1527 were male (34.7%). The mean age was 75.7 ± 18.0 years (median 82). Most patients (n = 3675, 83.4%) were of retirement age, while 729 (16.6%) were working-age adults or minors. In total, an incidence of 25.0 (95% confidence limit (CL) 24.3–25.8) per 100,000 person-years was observed from 2017 to 2018. A higher incidence was observed for females (32.2, 95% CL 31.0–33.3) than for males (17.7, 95% CL 16.8–18.5). Incidences where higher for males in lower age groups (e.g. 10–14 years: rate ratio RR = 2.7, 95% CL 1.1–6.8), and higher for females in higher age groups (e.g. 70–74 years: RR = 0.6, 95% CL 0.5–0.8). In total, the most frequent diagnoses were macular degeneration (1075 persons, 24.4%), other retinal disorders (493 persons, 11.2%) and inherited retinal and choroidal diseases (IRDs) (186 persons, 4.2%). Persons with IRDs were significantly younger compared to persons with macular degeneration or retinal disorders (IRDs: median 57, range 2–96 vs 83, 5–98 and 82, 1–98 years, p<0.001). For persons of retirement age, macular degeneration, other retinal disorders and glaucoma were the three most frequent diagnoses. In contrast, among working-aged adults and children, IRDs were the leading cause of visual impairment and blindness (103 persons, 14.1%). Conclusion These data show that IRDs are the leading cause of blindness and visual impairment in working-aged persons and children in Austria. Thus, these findings suggest to draw attention to enhance further research in the fields of emerging therapies for IRDs.
Collapse
Affiliation(s)
- Marlene Glatz
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Regina Riedl
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Wilfried Glatz
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Mona Schneider
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Andreas Wedrich
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
| | - Matthias Bolz
- Department of Ophthalmology, Kepler University Clinic of Linz, Linz, Austria
| | - Rupert W. Strauss
- Department of Ophthalmology, Medical University of Graz, Graz, Austria
- Department of Ophthalmology, Kepler University Clinic of Linz, Linz, Austria
- Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
- Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Głów D, Maire CL, Schwarze LI, Lamszus K, Fehse B. CRISPR-to-Kill (C2K)-Employing the Bacterial Immune System to Kill Cancer Cells. Cancers (Basel) 2021; 13:cancers13246306. [PMID: 34944926 PMCID: PMC8699370 DOI: 10.3390/cancers13246306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Reasoning that multiple DNA breaks will trigger programmed cell death, we generated lentiviral CRISPR-to-kill (C2K) vectors targeting highly repetitive SINE sequences for cancer gene therapy. In proof-of-concept experiments, C2K-Alu-vectors selectively killed human, but not murine cell lines, and efficiently inhibited the growth of patient-derived glioblastoma cell lines resistant to high-dose irradiation. In combination with tumor-targeting approaches, the C2K system might represent a promising tool for cancer gene therapy. Abstract CRISPR/Cas9 was described as a bacterial immune system that uses targeted introduction of DNA double-strand breaks (DSBs) to destroy invaders. We hypothesized that we can analogously employ CRISPR/Cas9 nucleases to kill cancer cells by inducing maximal numbers of DSBs in their genome and thus triggering programmed cell death. To do so, we generated CRISPR-to-kill (C2K) lentiviral particles targeting highly repetitive Short Interspersed Nuclear Element-Alu sequences. Our Alu-specific sgRNA has more than 15,000 perfectly matched target sites within the human genome. C2K-Alu-vectors selectively killed human, but not murine cell lines. More importantly, they efficiently inhibited the growth of cancer cells including patient-derived glioblastoma cell lines resistant to high-dose irradiation. Our data provide proof-of-concept for the potential of C2K as a novel treatment strategy overcoming common resistance mechanisms. In combination with tumor-targeting approaches, the C2K system might therefore represent a promising tool for cancer gene therapy.
Collapse
Affiliation(s)
- Dawid Głów
- Research Department, Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.G.); (L.I.S.)
| | - Cecile L. Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (C.L.M.); (K.L.)
| | - Lea Isabell Schwarze
- Research Department, Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.G.); (L.I.S.)
