1
|
Wang X, Ju J, Xie Y, Hang L. Emerging roles of the G-protein-coupled receptor 37 in neurological diseases and pain. Neuroscience 2024; 559:199-208. [PMID: 39244010 DOI: 10.1016/j.neuroscience.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Neurological disorders and pain are prevalent clinical issues that severely impact patients' quality of life and daily functioning. With the advancing exploration of these disease mechanisms, G protein-coupled receptor 37 (GPR37) has emerged as a critical protein, garnering widespread attention in the scientific community. As a member of the G protein-coupled receptor family, GPR37 features a seven-transmembrane helix structure and is widely expressed in various brain regions, including the substantia nigra and striatum. In addition to neurons, GPR37 is also detected in immune cells within the nervous system, indicating its potential role in neuron-immune cell interactions. Research has shown that the expression level of GPR37 in neurological disorders can affect neuron survival, cellular signaling, and overall neurological health. Abnormal expression of GPR37 is often associated with disease progression and symptom exacerbation in neurological disorders such as Parkinson's disease and stroke. In the context of pain, GPR37 alleviates pain and inflammatory responses by regulating the phagocytic activity and polarization state of macrophages. This article aims to delve into the mechanistic roles of GPR37 in neurological disorders and pain. Through a comprehensive literature review, we summarize the latest research on GPR37's involvement in neurological diseases and pain, highlighting its critical roles in neural signaling, inflammatory responses, and neuroprotection. This understanding expands the comprehension of GPR37's biological functions and provides new perspectives for improving the clinical outcomes of patients with neurological disorders and pain.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Anesthesiology, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, China.
| | - Jiajun Ju
- Gusu College, Nanjing Medical University, Department of Anesthesiology, The First People's Hospital of Kunshan, Suzhou 215300, China.
| | - Yafei Xie
- Department of Anesthesiology, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, China.
| | - Lihua Hang
- Department of Anesthesiology, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, China.
| |
Collapse
|
2
|
Yan L, Wen Z, Yang Y, Liu A, Li F, Zhang Y, Yang C, Li Y, Zhang Y. Dissecting the roles of prosaposin as an emerging therapeutic target for tumors and its underlying mechanisms. Biomed Pharmacother 2024; 180:117551. [PMID: 39405903 DOI: 10.1016/j.biopha.2024.117551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/22/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
As a dual-function protein, prosaposin (PSAP) is a lysosome-associated protein that participates in a variety of cellular processes. In the lysosome, PSAP is processed to activate enzymes that degrade lipids. In addition, PSAP proteins located extracellularly are involved in cancer progression, such as proliferation and tumor death suppression signaling. Moreover, under different situations, PSAP exhibits distinct metastasis potentials in tumors. However, comprehensive insight into PSAP in cancer progression has been lacking. Here, we provide a framework of the role of PSAP in cancer and its clinical application in cancer patients, providing a novel perspective on the clinical translation of PSAP.
Collapse
Affiliation(s)
- Lirong Yan
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Zhenpeng Wen
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province 610041, China
| | - Yi Yang
- Department of Laboratory Animal Science, China Medical University, Shenyang, China
| | - Aoran Liu
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Fang Li
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Yuzhe Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China
| | - Chunjiao Yang
- Department of Oncology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, Guangxi, China
| | - Yanke Li
- Department of Anorectal Surgery, the First Hospital of China Medical University, Shenyang, China.
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, China.
| |
Collapse
|
3
|
Tezcan G, Yakar N, Hasturk H, Van Dyke TE, Kantarci A. Resolution of chronic inflammation and cancer. Periodontol 2000 2024; 96:229-249. [PMID: 39177291 DOI: 10.1111/prd.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Chronic inflammation poses challenges to effective cancer treatment. Although anti-inflammatory therapies have shown short-term benefits, their long-term implications may be unfavorable because they fail to initiate the necessary inflammatory responses. Recent research underscores the promise of specialized pro-resolving mediators, which play a role in modulating the cancer microenvironment by promoting the resolution of initiated inflammatory processes and restoring tissue hemostasis. This review addresses current insights into how inflammation contributes to cancer pathogenesis and explores recent strategies to resolve inflammation associated with cancer.
Collapse
Affiliation(s)
- Gulcin Tezcan
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Nil Yakar
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Hatice Hasturk
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Thomas E Van Dyke
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Argerich J, Garma LD, López-Cano M, Álvarez-Montoya P, Gómez-Acero L, Fernández-Dueñas V, Muñoz-Manchado AB, Aso E, Boxer A, Andres-Benito P, Svenningsson P, Ciruela F. GPR37 processing in neurodegeneration: a potential marker for Parkinson's Disease progression rate. NPJ Parkinsons Dis 2024; 10:172. [PMID: 39256360 PMCID: PMC11387472 DOI: 10.1038/s41531-024-00788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
The orphan G protein-coupled receptor 37 (GPR37), widely associated with Parkinson's disease (PD), undergoes proteolytic processing under physiological conditions. The N-terminus domain is proteolyzed by a disintegrin and metalloproteinase 10 (ADAM-10), which generates various membrane receptor forms and ectodomain shedding (ecto-GPR37) in the extracellular environment. We investigated the processing and density of GPR37 in several neurodegenerative conditions, including Lewy body disease (LBD), multiple system atrophy (MSA), corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and Alzheimer's disease (AD). The presence of ecto-GPR37 peptides in the cerebrospinal fluid (CSF) of PD, MSA, CBD and PSP patients was assessed through an in-house nanoluciferase-based immunoassay. This study identified increased receptor processing in early-stage LBD within the PFC and striatum, key brain areas in neurodegeneration. In MSA only the 52 kDa form of GPR37 appeared in the striatum. This form was also significantly elevated in the striatum of AD necropsies. On the contrary, GPR37 processing remained unchanged in the brains of CBD and PSP patients. Furthermore, while CSF ecto-GPR37 increased in PD patients, its levels remained unchanged in MSA, CBD, and PSP subjects. Importantly, patients with PD with rapid progression of the disease did not have elevated ecto-GPR37 in the CSF, while those with slow progression showed a significant increase, suggesting a possible prognostic use of ecto-GPR37 in PD. This research underscores the distinctive processing and density patterns of GPR37 in neurodegenerative diseases, providing crucial insights into its potential role as an indicator of PD progression rates.
Collapse
Affiliation(s)
- Josep Argerich
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Leonardo D Garma
- Breast Cancer Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas - CNIO, 28029, Madrid, Spain
| | - Marc López-Cano
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Paula Álvarez-Montoya
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Laura Gómez-Acero
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Víctor Fernández-Dueñas
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Ana B Muñoz-Manchado
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, SE-17177, Sweden
- Department of Pathological Anatomy, Cellular Biology, Histology, History of Science, Legal and Forensic Medicine and Toxicology. Biomedical Research and Innovation Institute of Cadiz (INiBICA). University of Cádiz, 11002, Cádiz, Spain
| | - Ester Aso
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Adam Boxer
- Memory and Aging Center, University of California, San Francisco, CA, 94158, USA
| | - Pol Andres-Benito
- Neurological disorders and neurogenetics Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain
| | - Per Svenningsson
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, SE-17177, Sweden.
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907, L'Hospitalet de Llobregat, Spain.
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
5
|
Keifi Bajestani A, Alavi MS, Etemad L, Roohbakhsh A. Role of orphan G-protein coupled receptors in tissue ischemia: A comprehensive review. Eur J Pharmacol 2024; 978:176762. [PMID: 38906238 DOI: 10.1016/j.ejphar.2024.176762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 06/23/2024]
Abstract
Ischemic events lead to many diseases and deaths worldwide. Ischemia/reperfusion (I/R) occurs due to reduced blood circulation in tissues followed by blood reflow. Reoxygenation of ischemic tissues is characterized by oxidative stress, inflammation, energy distress, and endoplasmic reticulum stress. There are still no adequate clinical protocols or pharmacological approaches to address the consequences of I/R damage. G protein-coupled receptors (GPCRs) are important therapeutic targets. They compose a large family of seven transmembrane-spanning proteins that are involved in many biological functions. Orphan GPCRs are a large subgroup of these receptors expressed in different organs. In the present review, we summarized the literature regarding the role of orphan GPCRs in I/R in different organs. We focused on the effect of these receptors on modulating cellular and molecular processes underlying ischemia including apoptosis, inflammation, and autophagy. The study showed that GPR3, GPR4, GPR17, GPR30, GPR31, GPR35, GPR37, GPR39, GPR55, GPR65, GPR68, GPR75, GPR81, and GPR91 are involved in ischemic events, mainly in the brain and heart. These receptors offer new possibilities for treating I/R injuries in the body.
Collapse
Affiliation(s)
- Alireza Keifi Bajestani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Sadat Alavi
- Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Zhang J, Xie L, Li H, Li S, Gao X, Zhang M. Selenomethionine Promotes Milk Protein and Fat Synthesis and Proliferation of Mammary Epithelial Cells through the GPR37-mTOR-S6K1 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19505-19516. [PMID: 39177123 DOI: 10.1021/acs.jafc.4c03911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Selenomethionine (SeMet) is an important nutrient, but its role in milk synthesis and the GPCR related to SeMet sensing is still largely unknown. Here, we determined the dose-dependent role of SeMet on milk protein and fat synthesis and proliferation of mammary epithelial cells (MECs), and we also uncovered the GPCR-mediating SeMet function. At 24 h postdelivery, lactating mother mice were fed a maintenance diet supplemented with 0, 5, 10, 20, 40, and 80 mg/kg SeMet, and the feeding process lasted for 18 days. The 10 mg/kg group had the best increase in milk production, weight gain of offspring mice, and mammary gland weight and acinar size, whereas a higher concentration of SeMet gradually decreased the weight gain of the offspring mice and showed toxic effects. Transcriptome sequencing was performed to find the differentially expressed genes (DEGs) between the mammary gland tissues of mother mice in the 10 mg/kg SeMet treatment group and the control group. A total of 258 DEGs were screened out, including 82 highly expressed genes including GPR37 and 176 lowly expressed genes. SeMet increased milk protein and fat synthesis in HC11 cells and cell proliferation, mTOR and S6K1 phosphorylation, and expression of GPR37 in a dose-dependent manner. GPR37 knockdown decreased milk protein and fat synthesis in HC11 cells and cell proliferation and blocked SeMet stimulation on mTOR and S6K1 phosphorylation. Taken together, our data demonstrate that SeMet can promote milk protein and fat synthesis and proliferation of MECs and functions through the GPR37-mTOR-S6K1 signaling pathway.
