1
|
Yao L, Yang Y, Yang X, Rezaei MJ. The Interaction Between Nutraceuticals and Gut Microbiota: a Novel Therapeutic Approach to Prevent and Treatment Parkinson's Disease. Mol Neurobiol 2024; 61:9078-9109. [PMID: 38587699 DOI: 10.1007/s12035-024-04151-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, leading to motor and non-motor symptoms. Emerging research has shed light on the role of gut microbiota in the pathogenesis and progression of PD. Nutraceuticals such as curcumin, berberine, phytoestrogens, polyphenols (e.g., resveratrol, EGCG, and fisetin), dietary fibers have been shown to influence gut microbiota composition and function, restoring microbial balance and enhancing the gut-brain axis. The mechanisms underlying these benefits involve microbial metabolite production, restoration of gut barrier integrity, and modulation of neuroinflammatory pathways. Additionally, probiotics and prebiotics have shown potential in promoting gut health, influencing the gut microbiome, and alleviating PD symptoms. They can enhance the gut's antioxidant capacity of the gut, reduce inflammation, and maintain immune homeostasis, contributing to a neuroprotective environment. This paper provides an overview of the current state of knowledge regarding the potential of nutraceuticals and gut microbiota modulation in the prevention and management of Parkinson's disease, emphasizing the need for further research and clinical trials to validate their effectiveness and safety. The findings suggest that a multifaceted approach involving nutraceuticals and gut microbiota may open new avenues for addressing the challenges of PD and improving the quality of life for affected individuals.
Collapse
Affiliation(s)
- Liyan Yao
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yong Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaowei Yang
- School of Public Health, Mudanjiang Medical University, Mudanjiang, 157011, China.
| | - Mohammad J Rezaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Lou Y, Wen X, Song S, Zeng Y, Huang L, Xie Z, Shao T, Wen C. Dietary pectin and inulin: A promising adjuvant supplement for collagen-induced arthritis through gut microbiome restoration and CD4 + T cell reconstitution. J Nutr Biochem 2024; 133:109699. [PMID: 38972609 DOI: 10.1016/j.jnutbio.2024.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/17/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Dietary strategies rich in fiber have been demonstrated to offer benefits to individuals afflicted with rheumatoid arthritis (RA). However, the specific mechanisms through which a high-fiber diet (HFD) mitigates RA's autoimmunity remain elusive. Herein, we investigate the influence of pectin- and inulin-rich HFD on collagen-induced arthritis (CIA). We establish that HFD significantly alleviates arthritis in CIA mice by regulating the Th17/Treg balance. The rectification of aberrant T cell differentiation by the HFD is linked to the modulation of gut microbiota, augmenting the abundance of butyrate in feces. Concurrently, adding butyrate to the drinking water mirrors the HFD's impact on ameliorating CIA, encompassing arthritis mitigation, regulating intestinal barrier integrity, and restoring the Th17/Treg equilibrium. Butyrate reshapes the metabolic profile of CD4+ T cells in an AMPK-dependent manner. Our research underscores the importance of dietary interventions in rectifying gut microbiota for RA management and offers an explanation of how diet-derived microbial metabolites influence RA's immune-inflammatory-reaction.
Collapse
Affiliation(s)
- Yu Lou
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianghui Wen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China; Department of Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Siyue Song
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yufeng Zeng
- Department of Clinical Medicine, The 2ND Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Huang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Tiejuan Shao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Chengping Wen
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Cao Y, Chen J, Xiao J, Hong Y, Xu K, Zhu Y. Butyrate: a bridge between intestinal flora and rheumatoid arthritis. Front Immunol 2024; 15:1475529. [PMID: 39478858 PMCID: PMC11521846 DOI: 10.3389/fimmu.2024.1475529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
In patients with rheumatoid arthritis (RA), intestinal flora imbalance and butyrate metabolism disorders precede clinical arthritis and are associated with the pathogenesis of RA. This imbalance can alter the immunology and intestinal permeability of the intestinal mucosa, leading to damage to the intestinal barrier. In this context, bacteria and their metabolites can enter the bloodstream and reach the distant target tissues of the host, resulting in local inflammation and aggravating arthritis. Additionally, arthritis is also exacerbated by bone destruction and immune tolerance due to disturbed differentiation of osteoclasts and adaptive immune cells. Of note, butyrate is a metabolite of intestinal flora, which not only locally inhibits intestinal immunity and targets zonulin and tight junction proteins to alleviate intestinal barrier-mediated arthritis but also inhibits osteoclasts and autoantibodies and balances the immune responses of T and B lymphocytes throughout the body to repress bone erosion and inflammation. Therefore, butyrate is a key intermediate linking intestinal flora to the host. As a result, restoring the butyrate-producing capacity of intestinal flora and using exogenous butyrate are potential therapeutic strategies for RA in the future.
Collapse
Affiliation(s)
- Yang Cao
- Second Clinical College, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jingjing Chen
- Second Clinical College, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Jing Xiao
- Second Clinical College, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Yujie Hong
- Second Clinical College, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yan Zhu
- The Second Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui, China
| |
Collapse
|
4
|
Su X, Wang X, Zhang X, Sun Y, Jia Y. β-Indole-3-acetic acid attenuated collagen-induced arthritis through reducing the ubiquitination of Foxp3 via the AhR-TAZ-Tip60 pathway. Immunol Res 2024; 72:741-753. [PMID: 38630408 DOI: 10.1007/s12026-024-09480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/09/2024] [Indexed: 08/28/2024]
Abstract
Massive evidence shows that intestinal tryptophan metabolites affected by intestinal flora can modulate the progression of rheumatoid arthritis (RA). However, the effects and mechanisms of intestinal tryptophan metabolites on RA are not yet detailed. Herein, we investigated the protective effects of intestinal tryptophan metabolites on RA and its detailed mechanisms. In this study, the collagen-induced arthritis (CIA) rat model was established. Based on metabolomics analysis, the contents of β-indole-3-acetic acid (IAA), indolylpropionic acid, and indole-3-β-acrylic acid in the sera of CIA rats were significantly less compared with those of the normal rats. Under the condition of Treg or Th17 cell differentiation, IAA significantly promoted the differentiation and activation of Treg cells instead of Th17 cells. Intestinal tryptophan metabolites are well-known endogenic ligands of aryl hydrocarbon receptor (AhR). Not surprisingly, IAA increased the level of Foxp3 through activating the AhR pathway. Interestingly, IAA had little impact on the level of Foxp3 mRNA, but reducing the ubiquitination and degradation of Foxp3. Mechanically, IAA reduced the expression of the transcriptional coactivator TAZ, which was almost completely reversed by either AhR antagonist CH223191 or siRNA. In vitro, IAA decreased the combination of TAZ and the histone acetyltransferase Tip60, while it increased the combination of Tip60 and Foxp3. In CIA rats, oral administration of IAA increased the number of Treg cells and relieved the inflammation. A combined use with CH223191 almost abolished the effect of IAA. Taken together, IAA attenuated CIA by promoting the differentiation of Treg cells through reducing the ubiquitination of Foxp3 via the AhR-TAZ-Tip60 pathway.
Collapse
Affiliation(s)
- Xiaoran Su
- Department of Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xinliu Wang
- Department of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Xin Zhang
- Department of Integrative Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yajie Sun
- Department of Chinese Medicine, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China
| | - Yugai Jia
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, 050200, China.
- Hebei International Cooperation Center for Ion Channel Function and Innovative Traditional Chinese Medicine, Shijiazhuang, 050091, China.
| |
Collapse
|
5
|
Tsigalou C, Tsolou A, Stavropoulou E, Konstantinidis T, Zafiriou E, Dardiotis E, Tsirogianni A, Bogdanos D. Unraveling the intricate dance of the Mediterranean diet and gut microbiota in autoimmune resilience. Front Nutr 2024; 11:1383040. [PMID: 38818135 PMCID: PMC11137302 DOI: 10.3389/fnut.2024.1383040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024] Open
Abstract
The nutritional habits regulate the gut microbiota and increase risk of an autoimmune disease. Western diet is rich in sugars, meat, and poly-unsaturated fatty acids, which lead to dysbiosis of intestinal microbiota, disruption of gut epithelial barrier and chronic mucosal inflammation. In contrast, the Mediterranean Diet (MedDiet) is abundant in ω3 fatty acids, fruits, and vegetables, possessing anti-inflammatory properties that contribute to the restoration of gut eubiosis. Numerous studies have extensively examined the impact of MedDiet and its components on both health and various disease states. Additionally, specific investigations have explored the correlation between MedDiet, microbiota, and the risk of autoimmune diseases. Furthermore, the MedDiet has been linked to a reduced risk of cardiovascular diseases, playing a pivotal role in lowering mortality rates among individuals with autoimmune diseases and comorbidities. The aim of the present review is to specifically highlight current knowledge regarding possible interactions of MedDiet with the patterns of intestinal microbiota focusing on autoimmunity and a blueprint through dietary modulations for the prevention and management of disease's activity and progression.
Collapse
Affiliation(s)
- Christina Tsigalou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, University Hospital, Alexandroupolis, Greece
| | - Avgi Tsolou
- Laboratory of Molecular Cell Biology, Cell Cycle and Proteomics, Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Elisavet Stavropoulou
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, University Hospital, Alexandroupolis, Greece
| | - Theocharis Konstantinidis
- Laboratory of Hygiene and Environmental Protection, Medical School, Democritus University of Thrace, University Hospital, Alexandroupolis, Greece
| | - Efterpi Zafiriou
- Department of Dermatology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Efthymios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Alexandra Tsirogianni
- Department of Immunology-Histocompatibility, Evangelismos General Hospital, Athens, Greece
| | - Dimitrios Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
6
|
Huo A, Wang F. Berberine alleviates ischemia reperfusion injury induced AKI by regulation of intestinal microbiota and reducing intestinal inflammation. BMC Complement Med Ther 2024; 24:66. [PMID: 38291383 PMCID: PMC10826000 DOI: 10.1186/s12906-023-04323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND It has been found that a variety of host disease states can exacerbate intestinal inflammation, leading to disruption of intestinal barrier function. Changes in the composition of the intestine microbiota, which affect downstream metabolites in turn, ultimately react against the host. OBJECTIVES We revealed the mechanism of berberine as an intestinal protective agent in rats with renal ischemia-reperfusion injury acute kidney injury (AKI). METHODS HE staining was performed to evaluate the pathological changes in the colon and kidney. 16 S rRNA analysis was performed to assess the intestinal microbiota. Intestine TLR4/NF-κB expression was assessed by western blot. Q-RT-PCR was performed to detect TLR4 in intestine and IL-6 and KIM-1 gene expression in the kidney. SPSS 22.0 was used to compare the data. RESULTS Rats with AKI exhibited increased relative abundances of Proteobacteria and Bacteroidetes and decreased relative abundances of Lactobacillus, Ruminococcus and Lachnospiraceae belonging to the phylum Firmicutes. The Sirt1-NF-κB-TLR4 pathway was involved in the occurrence process, accompanied by intestinal inflammation and oxidation. Berberine reversed the appeal change. CONCLUSION Berberine inhibits the intestinal biological barrier of Proteobacteria, reduces LPS production, exerts an anti-inflammatory effect, and delays the progression of AKI.