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (C.L.M.); (K.L.)
| | - Boris Fehse
- Research Department, Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.G.); (L.I.S.)
- Correspondence: ; Tel.: +49-40-7410-55518; Fax: +49-40-7410-55468
| |
Collapse
|
18
|
ATF6-mediated unfolded protein response facilitates AAV2 transduction by releasing the suppression of AAV receptor on ER stress. J Virol 2021; 96:e0110321. [PMID: 34851146 DOI: 10.1128/jvi.01103-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adeno-associated virus (AAV) is extensively used as a viral vector to deliver therapeutic genes during human gene therapy. A high affinity cellular receptor (AAVR) for most serotypes was recently identified, however, its biological function as a gene product remains unclear. In this study, we used AAVR knockdown cell models to show that AAVR depletion significantly attenuated cells to activate unfolded protein response (UPR) pathways, when exposed to the endoplasmic reticulum (ER) stress inducer, tunicamycin. By analyzing three major UPR pathways, we found that ATF6 signaling was most affected in an AAVR-dependent fashion, distinct to CHOP and XBP1 branches. AAVR capacity in UPR regulation required the full native AAVR protein, and AAV2 capsid binding to the receptor altered ATF6 dynamics. Conversely, the transduction efficiency of AAV2 was associated with changes in ATF6 signaling in host cells following treatment with different small molecules. Thus, AAVR served as an inhibitory molecule to repress UPR responses via a specificity for ATF6 signaling, and the AAV2 infection route involved the release from AAVR-mediated ATF6 repression, thereby facilitating viral intracellular trafficking and transduction. Importance The native function of the AAVR as an ER-Golgi localized protein is largely unknown. We showed that AAVR acted as a functional molecule to regulate UPR signaling under induced ER stress. AAVR inhibited the activation of the transcription factor, ATF6, whereas receptor binding to AAV2 released the suppression effects. This finding has expanded our understanding of AAV infection biology in terms of the physiological properties of AAVR in host cells. Importantly, our research provides a possible strategy which may improve the efficiency of AAV mediated gene delivery during gene therapy.
Collapse
|
19
|
Parés M, Fornaguera C, Vila-Julià F, Oh S, Fan SHY, Tam YK, Comes N, Vidal F, Martí R, Borrós S, Barquinero J. Preclinical Assessment of a Gene-Editing Approach in a Mouse Model of Mitochondrial Neurogastrointestinal Encephalomyopathy. Hum Gene Ther 2021; 32:1210-1223. [PMID: 34498979 DOI: 10.1089/hum.2021.152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a rare disease caused by recessive mutations in the TYMP gene, which encodes the enzyme thymidine phosphorylase (TP). In this study, the efficient integration of a TYMP transgene into introns of the Tymp and Alb loci of hepatocytes in a murine model of MNGIE was achieved by the coordinated delivery and activity of CRISPR/Cas9 and a TYMP cDNA. CRISPR/Cas9 was delivered either as mRNA using lipid nanoparticle (LNP) or polymeric nanoparticle, respectively, or in an AAV2/8 viral vector; the latter was also used to package the TYMP cDNA. Insertion of the cDNA template downstream of the Tymp and Alb promoters ensured transgene expression. The best in vivo results were obtained using LNP carrying the CRISPR/Cas9 mRNAs. Treated mice showed a consistent long-term (1 year) reduction in plasma nucleoside (thymidine and deoxyuridine) levels that correlated with the presence of TYMP mRNA and functional enzyme in liver cells. In mice with an edited Alb locus, the transgene produced a hybrid Alb-hTP protein that was secreted, with supraphysiological levels of TP activity detected in the plasma. Equivalent results were obtained in mice edited at the Tymp locus. Finally, some degree of gene editing was found in animals treated only with AAV vectors containing the DNA templates, in the absence of nucleases, although there was no impact on plasma nucleoside levels. Overall, these results demonstrate the feasibility of liver-directed genome editing in the long-term correction of MNGIE, with several advantages over other methods.