Collapse
Affiliation(s)
- Jinlong Zhang
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Liping Xie
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Heqian Li
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Siqi Li
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Xuejun Gao
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| | - Minghui Zhang
- College of Animal Science and Technology, Yangtze University, Jingmi Road 88, Jingzhou 434025, China
| |
Collapse
|
7
|
Robertson K, Hahn O, Robinson BG, Faruk AT, Janakiraman M, Namkoong H, Kim K, Ye J, Bishop ES, Hall RA, Wyss-Coray T, Becker LS, Kaltschmidt JA. Gpr37 modulates the severity of inflammation-induced GI dysmotility by regulating enteric reactive gliosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588619. [PMID: 38645163 PMCID: PMC11030428 DOI: 10.1101/2024.04.09.588619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The enteric nervous system (ENS) is contained within two layers of the gut wall and is made up of neurons, immune cells, and enteric glia cells (EGCs) that regulate gastrointestinal (GI) function. EGCs in both inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) change in response to inflammation, referred to as reactive gliosis. Whether EGCs restricted to a specific layer or region within the GI tract alone can influence intestinal immune response is unknown. Using bulk RNA-sequencing and in situ hybridization, we identify G-protein coupled receptor Gpr37 , as a gene expressed only in EGCs of the myenteric plexus, one of the two layers of the ENS. We show that Gpr37 contributes to key components of LPS-induced reactive gliosis including activation of NF-kB and IFN-y signaling and response genes, lymphocyte recruitment, and inflammation-induced GI dysmotility. Targeting Gpr37 in EGCs presents a potential avenue for modifying inflammatory processes in the ENS.
Collapse
|
8
|
Yu J, Li J, Matei N, Wang W, Tang L, Pang J, Li X, Fang L, Tang J, Zhang JH, Yan M. Intranasal administration of recombinant prosaposin attenuates neuronal apoptosis through GPR37/PI3K/Akt/ASK1 pathway in MCAO rats. Exp Neurol 2024; 373:114656. [PMID: 38114054 PMCID: PMC10922973 DOI: 10.1016/j.expneurol.2023.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/19/2023] [Accepted: 12/12/2023] [Indexed: 12/21/2023]
Abstract
Studies have reported that Prosaposin (PSAP) is neuroprotective in cerebrovascular diseases. We hypothesized that PSAP would reduce infarct volume by attenuating neuronal apoptosis and promoting cell survival through G protein-coupled receptor 37(GPR37)/PI3K/Akt/ASK1 pathway in middle cerebral artery occlusion (MCAO) rats. Two hundred and thirty-five male and eighteen female Sprague-Dawley rats were used. Recombinant human PSAP (rPSAP) was administered intranasally 1 h (h) after reperfusion. PSAP small interfering ribonucleic acid (siRNA), GPR37 siRNA, and PI3K specific inhibitor LY294002 were administered intracerebroventricularly 48 h before MCAO. Infarct volume, neurological score, immunofluorescence staining, Western blot, Fluoro-Jade C (FJC) and TUNEL staining were examined. The expression of endogenous PSAP and GPR37 were increased after MCAO. Intranasal administration of rPSAP reduced brain infarction, neuronal apoptosis, and improved both short- and long-term neurological function. Knockdown of endogenous PSAP aggravated neurological deficits. Treatment with exogenous rPSAP increased PI3K expression, Akt and ASK1 phosphorylation, and Bcl-2 expression; phosphorylated-JNK and Bax levels were reduced along with the number of FJC and TUNEL positive neurons. GPR37 siRNA and LY294002 abolished the anti-apoptotic effect of rPSAP at 24 h after MCAO. In conclusion, rPSAP attenuated neuronal apoptosis and improved neurological function through GPR37/PI3K/Akt/ASK1 pathway after MCAO in rats. Therefore, further exploration of PSAP as a potential treatment option in ischemic stroke is warranted.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Jinlan Li
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Nathanael Matei
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA 90007, USA
| | - Wenna Wang
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Lihui Tang
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Jinwei Pang
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Xue Li
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Lili Fang
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - John H Zhang
- Department of Anesthesiology and Basic Sciences, Loma Linda University, School of Medicine, Loma Linda, CA, USA.
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Sandoval C, Nahuelqueo K, Mella L, Recabarren B, Souza-Mello V, Farías J. Role of long-chain polyunsaturated fatty acids, eicosapentaenoic and docosahexaenoic, in the regulation of gene expression during the development of obesity: a systematic review. Front Nutr 2023; 10:1288804. [PMID: 38024342 PMCID: PMC10665854 DOI: 10.3389/fnut.2023.1288804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction There exists a correlation between obesity and the consumption of an excessive amount of calories, with a particular association between the intake of saturated and trans fats and an elevated body mass index. Omega-3 fatty acids, specifically eicosapentaenoic and docosahexaenoic acids, have been identified as potential preventive nutrients against the cardiometabolic hazards that are commonly associated with obesity. The objective of this comprehensive review was to elucidate the involvement of long-chain polyunsaturated fatty acids, specifically eicosapentaenoic acid and docosahexaenoic acid, in the modulation of gene expression during the progression of obesity. Methods The present analysis focused on primary studies that investigated the association between long-chain polyunsaturated fatty acids, gene expression, and obesity in individuals aged 18 to 65 years. Furthermore, a comprehensive search was conducted on many databases until August 2023 to identify English-language scholarly articles utilizing MeSH terms and textual content pertaining to long-chain polyunsaturated fatty acids, gene expression, obesity, and omega-3. The protocol has been registered on PROSPERO under the registration number CRD42022298395. A comprehensive analysis was conducted on a total of nine primary research articles. All research collected and presented quantitative data. Results and Discussion The findings of our study indicate that the incorporation of eicosapentaenoic and docosahexaenoic acid may have potential advantages and efficacy in addressing noncommunicable diseases, including obesity. This can be attributed to their anti-inflammatory properties and their ability to regulate genes associated with obesity, such as PPARγ and those within the ALOX family. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022298395, CRD42022298395.
Collapse
Affiliation(s)
- Cristian Sandoval
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Osorno, Chile
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Departamento de Ciencias Preclínicas, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Karen Nahuelqueo
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Luciana Mella
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Blanca Recabarren
- Carrera de Tecnología Médica, Facultad de Medicina, Universidad de La Frontera, Temuco, Chile
| | - Vanessa Souza-Mello
- Laboratorio de Morfometría, Metabolismo y Enfermedades Cardiovasculares, Centro Biomédico, Instituto de Biología, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
10
|
Thakur K, Khan H, Grewal AK, Singh TG. Nuclear orphan receptors: A novel therapeutic agent in neuroinflammation. Int Immunopharmacol 2023; 124:110845. [PMID: 37690241 DOI: 10.1016/j.intimp.2023.110845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023]
Abstract
Orphan receptors constitute a historically varied subsection of a superfamily of nuclear receptors. Nuclear receptors regulate gene expression in response to ligand signals and are particularly alluring therapeutic targets for chronic illnesses. Neuroinflammation and neurodegenerative diseases have been linked to these orphan nuclear receptors. Preclinical and clinical evidence suggests that orphan receptors could serve as future targets in neuroinflammation, such as Parkinson's disease (PD), Alzheimer's Disease (AD), Huntington's Disease (HD), Multiple Sclerosis (MS), and Cerebral Ischemia. Given the therapeutic relevance of certain orphan receptors in a variety of disorders, their potential in neuroinflammation remains unproven. There is substantial evidence that ligand-activated transcription factors have great promise for preventing neurodegenerative and neurological disorders, with certain orphan nuclear receptors i.e., PPARγ, NR4As, and orphan GPCRs holding particularly high potential. Based on previous findings, we attempted to determine the contribution of PPAR, NR4As, and orphan GPCRs-regulated neuroinflammation to the pathogenesis of these disorders and their potential to become novel therapeutic targets.
Collapse
Affiliation(s)
- Kiran Thakur
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | | | | |
Collapse
|
11
|
Zhang J, Xu Y, Wei C, Yin Z, Pan W, Zhao M, Ding W, Xu S, Liu J, Yu J, Ye J, Ye D, Qin JJ, Wan J, Wang M. Macrophage neogenin deficiency exacerbates myocardial remodeling and inflammation after acute myocardial infarction through JAK1-STAT1 signaling. Cell Mol Life Sci 2023; 80:324. [PMID: 37824022 PMCID: PMC11072237 DOI: 10.1007/s00018-023-04974-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Immune response plays a crucial role in post-myocardial infarction (MI) myocardial remodeling. Neogenin (Neo1), a multifunctional transmembrane receptor, plays a critical role in the immune response; however, whether Neo1 participates in pathological myocardial remodeling after MI is unclear. Our study found that Neo1 expression changed significantly after MI in vivo and after LPS + IFN-γ stimulation in bone marrow-derived macrophages (BMDMs) in vitro. Neo1 functional deficiency (using a neutralizing antibody) and macrophage-specific Neo1 deficiency (induced by Neo1flox/flox;Cx3cr1cre mice) increased infarction size, enhanced cardiac fibrosis and cardiomyocyte apoptosis, and exacerbated left ventricular dysfunction post-MI in mice. Mechanistically, Neo1 deficiency promoted macrophage infiltration into the ischemic myocardium and transformation to a proinflammatory phenotype, subsequently exacerbating the inflammatory response and impairing inflammation resolution post-MI. Neo1 deficiency regulated macrophage phenotype and function, possibly through the JAK1-STAT1 pathway, as confirmed in BMDMs in vitro. Blocking the JAK1-STAT1 pathway with fludarabine phosphate abolished the impact of Neo1 on macrophage phenotype and function, inflammatory response, inflammation resolution, cardiomyocyte apoptosis, cardiac fibrosis, infarction size and cardiac function. In conclusion, Neo1 deficiency aggravates inflammation and left ventricular remodeling post-MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway. These findings highlight the anti-inflammatory potential of Neo1, offering new perspectives for therapeutic targets in MI treatment. Neo1 deficiency aggravated inflammation and left ventricular remodeling after MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway.
