1
|
Zhu R, Tong X, Du Y, Liu J, Xu X, He Y, Wen L, Wang Z. Improvement of chlorpyrifos-induced cognitive impairment by mountain grape anthocyanins based on PI3K/Akt signaling pathway. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106172. [PMID: 39477625 DOI: 10.1016/j.pestbp.2024.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024]
Abstract
The organophosphorus insecticide Chlorpyrifos (CPF) is widely used worldwide due to its high effectiveness. However, when ingested through the mouth and nose, it can cause severe neurotoxic effects and cognitive impairment. Natural anthocyanins show great potential in improving cognitive impairment. In this paper, we will delve into the protective effect of anthocyanins on CPF-induced cognitive impairment and its mechanism through the PI3K/Akt signaling pathway. Morris water maze, histopathological, ELISA and western blot analyses showed that anthocyanins effectively ameliorated CPF-induced spatial learning memory impairment in mice by ameliorating CPF-induced AChE inhibition, oxidative stress, and neuroinflammation and by modulating the levels of apoptosis (Caspase-3, Caspase-9) and autophagy (LC3II/ LC3I, Beclin1, p62, mTOR) biomarkers, in order to restore damaged hippocampal tissue morphology, neuron and synapse structures. To identify the action pathway of anthocyanins, we used KEGG and GO pathway enrichment analysis for screening prediction and western blot and molecular docking to verify that anthocyanins improve CPF-induced cognitive impairment by activating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Rongchen Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuewen Tong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Yuhan Du
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jiahua Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Xuefei Xu
- Jilin Province Product Quality Supervision and Inspection Institute of Light Industrial and Chemical Products Inspection, Changchun 130022, China
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| | - Zhitong Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
2
|
Zhao M, Wei D, Wang L, Xu Q, Wang J, Shi J, Ma C, Geng J, Huo W, Jing T, Wang C, Mao Z. The Interaction of Inflammation and Exposure to Pyrethroids is Associated with Impaired Fasting Glucose and Type 2 Diabetes. EXPOSURE AND HEALTH 2024; 16:959-971. [DOI: 10.1007/s12403-023-00602-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2024]
|
3
|
Geng Q, Liu B, Fan D, Cao Z, Li L, Lu P, Lin L, Yan L, Xiong Y, He X, Lu J, Chen P, Lu C. Strictosamide ameliorates LPS-induced acute lung injury by targeting ERK2 and mediating NF-κB signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117593. [PMID: 38113987 DOI: 10.1016/j.jep.2023.117593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) ranks among the deadliest pulmonary diseases, significantly impacting mortality and morbidity. Presently, the primary treatment for ALI involves supportive therapy; however, its efficacy remains unsatisfactory. Strictosamide (STR), an indole alkaloid found in the Chinese herbal medicine Nauclea officinalis (Pierre ex Pit.) Merr. & Chun (Wutan), has been found to exhibit numerous pharmacological properties, particularly anti-inflammatory effects. AIM OF THE STUDY This study aimes to systematically identify and validate the specific binding proteins targeted by STR and elucidate its anti-inflammatory mechanism in lipopolysaccharide (LPS)-induced ALI. MATERIALS AND METHODS Biotin chemical modification, protein microarray analysis and network pharmacology were conducted to screen for potential STR-binding proteins. The binding affinity was assessed through surface plasmon resonance (SPR), cellular thermal shift assay (CETSA) and molecular docking, and the anti-inflammatory mechanism of STR in ALI treatment was assessed through in vivo and in vitro experiments. RESULTS Biotin chemical modification, protein microarray and network pharmacology identified extracellular-signal-regulated kinase 2 (ERK2) as the most important binding proteins among 276 candidate STR-interacting proteins and nuclear factor-kappaB (NF-κB) pathway was one of the main inflammatory signal transduction pathways. Using SPR, CETSA, and molecular docking, we confirmed STR's affinity for ERK2. In vitro and in vivo experiments demonstrated that STR mitigated inflammation by targeting ERK2 to modulate the NF-κB signaling pathway in LPS-induced ALI. CONCLUSIONS Our findings indicate that STR can inhibit the NF-κB signaling pathway to attenuate LPS-induced inflammation by targeting ERK2 and decreasing phosphorylation of ERK2, which could be a novel strategy for treating ALI.