Collapse
Affiliation(s)
- Aijing Huo
- Department of Nephropathy and Immunology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China
| | - Fengmei Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary Disease, The Third Central Hospital of Tianjin, Tianjin, China.
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
7
|
Yang C, Hu Z, Wang L, Fang L, Wang X, Li Q, Xu L, Wang J, Liu C, Lin N. Porphyromonas gingivalis with collagen immunization induces ACPA-positive rheumatoid arthritis in C3H mice. Clin Immunol 2024; 258:109859. [PMID: 38065368 DOI: 10.1016/j.clim.2023.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
The pathogenic anti-citrullinated protein antibodies (ACPA) are thought to play a vital role in the initiation and immune maintenance of rheumatoid arthritis (RA). However, it is noteworthy that ACPA is not a salient characteristic of any conventional RA animal model. Porphyromonas gingivalis (Pg) is the first microorganism identified to induce citrullination and a target of autoantibodies in early rheumatoid arthritis (RA). Thus, we employed C3H mice with specific MHC types and combined Pg infection with collagen immunity to develop an animal model of ACPA-positive RA. The resulting model exhibited citrullination characteristics, as well as pathological and immune cell changes. 1) Mice showed a significant increase in ACPA levels, and various organs and tissues exhibited elevated levels of citrullinated protein. 2) The mice experienced heightened pain, inflammation, and bone destruction. 3) The spleen and lymph nodes of the mice showed a significant increase in the proportion of Tfh-GCB cell subpopulations responsible for regulating autoantibody production. In conclusion, the C3H mouse model of Pg infection with collagen immunity demonstrated significant alterations in ACPA levels, citrullinated protein expression, and immune cell subpopulations, which could be a crucial factor leading to increased pain, inflammation, and bone destruction.
Collapse
Affiliation(s)
- Chao Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhixing Hu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lili Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luochangting Fang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxiao Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liting Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
8
|
Duan H, Hu J, Deng Y, Zou J, Ding W, Peng Q, Duan R, Sun J, Zhu J. Berberine Mediates the Production of Butyrate to Ameliorate Cerebral Ischemia via the Gut Microbiota in Mice. Nutrients 2023; 16:9. [PMID: 38201839 PMCID: PMC10781073 DOI: 10.3390/nu16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/12/2024] Open
Abstract
Ischemic stroke (IS) is a vascular disease group concomitant with high morbidity and mortality. Berberine is a bioactive substance and it has been known to improve stroke, but its mechanism is yet to be proven. Mice were fed with BBR for 14 days. Then, the mice were made into MCAO/R models. Neurological score, infarct volume, neuronal damage and markers associated with inflammation were detected. We tested the changes in intestinal flora in model mice after BBR administration using 16SrRNA sequencing. Chromatography-mass spectrometry was used to detect butyrate chemically. Tissue immunofluorescence was used to detect the changes in the microglia and astroglia in the mice brains. Our findings suggest that berberine improves stroke outcomes by modulating the gut microbiota. Specifically, after MCAO/R mice were given berberine, the beneficial bacteria producing butyric acid increased significantly, and the mice also had significantly higher levels of butyric acid. The administration of butyric acid and an inhibitor of butyric acid synthesis, heptanoyl-CoA, showed that butyric acid improved the stroke outcomes in the model mice. In addition, butyric acid could inhibit the activation of the microglia and astrocytes in the brains of model mice, thereby inhibiting the generation of pro-inflammatory factors IL-6, IL-1β and TNF-α as well as improving stroke outcomes. Our results suggest that berberine may improve stroke outcomes by modulating the gut flora to increase the abundance of butyric acid. These findings elucidate the mechanisms by which berberine improves stroke outcomes and provide some basis for clinical treatment.
Collapse
Affiliation(s)
- Huijie Duan
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China; (H.D.); (Y.D.); (W.D.)
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Junya Hu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China; (H.D.); (Y.D.); (W.D.)
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Yang Deng
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China; (H.D.); (Y.D.); (W.D.)
| | - Junqing Zou
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Wangli Ding
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China; (H.D.); (Y.D.); (W.D.)
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| | - Qiang Peng
- Department of Neurology, Nanjing First Hospital, Nanjing 210006, China;
| | - Rui Duan
- Department of Neurology, Nanjing First Hospital, Nanjing 210006, China;
| | - Jianguo Sun
- Key Lab of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Junrong Zhu
- Department of Pharmacy, Nanjing First Hospital, China Pharmaceutical University, Nanjing 210006, China; (H.D.); (Y.D.); (W.D.)
- Department of Pharmacy, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China;
| |
Collapse
|
9
|
Lin L, Zhang K, Xiong Q, Zhang J, Cai B, Huang Z, Yang B, Wei B, Chen J, Niu Q. Gut microbiota in pre-clinical rheumatoid arthritis: From pathogenesis to preventing progression. J Autoimmun 2023; 141:103001. [PMID: 36931952 DOI: 10.1016/j.jaut.2023.103001] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/30/2022] [Accepted: 01/31/2023] [Indexed: 03/17/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by progressive polyarthritis that leads to cartilage and bone damage. Pre-clinical RA is a prolonged state before clinical arthritis and RA develop, in which autoantibodies (antibodies against citrullinated proteins, rheumatoid factors) can be present due to the breakdown of immunologic self-tolerance. As early treatment initiation before the onset of polyarthritis may achieve sustained remission, optimize clinical outcomes, and even prevent RA progression, the pre-clinical RA stage is showing the prospect to be the window of opportunity for RA treatment. Growing evidence has shown the role of the gut microbiota in inducing systemic inflammation and polyarthritis via multiple mechanisms, which may involve molecular mimicry, impaired intestinal barrier function, gut microbiota-derived metabolites mediated immune regulation, modulation of the gut microbiota's effect on immune cells, intestinal epithelial cells autophagy, and the interaction between the microbiome and human leukocyte antigen alleles as well as microRNAs. Since gut microbiota alterations in pre-clinical RA have been reported, potential therapies for modifying the gut microbiota in pre-clinical RA, including natural products, antibiotic therapy, fecal microbiota transplantation, probiotics, microRNAs therapy, vitamin D supplementation, autophagy inducer-based treatment, prebiotics, and diet, holds great promise for the successful treatment and even prevention of RA via altering ongoing inflammation. In this review, we summarized current studies that include pathogenesis of gut microbiota in RA progression and promising therapeutic strategies to provide novel ideas for the management of pre-clinical RA and possibly preventing arthritis progression.
Collapse
Affiliation(s)
- Liyan Lin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keyi Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiao Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Infection Control, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junlong Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhuochun Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Yang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wei
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Qian Niu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Cai Y, Yang Q, Yu Y, Yang F, Bai R, Fan X. Efficacy and underlying mechanisms of berberine against lipid metabolic diseases: a review. Front Pharmacol 2023; 14:1283784. [PMID: 38034996 PMCID: PMC10684937 DOI: 10.3389/fphar.2023.1283784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023] Open
Abstract
Lipid-lowering therapy is an important tool for the treatment of lipid metabolic diseases, which are increasing in prevalence. However, the failure of conventional lipid-lowering drugs to achieve the desired efficacy in some patients, and the side-effects of these drug regimens, highlight the urgent need for novel lipid-lowering drugs. The liver and intestine are important in the production and removal of endogenous and exogenous lipids, respectively, and have an important impact on circulating lipid levels. Elevated circulating lipids predisposes an individual to lipid deposition in the vascular wall, affecting vascular function. Berberine (BBR) modulates liver lipid production and clearance by regulating cellular targets such as cluster of differentiation 36 (CD36), acetyl-CoA carboxylase (ACC), microsomal triglyceride transfer protein (MTTP), scavenger receptor class B type 1 (SR-BI), low-density lipoprotein receptor (LDLR), and ATP-binding cassette transporter A1 (ABCA1). It influences intestinal lipid synthesis and metabolism by modulating gut microbiota composition and metabolism. Finally, BBR maintains vascular function by targeting proteins such as endothelial nitric oxide synthase (eNOS) and lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1). This paper elucidates and summarizes the pharmacological mechanisms of berberine in lipid metabolic diseases from a multi-organ (liver, intestine, and vascular system) and multi-target perspective.
Collapse
Affiliation(s)
- Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoning Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaodi Fan
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
- Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, China
| |
Collapse
|
11
|
Zeng M, Issotina Zibrila A, Li X, Liu X, Wang X, Zeng Z, Wang Z, He Y, Meng L, Liu J. Pyridostigmine ameliorates pristane-induced arthritis symptoms in Dark Agouti rats. Scand J Rheumatol 2023; 52:627-636. [PMID: 37339380 DOI: 10.1080/03009742.2023.2196783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/27/2023] [Indexed: 06/22/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is a chronic inflammatory disorder. Pyridostigmine (PYR), an acetylcholinesterase (AChE) inhibitor, has been shown to reduce inflammation and oxidative stress in several animal models for inflammation-associated conditions. The present study aimed to investigate the effects of PYR on pristane-induced (PIA) in Dark Agouti (DA) rats. METHOD DA rats were intradermally infused with pristane to establish the PIA model, which was treated with PYR (10 mg/kg/day) for 27 days. The effects of PYR on synovial inflammation, oxidative stress, and gut microbiota were evaluated by determining arthritis scores, H&E staining, quantitative polymerase chain reaction, and biochemical assays, as well as 16S rDNA sequencing. RESULTS Pristane induced arthritis, with swollen paws and body weight loss, increased arthritis scores, synovium hyperplasia, and bone or cartilage erosion. The expression of pro-inflammatory cytokines in synovium was higher in the PIA group than in the control group. PIA rats also displayed elevated levels of malondialdehyde, nitric oxide, superoxide dismutase, and catalase in plasma. Moreover, sequencing results showed that the richness, diversity, and composition of the gut microbiota dramatically changed in PIA rats. PYR abolished pristane-induced inflammation and oxidative stress, and corrected the gut microbiota dysbiosis. CONCLUSION The results of this study support the protective role of PYR in PIA in DA rats, associated with the attenuation of inflammation and correction of gut microbiota dysbiosis. These findings open new perspectives for pharmacological interventions in animal models of RA.