Collapse
Affiliation(s)
- Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yao Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Cheng Wei
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Wei Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Wen Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuwan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jianfang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Junping Yu
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Juan-Juan Qin
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Center for Healthy Aging, Wuhan University School of Nursing, Wuhan, China.
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, 238 Jiefang Road, Wuhan, 430060, China.
- Department of Cardiology, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cardiology, Cardiovascular Research Institute, Wuhan University, Wuhan, China.
| |
Collapse
|
12
|
Bolinger AA, Frazier A, La JH, Allen JA, Zhou J. Orphan G Protein-Coupled Receptor GPR37 as an Emerging Therapeutic Target. ACS Chem Neurosci 2023; 14:3318-3334. [PMID: 37676000 PMCID: PMC11144446 DOI: 10.1021/acschemneuro.3c00479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are successful druggable targets, making up around 35% of all FDA-approved medications. However, a large number of receptors remain orphaned, with no known endogenous ligand, representing a challenging but untapped area to discover new therapeutic targets. Among orphan GPCRs (oGPCRs) of interest, G protein-coupled receptor 37 (GPR37) is highly expressed in the central nervous system (CNS), particularly in the spinal cord and oligodendrocytes. While its cellular signaling mechanisms and endogenous receptor ligands remain elusive, GPR37 has been implicated in several important neurological conditions, including Parkinson's disease (PD), inflammation, pain, autism, and brain tumors. GPR37 structure, signaling, emerging physiology, and pharmacology are reviewed while integrating a discussion on potential therapeutic indications and opportunities.
Collapse
Affiliation(s)
- Andrew A. Bolinger
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Andrew Frazier
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jun-Ho La
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - John A. Allen
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| |
Collapse
|
13
|
Pluta R. The Dual Role of Autophagy in Postischemic Brain Neurodegeneration of Alzheimer's Disease Proteinopathy. Int J Mol Sci 2023; 24:13793. [PMID: 37762096 PMCID: PMC10530906 DOI: 10.3390/ijms241813793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy is a self-defense and self-degrading intracellular system involved in the recycling and elimination of the payload of cytoplasmic redundant components, aggregated or misfolded proteins and intracellular pathogens to maintain cell homeostasis and physiological function. Autophagy is activated in response to metabolic stress or starvation to maintain homeostasis in cells by updating organelles and dysfunctional proteins. In neurodegenerative diseases, such as cerebral ischemia, autophagy is disturbed, e.g., as a result of the pathological accumulation of proteins associated with Alzheimer's disease and their structural changes. Postischemic brain neurodegeneration, such as Alzheimer's disease, is characterized by the accumulation of amyloid and tau protein. After cerebral ischemia, autophagy was found to be activated in neuronal, glial and vascular cells. Some studies have shown the protective properties of autophagy in postischemic brain, while other studies have shown completely opposite properties. Thus, autophagy is now presented as a double-edged sword with possible therapeutic potential in brain ischemia. The exact role and regulatory pathways of autophagy that are involved in cerebral ischemia have not been conclusively elucidated. This review aims to provide a comprehensive look at the advances in the study of autophagy behavior in neuronal, glial and vascular cells for ischemic brain injury. In addition, the importance of autophagy in neurodegeneration after cerebral ischemia has been highlighted. The review also presents the possibility of modulating the autophagy machinery through various compounds on the development of neurodegeneration after cerebral ischemia.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| |
Collapse
|
14
|
Harwood JL. Polyunsaturated Fatty Acids: Conversion to Lipid Mediators, Roles in Inflammatory Diseases and Dietary Sources. Int J Mol Sci 2023; 24:ijms24108838. [PMID: 37240183 DOI: 10.3390/ijms24108838] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are important components of the diet of mammals. Their role was first established when the essential fatty acids (EFAs) linoleic acid and α-linolenic acid were discovered nearly a century ago. However, most of the biochemical and physiological actions of PUFAs rely on their conversion to 20C or 22C acids and subsequent metabolism to lipid mediators. As a generalisation, lipid mediators formed from n-6 PUFAs are pro-inflammatory while those from n-3 PUFAs are anti-inflammatory or neutral. Apart from the actions of the classic eicosanoids or docosanoids, many newly discovered compounds are described as Specialised Pro-resolving Mediators (SPMs) which have been proposed to have a role in resolving inflammatory conditions such as infections and preventing them from becoming chronic. In addition, a large group of molecules, termed isoprostanes, can be generated by free radical reactions and these too have powerful properties towards inflammation. The ultimate source of n-3 and n-6 PUFAs are photosynthetic organisms which contain Δ-12 and Δ-15 desaturases, which are almost exclusively absent from animals. Moreover, the EFAs consumed from plant food are in competition with each other for conversion to lipid mediators. Thus, the relative amounts of n-3 and n-6 PUFAs in the diet are important. Furthermore, the conversion of the EFAs to 20C and 22C PUFAs in mammals is rather poor. Thus, there has been much interest recently in the use of algae, many of which make substantial quantities of long-chain PUFAs or in manipulating oil crops to make such acids. This is especially important because fish oils, which are their main source in human diets, are becoming limited. In this review, the metabolic conversion of PUFAs into different lipid mediators is described. Then, the biological roles and molecular mechanisms of such mediators in inflammatory diseases are outlined. Finally, natural sources of PUFAs (including 20 or 22 carbon compounds) are detailed, as well as recent efforts to increase their production.
Collapse
Affiliation(s)
- John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| |
Collapse
|
15
|
Ziqing Z, Yunpeng L, Yiqi L, Yang W. Friends or foes: The mononuclear phagocyte system in ischemic stroke. Brain Pathol 2023; 33:e13151. [PMID: 36755470 PMCID: PMC10041168 DOI: 10.1111/bpa.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
Ischemic stroke (IS) is a major cause of disability and death in adults, and the immune response plays an indispensable role in its pathological process. After the onset of IS, an inflammatory storm, with the infiltration and mobilization of the mononuclear phagocyte system (MPS), is triggered in the brain. Microglia are rapidly activated in situ, followed by waves of circulating monocytes into the ischemic area. Activated microglia and monocytes/macrophages are mainly distributed in the peri-infarct area. These cells have similar morphology and functions, such as secreting cytokines and phagocytosis. Previously, the presence of the MPS was considered a marker of an exacerbated inflammatory response that contributes to brain damage. However, recent studies have suggested a rather complicated role of the MPS in IS. Here, we reviewed articles focusing on various functions of the MPS among different phases of IS, including recruitment, polarization, phagocytosis, angiogenesis, and interaction with other types of cells. Moreover, due to the characteristics of the MPS, we also noted clinical research addressing alterations in the MPS as potential biomarkers for IS patients for the purposes of predicting prognosis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhang Ziqing
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yunpeng
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Liu Yiqi
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| | - Wang Yang
- Department of NeurosurgeryBeijing Chao‐Yang Hospital, Capital Medical UniversityBeijingChina
| |
Collapse
|
16
|
Zhu X, Yang M, Yang L. Isoflurane Postconditioning Alleviates Ischemic Neuronal Injury Via MiR-384-5p Regulated Autophagy. Neuroscience 2023; 517:26-36. [PMID: 36707017 DOI: 10.1016/j.neuroscience.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
The purpose of the study was to investigate the effect of isoflurane postconditioning on neuron injury in MCAO (middle cerebral artery occlusion) rats and its molecular mechanism of affecting autophagy through miR-384-5p/ATG5 (autophagy-related protein 5). HT22 cells (mouse hippocampal neuronal cell line) were exposed to 1.5% isoflurane for 30 min after OGD/R (oxygen-glucose deprivation/reoxygenation). Flow cytometry and CCK-8 kit were used to analyze changes in apoptosis and cell viability. The level of miR-384-5p was detected by qRT-PCR. Targetscan database prediction combined with dual luciferase reporter gene assay confirmed ATG5 as a target molecule downstream of miR-384-5p. In addition, western blot results confirmed that isoflurane postconditioning regulated miR-384-5p/ATG5 and significantly inhibited the expression of apoptosis-related proteins. Meanwhile, immunofluorescence staining for LC3II positivity combined with western blot results revealed that isoflurane postconditioning significantly inhibited autophagy. In vivo, MCAO induced neuronal injury for 90 min, followed by 24-h reperfusion. Isoflurane postconditioning (Iso) group underwent 1.5% isoflurane postconditioning for 60 min after reperfusion. Neurological scoring and TTC staining were used to evaluate the protective effect of isoflurane post-treatment on neurological injury, respectively. TUNEL staining and western blot results confirmed that isoflurane post-conditioning could regulate miR-384-5p and inhibit apoptosis. Immunofluorescence staining and western blot results confirmed that isoflurane post-conditioning inhibited autophagy in MCAO rats. Based on the above results, we speculated that the molecular mechanism of isoflurane post-conditioning to alleviate ischemic neuronal injury may be related to the regulation of miR-384-5p/ATG5-mediated autophagy.