Collapse
Affiliation(s)
- Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Danping Fan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Beijing, 100700, PR China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Yibai Xiong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Peng Chen
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Beijing, 100700, PR China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China.
| |
Collapse
|
4
|
Bargavi P, Balakumar S, Raghunandhakumar S. Multi-functional bandage - bioactive glass/metal oxides/alginate composites based regenerative membrane facilitating re-epithelialization in diabetic wounds with sustained drug delivery and anti-bactericidal efficacy. Int J Biol Macromol 2024; 262:130054. [PMID: 38342258 DOI: 10.1016/j.ijbiomac.2024.130054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Chronic wounds, especially diabetic, foot and pressure ulcers are a major health problem affecting >10 % of the world's populace. Calcium phosphate materials, particularly, bioactive glasses (BG), used as a potential material for hard and soft tissue repair. This study combines nanostructured 45S5 BG with titania (TiO2) and alumina (Al2O3) into a composite via simple sol-gel method. Prepared composites with alginate (Alg) formed a bioactive nanocomposite hydrogel membrane via freezing method. X-ray diffraction revealed formation of two phases such as Na1.8Ca1.1Si6O14 and β-Na2Ca4(PO4)2SiO4 in the silica network. Fourier transformed InfraRed spectroscopy confirmed the network formation and cross-linking between composite and alginate. <2 % hemolysis, optimal in vitro degradation and porosity was systematically evaluated up to 7 days, resulting in increasing membrane bioactivity. Significant cytocompatibility, cell migration and proliferation and a 3-4-fold increase in Collagen (Col) and Vascular Endothelial Growth Factor (VEGF) expression were obtained. Sustained delivery of 80 % Dox in 24 h and effective growth reduction of S. aureus and destruction of biofilm development against E. coli and S. aureus within 24 h. Anatomical fin regeneration, rapid re-epithelialization and wound closure were achieved within 14 days in both zebrafish and in streptozotocin (STZ) induced rat in vivo animal models with optimal blood glucose levels. Hence, the fabricated bioactive membrane can act as effective wound dressing material, for diabetic chronic infectious wounds.
Collapse
Affiliation(s)
- P Bargavi
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India; Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| | - S Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India.
| | - S Raghunandhakumar
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600077, India
| |
Collapse
|
5
|
Zhu J, Huang M, Liu C, Wang J, Zou L, Yang F, Zhu R. Curcumin protects against fenvalerate-induced neurotoxicity in zebrafish (Danio rerio) larvae through inhibition of oxidative stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115484. [PMID: 37716069 DOI: 10.1016/j.ecoenv.2023.115484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/26/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Fenvalerate (FEN), a typical type II pyrethroid pesticide, is widely used in agriculture. FEN has been detected in the environment and human body. However, the neurotoxicity of FEN has not been well elucidated. This study aimed to explore the mechanisms underlying FEN-induced neurotoxicity using the zebrafish (Danio rerio) model. We also investigated whether curcumin (CUR), a polyphenol antioxidant that exhibits neuroprotective properties, can prevent FEN-induced neurotoxicity. Here, zebrafish embryos were exposed to 0, 3.5, 7 and 14 μg/L of FEN from 4 to 96 h post fertilization (hpf) and neurotoxicity was assessed. Our results showed that FEN decreased the survival rate, heart rate, body length and spontaneous movement, and increased malformation rate. FEN caused neurobehavioral alterations, including decreased swimming distance and velocity, movement time and clockwise rotation times. FEN also suppressed neurogenesis in transgenic HuC:egfp zebrafish, reduced cholinesterase activity and downregulated the expression of neurodevelopment related genes (elavl3, gfap, gap43 and mbp). In addition, FEN enhanced oxidative stress via excessive reactive oxygen species and antioxidant enzyme inhibition, then triggered apoptosis by upregulation of apoptotic genes (p53, bcl-2, bax and caspase 3). These adverse outcomes were alleviated by CUR, indicating that CUR mitigated FEN-induced neurotoxicity by inhibiting oxidative stress. Overall, this study revealed that CUR ameliorated FEN-induced neurotoxicity via its antioxidant, indicating a promising protection of CUR against environmental pollutant-induced developmental anomalies.