Collapse
Affiliation(s)
- Marta Parés
- Gene and Cell Therapy, Institut de Recerca Hospital Universitari Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Cristina Fornaguera
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Ramon Llull University (URL), Barcelona, Spain
| | - Ferran Vila-Julià
- Research Group on Neuromuscular and Mitochondrial Diseases, Institut de Recerca Hospital Universitari Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Sejin Oh
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Ramon Llull University (URL), Barcelona, Spain
| | - Steven H Y Fan
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, British Columbia, Canada
| | | | - Francisco Vidal
- Blood and Tissue Bank, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ramon Martí
- Research Group on Neuromuscular and Mitochondrial Diseases, Institut de Recerca Hospital Universitari Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), and Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Salvador Borrós
- Grup d'Enginyeria de Materials (GEMAT), Institut Químic de Sarrià (IQS), Ramon Llull University (URL), Barcelona, Spain
| | - Jordi Barquinero
- Gene and Cell Therapy, Institut de Recerca Hospital Universitari Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
20
|
Ross M, Ofri R. The future of retinal gene therapy: evolving from subretinal to intravitreal vector delivery. Neural Regen Res 2021; 16:1751-1759. [PMID: 33510064 PMCID: PMC8328774 DOI: 10.4103/1673-5374.306063] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/26/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Inherited retinal degenerations are a leading and untreatbale cause of blindness, and as such they are targets for gene therapy. Numerous gene therapy treatments have progressed from laboratory research to clinical trails, and a pioneering gene therapy received the first ever FDA approval for treating patients. However, currently retinal gene therapy mostly involves subretinal injection of the therapeutic agent, which treats a limited area, entails retinal detachment and other potential complications, and requires general anesthesia with consequent risks, costs and prolonged recovery. Therefore there is great impetus to develop safer, less invasive and cheapter methods of gene delivery. A promising method is intravitreal injection, that does not cause retinal detachment, can lead to pan-retinal transduction and can be performed under local anesthesia in out-patient clinics. Intravitreally-injected vectors face several obstacles. First, the vector is diluted by the vitreous and has to overcome a long diffusion distance to the target cells. Second, the vector is exposed to the host's immune response, risking neutralization by pre-existing antibodies and triggering a stronger immune response to the injection. Third, the vector has to cross the inner limiting membrane which is both a physical and a biological barrier as it contains binding sites that could cause the vector's sequestration. Finally, in the target cell the vector is prone to proteasome degradation before delivering the transgene to the nucleus. Strategies to overcome these obstacles include modifications of the viral capsid, through rational design or directed evolution, which allow resistance to the immune system, enhancement of penetration through the inner limiting membrane or reduced degradation by intracellular proteasomes. Furthermore, physical and chemical manipulations of the inner limiting membrane and vitreous aim to improve vector penetration. Finally, compact non-viral vectors that can overcome the immunological, physical and anatomical and barriers have been developed. This paper reviews ongoing efforts to develop novel, safe and efficacious methods for intravitreal delivery of therapeutic genes for inherited retinal degenerations. To date, the most promising results are achieved in rodents with robust, pan-retinal transduction following intravitreal delivery. Trials in larger animal models demonstrate transduction mostly of inner retinal layers. Despite ongoing efforts, currently no intravitreally-injected vector has demonstrated outer retinal transduction efficacy comparable to that of subretinal delivery. Further work is warranted to test promising new viral and non-viral vectors on large animal models of inherited retinal degenerations. Positive results will pave the way to development of the next generation of treatments for inherited retinal degeneration.