Collapse
Affiliation(s)
- Xin Zhu
- The First Affiliated Hospital of Dalian Medical University, China
| | - Mei Yang
- The First Affiliated Hospital of Dalian Medical University, China
| | - Liu Yang
- The First Affiliated Hospital of Dalian Medical University, China.
| |
Collapse
|
17
|
He F, Gao F, Cai N, Jiang M, Wu C. Chlorogenic acid enhances alveolar macrophages phagocytosis in acute respiratory distress syndrome by activating G protein-coupled receptor 37 (GPR 37). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154474. [PMID: 36194973 DOI: 10.1016/j.phymed.2022.154474] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 09/10/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Impaired alveolar macrophages phagocytosis can contribute to pathogenesis of acute respiratory distress syndrome (ARDS) and negatively impacts clinical outcomes. Chlorogenic acid (CGA) is a naturally occurring polyphenolic compound with potential anti-inflammatory and antioxidant bioactivities. Studies have shown that CGA plays a protective role in ARDS, however, the precise protective mechanism of CGA against ARDS, is still unclear. PURPOSE The aim of this study was to investigate whether CGA enhances alveolar macrophages phagocytosis to attenuate lung injury during ARDS. METHODS RAW264.7 cells were stimulated with lipopolysaccharides (100 μg/ml for 24 h) and treated with CGA (100, 200, and 400 μM CGA for 1 h) to measure pro-inflammatory cytokine levels, GPR37 expression and macrophages phagocytosis. Mouse models of ARDS induced by cecal ligation and perforation (CLP) surgery were treated with CGA (100 or 200 mg/kg) to investigate lung inflammatory injury and alveolar macrophages phagocytosis. Computational modeling was performed to examine potential binding sites of G protein-coupled receptor 37 (GPR37) with CGA, and the results were validated by interfering with the binding sites. RESULT In vitro, CGA notably ameliorated inflammatory response and increased phagocytosis in lipopolysaccharides-induced RAW264.7 cells. In vivo, CGA administration significantly alleviated lung inflammatory injury, decreased the bacteria load in the lung, promoted alveolar macrophages phagocytosis and improved the survival rate in mice with CLP-induced ARDS. Moreover, CGA markedly upregulated the expression of GPR37 in vivo and in vitro. However, the protective effect of CGA against ARDS were reversed after silencing the expression of GPR37. CONCLUSION CGA has a protective effect against ARDS and may enhance alveolar macrophages phagocytosis and attenuate lung inflammatory injury by upregulating GPR37 expression.
Collapse
Affiliation(s)
- Fei He
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China..
| | - Fengjuan Gao
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Nan Cai
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Min Jiang
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Chao Wu
- Department of Infectious Disease, Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| |
Collapse
|
18
|
Inflammation and Infection in Pain and the Role of GPR37. Int J Mol Sci 2022; 23:ijms232214426. [PMID: 36430912 PMCID: PMC9692891 DOI: 10.3390/ijms232214426] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Inflammation is known to cause pain, and pain is of one of the cardinal signs of inflammation. Mounting evidence suggests that acute inflammation also resolves pain through specialized pro-resolving mediators (SPMs) and macrophage signaling. GPR37 is expressed by neurons and oligodendrocytes in the brain and has been implicated in multiple disorders, such as demyelination, Parkinson's disease, stroke, and cancer. Recent studies have demonstrated that GPR37 is expressed by macrophages and confers protection against infection by bacteria and parasites. Furthermore, GPR37 promotes the resolution of inflammatory pain and infection-induced pain, as the duration of pain after tissue injury and infection is prolonged in mice lacking Gpr37. Mechanistically, activation of GPR37 enhances macrophage phagocytosis, and Gpr37-deficient macrophages exhibit dysregulations of pro-inflammatory and anti-inflammatory cytokines, switching from M2- to M1-like phenotypes. We also discuss novel ligands of GPR37, including neuroprotectin D1 (NPD1), a SPM derived from docosahexaenoic acid (DHA), and bone-derived hormone osteocalcin (OCN), which can suppress oligodendrocyte differentiation and myelination. NPD1 stimulates macrophage phagocytosis via GPR37 and exhibits potent analgesic actions in various animal models of inflammatory and neuropathic pain. Targeting GPR37 may lead to novel therapeutics for treating inflammation, infection, pain, and neurological diseases.
Collapse
|
19
|
Peng L, Hu G, Yao Q, Wu J, He Z, Law BYK, Hu G, Zhou X, Du J, Wu A, Yu L. Microglia autophagy in ischemic stroke: A double-edged sword. Front Immunol 2022; 13:1013311. [PMID: 36466850 PMCID: PMC9708732 DOI: 10.3389/fimmu.2022.1013311] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/25/2022] [Indexed: 08/14/2023] Open
Abstract
Ischemic stroke (IS) is one of the major types of cerebrovascular diseases causing neurological morbidity and mortality worldwide. In the pathophysiological process of IS, microglia play a beneficial role in tissue repair. However, it could also cause cellular damage, consequently leading to cell death. Inflammation is characterized by the activation of microglia, and increasing evidence showed that autophagy interacts with inflammation through regulating correlative mediators and signaling pathways. In this paper, we summarized the beneficial and harmful effects of microglia in IS. In addition, we discussed the interplay between microglia autophagy and ischemic inflammation, as along with its application in the treatment of IS. We believe this could help to provide the theoretical references for further study into IS and treatments in the future.
Collapse
Affiliation(s)
- Li Peng
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medicine Imaging, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Guangqiang Hu
- Department of Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Qianfang Yao
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ziyang He
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Guishan Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Junrong Du
- Key Laboratory of Drug Targeting and Drug Delivery Systems of Ministry of Education, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, School of Pharmacy, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Medicine Imaging, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
20
|
Hua Y, Zhai Y, Wang G, Wang N, Wu Q, Huang Q, Seto S, Wang Y. Tong-Qiao-Huo-Xue decoction activates PI3K/Akt/mTOR pathway to reduce BMECs autophagy after cerebral ischemia/reperfusion injury. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115585. [PMID: 35921993 DOI: 10.1016/j.jep.2022.115585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tong-Qiao-Huo-Xue Decoction (TQHXD) is a traditional classic Chinese Medicinal Formula (CMF) used for clinical treatment of ischemic stroke. TQHXD leads to improvement in the symptoms of the acute period of cerebral infarction and recovery period after stroke. Our previous studies also showed that TQHXD produced a significant protective effect on the brain after cerebral ischemia-reperfusion (I/R) injury. It is reported that autophagy is closely related to ischemic brain injury; however, the functional contribution of TQHXD to brain microvascular endothelial cell (BMEC) autophagy and its underlying mechanism remains unclear. AIM OF THE STUDY The purpose of this study was to investigate the effects and mechanism of TQHXD in inhibiting cerebral ischemia-induced endothelial autophagy. MATERIALS AND METHODS The high-performance liquid chromatography (HPLC) fingerprint of the chemical constituents from TQHXD was established for the quality control, and the Longa method was used to evaluate the efficacy of TQHXD in rats with middle cerebral artery occlusion (MCAO). The expression of LC3 was determined by immunofluorescence double staining. To evaluate the protective effects of TQHXD-containing cerebrospinal fluid (CSF) on BMECs injured by oxygen-glucose deprivation and reperfusion, cell survival rate was determined using the CCK-8 assay and cell apoptosis was determined by fluorescein isothiocyanate (FITC)-Annexin V/PI. Autophagy was detected using transmission electron microscopy. RESULTS The results showed that TQHXD-CSF significantly ameliorated oxygen-glucose deprivation/reperfusion (OGD/R)-induced injury in BMECs. Confocal microscopy and Western blot results showed that TQHXD-CSF reduced autophagy-related protein expression and autophagosome number. The results of the western blotting indicated that TQHXD-CSF caused a marked increase in the phosphorylation of protein kinase B and phosphoinsotide-3 kinase (Akt/p-Akt and PI3K/p-PI3K, respectively) and their expression levels were down-regulated after treatment with pathway inhibitor, ZSTK474. Furthermore, in a MCAO model in rats, TQHXD markedly increased p-PI3K, p-Akt and p-mTOR, whereas the autophagy related proteins decreased. CONCLUSIONS Taken together, these findings demonstrate that TQHXD protects against ischemic insult by inhibiting autophagy through the regulation of the PI3K/Akt/mammalian target of rapamycin (mTOR) pathway and that TQHXD may have therapeutic value for protecting BMECs from cerebral ischemia.
Collapse
Affiliation(s)
- Yaping Hua
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, 230012, PR China
| | - Yan Zhai
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, 230012, PR China
| | - Guangyun Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, 230012, PR China; College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China.
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, 230012, PR China.
| | - Qian Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, PR China; College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Qi Huang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, PR China
| | - Saiwang Seto
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yan Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, PR China; Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Traditional Chinese Medicine, Hefei, 230012, PR China; College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
21
|
McCrary MR, Jiang MQ, Jesson K, Gu X, Logun MT, Wu A, Gonsalves N, Karumbaiah L, Yu SP, Wei L. Glycosaminoglycan scaffolding and neural progenitor cell transplantation promotes regenerative immunomodulation in the mouse ischemic brain. Exp Neurol 2022; 357:114177. [PMID: 35868359 PMCID: PMC10066865 DOI: 10.1016/j.expneurol.2022.114177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 02/08/2023]
Abstract
Ischemic stroke is a leading cause of morbidity and mortality, with limited treatments that can facilitate brain regeneration. Neural progenitor cells (NPCs) hold promise for replacing tissue lost to stroke, and biomaterial approaches may improve their efficacy to overcome hurdles in clinical translation. The immune response and its role in stroke pathogenesis and regeneration may interplay with critical mechanisms of stem cell and biomaterial therapies. Cellular therapy can modulate the immune response to reduce toxic neuroinflammation early after ischemia. However, few studies have attempted to harness the regenerative effects of neuroinflammation to augment recovery. Our previous studies demonstrated that intracerebrally transplanted NPCs encapsulated in a chondroitin sulfate-A hydrogel (CS-A + NPCs) can improve vascular regeneration after stroke. In this paper, we found that CS-A + NPCs affect the microglia/macrophage response to promote a regenerative phenotype following stroke in mice. Following transplantation, PPARγ-expressing microglia/macrophages, and MCP-1 and IL-10 protein levels are enhanced. Secreted immunomodulatory factor expression of other factors was altered compared to NPC transplantation alone. Post-stroke depression-like behavior was reduced following cellular and material transplantation. Furthermore, we showed in cultures that microglia/macrophages encapsulated in CS-A had increased expression of angiogenic and arteriogenic mediators. Neutralization with anti-IL-10 antibody negated these effects in vitro. Cumulatively, this work provides a framework for understanding the mechanisms by which immunomodulatory biomaterials can enhance the regenerative effects of cellular therapy for ischemic stroke and other brain injuries.