Collapse
Affiliation(s)
- Jiansheng Zhu
- Department of Public Health, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Mingtao Huang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China
| | - Chunlan Liu
- Jiangsu Health Vocational College, Nanjing 211800, PR China
| | - Jingyu Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China
| | - Li Zou
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, PR China
| | - Fan Yang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong, Nantong 226011, PR China.
| | - Renfei Zhu
- Department of Hepatobiliary Surgery, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong 226006, Jiangsu, PR China.
| |
Collapse
|
6
|
Wen L, Miao X, Ding J, Tong X, Wu Y, He Y, Zheng F. Pesticides as a risk factor for cognitive impairment: Natural substances are expected to become alternative measures to prevent and improve cognitive impairment. Front Nutr 2023; 10:1113099. [PMID: 36937345 PMCID: PMC10016095 DOI: 10.3389/fnut.2023.1113099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 03/08/2023] Open
Abstract
Pesticides are the most effective way to control diseases, insects, weeds, and fungi. The central nervous system (CNS) is damaged by pesticide residues in various ways. By consulting relevant databases, the systemic relationships between the possible mechanisms of pesticides damage to the CNS causing cognitive impairment and related learning and memory pathways networks, as well as the structure-activity relationships between some natural substances (such as polyphenols and vitamins) and the improvement were summarized in this article. The mechanisms of cognitive impairment caused by pesticides are closely related. For example, oxidative stress, mitochondrial dysfunction, and neuroinflammation can constitute three feedback loops that interact and restrict each other. The mechanisms of neurotransmitter abnormalities and intestinal dysfunction also play an important role. The connection between pathways is complex. NMDAR, PI3K/Akt, MAPK, Keap1/Nrf2/ARE, and NF-κB pathways can be connected into a pathway network by targets such as Ras, Akt, and IKK. The reasons for the improvement of natural substances are related to their specific structure, such as polyphenols with different hydroxyl groups. This review's purpose is to lay a foundation for exploring and developing more natural substances that can effectively improve the cognitive impairment caused by pesticides.
Collapse
Affiliation(s)
- Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Xiwen Miao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Jia Ding
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Xuewen Tong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yuzhu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, China
- *Correspondence: Yuzhu Wu, ✉
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Yang He, ✉
| | - Fei Zheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- Fei Zheng, ✉
| |
Collapse
|
7
|
Impact of Glyphosate on the Development of Insulin Resistance in Experimental Diabetic Rats: Role of NFκB Signalling Pathways. Antioxidants (Basel) 2022; 11:antiox11122436. [PMID: 36552644 PMCID: PMC9774325 DOI: 10.3390/antiox11122436] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Glyphosate, an endocrine disruptor, has an adverse impact on human health through food and also has the potential to produce reactive oxygen species (ROS), which can lead to metabolic diseases. Glyphosate consumption from food has been shown to have a substantial part in insulin resistance, making it a severe concern to those with type 2 diabetes (T2DM). However, minimal evidence exists on how glyphosate impacts insulin-mediated glucose oxidation in the liver. Hence the current study was performed to explore the potential of glyphosate toxicity on insulin signaling in the liver of experimental animals. For 16 weeks, male albino Wistar rats were given 50 mg, 100 mg and 250 mg/kg b. wt. of glyphosate orally. In the current study, glyphosate exposure group was linked to a rise in fasting sugar and insulin as well as a drop in serum testosterone. At the same time, in a dose dependent fashion, glyphosate exposure showed alternations in glucose metabolic enzymes. Glyphosate exposure resulted in a raise in H2O2 formation, LPO and a reduction in antioxidant levels those results in impact on membrane integrity and insulin receptor efficacy in the liver. It also registered a reduced levels of mRNA and protein expression of insulin receptor (IR), glucose transporter-2 (GLUT2) with concomitant increase in the production of proinflammatory factors such as JNK, IKKβ, NFkB, IL-6, IL-1β, and TNF-α as well as transcriptional factors like SREBP1c and PPAR-γ leading to pro-inflammation and cirrhosis in the liver which results in the development of insulin resistance and type 2 diabetes. Our present findings for the first time providing an evidence that exposure of glyphosate develops insulin resistance and type 2 diabetes by aggravating NFkB signaling pathway in liver.