Collapse
Affiliation(s)
- M Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, PR China
| | - A Issotina Zibrila
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, PR China
| | - X Li
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - X Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, PR China
| | - X Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, PR China
| | - Z Zeng
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, PR China
| | - Z Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, PR China
| | - Y He
- Department of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, PR China
| | - L Meng
- Institute of Molecular and Translational Medicine, and Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an, PR China
| | - J Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, PR China
| |
Collapse
|
12
|
Zhu TW, Li XL. Berberine interacts with gut microbiota and its potential therapy for polycystic ovary syndrome. Clin Exp Pharmacol Physiol 2023; 50:835-843. [PMID: 37604463 DOI: 10.1111/1440-1681.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023]
Abstract
Berberine (BBR) is an isoquinoline alkaloid extracted from Chinese medicinal plants showing a tight correlation with gut microbiota. Polycystic ovary syndrome (PCOS) is a prevalent reproductive and endocrine disorder syndrome among women of childbearing age. Dysbiosis, the imbalance of intestinal microorganisms, is a potential factor that takes part in the pathogenesis of PCOS. Recent evidence indicates that berberine offers promise for treating PCOS. Here, we review the recent research on the interaction between berberine and intestinal microorganisms, including the changes in the structure of gut bacteria, the intestinal metabolites after BBR treatment, and the effect of gut microbiota on the bioavailability of BBR. We also discuss the therapeutic effect of BBR on PCOS in terms of gut microbiota and its potential mechanisms.
Collapse
Affiliation(s)
- Ting-Wei Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Clinical Research Center for Gynecological Diseases (22MC1940200), Shanghai Urogenital System Diseases Research Center (2022ZZ01012), Shanghai, People's Republic of China
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Clinical Research Center for Gynecological Diseases (22MC1940200), Shanghai Urogenital System Diseases Research Center (2022ZZ01012), Shanghai, People's Republic of China
| |
Collapse
|
13
|
Li K, Jiang Y, Wang N, Lai L, Xu S, Xia T, Yue X, Xin H. Traditional Chinese Medicine in Osteoporosis Intervention and the Related Regulatory Mechanism of Gut Microbiome. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1957-1981. [PMID: 37884447 DOI: 10.1142/s0192415x23500866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The gut microbiome (GM) has become a crucial factor that can affect the progression of osteoporosis. A number of studies have demonstrated the impact of Traditional Chinese Medicine (TCM) on GM and bone metabolism. In this review, we summarize the potential mechanisms of the relationship between osteoporosis and GM disorder and introduce several natural Chinese medicines that exert anti-osteoporosis effects by modulating the GM. It is underlined that, through the provision of the microbial associated molecular pattern (MAMP), the GM causes inflammatory reactions and alterations in the Treg-Th17 balance and ultimately leads to changes in bone mass. Serotonin and many hormones, especially estrogen, may play a crucial role in the interaction of the GM with bone metabolism. Additionally, the GM may affect the absorption of specific nutrients in the intestine, particularly minerals like calcium, magnesium, and phosphorus. Several natural Chinese herbs, such as Sambucus Williamsii, Achyranthes bidentata Blume, Pleurotus ostreatus and Ganoderma lucidum mushrooms, Pueraria Lobata, and Agaricus blazei Murill have exhibited anti-osteoporosis effects through regulating the distribution and metabolism of the GM. These herbs may increase the abundance of Firmicutes, decrease the abundance of Bacteroides, promote the GM to produce more SCFAs, modulate the immune response caused by harmful bacteria, and increase the proportion of Treg-Th17 to indirectly affect bone metabolism. Moreover, gut-derived 5-HT is an important target for TCM to prevent osteoporosis via the gut-bone axis. Puerarin could prevent osteoporosis by improving intestinal mucosal integrity and decrease systemic inflammation caused by estrogen deficiency.
Collapse
Affiliation(s)
- Kun Li
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, P. R. China
| | - Liyong Lai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, P. R. China
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, P. R. China
| |
Collapse
|
14
|
Liang Y, Liu M, Cheng Y, Wang X, Wang W. Prevention and treatment of rheumatoid arthritis through traditional Chinese medicine: role of the gut microbiota. Front Immunol 2023; 14:1233994. [PMID: 37781405 PMCID: PMC10538529 DOI: 10.3389/fimmu.2023.1233994] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023] Open
Abstract
Recently, despite the increasing availability of treatments for Rheumatoid arthritis (RA), the incidence of RA and associated disability-adjusted life years have been on the rise globally in the late decades. At present, accumulating evidence has been advanced that RA is related to the gut microbiota, therefore, the therapeutic approaches for RA by regulating the gut microbiota are anticipated to become a new means of treatment. Traditional Chinese medicine (TCM) can regulate immunity, reduce inflammation and improve quality of life in various ways. Moreover, it can treat diseases by affecting the gut microbiota, which is a good way to treat RA. In this review, we mainly explore the relationship between TCM and gut microbiota regarding the perspective of treating RA. Moreover, we comprehensively summarize the roles of gut microbiota in the onset, development, progression, and prognosis of RA. Additionally, we elucidate the mechanism of TCM prevention and treatment of RA by the role of microbiota. Finally, we provide an evidence-based rationale for further investigation of microbiota-targeted intervention by TCM.
Collapse
Affiliation(s)
- Yujiao Liang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengyao Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingxue Cheng
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Weijie Wang
- Department of Rheumatology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Science, Beijing, China
| |
Collapse
|
15
|
Li M, Tian F, Guo J, Li X, Ma L, Jiang M, Zhao J. Therapeutic potential of Coptis chinensis for arthritis with underlying mechanisms. Front Pharmacol 2023; 14:1243820. [PMID: 37637408 PMCID: PMC10450980 DOI: 10.3389/fphar.2023.1243820] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Arthritis is a common degenerative disease of joints, which has become a public health problem affecting human health, but its pathogenesis is complex and cannot be eradicated. Coptis chinensis (CC) has a variety of active ingredients, is a natural antibacterial and anti-inflammatory drug. In which, berberine is its main effective ingredient, and has good therapeutic effects on rheumatoid arthritis (RA), osteoarthritis (OA), gouty arthritis (GA). RA, OA and GA are the three most common types of arthritis, but the relevant pathogenesis is not clear. Therefore, molecular mechanism and prevention and treatment of arthritis are the key issues to be paid attention to in clinical practice. In general, berberine, palmatine, coptisine, jatrorrhizine, magnoflorine and jatrorrhizine hydrochloride in CC play the role in treating arthritis by regulating Wnt1/β-catenin and PI3K/AKT/mTOR signaling pathways. In this review, active ingredients, targets and mechanism of CC in the treatment of arthritis were expounded, and we have further explained the potential role of AHR, CAV1, CRP, CXCL2, IRF1, SPP1, and IL-17 signaling pathway in the treatment of arthritis, and to provide a new idea for the clinical treatment of arthritis by CC.
Collapse
Affiliation(s)
- Mengyuan Li
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Fei Tian
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinling Guo
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| | - Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Ma
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Miaomiao Jiang
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- National Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Zhao
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- Department of Geriatric, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
Yang F, Gao R, Luo X, Liu R, Xiong D. Berberine influences multiple diseases by modifying gut microbiota. Front Nutr 2023; 10:1187718. [PMID: 37599699 PMCID: PMC10435753 DOI: 10.3389/fnut.2023.1187718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Berberine (BBR) is an isoquinoline alkaloid that is widely distributed in the plant kingdom and is commonly found in Coptis chinensis Franch. It has low bioavailability, but it can interact with gut microbiota and affect a variety of diseases. The effects of BBR in diabetes, hyperlipidemia, atherosclerosis, liver diseases, intestinal diseases, mental disorders, autoimmune diseases, and other diseases are all thought to be related to gut microbiota. This review systematically and comprehensively summarize these interactions and their effects, and describes the changes of gut microbiota after the intervention of different doses of berberine and its potential clinical consequences, in order to provide a basis for the rational application of BBR in the future clinical treatment.
Collapse
Affiliation(s)
- Fujie Yang
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rongmao Gao
- Department of ICU, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiu Luo
- Department of ICU, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongan Liu
- Department of ICU, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Daqian Xiong
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Miao Y, Wu X, Xue X, Ma X, Yang L, Zeng X, Hu Y, Dai Y, Wei Z. Morin, the PPARγ agonist, inhibits Th17 differentiation by limiting fatty acid synthesis in collagen-induced arthritis. Cell Biol Toxicol 2023; 39:1433-1452. [PMID: 36121554 DOI: 10.1007/s10565-022-09769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
T helper (Th) 17 cells highly contribute to the immunopathology of rheumatoid arthritis. Morin, a natural flavonoid, owns well anti-arthritic action but unclear effect on Th17 differentiation. This study tried to solve this issue and explore the mechanisms in view of cellular metabolism. Naïve CD4+ T cells were treated with anti-CD3/CD28 along with Th17-inducing cytokines. Morin was shown to block Th17 differentiation without affecting cell viability even when Foxp3 was dampened. The mechanisms were ascribed to the limited fatty acid synthesis by restricting FASN transcription, as indicated by metabolomics analysis, nile red staining, detection of triglycerides, FASN overexpression, and addition of palmitic acid. Moreover, morin had slight effect on cell apoptosis and protein palmitoylation during Th17 differentiation, but blocked the binding of RORγt to promoter and CNS2 region of Il17a gene. Oleic acid rescued the inhibition of morin on RORγt function, and Th17-inducing cytokines could not induce RORγt function in SCD1-defficient cells, suggesting that oleic acid but not palmitic acid was the direct effector in the action of morin. Then, PPARγ was identified as the target of morin, and GW9662 or PPARγ CRISPR/Cas9 KO plasmid weakened its above-mentioned effects. The transrepression of FASN by morin was owing to physical interaction between PPARγ and Sp1, and the importance of Sp1 in Th17 differentiation was confirmed by siSp1. Finally, the effects and mechanisms for morin-dampened Th17 responses were confirmed in collagen-induced arthritis (CIA) mice. Collectively, morin inhibited Th17 differentiation and alleviated CIA by limiting fatty acid synthesis subsequent to PPARγ activation.