Collapse
Affiliation(s)
- Maya Ross
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ron Ofri
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
21
|
Griciuc A, Federico AN, Natasan J, Forte AM, McGinty D, Nguyen H, Volak A, LeRoy S, Gandhi S, Lerner EP, Hudry E, Tanzi RE, Maguire CA. Gene therapy for Alzheimer's disease targeting CD33 reduces amyloid beta accumulation and neuroinflammation. Hum Mol Genet 2021; 29:2920-2935. [PMID: 32803224 DOI: 10.1093/hmg/ddaa179] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/03/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023] Open
Abstract
Neuroinflammation is a key contributor to the pathology of Alzheimer's disease (AD). CD33 (Siglec-3) is a transmembrane sialic acid-binding receptor on the surface of microglial cells. CD33 is upregulated on microglial cells from post-mortem AD patient brains, and high levels of CD33 inhibit uptake and clearance of amyloid beta (Aβ) in microglial cell cultures. Furthermore, knockout of CD33 reduces amyloid plaque burden in mouse models of AD. Here, we tested whether a gene therapy strategy to reduce CD33 on microglia in AD could decrease Aβ plaque load. Intracerebroventricular injection of an adeno-associated virus (AAV) vector-based system encoding an artificial microRNA targeting CD33 (miRCD33) into APP/PS1 mice reduced CD33 mRNA and TBS-soluble Aβ40 and Aβ42 levels in brain extracts. Treatment of APP/PS1 mice with miRCD33 vector at an early age (2 months) was more effective at reducing Aβ plaque burden than intervening at later times (8 months). Furthermore, early intervention downregulated several microglial receptor transcripts (e.g. CD11c, CD47 and CD36) and pro-inflammatory activation genes (e.g. Tlr4 and Il1b). Marked reductions in the chemokine Ccl2 and the pro-inflammatory cytokine Tnfα were observed at the protein level in the brain of APP/PS1 mice treated with miRCD33 vector. Overall, our data indicate that CD33 is a viable target for AAV-based knockdown strategies to reduce AD pathology. One Sentence Summary: A gene therapy approach for Alzheimer's disease using adeno-associated virus vector-based knockdown of CD33 reduced amyloid beta accumulation and neuroinflammation.
Collapse
Affiliation(s)
- Ana Griciuc
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Anthony N Federico
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jeyashree Natasan
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Angela M Forte
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Danielle McGinty
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Huong Nguyen
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Adrienn Volak
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Stanley LeRoy
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Sheetal Gandhi
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Eli P Lerner
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Eloise Hudry
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Casey A Maguire
- Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| |
Collapse
|
22
|
Lai J, Chen C. The Role of Epoxyeicosatrienoic Acids in Cardiac Remodeling. Front Physiol 2021; 12:642470. [PMID: 33716791 PMCID: PMC7943617 DOI: 10.3389/fphys.2021.642470] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid by cytochrome P450 (CYP) epoxygenases, which include four regioisomers: 5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET. Each of them possesses beneficial effects against inflammation, fibrosis, and apoptosis, which could combat cardiovascular diseases. Numerous studies have demonstrated that elevation of EETs by overexpression of CYP2J2, inhibition of sEH, or treatment with EET analogs showed protective effects in various cardiovascular diseases, including hypertension, myocardial infarction, and heart failure. As is known to all, cardiac remodeling is the major pathogenesis of cardiovascular diseases. This review will begin with the introduction of EETs and their protective effects in cardiovascular diseases. In the following, the roles of EETs in cardiac remodeling, with a particular emphasis on myocardial hypertrophy, apoptosis, fibrosis, inflammation, and angiogenesis, will be summarized. Finally, it is suggested that upregulation of EETs is a potential therapeutic strategy for cardiovascular diseases. The EET-related drug development against cardiac remodeling is also discussed, including the overexpression of CYP2J2, inhibition of sEH, and the analogs of EET.