Collapse
|
8
|
Herrera-Ruiz M, Gutiérrez-Nava ZJ, Trejo-Moreno C, Zamilpa A, González-Cortazar M, Jiménez-Aparicio AR, Jiménez-Ferrer E. Agave tequilana Counteracts Chronic Hypertension and Associated Vascular Damage. J Med Food 2022; 25:443-455. [PMID: 35085011 DOI: 10.1089/jmf.2021.0044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Systemic arterial hypertension (SAH) is a health problem of great importance worldwide, and endothelial dysfunction underlies SAH development. This condition's main characteristics include vasoconstriction, inflammation, oxidative stress, and procoagulant and proliferative states. This study's objective was to evaluate the antihypertensive, anti-inflammatory, and antioxidant effects of the whole extract and fractions of Agave tequilana in a murine model of SAH. SAH was induced in male ICR or CD-1 (Strain obtained from animals from Charles River Laboratories, Massachusetts) mice by intraperitoneal administration of angiotensin II (AGII) (0.1 μg/kg) for 4 weeks, and then A. tequilana treatments were co-administered with AGII. At the end of the experiment, systolic and diastolic blood pressure were measured and the kidneys were dissected to quantify interleukin (IL)-1β, IL-6, tumor necrosis factor-alpha, IL-10, and malondialdehyde (MDA). The whole extract and the fractions of A. tequilana were chemically characterized using gas chromatography-mass spectrometry. The results indicate that the whole extract (At-W) and At-AcOEt fraction treatment are the most efficient in lowering blood pressure, although all the treatments had an immunomodulatory effect on the cytokines evaluated and an antioxidant effect on lipid peroxidation. Finally, the chromatographic profile shows that the integral extract and fractions of A. tequilana contained phytol (M)3,7,11,15-Tetramethyl-2-hexadecen-1-ol; 9,12-octadecadienoic acid; hentriacontane; 9,19-cyclolanost-24-en-3-ol,(3b); t-sitosterol; and stigmasta-3,5-dien-7-one.
Collapse
Affiliation(s)
- Maribel Herrera-Ruiz
- Southern Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| | | | - Celeste Trejo-Moreno
- Southern Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico.,Postgraduate in Experimental Biology, Autonomous Metropolitan University-Iztapalapa, Mexico City, Mexico
| | - Alejandro Zamilpa
- Southern Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| | - Manasés González-Cortazar
- Southern Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| | | | - Enrique Jiménez-Ferrer
- Southern Biomedical Research Center, Mexican Institute of Social Security (IMSS), Xochitepec, Mexico
| |
Collapse
|
9
|
Lu J, Liu G, Wang Z, Cao J, Chen Y, Dong Y. Restraint stress induces uterine microenvironment disorder in mice during early pregnancy through the β 2-AR/cAMP/PKA pathway. Stress 2021; 24:514-528. [PMID: 33280472 DOI: 10.1080/10253890.2020.1855419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During pregnancy, uterus undergoes the environment adaptation as part of a program of development. In the world, one in four people worldwide suffer from mental illness, especially pregnant women. β-Adrenergic receptor (β-AR) is an important regulator that converts environmental stimuli into intracellular signals in mice uterus. CD-1 (ICR) mice undergone restraint stress, which was a case in model to simulate the psychological stress. The plasma and implantation sites in uterus were obtained and examined. PCR analysis demonstrated that β2-AR expression levels in embryo day (E) 3, 5 and 7 were kept at a significantly higher level (p < 0.05) under restraint stress and higher than β1-AR and β3-AR in different gestation ages. The β2-AR protein levels were obviously increased (p < 0.05) due to the markedly elevated norepinephrine (NE) concentration (p < 0.05). In our previous study, restraint stress can induce the apoptosis and inflammation. Also, the matrix metalloprotein-9 (MMP-9) was decreased significantly (p < 0.05) under restraint stress. Meanwhile, Caspase3, p-NF-κB p65 and p-ERK1/2 were obviously increased (p < 0.05) in the work. In vitro studies showed that the p-ERK1/2 and Caspase-3 levels were raised (p < 0.05) after β2-AR was activated. However, they were decreased when PKA was blocked. The protein levels of Caspase-3 were reduced when ERK and NF-κB were blocked (p < 0.05). In conclusion, the β2-AR/cAMP/PKA pathway promoted apoptosis and affected the development of the uterus through the ERK and NF-κB signaling pathway. The findings of this study may provide evidence for female reproduction under psychological stress.