Collapse
Affiliation(s)
- Yumeng Miao
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xiaoqian Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xinru Xue
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xingyu Ma
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Ling Yang
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Xi Zeng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yuxiao Hu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| | - Zhifeng Wei
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, 210009, China.
| |
Collapse
|
18
|
Chen R, Li F, Zhou K, Xing M, Zhang X, Zhao X, Wu C, Han Z, Zhou Y, Yan L, Xia D. Component identification of modified sanmiao pills by UPLC-Xevo G2-XS QTOF and its anti-gouty arthritis mechanism based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116394. [PMID: 36940736 DOI: 10.1016/j.jep.2023.116394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified sanmiao pills (MSMP), a traditional Chinese medicine (TCM) formula, is consisted of rhizome of Smilax glabra Roxb., Cortexes of Phellodendron chinensis Schneid., rhizome of Atractylodes chinensis (DC.) Koidz., and roots of Cyathula officinalis Kuan. in a ratio of 3:3:2:1. This formula has been broadly applied to treat gouty arthritis (GA) in China. AIMS OF THE STUDY To elaborate the pharmacodynamic material basis and pharmacological mechanism of MSMP against GA. MATERIALS AND METHODS UPLC-Xevo G2-XS QTOF combined with UNIFI platform was applied to qualitatively assess the chemical compounds of MSMP. Network pharmacology and molecular docking were used to identify the active compounds, core targets and key pathways of MSMP against GA. The GA mice model was established by MSU suspension injecting into ankle joint. The swelling index of ankle joint, expressions of inflammatory cytokines, and histopathological changes in mice ankle joints were determined to validate the therapeutic effect of MSMP against GA. The protein expressions of TLRs/MyD88/NF-κB signaling pathway and NLRP3 inflammasome in vivo was detected by Western blotting. RESULTS In total, 34 chemical compounds and 302 potential targets of MSMP were ascertained, of which 28 were overlapping targets pertaining to GA. 143 KEGG enrichment pathway were obtained, of which the NOD-like receptor signaling pathway, Toll-like receptor signaling pathway, and NF-κB signaling pathway were strongly associated with GA. In silico study indicated that the active compounds had excellent binding affinity to core targets. In vivo study confirmed that MSMP observably decreased swelling index and alleviated pathological damage to ankle joints in acute GA mice. Besides, MSMP significantly inhibited the secretion of inflammatory cytokines (IL-1β, IL-6, and TNF-α) induced by MSU, as well as the expression levels of key proteins involved in TLRs/MyD88/NF-κB signaling pathway and NLRP3 inflammasome. CONCLUSION MSMP possessed a pronounced therapeutic effect on acute GA. Results from network pharmacology and molecular docking showed that obaculactone, oxyberberine, and neoisoastilbin might treat gouty arthritis by down-regulating TLRs/MyD88/NF-κB signaling pathway and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Ruyi Chen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Fenfen Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kai Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyu Xing
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xiaoxi Zhang
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyu Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Chenxi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Ziwei Han
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yixuan Zhou
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Li Yan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
19
|
A High Dose of Dietary Berberine Improves Gut Wall Morphology, Despite an Expansion of Enterobacteriaceae and a Reduction in Beneficial Microbiota in Broiler Chickens. mSystems 2023; 8:e0123922. [PMID: 36719211 PMCID: PMC9948737 DOI: 10.1128/msystems.01239-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phytogenic products are embraced as alternatives to antimicrobials, and some are known to mitigate intestinal inflammation and ensure optimal gut health and performance in broiler chickens. Dietary inclusion of berberine, a benzylisoquinoline alkaloid found in plants, is believed to exert gut health-promoting effects through modulation of the gut microbiota; however, there are only a few studies investigating its effects in chickens. The aim of this study was to investigate the interplay between dietary supplementation of a high concentration of berberine, the gastrointestinal microbiota, and histomorphological parameters in the gut. Berberine was shown to increase villus length and decrease crypt depth and CD3+ T-lymphocyte infiltration in the gut tissue of chickens at different ages. Berberine affected the diversity of the gut microbiota from the jejunum to the colon, both at a compositional and functional level, with larger effects observed in the large intestine. A high concentration of berberine enriched members of the Enterobacteriaceae family and depleted members of the Ruminococcaceae, Lachnospiraceae, and Peptostreptococcaceae families, as well as tended to reduce butyrate production in the cecum. In vivo results were confirmed by in vitro growth experiments, where increasing concentrations of berberine inhibited the growth of several butyrate-producing strains while not affecting that of Enterobacteriaceae strains. Positive correlations were found between berberine levels in plasma and villus length or villus-to-crypt ratio in the jejunum. Our study showed that berberine supplementation at a high concentration improves chicken gut morphology toward decreased inflammation, which is likely not mediated by the induced gut microbiota shifts. IMPORTANCE Dietary additives are widely used to reduce intestinal inflammation and enteritis, a growing problem in the broiler industry. Berberine, with anti-inflammatory, antioxidant, and antimicrobial activity, would be an interesting feed additive in this regard. This study investigates for the first time the impact of berberine supplementation on the chicken gastrointestinal microbiota, as a potential mechanism to improve gut health, together with histological effects in the small intestine. This study identified a dose-effect of berberine on the gut microbiota, indicating the importance of finding an optimal dose to be used as a dietary additive.
Collapse
|
20
|
Electroacupuncture Alleviates Pain Responses and Inflammation in Collagen-Induced Arthritis Rats via Suppressing the TLR2/4-MyD88-NF- κB Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9050763. [PMID: 36785752 PMCID: PMC9922193 DOI: 10.1155/2023/9050763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 08/17/2022] [Accepted: 01/19/2023] [Indexed: 02/06/2023]
Abstract
Results EA intervention and OxPAPC injection could relieve mechanical allodynia and thermal hyperalgesia caused by CIA. Paw edema and pathological damage of synovium were significantly ameliorated after EA intervention and OxPAPC injection. Furthermore, EA intervention and OxPAPC injection markedly reduced the contents of serum TNF-α, IL-1β, and IL-6, as well as the protein expression levels of synovial TLR2, TLR4, MyD88, and NF-κB p-p65. In particular, the expression of TLR2 and TLR4 on synovial fibroblasts and macrophages in synovium was significantly reduced by EA intervention. Conclusions Repeated EA stimulation at ST36 and SP6 can effectively relieve joint pain and synovial inflammation caused by RA in CIA rats. The analgesic and anti-inflammatory effect of EA may be closely related to the inhibition of innate immune responses driven by the TLR2/4-MyD88-NF-κB signaling pathway in the synovium.
Collapse
|
21
|
Romero-Figueroa MDS, Ramírez-Durán N, Montiel-Jarquín AJ, Horta-Baas G. Gut-joint axis: Gut dysbiosis can contribute to the onset of rheumatoid arthritis via multiple pathways. Front Cell Infect Microbiol 2023; 13:1092118. [PMID: 36779190 PMCID: PMC9911673 DOI: 10.3389/fcimb.2023.1092118] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disease characterized by loss of immune tolerance and chronic inflammation. It is pathogenesis complex and includes interaction between genetic and environmental factors. Current evidence supports the hypothesis that gut dysbiosis may play the role of environmental triggers of arthritis in animals and humans. Progress in the understanding of the gut microbiome and RA. has been remarkable in the last decade. In vitro and in vivo experiments revealed that gut dysbiosis could shape the immune system and cause persistent immune inflammatory responses. Furthermore, gut dysbiosis could induce alterations in intestinal permeability, which have been found to predate arthritis onset. In contrast, metabolites derived from the intestinal microbiota have an immunomodulatory and anti-inflammatory effect. However, the precise underlying mechanisms by which gut dysbiosis induces the development of arthritis remain elusive. This review aimed to highlight the mechanisms by which gut dysbiosis could contribute to the pathogenesis of RA. The overall data showed that gut dysbiosis could contribute to RA pathogenesis by multiple pathways, including alterations in gut barrier function, molecular mimicry, gut dysbiosis influences the activation and the differentiation of innate and acquired immune cells, cross-talk between gut microbiota-derived metabolites and immune cells, and alterations in the microenvironment. The relative weight of each of these mechanisms in RA pathogenesis remains uncertain. Recent studies showed a substantial role for gut microbiota-derived metabolites pathway, especially butyrate, in the RA pathogenesis.