Collapse
Affiliation(s)
- Myles R McCrary
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael Q Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Kaleena Jesson
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Meghan T Logun
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA; Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA, USA
| | - Anika Wu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nathan Gonsalves
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA; Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA, USA
| | - Lohitash Karumbaiah
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA; Division of Neuroscience, Biomedical and Translational Sciences Institute, University of Georgia, Athens, GA, USA; Department of Animal and Dairy Science, College of Agriculture and Environmental Sciences, University of Georgia, Athens, GA, USA
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
22
|
Zhang S, Lu Y, Shi W, Ren Y, Xiao K, Chen W, Li L, Zhao J. SIRT1/FOXO1 Axis-Mediated Hippocampal Angiogenesis is Involved in the Antidepressant Effect of Chaihu Shugan San. Drug Des Devel Ther 2022; 16:2783-2801. [PMID: 36039087 PMCID: PMC9419814 DOI: 10.2147/dddt.s370825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/12/2022] [Indexed: 11/23/2022] Open
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Shan Zhang
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Yujia Lu
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Wei Shi
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Yi Ren
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Kaihui Xiao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Wei Chen
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Li Li
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Jingjie Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
- Department of Integrated Traditional and Western Medicine, Capital Medical University, Beijing, 100050, People’s Republic of China
- Correspondence: Jingjie Zhao, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Beijing, 100050, People’s Republic of China, Tel/Fax +86 10-63139096, Email
| |
Collapse
|
23
|
Osteocalcin Alleviates Lipopolysaccharide-Induced Acute Inflammation via Activation of GPR37 in Macrophages. Biomedicines 2022; 10:biomedicines10051006. [PMID: 35625743 PMCID: PMC9138386 DOI: 10.3390/biomedicines10051006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022] Open
Abstract
The G protein-coupled receptor 37 (GPR37) has been reported to be expressed in macrophages and the activation of GPR37 by its ligand/agonist, and it can regulate macrophage-associated functions and inflammatory responses. Since our previous work identified that osteocalcin (OCN) acts as an endogenous ligand for GPR37 and can elicit various intracellular signals by interacting with GPR37, we thus hypothesized that OCN may also play a functional role in macrophage through the activation of GPR37. To verify the hypothesis, we conducted a series of in vivo and in vitro studies in lipopolysaccharide (LPS)-challenged mice and primary cultured macrophages. Our results reveal that the OCN gene deletion (OCN−/−) and wild type (WT) mice showed comparable death rates and inflammatory cytokines productions in response to a lethal dose of LPS exposure. However, the detrimental effects caused by LPS were significantly ameliorated by exogenous OCN treatments in both WT and OCN−/− mice. Notably, the protective effects of OCN were absent in GPR37−/− mice. In coordination with the in vivo results, our in vitro studies further illustrated that OCN triggered intracellular responses via GPR37 in peritoneal macrophages by regulating the release of inflammatory factors and macrophage phagocytic function. Finally, we exhibited that the adoptive transfer of OCN-treated macrophages from WT mice significantly inhibits the release of pro-inflammatory cytokines in GPR37−/− mice exposed to LPS. Taken together, these findings suggest a protective role of OCN against LPS-caused acute inflammation, by the activation of GPR37 in macrophages, and provide a potential application of the activation of the OCN/GPR37 regulatory axis as a therapeutic strategy for inflammatory diseases.
Collapse
|
24
|
Massimi M, Di Pietro C, La Sala G, Matteoni R. Mouse Mutants of Gpr37 and Gpr37l1 Receptor Genes: Disease Modeling Applications. Int J Mol Sci 2022; 23:ijms23084288. [PMID: 35457105 PMCID: PMC9025225 DOI: 10.3390/ijms23084288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023] Open
Abstract
The vertebrate G protein–coupled receptor 37 and G protein–coupled receptor 37-like 1 (GPR37 and GPR37L1) proteins have amino acid sequence homology to endothelin and bombesin-specific receptors. The prosaposin glycoprotein, its derived peptides, and analogues have been reported to interact with and activate both putative receptors. The GPR37 and GPR37L1 genes are highly expressed in human and rodent brains. GPR37 transcripts are most abundant in oligodendrocytes and in the neurons of the substantia nigra and hippocampus, while the GPR37L1 gene is markedly expressed in cerebellar Bergmann glia astrocytes. The human GPR37 protein is a substrate of parkin, and its insoluble form accumulates in brain samples from patients of inherited juvenile Parkinson’s disease. Several Gpr37 and Gpr37l1 mouse mutant strains have been produced and applied to extensive in vivo and ex vivo analyses of respective receptor functions and involvement in brain and other organ pathologies. The genotypic and phenotypic characteristics of the different mouse strains so far published are reported and discussed, and their current and proposed applications to human disease modeling are highlighted.
Collapse
|
25
|
Emerging Roles for the Orphan GPCRs, GPR37 and GPR37 L1, in Stroke Pathophysiology. Int J Mol Sci 2022; 23:ijms23074028. [PMID: 35409385 PMCID: PMC9000135 DOI: 10.3390/ijms23074028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
Recent studies have shed light on the diverse and complex roles of G-protein coupled receptors (GPCRs) in the pathophysiology of stroke. These receptors constitute a large family of seven transmembrane-spanning proteins that play an intricate role in cellular communication mechanisms which drive both tissue injury and repair following ischemic stroke. Orphan GPCRs represent a unique sub-class of GPCRs for which no natural ligands have been found. Interestingly, the majority of these receptors are expressed within the central nervous system where they represent a largely untapped resource for the treatment of neurological diseases. The focus of this review will thus be on the emerging roles of two brain-expressed orphan GPCRs, GPR37 and GPR37 L1, in regulating various cellular and molecular processes underlying ischemic stroke.
Collapse
|
26
|
Specialized Proresolving Lipid Mediators: A Potential Therapeutic Target for Atherosclerosis. Int J Mol Sci 2022; 23:ijms23063133. [PMID: 35328553 PMCID: PMC8955102 DOI: 10.3390/ijms23063133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease (CVD) is a global public health issue due to its high morbidity, mortality, and economic impact. The implementation of innovative therapeutic alternatives for CVD is urgently required. Specialized proresolving lipid mediators (SPMs) are bioactive compounds derived from ω-3 and ω-6 fatty acids, integrated into four families: Lipoxins, Resolvins, Protectins, and Maresins. SPMs have generated interest in recent years due to their ability to promote the resolution of inflammation associated with the pathogeneses of numerous illnesses, particularly CVD. Several preclinical studies in animal models have evidenced their ability to decrease the progression of atherosclerosis, intimal hyperplasia, and reperfusion injury via diverse mechanisms. Large-scale clinical trials are required to determine the effects of SPMs in humans. This review integrates the currently available knowledge of the therapeutic impact of SPMs in CVD from preclinical and clinical studies, along with the implicated molecular pathways. In vitro results have been promising, and as such, SPMs could soon represent a new therapeutic alternative for CVD.
Collapse
|
27
|
Hou W, Hao Y, Sun L, Zhao Y, Zheng X, Song L. The dual roles of autophagy and the GPCRs-mediating autophagy signaling pathway after cerebral ischemic stroke. Mol Brain 2022; 15:14. [PMID: 35109896 PMCID: PMC8812204 DOI: 10.1186/s13041-022-00899-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Ischemic stroke, caused by a lack of blood supply in brain tissues, is the third leading cause of human death and disability worldwide, and usually results in sensory and motor dysfunction, cognitive impairment, and in severe cases, even death. Autophagy is a highly conserved lysosome-dependent process in which eukaryotic cells removal misfolded proteins and damaged organelles in cytoplasm, which is critical for energy metabolism, organelle renewal, and maintenance of intracellular homeostasis. Increasing evidence suggests that autophagy plays important roles in pathophysiological mechanisms under ischemic conditions. However, there are still controversies about whether autophagy plays a neuroprotective or damaging role after ischemia. G-protein-coupled receptors (GPCRs), one of the largest protein receptor superfamilies in mammals, play crucial roles in various physiological and pathological processes. Statistics show that GPCRs are the targets of about one-fifth of drugs known in the world, predicting potential values as targets for drug research. Studies have demonstrated that nutritional deprivation can directly or indirectly activate GPCRs, mediating a series of downstream biological processes, including autophagy. It can be concluded that there are interactions between autophagy and GPCRs signaling pathway, which provides research evidence for regulating GPCRs-mediated autophagy. This review aims to systematically discuss the underlying mechanism and dual roles of autophagy in cerebral ischemia, and describe the GPCRs-mediated autophagy, hoping to probe promising therapeutic targets for ischemic stroke through in-depth exploration of the GPCRs-mediated autophagy signaling pathway.