Collapse
Affiliation(s)
- Jinsheng Lai
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Otero CE, Langel SN, Blasi M, Permar SR. Maternal antibody interference contributes to reduced rotavirus vaccine efficacy in developing countries. PLoS Pathog 2020; 16:e1009010. [PMID: 33211756 PMCID: PMC7676686 DOI: 10.1371/journal.ppat.1009010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rotavirus (RV) vaccine efficacy is significantly reduced in lower- and middle-income countries (LMICs) compared to high-income countries. This review summarizes current research into the mechanisms behind this phenomenon, with a particular focus on the evidence that maternal antibody (matAb) interference is a contributing factor to this disparity. All RV vaccines currently in use are orally administered, live-attenuated virus vaccines that replicate in the infant gut, which leaves their efficacy potentially impacted by both placentally transferred immunoglobulin G (IgG) and mucosal IgA Abs conferred via breast milk. Observational studies of cohorts in LMICs demonstrated an inverse correlation between matAb titers, both in serum and breast milk, and infant responses to RV vaccination. However, a causal link between maternal humoral immunity and reduced RV vaccine efficacy in infants has yet to be definitively established, partially due to limitations in current animal models of RV disease. The characteristics of Abs mediating interference and the mechanism(s) involved have yet to be determined, and these may differ from mechanisms of matAb interference for parenterally administered vaccines due to the contribution of mucosal immunity conferred via breast milk. Increased vaccine doses and later age of vaccine administration have been strategies applied to overcome matAb interference, but these approaches are difficult to safely implement in the setting of RV vaccination in LMICs. Ultimately, the development of relevant animal models of matAb interference is needed to determine what alternative approaches or vaccine designs can safely and effectively overcome matAb interference of infant RV vaccination.
Collapse
Affiliation(s)
- Claire E. Otero
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Stephanie N. Langel
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Maria Blasi
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sallie R. Permar
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
24
|
Li YQ, Sun W, Liu XY, Chen LQ, Huang W, Lu ZL, He L. Synthesis of Glutathione (GSH)-Responsive Amphiphilic Duplexes and their Application in Gene Delivery. Chempluschem 2020; 84:1060-1069. [PMID: 31943961 DOI: 10.1002/cplu.201900295] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/13/2019] [Indexed: 12/16/2022]
Abstract
Oligoamide molecular strands with hydrogen-bonding sequences DADDAD and guanidine (O-1) or 1,5,9-triazacyclododecane ([12]aneN3 ; O-2) side chains and oligoamides with hydrogen-bonding sequences ADAADA and octyl moieties (O-3), were synthesized. Two duplexes (D-1 and D-2) were prepared by conjugating the hydrophilic O-1 or O-2 and hydrophobic O-3 through sequence-specific hydrogen-bond association and cross-linked disulfide bonds. Electrophoresis measurements indicated that O-1, O-2, D-1, and D-2 were able to completely retard the DNA mobiliy at concentrations of 30, 30, 10, and 20 μM, respectively. Reversible DNA release in O-1 and O-2 complexes can be achieved in the presence of heparin sodium, whereas the presence of GSH greatly improved DNA release in D-1 and D-2 complexes. The particles formed were in a size range of 50-170 nm with positively charged surfaces. D-1 and D-2 transfected pEGFP-N1 into HeLa cells successfully.