Collapse
Affiliation(s)
| | - Ninfa Ramírez-Durán
- Laboratory of Medical and Environmental Microbiology, Department of Medicine, Autonomous University of the State of Mexico, Toluca, Mexico
| | - Alvaro José Montiel-Jarquín
- Dirección de Educación e Investigación en Salud, Hospital de Especialidades de Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Gabriel Horta-Baas
- Rheumatology Service, Internal Medicine Department, Instituto Mexicano del Seguro Social, Merida, Mexico
| |
Collapse
|
22
|
Sun S, Yang Y, Xiong R, Ni Y, Ma X, Hou M, Chen L, Xu Z, Chen L, Ji M. Oral berberine ameliorates high-fat diet-induced obesity by activating TAS2Rs in tuft and endocrine cells in the gut. Life Sci 2022; 311:121141. [DOI: 10.1016/j.lfs.2022.121141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
23
|
Spirina LV, Masunov VN, Dyakov DA, Akbasheva OE, Kebekbayeva AY, Shuvalov IY, Masunova NV, Kovaleva IV, Dagbaeva Y. Sars-Cov2 Induced Biochemical Mechanisms in Liver Damage and Intestinal Lesions. Indian J Clin Biochem 2022; 38:1-10. [PMID: 36407686 PMCID: PMC9652586 DOI: 10.1007/s12291-022-01089-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022]
Abstract
Multiple pathogenic mechanisms are found in SARS-CoV2 systemic inflammation. Oxidative stress, altered proteolysis, hypercoagulation, and metabolic disorders are significant in virus-induced lesions. The study aimed to investigate the biochemical mechanism of virus-induced disorders and determine the biochemical features in SARS-CoV2-associated liver damage and intestine lesions. A retrospective case series of ninety-two patients diagnosed with COVID-19 pnemonia. The ACE, α1-proteinase inhibitor, trypsin-like proteinase, and elastase activity were measured. Nitrites level was detected in reaction with Griess reagent. The ELISA kit measured Troponin, C-peptide, leptin, adiponectin, PAR4, and neuropilin level. It was obtained an increase in ACE activity and nitrites ions content in SARS-CoV2 associated patients. The hyperglycemia and an increase in adipose tissue-derived hormones guided the virus-induced metabolic disorders. Proteolysis activation was revealed in SARS-CoV2 pneumonia patients. The found molecular event was accompanied by hyperglycemia induction. Multiorgan lesions manifest in in cardiac failure, which was detected in patients with ARDS. Moreover, high arterial blood pressure in patients with COVID-19 was associated with the hyperglycemia and increased ACE activity and NO ions level. Liver damage was specific for COVID-19-associated patients with severe ARDS and heart failure. Proteolysis overactivation resulting in vasoactive substances imbalance was detected in patients with the intestinal lesions. The obtained data shows the the neuropilin-dependent axis in damage prevalence in the intestine. Metabolic disorders resulting in the growth of adipose-derived tissue hormones, nitrites, and neuropilin levels was triggered by prolonged inflammation. So, the impaired metabolism and SARS-CoV2 associated hyperglycemia influence on SARS-CoV2 multiple mechanisms. Gastrointestinal manifestations in SARS-CoV2 infection was found to be related to various biochemical and molecular tools. ACE2 receptors axis is prevalent for liver damage, but NRP-1 protein (neuropilin), NO derivatives, and adipose tissue-derived hormones are essential for intestinal lesions. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01089-x.
Collapse
Affiliation(s)
- Liudmila V. Spirina
- Siberian State Medical University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | | | | | | | | | | | | | - Irina V. Kovaleva
- Siberian State Medical University, Tomsk, Russia
- Cancer Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | | |
Collapse
|
24
|
A Randomized, Dose-Finding, Proof-of-Concept Study of Berberine Ursodeoxycholate in Patients With Primary Sclerosing Cholangitis. Am J Gastroenterol 2022; 117:1805-1815. [PMID: 36327436 DOI: 10.14309/ajg.0000000000001956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/30/2022] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Primary sclerosing cholangitis (PSC) is a fibroinflammatory disease of the bile ducts leading to cirrhosis and hepatic decompensation. There are no approved pharmaceutical therapies for PSC. Berberine ursodeoxycholate (HTD1801) is an ionic salt of berberine and ursodeoxycholic acid with pleiotropic mechanisms of action. METHODS An 18-week proof-of-concept study was conducted to assess the safety and efficacy of HTD1801 in PSC. This study had three 6-week periods: (i) a placebo-controlled period, (ii) a treatment extension period, and (iii) a randomized treatment withdrawal period. The primary end point was change from baseline in alkaline phosphatase (ALP) at week 6. RESULTS Fifty-five patients were randomized and treated; 35 (64%) had inflammatory bowel disease and 22 (40%) had previously received ursodeoxycholic acid. Patients were initially randomized to placebo (n = 16), HTD1801 500 mg BID (n = 15), or HTD1801 1000 mg BID (n = 24). At baseline, mean (range) ALP values were 414 U/L (138-1,048), 397 U/L (237-773), and 335 U/L (122-882) for the placebo, HTD1801 500 mg BID, and HTD1801 1,000 mg BID groups, respectively. At week 6, a significant decrease in ALP was observed with HTD1801 (least square mean; HTD1801 500 mg BID = -53 U/L, P = 0.016; HTD1801 1000 mg BID = -37 U/L, P = 0.019) compared with placebo (98 U/L). ALP reductions were sustained through week 18 in those who remained on therapy, whereas ALP increased in those who crossed over to placebo during period 3. HTD1801 was generally well tolerated; 4 patients experienced serious adverse events, none attributed to HTD1801. DISCUSSION HTD1801 is associated with significant improvement in ALP and warrants further study as a treatment for PSC.
Collapse
|
25
|
Lu Q, Xu J, Jiang H, Wei Q, Huang R, Huang G. The bone-protective mechanisms of active components from TCM drugs in rheumatoid arthritis treatment. Front Pharmacol 2022; 13:1000865. [PMID: 36386147 PMCID: PMC9641143 DOI: 10.3389/fphar.2022.1000865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease whose hallmarks are synovial inflammation and irreversible bone destruction. Bone resorption resulting from osteoclasts involves the whole immune and bone systems. Breakdown of bone remodeling is attributed to overactive immune cells that produce large quantities of cytokines, upregulated differentiation of osteoclasts with enhanced resorptive activities, suppressed differentiation of osteoblasts, invading fibroblasts and microbiota dysbiosis. Despite the mitigation of inflammation, the existing treatment in Western medicine fails to prevent bone loss during disease progression. Traditional Chinese medicine (TCM) has been used for thousands of years in RA treatment, showing great efficacy in bone preservation. The complex components from the decoctions and prescriptions exhibit various pharmacological activities. This review summarizes the research progress that has been made in terms of the bone-protective effect of some representative compounds from TCM drugs and proposes the substantial mechanisms involved in bone metabolism to provide some clues for future studies. These active components systemically suppress bone destruction via inhibiting joint inflammation, osteoclast differentiation, and fibroblast proliferation. Neutrophil, gut microenvironment and microRNA has been proposed as future focus.
Collapse
Affiliation(s)
- Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Haixu Jiang
- School of Chinese Materia, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Runyue Huang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Guangrui Huang, ; Runyue Huang,
| |
Collapse
|
26
|
Vita AA, Pullen NA. Exploring the mechanism of berberine-mediated T fh cell immunosuppression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154343. [PMID: 35901597 PMCID: PMC9948547 DOI: 10.1016/j.phymed.2022.154343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Our previous research revealed a novel function of berberine (BBR), a clinically relevant plant-derived alkaloid, as a suppressor of follicular T helper (Tfh) cell proliferation in secondary lymphoid organs of BBR-treated mice that underwent immunization for collagen-induced arthritis (CIA) in DBA1/J mice. Due to the importance of Tfh cell and B cell interactions in the generation of T cell-dependent humoral responses, the suppression of Tfh cell activity may have implications for the general safety of BBR as a prophylactic dietary supplement, and its potential use in antibody-driven autoimmune and hypersensitivity disorders. PURPOSE This research aims to characterize BBR's impact on the activation, differentiation, and proliferation of Tfh cells by examining the expression of key extracellular signaling molecules, as well as the activity of intracellular signaling molecules involved in the Ca2+-calcineurin-NFAT pathway and STAT3 phosphorylation, following activation. STUDY DESIGN In vitro experimental study using primary tissues. METHODS To explore the direct effects of BBR on the proliferation and differentiation of Tfh cells, isolated naïve CD4+ T cells (>95% pure) were activated and differentiated into pre- Tfh cells in the presence or absence of BBR. The resulting Tfh cell populations and the expression of the key extracellular molecules CXCR5, ICOS, and PD-1 were measured. In addition, we examined the impact of BBR treatment on the activity of key intracellular signaling molecules involved in Tfh cell activation and differentiation following TCR ligation and/or CD28 signaling (p-ZAP-70, p-Lck, p-PLCγ1, NFATc1 and intracellular calcium, Ca2+, concentrations), as well as IL-6 signaling (p-STAT3). RESULTS Treatment with BBR significantly reduced the expression of both CXCR5 (p < 0.01) and ICOS (p < 0.005), but not PD-1, and reduced the percentage of Tfh cells within the total CD4+ T cell population. BBR treatment also led to a reduction in intracellular Ca2+ flux, activation of p-STAT3, and IL-21 production. CONCLUSION Our observations provide insight into the mechanism of BBR-mediated Tfh cell suppression and suggest that BBR treatment can directly inhibit Tfh cell activity, perhaps through interfering with cytokine receptor or downstream signaling.
Collapse
Affiliation(s)
- Alexandra A Vita
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Campus Box 92, Greeley, CO 80639, United States; Helfgott Research Institute, National University of Natural Medicine, Portland, OR, United States
| | - Nicholas A Pullen
- School of Biological Sciences, University of Northern Colorado, 501 20th St., Campus Box 92, Greeley, CO 80639, United States.
| |
Collapse
|
27
|
Proof-of-Principle Study Suggesting Potential Anti-Inflammatory Activity of Butyrate and Propionate in Periodontal Cells. Int J Mol Sci 2022; 23:ijms231911006. [PMID: 36232340 PMCID: PMC9570314 DOI: 10.3390/ijms231911006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are potent immune modulators present in the gingival crevicular fluid. It is therefore likely that SCFAs exert a role in periodontal health and disease. To better understand how SCFAs can module inflammation, we screened acetic acid, propionic acid, and butyric acid for their potential ability to lower the inflammatory response of macrophages, gingival fibroblasts, and oral epithelial cells in vitro. To this end, RAW 264.7 and primary macrophages were exposed to LPSs from Porphyromonas gingivalis (P. gingivalis) with and without the SCFAs. Moreover, gingival fibroblasts and HSC2 oral epithelial cells were exposed to IL1β and TNFα with and without the SCFAs. We report here that butyrate was effective in reducing the lipopolysaccharide (LPS)-induced expression of IL6 and chemokine (C-X-C motif) ligand 2 (CXCL2) in the RAW 264.7 and primary macrophages. Butyrate also reduced the IL1β and TNFα-induced expression of IL8, chemokine (C-X-C motif) ligand 1 (CXCL1), and CXCL2 in gingival fibroblasts. Likewise, butyrate lowered the induced expression of CXCL1 and CXCL2, but not IL8, in HSC2 cells. Butyrate further caused a reduction of p65 nuclear translocation in RAW 264.7 macrophages, gingival fibroblasts, and HSC2 cells. Propionate and acetate partially lowered the inflammatory response in vitro but did not reach the level of significance. These findings suggest that not only macrophages, but also gingival fibroblasts and oral epithelial cells are susceptive to the anti-inflammatory activity of butyrate.