Collapse
Affiliation(s)
- Weichen Hou
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Li Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Yang Zhao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China
| | - Xiangyu Zheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| | - Lei Song
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Xinmin Street 71#, Changchun, 130021, China.
| |
Collapse
|
28
|
Veenit V, Zhang X, Ambrosini A, Sousa V, Svenningsson P. The Effect of Early Life Stress on Emotional Behaviors in GPR37KO Mice. Int J Mol Sci 2021; 23:410. [PMID: 35008836 PMCID: PMC8745300 DOI: 10.3390/ijms23010410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
GPR37 is an orphan G-protein-coupled receptor, a substrate of parkin which is linked to Parkinson's disease (PD) and affective disorders. In this study, we sought to address the effects of early life stress (ELS) by employing the paradigm of limited nesting material on emotional behaviors in adult GPR37 knockout (KO) mice. Our results showed that, while there was an adverse effect of ELS on various domains of emotional behaviors in wild type (WT) mice in a sex specific manner (anxiety in females, depression and context-dependent fear memory in males), GPR37KO mice subjected to ELS exhibited less deteriorated emotional behaviors. GPR37KO female mice under ELS conditions displayed reduced anxiety compared to WT mice. This was paralleled by lower plasma corticosterone in GPR37KO females and a lower increase in P-T286-CaMKII by ELS in the amygdala. GPR37KO male mice, under ELS conditions, showed better retention of hippocampal-dependent emotional processing in the passive avoidance behavioral task. GPR37KO male mice showed increased immobility in the forced swim task and increased P-T286-CaMKII in the ventral hippocampus under baseline conditions. Taken together, our data showed overall long-term effects of ELS-deleterious or beneficial depending on the genotype, sex of the mice and the emotional context.
Collapse
Affiliation(s)
- Vandana Veenit
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (X.Z.); (A.A.); (V.S.)
| | | | | | | | - Per Svenningsson
- Neuro Svenningsson, Department of Clinical Neuroscience, Karolinska Institutet, 171 76 Stockholm, Sweden; (X.Z.); (A.A.); (V.S.)
| |
Collapse
|
29
|
Owino S, Giddens MM, Jiang JG, Nguyen TT, Shiu FH, Lala T, Gearing M, McCrary MR, Gu X, Wei L, Yu SP, Hall RA. GPR37 modulates progenitor cell dynamics in a mouse model of ischemic stroke. Exp Neurol 2021; 342:113719. [PMID: 33839144 PMCID: PMC9826632 DOI: 10.1016/j.expneurol.2021.113719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 01/11/2023]
Abstract
The generation of neural stem and progenitor cells following injury is critical for the function of the central nervous system, but the molecular mechanisms modulating this response remain largely unknown. We have previously identified the G protein-coupled receptor 37 (GPR37) as a modulator of ischemic damage in a mouse model of stroke. Here we demonstrate that GPR37 functions as a critical negative regulator of progenitor cell dynamics and gliosis following ischemic injury. In the central nervous system, GPR37 is enriched in mature oligodendrocytes, but following injury we have found that its expression is dramatically increased within a population of Sox2-positive progenitor cells. Moreover, the genetic deletion of GPR37 did not alter the number of mature oligodendrocytes following injury but did markedly increase the number of both progenitor cells and injury-induced Olig2-expressing glia. Alterations in the glial environment were further evidenced by the decreased activation of oligodendrocyte precursor cells. These data reveal that GPR37 regulates the response of progenitor cells to ischemic injury and provides new perspectives into the potential for manipulating endogenous progenitor cells following stroke.
Collapse
Affiliation(s)
- Sharon Owino
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michelle M. Giddens
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jessie G. Jiang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - TrangKimberly T. Nguyen
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fu Hung Shiu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Trisha Lala
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;,Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Myles R. McCrary
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shan P. Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA;,Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA 30033, USA
| | - Randy A. Hall
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
30
|
Jiang MQ, Yu SP, Wei ZZ, Zhong W, Cao W, Gu X, Wu A, McCrary MR, Berglund K, Wei L. Conversion of Reactive Astrocytes to Induced Neurons Enhances Neuronal Repair and Functional Recovery After Ischemic Stroke. Front Aging Neurosci 2021; 13:612856. [PMID: 33841125 PMCID: PMC8032905 DOI: 10.3389/fnagi.2021.612856] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
The master neuronal transcription factor NeuroD1 can directly reprogram astrocytes into induced neurons (iNeurons) after stroke. Using viral vectors to drive ectopic ND1 expression in gliotic astrocytes after brain injury presents an autologous form of cell therapy for neurodegenerative disease. Cultured astrocytes transfected with ND1 exhibited reduced proliferation and adopted neuronal morphology within 2-3 weeks later, expressed neuronal/synaptic markers, and extended processes. Whole-cell recordings detected the firing of evoked action potentials in converted iNeurons. Focal ischemic stroke was induced in adult GFAP-Cre-Rosa-YFP mice that then received ND1 lentivirus injections into the peri-infarct region 7 days after stroke. Reprogrammed cells did not express stemness genes, while 2-6 weeks later converted cells were co-labeled with YFP (constitutively activated in astrocytes), mCherry (ND1 infection marker), and NeuN (mature neuronal marker). Approximately 66% of infected cells became NeuN-positive neurons. The majority (~80%) of converted cells expressed the vascular glutamate transporter (vGLUT) of glutamatergic neurons. ND1 treatment reduced astrogliosis, and some iNeurons located/survived inside of the savaged ischemic core. Western blotting detected higher levels of BDNF, FGF, and PSD-95 in ND1-treated mice. MultiElectrode Array (MEA) recordings in brain slices revealed that the ND1-induced reprogramming restored interrupted cortical circuits and synaptic plasticity. Furthermore, ND1 treatment significantly improved locomotor, sensorimotor, and psychological functions. Thus, conversion of endogenous astrocytes to neurons represents a plausible, on-site regenerative therapy for stroke.
Collapse
Affiliation(s)
- Michael Qize Jiang
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, United States
| | - Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, United States
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, United States
| | - Weiwei Zhong
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, United States
| | - Wenyuan Cao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, United States
| | - Anika Wu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Myles Randolph McCrary
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
| | - Ken Berglund
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affair Medical Center, Decatur, GA, United States
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
31
|
Lee CH. Role of specialized pro-resolving lipid mediators and their receptors in virus infection: a promising therapeutic strategy for SARS-CoV-2 cytokine storm. Arch Pharm Res 2021; 44:84-98. [PMID: 33398691 PMCID: PMC7781431 DOI: 10.1007/s12272-020-01299-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Unexpected viral infections outbreaks, significantly affect human health, leading to increased mortality and life disruption. Among them is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which emerged as a deadly pandemic, calling for intense research efforts on its pathogenicity mechanism and development of therapeutic strategies. In the SARS-CoV-2 cytokine storm, systemic inflammation has been associated with severe illness and mortality. Recent studies have demonstrated special pro-resolving lipids mediators (SPMs) lipoxins, resolvins, maresins, and protectins as potential therapeutic options for abnormal viral-triggered inflammation. Pro-resolving lipids mediators have shown great promise for the treatment of Herpes simplex virus, respiratory syncytial virus, human immunodeficiency virus, and hepatitis C virus. Based on this, studies are being conducted on their therapeutic effects in SARS-CoV-2 infection. In this review, we discussed SPMs and reviewed evidence from recent studies on SPMs as therapeutic options for viral infections, including SARS-CoV2. Based on our analysis of the previous study, we argue that SPMs are a potential treatment for SARS-CoV-2 infection and other viral infections. We expect further research on how SPMs modulate viral-triggered inflammation through G-protein-coupled receptors (GPCRs), and chemical stability and druggability of SPMs.
Collapse
Affiliation(s)
- Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul, 100-715, Republic of Korea.
| |
Collapse
|
32
|
Kang GJ, Kim EJ, Lee CH. Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation. Antioxidants (Basel) 2020; 9:antiox9121259. [PMID: 33321955 PMCID: PMC7764646 DOI: 10.3390/antiox9121259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Heart disease is the number one mortality disease in the world. In particular, cardiac fibrosis is considered as a major factor causing myocardial infarction and heart failure. In particular, oxidative stress is a major cause of heart fibrosis. In order to control such oxidative stress, the importance of nuclear factor erythropoietin 2 related factor 2 (NRF2) has recently been highlighted. In this review, we will discuss the activation of NRF2 by docosahexanoic acid (DHA), eicosapentaenoic acid (EPA), and the specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated lipids, including DHA and EPA. Additionally, we will discuss their effects on cardiac fibrosis via NRF2 activation.
Collapse
Affiliation(s)
- Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
- Correspondence: ; Tel.: +82-31-961-5213
| |
Collapse
|
33
|
Zheng Y, Han Z, Zhao H, Luo Y. MAPK: A Key Player in the Development and Progression of Stroke. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:248-256. [PMID: 32533818 DOI: 10.2174/1871527319666200613223018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/13/2022]
Abstract
Conclusion:
Stroke is a complex disease caused by genetic and environmental factors, and its etiological
mechanism has not been fully clarified yet, which brings great challenges to its effective prevention
and treatment. MAPK signaling pathway regulates gene expression of eukaryotic cells and basic cellular
processes such as cell proliferation, differentiation, migration, metabolism and apoptosis, which are
considered as therapeutic targets for many diseases. Up to now, mounting evidence has shown that
MAPK signaling pathway is involved in the pathogenesis and development of ischemic stroke. However,
the upstream kinase and downstream kinase of MAPK signaling pathway are complex and the
influencing factors are numerous, the exact role of MAPK signaling pathway in the pathogenesis of
ischemic stroke has not been fully elucidated. MAPK signaling molecules in different cell types in the
brain respond variously after stroke injury, therefore, the present review article is committed to summarizing
the pathological process of different cell types participating in stroke, discussed the mechanism
of MAPK participating in stroke. We further elucidated that MAPK signaling pathway molecules
can be used as therapeutic targets for stroke, thus promoting the prevention and treatment of stroke.