Collapse
Affiliation(s)
- Jiayin Lu
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Guanhui Liu
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Zixu Wang
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Jing Cao
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yaoxing Chen
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Yulan Dong
- Laboratory of Neurobiology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Tang B, Zhu J, Fang S, Wang Y, Vinothkumar R, Li M, Weng Q, Zheng L, Yang Y, Qiu R, Xu M, Zhao Z, Ji J. Pharmacological inhibition of MELK restricts ferroptosis and the inflammatory response in colitis and colitis-propelled carcinogenesis. Free Radic Biol Med 2021; 172:312-329. [PMID: 34144192 DOI: 10.1016/j.freeradbiomed.2021.06.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), is a group of chronic recurrent and incurable gastrointestinal diseases with an unknown etiology that leads to a high risk of developing colitis-associated colorectal cancer (CRC). OBJECTIVES In this study, we measured the expression characteristics of MELK in IBD and CRC tissues and explored the regulatory effect of OTSSP167 (a MELK-selective inhibitor) on the mice models of colitis and colitis-associated carcinogenesis and analyzed the specific molecular mechanisms. METHODS DSS-induced colitis and colitis-associated carcinogenesis (CAC) model were treated with MELK inhibitor OTSSP167 then the fight against effect of OTSSP167 in the clinical symptoms of colitis and CAC was measured. In addition, underlying mechanism of OTSSP167 treatment in vitro and vivo including anti-ferroptosis and anti-inflammatory response effect was further explored. RESULTS We found that pharmacological inhibition of MELK was indicated to significantly alleviate the inflammatory response in mice with colitis, reduce intestinal damage, and effectively inhibit the occurrence and progression of colitis-propelled carcinogenesis, which was closely related to the regulation of gut microbial composition, and OTSSP167-mediated fecal microbiota transplantation effectively alleviated DSS-induced colitis. In addition, OTSSP167 treatment obviously inhibited ferroptosis in the intestinal tissue and suppressed macrophage infiltration and M1 polarization, which reduced the secretion of pro-inflammatory factors. Further exploration of the molecular mechanism revealed that OTSSP167 inhibited AKT/IKK/P65 and ERK/IKK/P65 signaling cascades both in vivo and in vitro, which may help alleviate intestinal inflammation and control the occurrence of cancer. CONCLUSION Our findings lay a theoretical foundation for the use of OTSSP167 as a treatment for IBD and its inhibition of the occurrence of colitis-associated carcinogenesis; additionally, MELK may be a potentially effective target molecule, thus providing more options for clinical treatment.
Collapse
Affiliation(s)
- Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiji Fang
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yajie Wang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Rajamanickam Vinothkumar
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China
| | - Mengyao Li
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, 310016, China
| | - Qiaoyou Weng
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Liyun Zheng
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Rongfang Qiu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui, 323000, China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
| |
Collapse
|
11
|
Gholizadeh-Ghaleh Aziz S, Naderi R, Mahmodian N. Ameliorative effects of tropisetron on liver injury in streptozotocin-induced diabetic rats. Arch Physiol Biochem 2021; 127:367-372. [PMID: 31306054 DOI: 10.1080/13813455.2019.1640743] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study aimed to evaluate the effect of tropisetron on liver injury induced by diabetes. Thirty-five male Wistar rats were assigned to five groups (n = 7): control (C), tropisetron (T), diabetic (D), diabetic + tropisetron (D + T) and diabetic + glibenclamide (D + G). Diabetic rats were treated with tropisetron (3 mg/kg body weight/day) or glibenclamide (1 mg/kg/day) for two weeks. Liver from diabetic rats exhibited a significant increase in alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), cholesterol (Chol), triglycerides (TG), low-density lipoprotein (LDL), and atherogenic index, and a significant decrease in liver glycogen, serum albumin and high-density lipoprotein. Treatment with tropisetron significantly abrogated diabetes-induced perturbation in these parameters. These effects were equipotent with glibenclamide, suggesting that tropisetron treatment is associated with a hepatoprotective effect against diabetic injury. Therefore, the results of this study manifested the significance of using tropisetron as a promising remedial agent to improve diabetic complications.