Collapse
|
28
|
Rectal administration of butyrate ameliorates pulmonary fibrosis in mice through induction of hepatocyte growth factor in the colon via the HDAC-PPARγ pathway. Life Sci 2022; 309:120972. [PMID: 36116532 DOI: 10.1016/j.lfs.2022.120972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022]
Abstract
Butyrate, given by oral administration or in drinking water, has been shown to improve experimental pulmonary fibrosis (PF) in mice despite of very low bioavailability. The pharmacokinetic-pharmacodynamics disconnection attracts us to explore its anti-PF mechanism in view of the intestinal expression of anti-PF factors. In bleomycin-induced PF in mice, rectal administration of butyrate (500 mg/kg) exhibited a significant anti-PF effect, with a maximum plasma concentration largely lower than the minimum effective concentration (1 mM) at which butyrate inhibited the expression of pro-inflammatory factors by lung epithelial cells and the production of extracellular matrix by lung fibroblasts. The rectal administration of butyrate significantly upregulated the mRNA expression of hepatocyte growth factor (HGF) in the colons of PF mice, but showed no significant effect on the mRNA expression of HGF in the small intestines, lungs and livers. In colon epithelial cells, the monocarboxylate transporter inhibitor α-cyano-4-hydroxycinnamic acid (CHC) abrogated butyrate-induced expression of HGF, indicating that butyrate functions through entering into cells. Butyrate showed no significant effect on the histone acetylation in the promoter region of HGF, suggesting that it promotes HGF expression not by directly affecting the histone deacetylation of HGF but by other pathways. GW9662, the inhibitor of PPARγ, significantly attenuated the effect of butyrate to promote the mRNA expression of HGF. Butyrate was able to enhance the acetylation of PPARγ, and a targeted mutation of lysine at the position 240 (K240) of PPARγ markedly diminished the induction of butyrate on HGF expression, suggesting that butyrate promoted HGF expression in colon epithelial cells by upregulating PPARγ K240 acetylation. In summary, rectal administration of butyrate promotes the expression of HGF in colonic epithelial cells through upregulating PPARγ acetylation via inhibition of HDAC activity. The findings of the present study provide a reasonable explanation for the anti-PF action mode of butyrate based on the 'lung-gut axis', and found that intestine-derived butyrate and HGF may be involved in the modulation of the occurrence and progression of PF.
Collapse
|
29
|
Cheng H, Liu J, Tan Y, Feng W, Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal 2022; 12:541-555. [PMID: 36105164 PMCID: PMC9463479 DOI: 10.1016/j.jpha.2021.10.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/23/2021] [Accepted: 10/19/2021] [Indexed: 02/06/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid, has been found in many plants, such as Coptis chinensis Franch and Phellodendron chinense Schneid. Although BBR has a wide spectrum of pharmacological effects, its oral bioavailability is extremely low. In recent years, gut microbiota has emerged as a cynosure to understand the mechanisms of action of herbal compounds. Numerous studies have demonstrated that due to its low bioavailability, BBR can interact with the gut microbiota, thereby exhibiting altered pharmacological effects. However, no systematic and comprehensive review has summarized these interactions and their corresponding influences on pharmacological effects. Here, we describe the direct interactive relationships between BBR and gut microbiota, including regulation of gut microbiota composition and metabolism by BBR and metabolization of BBR by gut microbiota. In addition, the complex interactions between gut microbiota and BBR as well as the side effects and personalized use of BBR are discussed. Furthermore, we provide our viewpoint on future research directions regarding BBR and gut microbiota. This review not only helps to explain the mechanisms underlying BBR activity but also provides support for the rational use of BBR in clinical practice.
Collapse
Affiliation(s)
| | | | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
30
|
Guo Y, Sun D, Zhang Y, Yu X, Fang Y, Lv C, Zhang Q, Zhu Y, Qiao S, Xia Y, Wei Z, Dai Y. The neuropeptide cortistatin attenuates Th17 cell response through inhibition of glycolysis via GHSR1. Int Immunopharmacol 2022; 108:108843. [DOI: 10.1016/j.intimp.2022.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/18/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022]
|
31
|
Sun Y, Huang H, Zhan Z, Gao H, Zhang C, Lai J, Cao J, Li C, Chen Y, Liu Z. Berberine inhibits glioma cell migration and invasion by suppressing TGF-β1/COL11A1 pathway. Biochem Biophys Res Commun 2022; 625:38-45. [DOI: 10.1016/j.bbrc.2022.07.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022]
|
32
|
Network pharmacology and UPLC-MS/MS-based study of active ingredients in Jiu Wei decoction. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Wu SS, Xu XX, Shi YY, Chen Y, Li YQ, Jiang SQ, Wang T, Li P, Li F. System pharmacology analysis to decipher the effect and mechanism of active ingredients combination from herb couple on rheumatoid arthritis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114969. [PMID: 34999146 DOI: 10.1016/j.jep.2022.114969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional herb couple Angelicae pubescentis radix (APR) and Notopterygii rhizoma et radix (NRR), composition of two traditional Chinese medicinal herbs, has been used clinically in China for the treatment of rheumatoid arthritis (RA) over years. APR and NRR contain coumarins and phenolic acids, which have been reported to have analgesic and anti-inflammatory activities. AIM OF THE STUDY The active ingredients combination (AIC) and potential therapeutic mechanism of APR and NRR (AN) herb couple remain unclear. Therefore, the present study aimed to identify the AIC and elucidate the underlying mechanism of AIC on RA. MATERIALS AND METHODS Firstly, a novel strategy of in vitro experiments, computational analysis, UPLC-QTOF-MS and UPLC-QQQ-MS was established to confirm the optimum ratio of AN herb couple samples and identified the AIC. Then, the anti-arthritis effects of the optimal herb couple and AIC were studied with Collagen II induced rheumatoid arthritis (CIA) rats in vivo. Finally, an integrated model of network pharmacology, metabolomics, gut microbiota analysis and biological techniques were applied to clarify the underlying mechanism through a comprehensive perspective. RESULTS AN7:3 herb couple was regarded as the optimal ratio of AN herbal samples, and AIC was screened as osthole, columbianadin, notopterol, isoimperatorin, psoralen, xanthotoxin, bergapten, nodakenin and bergaptol respectively. Additionally, AIC exerted similar therapeutic effects as AN 7:3 in CIA rats. Moreover, AIC ameliorated RA might via regulating MAPK signaling pathway, altering metabolic disorders and gut microbiome involved autoimmunity. CONCLUSIONS our findings provided scientific evidence to support that AIC of AN herb couple could be used as a prebiotic agent for RA. Importantly, this research provided a systematic and feasible strategy to optimize the proportion of medicinal materials and screen AIC from multi-component traditional Chinese herb couples or Chinese medicine formulae. Moreover, it provided a comprehensive perspective to discover AIC, clarify the overall effects and understand the mechanisms for natural products through the perspective of database and multi-omics integration.
Collapse
Affiliation(s)
- Shan-Shan Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Xi-Xi Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuan-Yuan Shi
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Yi Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying-Qi Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Si-Qi Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Ting Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Resource, Yunnan University of Chinese Medicine, Kunming, 650000, PR China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
34
|
Hu H, Xu K, Wang K, Zhang F, Bai X. Dissecting the Effect of Berberine on the Intestinal Microbiome in the Weaned Piglets by Metagenomic Sequencing. Front Microbiol 2022; 13:862882. [PMID: 35464928 PMCID: PMC9021597 DOI: 10.3389/fmicb.2022.862882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate the microbial structure and function in the rectum of weaned piglets with berberine supplementation. Twelve healthy 21-day-old Duorc × (Landrace × Large White) weaned piglets (similar body weight) were evenly divided into control and berberine groups and were fed a basal diet supplemented with 0 and 0.1% berberine, respectively. After 21 days, metagenomic sequencing analysis was performed to detect microbial composition and function in the rectum of weaned piglets. Results showed that there were 10,597,721,931-14,059,392,900 base pairs (bp) and 10,186,558,171-15,859,563,342 bp of clean data in the control and berberine groups, respectively. The Q20s of the control and berberine groups were 97.15 to 97.7% and 96.26 to 97.68%, respectively. The microorganisms in the berberine group had lower (p < 0.05) Chao1, alternating conditional expectation, Shannon, and Simpson indices at the species levels than those in the control group. Analysis of similarity showed that there were significant differences (p < 0.01) between the control and berberine groups at the genus and species levels of the gut microorganisms. Dietary berberine significantly increased (p < 0.05) the abundance of Subdoligranulum variabile, but decreased (p < 0.05) the abundance of Prevotella copri compared with the control group. Carbohydrate-active enzymes analysis revealed that the levels of polysaccharide lyases and carbohydrate esterases were lower (p < 0.05) in the berberine group than that in the control group. Linear discriminant analysis effect size analysis showed that berberine supplementation could induce various significant Kyoto Encyclopedia of Genes and Genomes pathways, including carbohydrate metabolism, environmental information processing, and microbial metabolism in diverse environments. In conclusion, our findings suggest that berberine could improve the composition, abundance, structure, and function of gut microbiome in the weaned piglets, potentially providing a suitable approach for the application of berberine in human and animal health.