Collapse
Affiliation(s)
- Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
34
|
Urolithin A Prevents Focal Cerebral Ischemic Injury via Attenuating Apoptosis and Neuroinflammation in Mice. Neuroscience 2020; 448:94-106. [PMID: 32946950 DOI: 10.1016/j.neuroscience.2020.09.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/31/2022]
Abstract
Neuroinflammation contributes to neuronal death in cerebral ischemia. Urolithin A (UA), a gut microbial metabolite of ellagic acid, has emerged as a potential anti-inflammatory agent. However, its roles and precise mechanisms in stroke remain unknown. Here we found that UA treatment ameliorated infarction, neurological deficit scores, and spatial memory deficits after cerebral ischemia. Furthermore, UA significantly reduced neuron loss and promoted neurogenesis after ischemic stroke. We also found that UA attenuated apoptosis by regulating apoptotic-related proteins. Meanwhile, UA treatment inhibited glial activation via affecting inflammatory signaling pathways, specifically by enhancing cerebral AMPK and IκBa activation while decreasing the activation of Akt, P65NFκB, ERK, JNK, and P38MAPK. Our findings reveal a key role of UA against ischemic stroke through modulating apoptosis and neuroinflammation in mice.
Collapse
|
35
|
Ren Z, Xie P, Lv J, Hu Y, Guan Z, Chen L, Yu W. miR‑187‑3p inhibitor attenuates cerebral ischemia/reperfusion injury by regulating Seipin‑mediated autophagic flux. Int J Mol Med 2020; 46:1051-1062. [PMID: 32705147 PMCID: PMC7387098 DOI: 10.3892/ijmm.2020.4642] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/22/2020] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) have been reported to affect ischemia/reperfusion (I/R)-induced cerebral damage. miRNAs cause post-transcriptional gene silencing by binding to the protein-coding sequence (CDS) of mRNAs. Seipin has a potential role in regulating autophagic flux. The present study investigated the involvement of miR-187-3p in Seipin expression, autophagic flux and apoptosis in vitro, as well as the underlying mechanism, using PC12 cells exposed to oxygen-glucose deprivation/reoxygenation (OGD/R), which mimicked the process of I/R. In comparison with control PC12 cells, OGD/R caused an increase in the level of miR-187-3p and a decrease in Seipin protein levels without changes in the level of Seipin mRNA. Using bioinformatics analysis, it was identified that miR-187-3p could bind to the CDS of Seipin. miR-187-3p inhibitor attenuated the reduction in Seipin protein expression in OGD/R-treated PC12 cells. Following OGD/R, autophagic flux was reduced and apoptosis was enhanced, which were attenuated by inhibition of miR-187-3p. Compared with OGD/R-treated PC12 cells, Seipin knockdown further impaired autophagic flux and promoted neuronal apoptosis, which were insensitive to inhibition of miR-187-3p. Furthermore, treatment with miR-187-3p inhibitor could decrease the infarction volume in a rat model of middle cerebral artery occlusion/reperfusion. The present findings indicated that miR-187-3p inhibitor attenuated ischemia-induced cerebral damage by rescuing Seipin expression to improve autophagic flux.
Collapse
Affiliation(s)
- Zhenkui Ren
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Peng Xie
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ju Lv
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yumei Hu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ling Chen
- Laboratory of Reproductive Medicine, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenfeng Yu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
36
|
Zhao S, Xiao P, Cui H, Gong P, Lin C, Chen F, Tang Z. Hypothermia-Induced Ubiquitination of Voltage-Dependent Anion Channel 3 Protects BV2 Microglia Cells From Cytotoxicity Following Oxygen-Glucose Deprivation/Recovery. Front Mol Neurosci 2020; 13:100. [PMID: 32581711 PMCID: PMC7289978 DOI: 10.3389/fnmol.2020.00100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Hypothermia attenuates microglial activation and exerts a potential neuroprotective effect against cerebral ischemic-reperfusion (I/R) injury. However, the underlying mechanism remains to be elucidated. In this in vitro study, a model of oxygen-glucose deprivation, followed by recovery (OGD/R), was used to investigate whether hypothermia exerts anti-inflammatory and anti-apoptosis properties via enhanced ubiquitination and down-regulation of voltage-dependent anion channel 3 (VDAC3) expression. Methods: BV2 microglia were cultured under OGD for 4 h following reperfusion with or without hypothermia for 2, 4, or 8 h. M1 and M2 microglia markers [inducible nitric oxide synthase (iNOS) and arginase (Arg)1] were detected using immunofluorescence. The levels of pro-inflammatory cytokines [tumor necrosis factor (TNF) α, interleukin (IL)-1β], and anti-inflammatory factor (IL-10) were determined using enzyme-linked immunosorbent assay (ELISA). Mitochondrial membrane potential (ΔΨm) was assayed by JC-1 staining using a flow cytometer. Expression of caspase-3, cleaved caspase-3, and VDAC3 were assessed using western blot analysis. The cellular locations and interactions of ubiquitin and VDAC3 were identified using double immunofluorescence staining and immunoprecipitation (IP) assay. Also, the level of the VDAC3 mRNA was determined using a quantitative polymerase chain reaction (qPCR). Results: Hypothermia inhibited the OGD/R-induced microglia activation and differentiation into the M1 type with pro-inflammatory effect, whereas it promoted differentiation to the M2 type with anti-inflammatory effect. Hypothermia attenuated OGD/R-induced loss of Δψm, as well as the expression of apoptosis-associated proteins. Compared to normothermia, hypothermia increased the level of ubiquitinated VDAC3 in the BV2 microglia at both 2 and 8 h of reperfusion. Furthermore, hypothermia did not attenuate VDAC3 mRNA expression in OGD/R-induced microglia. Conclusions: Hypothermia treatment during reperfusion, attenuated OGD/R-induced inflammation, and apoptosis in BV2 microglia. This might be due to the promotion of VDAC3 ubiquitination, identifying VDAC3 as a new target of hypothermia.
Collapse
Affiliation(s)
- Shen Zhao
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.,Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Research, Fuzhou, China
| | - Peng Xiao
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.,Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Research, Fuzhou, China
| | - Hao Cui
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ping Gong
- Department of Emergency Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian City, China
| | - Caijing Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.,Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Research, Fuzhou, China
| | - Feng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.,Department of Emergency Medicine, Fujian Provincial Hospital, Fujian Institute of Emergency Research, Fuzhou, China
| | - Ziren Tang
- Department of Emergency Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
37
|
Determination of a Tumor-Promoting Microenvironment in Recurrent Medulloblastoma: A Multi-Omics Study of Cerebrospinal Fluid. Cancers (Basel) 2020; 12:cancers12061350. [PMID: 32466393 PMCID: PMC7352284 DOI: 10.3390/cancers12061350] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/07/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Molecular classification of medulloblastoma (MB) is well-established and reflects the cell origin and biological properties of tumor cells. However, limited data is available regarding the MB tumor microenvironment. Here, we present a mass spectrometry-based multi-omics pilot study of cerebrospinal fluid (CSF) from recurrent MB patients. A group of age-matched patients without a neoplastic disease was used as control cohort. Proteome profiling identified characteristic tumor markers, including FSTL5, ART3, and FMOD, and revealed a strong prevalence of anti-inflammatory and tumor-promoting proteins characteristic for alternatively polarized myeloid cells in MB samples. The up-regulation of ADAMTS1, GAP43 and GPR37 indicated hypoxic conditions in the CSF of MB patients. This notion was independently supported by metabolomics, demonstrating the up-regulation of tryptophan, methionine, serine and lysine, which have all been described to be induced upon hypoxia in CSF. While cyclooxygenase products were hardly detectable, the epoxygenase product and beta-oxidation promoting lipid hormone 12,13-DiHOME was found to be strongly up-regulated. Taken together, the data suggest a vicious cycle driven by autophagy, the formation of 12,13-DiHOME and increased beta-oxidation, thus promoting a metabolic shift supporting the formation of drug resistance and stem cell properties of MB cells. In conclusion, the different omics-techniques clearly synergized and mutually supported a novel model for a specific pathomechanism.
Collapse
|
38
|
Li F, Zhao H, Li G, Zhang S, Wang R, Tao Z, Zheng Y, Han Z, Liu P, Ma Q, Luo Y. Intravenous antagomiR-494 lessens brain-infiltrating neutrophils by increasing HDAC2-mediated repression of multiple MMPs in experimental stroke. FASEB J 2020; 34:6934-6949. [PMID: 32239566 DOI: 10.1096/fj.201903127r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022]
Abstract
Neutrophil infiltration and phenotypic transformation are believed to contribute to neuronal damage in ischemic stroke. Emerging evidence suggests that histone deacetylase 2 (HDAC2) is an epigenetic regulator of inflammatory cells. Here, we aimed to investigate whether microRNA-494 (miR-494) affects HDAC2-mediated neutrophil infiltration and phenotypic shift. MiR-494 levels in neutrophils from acute ischemic stroke (AIS) patients were detected by real-time PCR. Chromatin Immunoprecipitation (ChIP)-Seq was performed to clarify which genes are the binding targets of HDAC2. Endothelial cells and cortical neurons were subjected to oxygen-glucose deprivation (OGD), transwell assay was conducted to examine neutrophil migration through endothelial cells, and neuronal injury was examined after stimulating with supernatant from antagomiR-494-treated neutrophils. C57BL/6J mice were subjected to transient middle cerebral artery occlusion (MCAO) and antagomiR-494 was injected through tail vein immediately after reperfusion, and neutrophil infiltration and phenotypic shift was examined. We found that the expression of miR-494 in neutrophils was significantly increased in AIS patients. HDAC2 targeted multiple matrix metalloproteinases (MMPs) and Fc-gamma receptor III (CD16) genes in neutrophils of AIS patients. Furthermore, antagomiR-494 repressed expression of multiple MMPs genes, including MMP7, MMP10, MMP13, and MMP16, which reduced the number of brain-infiltrating neutrophils by regulating HDAC2. AntagomiR-494 could also exert its neuroprotective role through inhibiting the shift of neutrophils toward pro-inflammatory N1 phenotype in vivo and in vitro. Taken together, miR-494 may serve as an alternative predictive biomarker of the outcome of AIS patients, and antagomiR-494 treatment decreases the expression of multiple MMPs and the infiltration of neutrophils and inhibits the shift of neutrophils into N1 phenotype partly by targeting HDAC2.