Collapse
Affiliation(s)
| | - Roya Naderi
- Nephrology and Kidney Transplant Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nima Mahmodian
- Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
12
|
Kong L, Huang H, Luan S, Liu H, Ye M, Wu F. Inhibition of ASIC1a-Mediated ERS Improves the Activation of HSCs and Copper Transport Under Copper Load. Front Pharmacol 2021; 12:653272. [PMID: 34135753 PMCID: PMC8201774 DOI: 10.3389/fphar.2021.653272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/17/2021] [Indexed: 12/21/2022] Open
Abstract
Hepatolenticular degeneration (HLD) is an autosomal recessive genetic disease caused by the toxic accumulation of copper in the liver. Excessive copper will disrupt the redox balance in cells and tissues, causing ischemia, hypoxia, and inflammation. Acid-sensitive ion channel 1a is a cationic channel activated by extracellular acid and allowing Ca2+ and Na+ to flow into cells. Its expression appears in inflammation, arthritis, fibrotic tissue, and damaged environment, but its role in hepatolenticular degeneration has not been studied. This study established a Wistar rat model of high copper accumulation and used CuSO4 to induce the activation of HSC-T6 in an in vitro experiment. In vivo, Wistar rats were examined to determine the serum copper concentration, serum ALT and AST activities, and liver copper accumulation, and liver tissue HE staining and immunohistochemical analyses were conducted. The expression of ASIC1a, α-SMA, Collagen-Ι, GRP78, XBP1, ATP7B, and CCS were detected. Besides, immunofluorescence technology can detect the expression of the phosphorylated protein in vitro. It is suggested that ASIC1a is involved in the quality control of the endoplasmic reticulum, which degrades mutant ATP7B and increases the accumulation of copper. After blocking or silencing the expression of ASIC1a, ELISA can detect the level of inflammatory factors, the expression of endoplasmic reticulum stress-related factors, and ATP7B was improved in a higher copper environment reduction of copper deposition was observed in liver Timm’s staining. Collectively, we conclude that ASIC1a is involved in the HSC activation induced by copper accumulation and promotes the occurrence of hepatolenticular fibrosis.
Collapse
Affiliation(s)
- Lingjin Kong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Huiping Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Shaohua Luan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Hui Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Manping Ye
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| | - Fanrong Wu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Jayaraman S, Devarajan N, Rajagopal P, Babu S, Ganesan SK, Veeraraghavan VP, Palanisamy CP, Cui B, Periyasamy V, Chandrasekar K. β-Sitosterol Circumvents Obesity Induced Inflammation and Insulin Resistance by down-Regulating IKKβ/NF-κB and JNK Signaling Pathway in Adipocytes of Type 2 Diabetic Rats. Molecules 2021; 26:molecules26072101. [PMID: 33917607 PMCID: PMC8038823 DOI: 10.3390/molecules26072101] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 01/23/2023] Open
Abstract
β-sitosterol (SIT), the most abundant bioactive component of vegetable oil and other plants, is a highly potent antidiabetic drug. Our previous studies show that SIT controls hyperglycemia and insulin resistance by activating insulin receptor and glucose transporter 4 (GLUT-4) in the adipocytes of obesity induced type 2 diabetic rats. The current research was undertaken to investigate if SIT could also exert its antidiabetic effects by circumventing adipocyte induced inflammation, a key driving factor for insulin resistance in obese individuals. Effective dose of SIT (20 mg/kg b.wt) was administered orally for 30 days to high fat diet and sucrose induced type-2 diabetic rats. Metformin, the conventionally used antidiabetic drug was used as a positive control. Interestingly, SIT treatment restores the elevated serum levels of proinflammatory cytokines including leptin, resistin, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) to normalcy and increases anti-inflammatory adipocytokines including adiponectin in type 2 diabetic rats. Furthermore, SIT decreases sterol regulatory element binding protein-1c (SREBP-1c) and enhances Peroxisome Proliferator–activated receptor-γ (PPAR-γ) gene expression in adipocytes of diabetic rats. The gene and protein expression of c-Jun-N-terminal kinase-1 (JNK1), inhibitor of nuclear factor kappa-B kinase subunit beta (IKKβ) and nuclear factor kappa B (NF-κB) were also significantly attenuated in SIT treated groups. More importantly, SIT acts very effectively as metformin to circumvent inflammation and insulin resistance in diabetic rats. Our results clearly show that SIT inhibits obesity induced insulin resistance by ameliorating the inflammatory events in the adipose tissue through the downregulation of IKKβ/NF-κB and c-Jun-N-terminal kinase (JNK) signaling pathway.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu 600077, India; (S.B.); (V.P.V.)