Collapse
Affiliation(s)
- Hong Hu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Kexing Xu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Kunping Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
- Anhui Province Key Laboratory of Animal Nutrition Regulation and Health, Chuzhou, China
| | - Xi Bai
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
35
|
LI ZD, QI FY, LI F. Integrating 16S sequencing and metabolomics study on anti-rheumatic mechanisms against collagen-induced arthritis of Wantong Jingu Tablet. Chin J Nat Med 2022; 20:120-132. [DOI: 10.1016/s1875-5364(21)60080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 11/03/2022]
|
36
|
Lack of berberine effect on bone mechanical properties in rats with experimentally induced diabetes. Pharmacotherapy 2022; 146:112562. [DOI: 10.1016/j.biopha.2021.112562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 11/20/2022]
|
37
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:919-929. [DOI: 10.1093/jpp/rgac024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/03/2022] [Indexed: 11/14/2022]
|
38
|
Zhou M, Johnston LJ, Wu C, Ma X. Gut microbiota and its metabolites: Bridge of dietary nutrients and obesity-related diseases. Crit Rev Food Sci Nutr 2021:1-18. [PMID: 34698581 DOI: 10.1080/10408398.2021.1986466] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While the incidence of obesity keeps increasing in both adults and children worldwide, obesity and its complications remain major threatens to human health. Over the past decades, accumulating evidence has demonstrated the importance of microorganisms and their metabolites in the pathogenesis of obesity and related diseases. There also is a significant body of evidence validating the efficacy of microbial based therapies for managing various diseases. In this review, we collected the key information pertinent to obesity-related bacteria, fermentation substrates and major metabolites generated by studies involving humans and/or mice. We then briefly described the possible molecular mechanisms by which microorganisms cause or inhibit obesity with a focus on microbial metabolites. Lastly, we summarized the advantages and disadvantages of the utilization of probiotics, plant extracts, and exercise in controlling obesity. We speculated that new targets and combined approaches (e.g. diet combined with exercise) could lead to more precise prevention and/or alleviation of obesity in future clinical research implications.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lee J Johnston
- West Central Research & Outreach Center, University of Minnesota, Morris, Minnesota, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, USA
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Horta-Baas G, Sandoval-Cabrera A, Romero-Figueroa MDS. Modification of Gut Microbiota in Inflammatory Arthritis: Highlights and Future Challenges. Curr Rheumatol Rep 2021; 23:67. [PMID: 34218340 DOI: 10.1007/s11926-021-01031-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This Review evaluates the available information on the modification of the microbiota by diet, prebiotics, probiotics, or drugs and its association with the severity of arthritis in animals and humans and highlights how this modulation could have therapeutic applications in RA. RECENT FINDINGS The gut microbiota and microbiota-derived metabolites play a role in developing rheumatoid arthritis (RA) in animals and humans, making the intestinal microbiota an exciting novel approach to suppress autoimmunity. Studies in animal models of RA show that it is possible to modify the intestinal microbiota with drugs, natural products, diet, probiotics, and prebiotics. Furthermore, these changes showed beneficial effects on symptom relief in animal models of RA and that these effects were associated with modulation of the immune response. Therapies that modify the gut microbiota would significantly impact the preclinical stage of arthritis, based on the fact that dysbiosis occurs before clinical arthritis. The effects of interventions to modulate the microbiota could not reverse arthritis. Furthermore, the therapies modulating therapies in controlling symptoms were limited once arthritis developed. The results obtained in the study of acarbose, probiotics, and prebiotics suggest that these interventions may decrease the disease's incidence rather than treat or cure it.
Collapse
Affiliation(s)
- Gabriel Horta-Baas
- Servicio de Reumatología, Hospital General Regional número 1, Delegación Yucatán, Instituto Mexicano del Seguro Social, Calle 41 No. 439 x 34. Colonia Industrial, 97150, Mérida, Yucatán, Mexico.
| | - Antonio Sandoval-Cabrera
- Laboratorio de alta especialidad en Hemato-Oncología, Hospital para el Niño, IMIEM, Toluca, Mexico.,Facultad de Medicina, Campus Universitario Siglo XXl, Zinacantepec, State of Mexico, Mexico
| | - María Del Socorro Romero-Figueroa
- Facultad de Medicina, Campus Universitario Siglo XXl, Zinacantepec, State of Mexico, Mexico.,Centro de Investigación en Ciencias de la Salud, Campus Norte Huixquilucan, Universidad Anáhuac México, Mexico City, Mexico
| |
Collapse
|
40
|
Huang DN, Wu FF, Zhang AH, Sun H, Wang XJ. Efficacy of berberine in treatment of rheumatoid arthritis: From multiple targets to therapeutic potential. Pharmacol Res 2021; 169:105667. [PMID: 33989762 DOI: 10.1016/j.phrs.2021.105667] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis is a systemic autoimmune disorder involved in persistent synovial inflammation. Berberine is a nature-derived alkaloid compound with multiple pharmacological activities in different pathologies, including RA. Recent experimental studies have clarified several determinant cellular and molecular targets of BBR in RA, and provided novel evidence supporting the promising therapeutic potential of BBR to combat RA. In this review, we recapitulate the therapeutic potential of BBR and its mechanism of action in ameliorating RA, and discuss the modulation of gut microbiota by BBR during RA. Collectively, BBR might be a promising lead drug with multi-functional activities for the therapeutic strategy of RA.
Collapse
Affiliation(s)
- Dan-Na Huang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Fang-Fang Wu
- National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
| | - Ai-Hua Zhang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Hui Sun
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China
| | - Xi-Jun Wang
- National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, China; National Engineering Laboratory for the Development of Southwestern Endangered Medicinal Materials, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China.
| |
Collapse
|
41
|
Fang Y, Zhang J, Zhu S, He M, Ma S, Jia Q, Sun Q, Song L, Wang Y, Duan L. Berberine ameliorates ovariectomy-induced anxiety-like behaviors by enrichment in equol generating gut microbiota. Pharmacol Res 2021; 165:105439. [PMID: 33493658 DOI: 10.1016/j.phrs.2021.105439] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
The gut microbiota is recognized as a promising therapeutic target for anxiety. Berberine (BBR) has shown efficacy in the treatment of diseases such as postmenopausal osteoporosis, obesity, and type 2 diabetes through regulating the gut microbiota. However, the effects of BBR on postmenopausal anxiety are still unclear. The purpose of the study is to test whether BBR ameliorates anxiety by modulating intestinal microbiota under estrogen-deficient conditions. Experimental anxiety was established in specific pathogen-free (SPF) ovariectomized (OVX) rats, which were then treated with BBR for 4 weeks before undergoing behavioral tests. Open field and elevated plus maze tests demonstrated that BBR treatment significantly ameliorated anxiety-like behaviors of OVX rats compared with vehicle-treated counterparts. Moreover, as demonstrated by 16S rRNA sequencing and liquid chromatography/mass spectrometry (LC/MS) analysis, BBR-treated OVX rats harbored a higher abundance of beneficial gut microbes, such as Bacteroides, Bifidobacterium, Lactobacillus, and Akkermansia, and exhibited increased equol generation. Notably, gavage feeding of BBR had no significant anti-anxiety effects on germ-free (GF) rats that underwent ovariectomy, whereas GF rats transplanted with fecal microbiota from SPF rats substantially phenocopied the donor rats in terms of anxiety-like symptoms and isoflavone levels. This study indicates that the gut microbiota is critical in the treatment of ovariectomy-aggravated anxiety, and that BBR modulation of the gut microbiota is a promising therapeutic strategy for treating postmenopausal symptoms of anxiety.
Collapse
Affiliation(s)
- Yuan Fang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Jindong Zhang
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Shiwei Zhu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Meibo He
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Shurong Ma
- State Key Laboratory of Bioactive Natural Products and Function, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qiong Jia
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Qinghua Sun
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Lijin Song
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Wang
- State Key Laboratory of Bioactive Natural Products and Function, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Liping Duan
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
42
|
Wang C, Chen Y, Zhang G, Liu J, Peng X, Luo J. Recovery of Ggt7 and Ace Expressions in the Colon Alleviates Collagen-Induced Arthritis in Rats by Specific Bioactive Polysaccharide Intervention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14531-14539. [PMID: 33226212 DOI: 10.1021/acs.jafc.0c06252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rheumatoid arthritis (RA) causes swollen joints and irreversible joint damage and may even elevate cancer risks. Several bioactive nonstarch polysaccharides (NSPs) were reported to alleviate RA, but the key colonic genes accountable for this alleviation were elusive. Using collagen-induced arthritis as an RA model, colonic candidate genes related to RA were selected by transcriptome and methylome. The key genes were determined by comparing the transcriptome, methylome, and quantitative reverse transcription polymerase chain reaction profiles in RA rats with and without Lycium barbarum polysaccharides' treatment and further validated using Angelica sinensis polysaccharides and Astragalus propinquus polysaccharides for comparison. Both colonic genes γ-glutamyltransferase 7 (Ggt7) and angiotensin-I-converting enzyme (Ace) were downregulated by RA, and they were upregulated after L. barbarum polysaccharides' and A. sinensis polysaccharides' intervention that reduced the RA-caused hypermethylation status in nucleotide sites in the exon/promoter region of the two genes. However, the A. propinquus polysaccharides' intervention barely reduced the hypermethylation in the corresponding sites, failing to recover the expressions of these two genes and improve RA. Therefore, the colonic Ggt7 and Ace can be considered as key genes accountable for RA alleviation by bioactive NSP intervention. This study provides a more comprehensive insight into diet intervention to improve RA.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yunjing Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guangwen Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Junsheng Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
43
|
Qiao S, Lian X, Yue M, Zhang Q, Wei Z, Chen L, Xia Y, Dai Y. Regulation of gut microbiota substantially contributes to the induction of intestinal Treg cells and consequent anti-arthritis effect of madecassoside. Int Immunopharmacol 2020; 89:107047. [DOI: 10.1016/j.intimp.2020.107047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
|
44
|
Shen P, Jiao Y, Miao L, Chen J, Momtazi‐Borojeni AA. Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management. J Cell Mol Med 2020; 24:12234-12245. [PMID: 32969153 PMCID: PMC7687014 DOI: 10.1111/jcmm.15803] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory syndrome designated by synovial joint inflammation leading to cartilage degradation and bone damage as well as progressive disability. Synovial inflammation is promoted through the infiltration of mononuclear immune cells, dominated by CD4+ T cells, macrophages and dendritic cells (DCs), together with fibroblast-like synoviocytes (FLS), into the synovial compartment. Berberine is a bioactive isoquinoline alkaloid compound showing various pharmacological properties that are mainly attributed to immunomodulatory and anti-inflammatory effects. Several lines of experimental study have recently investigated the therapeutic potential of berberine and its underlying mechanisms in treating RA condition. The present review aimed to clarify determinant cellular and molecular targets of berberine in RA and found that berberine through modulating several signalling pathways involved in the joint inflammation, including PI3K/Akt, Wnt1/β-catenin, AMPK/lipogenesis and LPA/LPA1 /ERK/p38 MAPK can inhibit inflammatory proliferation of FLS cells, suppress DC activation and modulate Th17/Treg balance and thus prevent cartilage and bone destruction. Importantly, these molecular targets may explore new therapeutic targets for RA treatment.