Collapse
Affiliation(s)
- Fangfang Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Guangwen Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ping Liu
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
39
|
Zhang X, Mantas I, Fridjonsdottir E, Andrén PE, Chergui K, Svenningsson P. Deficits in Motor Performance, Neurotransmitters and Synaptic Plasticity in Elderly and Experimental Parkinsonian Mice Lacking GPR37. Front Aging Neurosci 2020; 12:84. [PMID: 32292338 PMCID: PMC7120535 DOI: 10.3389/fnagi.2020.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/10/2020] [Indexed: 12/16/2022] Open
Abstract
Parkinson’s disease (PD) etiology is attributed to aging and the progressive neurodegeneration of dopamine (DA) neurons of substantia nigra pars compacta (SNc). GPR37 is an orphan G-protein Coupled Receptor (GPCR) that is linked to the juvenile form of PD. In addition, misfolded GPR37 has been found in Lewy bodies. However, properly folded GPR37 found at the cell membrane appears to exert neuroprotection. In the present study we investigated the role of GPR37 in motor deficits due to aging or toxin-induced experimental parkinsonism. Elderly GPR37 knock out (KO) mice displayed hypolocomotion and worse fine movement performance compared to their WT counterparts. Striatal slice electrophysiology reveiled that GPR37 KO mice show profound decrease in long term potentiation (LTP) formation which is accompanied by an alteration in glutamate receptor subunit content. GPR37 KO animals exposed to intrastriatal 6-hydroxydopamine (6-OHDA) show poorer score in the behavioral cylinder test and more loss of the DA transporter (DAT) in striatum. The GPR37 KO striata exhibit a significant increase in GABA which is aggravated after DA depletion. Our data indicate that GPR37 KO mice have DA neuron deficit, enhanced striatal GABA levels and deficient corticostriatal LTP. They also respond stronger to 6-OHDA-induced neurotoxicity. Taken together, the data indicate that properly functional GPR37 may counteract aging processes and parkinsonism.
Collapse
Affiliation(s)
- Xiaoqun Zhang
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ioannis Mantas
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Elva Fridjonsdottir
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Per E Andrén
- Medical Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.,National Resource for Mass Spectrometry Imaging, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karima Chergui
- Laboratory of Molecular Neurophysiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Sun P, Zhou W, Yue H, Zhang C, Ou Y, Yang Z, Hu W. Compound AD110 Acts as Therapeutic Management for Alzheimer's Disease and Stroke in Mouse and Rat Models. ACS Chem Neurosci 2020; 11:929-938. [PMID: 32105445 DOI: 10.1021/acschemneuro.9b00651] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Anti-inflammatory therapy may be an effective therapeutic intervention for neurological diseases, such as Alzheimer's disease (AD) and stroke. As an important anti-inflammatory cytokine, interleukin-10 (IL-10) inhibits proinflammatory responses of both innate and adaptive immune cells. We tested the hypothesis that drug-induced promotion of IL-10 expression is effective in improving cognitive abilities and neurologic outcomes of AD and stroke. An orally small molecule AD110 was synthesized and subjected to in vitro and in vivo analyses. We found that AD110 enhanced IL-10 release in lipopolysaccharide (LPS)-activated BV2 microglial cells. Y-Maze and Morris water maze tests showed improved cognitive abilities in AD mice treated with AD110. Moreover, AD110 attenuated cerebral ischemic injury in a transient middle cerebral artery occlusion (tMCAO) rat model. This study not only provides a promising lead compound with IL-10-promoting activity, but also supports the hypothesis that promoting IL-10 expression is a potential therapeutic strategy for AD and stroke.
Collapse
Affiliation(s)
- Ping Sun
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wei Zhou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Hu Yue
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Cheng Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Yitao Ou
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhongjin Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Wenhui Hu
- Key Laboratory of Molecular Target & Clinical Pharmacology and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| |
Collapse
|
41
|
Park J, Langmead CJ, Riddy DM. New Advances in Targeting the Resolution of Inflammation: Implications for Specialized Pro-Resolving Mediator GPCR Drug Discovery. ACS Pharmacol Transl Sci 2020; 3:88-106. [PMID: 32259091 DOI: 10.1021/acsptsci.9b00075] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 12/19/2022]
Abstract
Chronic inflammation is a component of numerous diseases including autoimmune, metabolic, neurodegenerative, and cancer. The discovery and characterization of specialized pro-resolving mediators (SPMs) critical to the resolution of inflammation, and their cognate G protein-coupled receptors (GPCRs) has led to a significant increase in the understanding of this physiological process. Approximately 20 ligands, including lipoxins, resolvins, maresins, and protectins, and 6 receptors (FPR2/ALX, GPR32, GPR18, chemerin1, BLT1, and GPR37) have been identified highlighting the complex and multilayered nature of resolution. Therapeutic efforts in targeting these receptors have proved challenging, with very few ligands apparently progressing through to preclinical or clinical development. To date, some knowledge gaps remain in the understanding of how the activation of these receptors, and their downstream signaling, results in efficient resolution via apoptosis, phagocytosis, and efferocytosis of polymorphonuclear leukocytes (mainly neutrophils) and macrophages. SPMs bind and activate multiple receptors (ligand poly-pharmacology), while most receptors are activated by multiple ligands (receptor pleiotropy). In addition, allosteric binding sites have been identified signifying the capacity of more than one ligand to bind simultaneously. These fundamental characteristics of SPM receptors enable alternative targeting strategies to be considered, including biased signaling and allosteric modulation. This review describes those ligands and receptors involved in the resolution of inflammation, and highlights the most recent clinical trial results. Furthermore, we describe alternative mechanisms by which these SPM receptors could be targeted, paving the way for the identification of new therapeutics, perhaps with greater efficacy and fidelity.
Collapse
Affiliation(s)
- Julia Park
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Darren M Riddy
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
42
|
Chen O, Donnelly CR, Ji RR. Regulation of pain by neuro-immune interactions between macrophages and nociceptor sensory neurons. Curr Opin Neurobiol 2019; 62:17-25. [PMID: 31809997 DOI: 10.1016/j.conb.2019.11.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 12/23/2022]
Abstract
Inflammation is the body's protective reaction to injury and infection. Pain is a hallmark of inflammation and can be either protective or detrimental during acute or chronic phase. Macrophages play a chief role in the pathogenesis of pain and have bilateral communications with nociceptors, the specialized primary sensory neurons that sense pain. Macrophages 'talk to' nociceptors by releasing pro-inflammatory mediators (e.g. pro-inflammatory cytokines) that induce pain via direct activation of nociceptors. Macrophages also 'listen to' nociceptors, by which nociceptors secrete neuropeptides and chemokines which act on macrophages. Activation of toll-like receptors (TLRs) in nociceptors releases CCL2, activating macrophages and potentiating pathological pain. Emerging evidence also points to a pro-resolution role of macrophages in inflammation and pain. Macrophage GPR37 is activated by neuroprotectin D1, a specialized pro-resolving mediator (SPM) and resolves inflammatory pain via phagocytosis and production of IL-10 that inhibits nociceptors. Macrophage-nociceptor interactions are also mediated by microRNAs and microRNA-containing exosomes in chronic pain. Notably, extracellular microRNAs (e.g. let-7b and miR-711) can directly bind and activate nociceptors. Targeting macrophage-nociceptor interactions will help to control inflammation and pain.
Collapse
Affiliation(s)
- Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
43
|
Schizandrin Protects against OGD/R-Induced Neuronal Injury by Suppressing Autophagy: Involvement of the AMPK/mTOR Pathway. Molecules 2019; 24:molecules24193624. [PMID: 31597329 PMCID: PMC6804185 DOI: 10.3390/molecules24193624] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 09/25/2019] [Accepted: 10/06/2019] [Indexed: 01/11/2023] Open
Abstract
The neuroprotective role of schizandrin (SA) in cerebral ischemia-reperfusion (I/R) was recently highlighted. However, whether SA plays a regulatory role on autophagy in cerebral I/R injury is still unclear. This study aimed to explore whether the neuroprotective mechanisms of SA were linked to its regulation of AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/autophagy pathway in vivo and in vitro. The present study confirmed that SA significantly improved oxygen-glucose deprivation/re-oxygenation (OGD/R)-induced PC12 cells injury. The results of immunoblotting and confocal microscope showed that SA decreased autophagy in OGD/R-injured PC12 cells, which was reflected by the decreased Beclin-1 and LC3-II expression, autophagy flux level, and LC3 puncta formation. In addition, the autophagy inducer rapamycin partially prevented the effects of SA on cell viability and autophagy after OGD/R, whereas the autophagy inhibitor 3-methyladenine (3-MA) exerted the opposite effect. The results of Western blotting showed that SA markedly decreased the phosphorylation of AMPK (p-AMPK), whereas the phosphor-mTOR (p-mTOR) levels increased in the presence of OGD/R insult. Furthermore, pretreatment with the AMPK inducer AICAR partially reversed the protective effects and autophagy inhibition of SA. However, AMPK inhibitor Compound C pretreatment further promoted the inhibition of SA on autophagy induction and cell damage induced by OGD/R. Taken together, these findings demonstrate that SA protects against OGD/R insult by inhibiting autophagy through the regulation of the AMPK-mTOR pathway and that SA may have therapeutic value for protecting neurons from cerebral ischemia.
Collapse
|