Collapse
Affiliation(s)
- Yong-Qiang Li
- College of Chemistry, Bejjing Normal University, Xinjiekouwai Street 19, Beijing, China.,State Key laboratory of bioactive substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xiannongtan Street 1, Beijing, China
| | - Wan Sun
- College of Chemistry, Bejjing Normal University, Xinjiekouwai Street 19, Beijing, China
| | - Xu-Ying Liu
- College of Chemistry, Bejjing Normal University, Xinjiekouwai Street 19, Beijing, China
| | - Li-Qing Chen
- State Key laboratory of bioactive substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xiannongtan Street 1, Beijing, China
| | - Wei Huang
- State Key laboratory of bioactive substance and Function of Natural Medicines Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xiannongtan Street 1, Beijing, China
| | - Zhong-Lin Lu
- College of Chemistry, Bejjing Normal University, Xinjiekouwai Street 19, Beijing, China
| | - Lan He
- National Institute for Food and Drug Control, Institute of Chemical Drug Control, TianTan XiLi 2, Beijing, 100050, China
| |
Collapse
|
25
|
The approved gene therapy drugs worldwide: from 1998 to 2019. Biotechnol Adv 2020; 40:107502. [PMID: 31887345 DOI: 10.1016/j.biotechadv.2019.107502] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023]
|
26
|
Regulation of FKBP51 and FKBP52 functions by post-translational modifications. Biochem Soc Trans 2020; 47:1815-1831. [PMID: 31754722 DOI: 10.1042/bst20190334] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
FKBP51 and FKBP52 are two iconic members of the family of peptidyl-prolyl-(cis/trans)-isomerases (EC: 5.2.1.8), which comprises proteins that catalyze the cis/trans isomerization of peptidyl-prolyl peptide bonds in unfolded and partially folded polypeptide chains and native state proteins. Originally, both proteins have been studied as molecular chaperones belonging to the steroid receptor heterocomplex, where they were first discovered. In addition to their expected role in receptor folding and chaperoning, FKBP51 and FKBP52 are also involved in many biological processes, such as signal transduction, transcriptional regulation, protein transport, cancer development, and cell differentiation, just to mention a few examples. Recent studies have revealed that both proteins are subject of post-translational modifications such as phosphorylation, SUMOlyation, and acetylation. In this work, we summarize recent advances in the study of these immunophilins portraying them as scaffolding proteins capable to organize protein heterocomplexes, describing some of their antagonistic properties in the physiology of the cell, and the putative regulation of their properties by those post-translational modifications.
Collapse
|
27
|
Maguire CA, Corey DP. Viral vectors for gene delivery to the inner ear. Hear Res 2020; 394:107927. [PMID: 32199720 DOI: 10.1016/j.heares.2020.107927] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 02/04/2023]
Abstract
Gene therapy using virus vectors to treat hereditary diseases has made remarkable progress in the past decade. There are FDA-approved products for ex-vivo gene therapy for diseases such as immunodeficiencies (e.g., SCID), and in vivo gene therapy for a rare blindness and neuro-muscular disease. Gene therapy for hereditary hearing loss has picked up pace in the past five years due to progress in understanding disease gene function as well as the development of better technologies such as adeno-associated virus (AAV) vectors, to deliver nucleic acid to target cells in the inner ear. This review has two major goals. One is to review the state of the art for investigators already working in preclinical cochlear gene therapy. The other is to present the language of vectorology and important considerations for designing and using AAV vectors to inner ear neurobiologists who might use AAV vectors in the cochlea for either therapeutic or basic biological applications.
Collapse
Affiliation(s)
- Casey A Maguire
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, 149 13th Street, Charlestown, MA, 02114, USA; Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA.
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
CRISPR/Cas9-Mediated TERT Disruption in Cancer Cells. Int J Mol Sci 2020; 21:ijms21020653. [PMID: 31963842 PMCID: PMC7014288 DOI: 10.3390/ijms21020653] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
Mammalian telomere lengths are primarily regulated by telomerase, a ribonucleoprotein consisting of a reverse transcriptase (TERT) and an RNA subunit (TERC). TERC is constitutively expressed in all cells, whereas TERT expression is temporally and spatially regulated, such that in most adult somatic cells, TERT is inactivated and telomerase activity is undetectable. Most tumor cells activate TERT as a mechanism for preventing progressive telomere attrition to achieve proliferative immortality. Therefore, inactivating TERT has been considered to be a promising means of cancer therapy. Here we applied the CRISPR/Cas9 gene editing system to target the TERT gene in cancer cells. We report that disruption of TERT severely compromises cancer cell survival in vitro and in vivo. Haploinsufficiency of TERT in tumor cells is sufficient to result in telomere attrition and growth retardation in vitro. In vivo, TERT haploinsufficient tumor cells failed to form xenograft after transplantation to nude mice. Our work demonstrates that gene editing-mediated TERT knockout is a potential therapeutic option for treating cancer.
Collapse
|
29
|
Klermund J, Cathomen T. Grundlagen und klinische Anwendung der Genomeditierung. Monatsschr Kinderheilkd 2019. [DOI: 10.1007/s00112-019-00821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
|