Collapse
Affiliation(s)
- Peng Shen
- Department of StomatologyClinical Department of Aerospace CityNorthern Beijing Medical DistrictChinese PLA General HospitalBeijingChina
| | - Yang Jiao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
- Outpatient Department of PLA Macao GarrisonMacaoChina
| | - Li Miao
- Department of StomatologyThe 7th Medical CenterChinese PLA General HospitalBeijingChina
| | - Ji‐hua Chen
- National Clinical Research Center for Oral Diseases & State Key Laboratory of Military Stomatology & Shaanxi Key Laboratory of Oral DiseasesDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anChina
| | | |
Collapse
|
45
|
Chen H, Zhang F, Zhang J, Zhang X, Guo Y, Yao Q. A Holistic View of Berberine Inhibiting Intestinal Carcinogenesis in Conventional Mice Based on Microbiome-Metabolomics Analysis. Front Immunol 2020; 11:588079. [PMID: 33072135 PMCID: PMC7541814 DOI: 10.3389/fimmu.2020.588079] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/02/2020] [Indexed: 12/24/2022] Open
Abstract
Berberine (BBR) has been reported that it has effects on inhibiting colorectal cancer (CRC). However, the mechanism of BBR on CRC also remains largely unknown. Herein, we investigated the therapeutic effects of BBR on CRC from the perspective of gut microbiota and metabolic alterations, which can provide a holistic view to understand the effects of BBR on CRC. First, azoxymethane (AOM)/dextran sodium sulfate (DSS) mouse was used as CRC animal model, then the degree of colorectal carcinogenesis in AOM/DSS mice with or without BBR administration was measured. The composition and abundance of gut microbiota was investigated by using 16S rRNA. Meanwhile, feces samples were analyzed with 1H NMR spectroscopy to investigate the metabolic alterations. As a result, BBR significantly reduced intestinal tumor development with lower macroscopic polyps and ki-67 expression of intestinal tissue, and better colonic morphology in mice. Moreover, BBR altered the composition of gut microbiota in AOM/DSS mice obviously, which were characterized by a decrease of Actinobacteria and Verrucomicrobia significantly at the phylum level. At the genus level, it was able to suppress pathogenic species, such as f_Erysipelotrichaceae, Alistipes, and elevate some short-chain fatty acids (SCFA)-producing bacteria, including Alloprevotella, Flavonifractor, and Oscillibacter. Metabolic data further revealed that BBR induced metabolic changes in feces focus on regulating glycometabolism, SCFA metabolism and amino acid metabolism, which also provides evidence for alteration of the microbiota because these feces metabolites are the products of interactions between the host and the microbial community. This study showed that BBR induced alterations in microbiota and metabolic in AOM/DSS mice, which might providing new insight into the inhibition effects of BBR on CRC.
Collapse
Affiliation(s)
- Haitao Chen
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fan Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jin Zhang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinjie Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yong Guo
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Qinghua Yao
- Department of Integrated Traditional Chinese and Western Medicine, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
46
|
Interactions between Gut Microbiota and Immunomodulatory Cells in Rheumatoid Arthritis. Mediators Inflamm 2020; 2020:1430605. [PMID: 32963490 PMCID: PMC7499318 DOI: 10.1155/2020/1430605] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is one of the most common autoimmune diseases caused by abnormal immune activation and immune tolerance. Immunomodulatory cells (ICs) play a critical role in the maintenance and homeostasis of normal immune function and in the pathogenesis of RA. The human gastrointestinal tract is inhabited by trillions of commensal microbiota on the mucosal surface that play a fundamental role in the induction, maintenance, and function of the host immune system. Gut microbiota dysbiosis can impact both the local and systemic immune systems and further contribute to various diseases, such as RA. The neighbouring intestinal ICs located in distinct intestinal mucosa may be the most likely intermediary by which the gut microbiota can affect the occurrence and development of RA. However, the reciprocal interaction between the components of the gut microbiota and their microbial metabolites with distinct ICs and how this interaction may impact the development of RA are not well studied. Therefore, a better understanding of the gut microbiota, ICs, and their interactions might improve our knowledge of the mechanisms by which the gut microbiota contribute to RA and facilitate the further development of novel therapeutic approaches. In this review, we have summarized the roles of the gut microbiota in the immunopathogenesis of RA, especially the interactions between the gut microbiota and ICs, and further discussed the strategies for treating RA by targeting/regulating the gut microbiota.
Collapse
|
47
|
Hu B, Ye C, Leung ELH, Zhu L, Hu H, Zhang Z, Zheng J, Liu H. Bletilla striata oligosaccharides improve metabolic syndrome through modulation of gut microbiota and intestinal metabolites in high fat diet-fed mice. Pharmacol Res 2020; 159:104942. [PMID: 32504835 DOI: 10.1016/j.phrs.2020.104942] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022]
Abstract
As traditional Chinese medicine, Bletilla striata has been widely applied to clinical treatment for its unique pharmacological profiles. This study aimed to investigate the beneficial role of Bletilla striata oligosaccharides (BO) in improving the metabolic syndrome by regulation of gut microbiota and intestinal metabolites. Treatment of HFD-fed mice with BO prevented weight gain, reversed the glucose intolerance and insulin resistance, and inhibited adipocyte hypertrophy. BO-treated mice also suppressed chronic inflammation and protected intestinal barrier from damage. These effects were linked to the reversal of gut microbiota dysbiosis, which contributed to the homeostasis of intestinal metabolites including bile acids, short-chain fatty acids and tryptophan catabolites. The depletion and reconstitution of intestinal flora from BO- or HFD-treated mice confirmed the significance of gut microbiota in regulation of HFD-induced metabolic disorders. We demonstrated for the first time that BO improved metabolic syndrome through the regulation of gut microbiota and intestinal metabolites. The modulation initiated by BO represents a promising strategy for treatment of obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Baifei Hu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan 430065, China
| | - Cheng Ye
- Wuhan Customs Technology Center, Qintai Avenue 588, Wuhan 430050, China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, SAR, China
| | - Lin Zhu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan 430065, China
| | - Haiming Hu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan 430065, China
| | - Zhigang Zhang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan 430065, China
| | - Junping Zheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan 430065, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan 430065, China.
| |
Collapse
|
48
|
Hui W, Dai Y. Therapeutic potential of aryl hydrocarbon receptor ligands derived from natural products in rheumatoid arthritis. Basic Clin Pharmacol Toxicol 2020. [DOI: 10.1111/bcpt.13372
expr 834489098 + 843621703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Affiliation(s)
- Wenyu Hui
- Department of Pharmacology of Chinese Materia Medica School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| | - Yue Dai
- Department of Pharmacology of Chinese Materia Medica School of Traditional Chinese Pharmacy China Pharmaceutical University Nanjing China
| |
Collapse
|
49
|
Shen X, Hui R, Luo Y, Yu H, Feng S, Xie B, Bi H, Galaj E, Cong B, Ma C, Wen D. Berberine Facilitates Extinction of Drug-Associated Behavior and Inhibits Reinstatement of Drug Seeking. Front Pharmacol 2020; 11:476. [PMID: 32390837 PMCID: PMC7194034 DOI: 10.3389/fphar.2020.00476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/26/2020] [Indexed: 01/19/2023] Open
Abstract
A high rate of relapse is a major clinical problem among drug-addicted individuals. Persistent traces of drug-associated reward memories contribute to intense craving and often trigger relapse. A number of interventions on drug-associated memories have shown significant benefits in relapse prevention. Among them are pre- or post-extinction pharmacological manipulations that facilitate the extinction of drug-associated behavior. Berberine, a bioactive isoquinoline alkaloid, has been recently reported to provide therapeutic benefits for a number of central nervous system (CNS) disorders, including morphine addiction. The present study aimed to investigate whether berberine could serve as a post-extinction pharmacological intervention agent to reduce risks of reinstatement of drug seeking. We found that an intragastric administration of berberine at doses of 25 and 50 mg/kg during the critical time window significantly facilitated the extinction of morphine-reward related behavior in free access and confined conditioned place preference (CPP) extinction paradigms, and subsequently, it prevented reinstatement and spontaneous recovery of morphine-induced CPP in mice. Intriguingly, the berberine treatment with or without extinction training altered expression of plasticity-related proteins such as brain-derived neurotrophic factor (BDNF), AMPA receptors (GluA1 and GluA2) in the nucleus accumbens (NAc). Moreover, the post-extinction berberine treatment significantly reduced reinstatement of cocaine-induced CPP and operant intravenous self-administration (IVSA) memories in rats. Altogether, our findings suggest that extinction training combined with the post-extinction berberine treatment can facilitate extinction of drug-associated behavior making it an attractive therapeutic candidate in relapse prevention.
Collapse
Affiliation(s)
- Xi Shen
- College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rongji Hui
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Yixiao Luo
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China
| | - Hailei Yu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Suiyuan Feng
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Bing Xie
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Haitao Bi
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Ewa Galaj
- Molecular Targets and Medication Discovery Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Di Wen
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
50
|
Fan Z, Yang B, Ross RP, Stanton C, Zhao J, Zhang H, Chen W. The prophylactic effects of different Lactobacilli on collagen-induced arthritis in rats. Food Funct 2020; 11:3681-3694. [PMID: 32301444 DOI: 10.1039/c9fo02556a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent studies have shed light on the prophylactic effects of Lactobacilli on rheumatoid arthritis (RA). However, the modulatory mechanisms of Lactobacilli remain unclear. The current study evaluated different Lactobacillus species' ability to alleviate arthritis induced by collagen. Rats were intragastrically administered different lactobacilli cocktails two weeks before arthritis induction. The results revealed that the performance of Lactobacillus in relieving arthritis was different for some species. L. reuteri, L. casei, L. rhamnosus and L. fermentum attenuated RA through species-independent pathways that inhibited pro-inflammatory cytokines and anti-CII-antibodies; and through species-dependent immune regulation that was based on rebalancing the intestinal microbiota, and metabolites such as short-chain fatty acids. In particular, L. reuteri and L. casei weaken the Th1 immune response, while L. rhamnosus and L. fermentum impaired Th17 responses. Interestingly, L. plantarum did not alleviate arthritis although it did suppress Th1 and Th17 immune responses, while L. salivarius only delayed the onset of arthritis without influencing the immune response. In conclusion, Lactobacilli protect against collagen-induced-arthritis through both common and individual pathways.
Collapse
Affiliation(s)
- Zhexin Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
| | | | | | | | | | | | | |
Collapse
|