- Correspondence: (S.J.); (K.C.)
| | - Nalini Devarajan
- Central Research Laboratory, Meenakshi Ammal Dental College, Meenakshi Academy of Higher Education and Research, Maduravoyal, Chennai, Tamil Nadu 600095, India;
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu 600078, India;
| | - Shyamaladevi Babu
- Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu 600077, India; (S.B.); (V.P.V.)
| | - Senthil Kumar Ganesan
- Structural Biology & Bioinformatics Division, TRUE Campus, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India;
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College and Hospitals, Saveetha University, Chennai, Tamil Nadu 600077, India; (S.B.); (V.P.V.)
| | - Chella Perumal Palanisamy
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (C.P.P.); (B.C.)
| | - Bo Cui
- State Key Laboratory of Biobased Materials and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China; (C.P.P.); (B.C.)
| | - Vijayalakshmi Periyasamy
- Department of Biotechnology and Bioinformatics, Holy Cross College, Trichy, Tamil Nadu 620002, India;
| | - Kirubhanand Chandrasekar
- Department of Anatomy, All India Institute of Medical Sciences, Nagpur, Maharashtra 440025, India
- Correspondence: (S.J.); (K.C.)
| |
Collapse
|
14
|
Fan X, Zhou J, Bi X, Liang J, Lu S, Yan X, Luo L, Yin Z. L-theanine suppresses the metastasis of prostate cancer by downregulating MMP9 and Snail. J Nutr Biochem 2020; 89:108556. [PMID: 33249185 DOI: 10.1016/j.jnutbio.2020.108556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/26/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is a very prevalent male-specific malignancy; most PCa patients eventually die as a result of metastasis. L-theanine (C7H14N2O3), a nonprotein amino acid derivative from green tea leaves, has been demonstrated to act as an anticarcinogen through proapoptotic and antiproliferative effects. However, the antimetastatic effect of L-theanine in tumor cells and its underlying mechanism are still unclear. Here, we found that L-theanine could suppress invasion, migration, and increase cell-cell adhesion of prostate cancer cells in vitro and in vivo. We also found that L-theanine could inhibit the epithelial-mesenchymal transition process in PCa. Our study revealed that L-theanine could downregulate MMP9, N-cadherin, Vimentin, Snail, and upregulate E-cadherin. Furthermore, L-theanine suppressed the transcription of MMP9 and Snail by significantly inhibiting the ERK/NF-κB signaling pathway and the binding activity of p65 to the promoter regions of MMP9 and Snail. All of these findings suggest that L-theanine has therapeutic potential for metastatic PCa and may be considered a promising candidate for antimetastatic therapy of prostate cancer.
Collapse
Affiliation(s)
- Xirui Fan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Juanjuan Liang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Xintong Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Seydi E, Mehrpouya L, Sadeghi H, Rahimi S, Pourahmad J. Toxicity of fipronil on rat heart mitochondria. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1700382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Leila Mehrpouya
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadiseh Sadeghi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Rahimi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|