1
|
Shi B, Wang J, Zhang J, Li J, Hao Y, Lin X, Zhao R. Dapagliflozin Suppresses High Glucose-Induced Proliferation, Oxidative Stress, and Fibrosis by Reducing Mettl3-Induced m6A Modification in Marcks mRNA. Cardiovasc Toxicol 2025; 25:110-120. [PMID: 39560681 DOI: 10.1007/s12012-024-09945-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a common and severe complication of Diabetes mellitus (DM). Dapagliflozin (DAPA) is an oral anti-diabetic drug worldwide for the treatment of type 2 DM. However, the action and mechanism of DAPA in cardiac fibrosis during DCM remain vague. Primary cardiac fibroblasts (CFs) were incubated with high glucose (HG) in vitro. Cell proliferation was detected by MTT and EdU assays. Oxidative stress was evaluated by determining the production of reactive oxygen species and malondialdehyde. Cell fibrosis was assessed by detecting fibrosis-related proteins by western blotting. Levels of Mettl3 (Methyltransferase 3) and Marcks (myristoylated alanine-rich C kinase substrate) were measured using qRT-PCR and western blotting. The m6A modification profile was determined by methylated RNA immunoprecipitation assay and the interaction between Mettl3 and Marcks was verified using dual-luciferase reporter and RIP assays. DAPA treatment alleviated HG-induced proliferation, oxidative stress, and fibrosis in CFs. HG promoted the expression of Mettl3 in CFs. Knockdown of Mettl3 reversed HG-induced proliferation, oxidative stress, and fibrosis in CFs; moreover, forced expression of Mettl3 abolished the protective effects of DAPA on CFs under HG condition. Mechanistically, Mettl3 interacted with Marcks in CFs and induced Marcks mRNA m6A modification. HG induced high expression of Marcks in CFs. The overexpression of Marcks could counteract DAPA or Mettl3 knockdown-evoked inhibitory effects on CF proliferation, oxidative stress, and fibrosis under HG condition. Dapagliflozin suppressed HG-induced proliferation, oxidative stress, and fibrosis by reducing Mettl3-induced m6A modification in Marcks mRNA.
Collapse
Affiliation(s)
- Binhao Shi
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
- Department of Cardiology, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
| | - Jianfei Wang
- Department of Cardiology, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
| | - Jing Zhang
- Anhui Province Key Laboratory of Occupational Health, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
| | - Ji Li
- Department of Cardiology, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
- Graduate School of Bengbu Medical University, Bengbu, 233030, Anhui, China
| | - Yancheng Hao
- Department of Cardiology, Anhui No.2 Provincial People's Hospital, Hefei, 230041, Anhui, China
- Graduate School of Bengbu Medical University, Bengbu, 233030, Anhui, China
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Shushan District, Hefei, 230022, Anhui, China.
| |
Collapse
|
2
|
Alfaro E, Casitas R, Díaz-García E, García-Tovar S, Galera R, Torres-Vargas M, Fernández-Velilla M, López-Fernández C, Añón JM, Quintana-Díaz M, García-Río F, Cubillos-Zapata C. TGF-β1 overexpression in severe COVID-19 survivors and its implications for early-phase fibrotic abnormalities and long-term functional impairment. Front Immunol 2024; 15:1401015. [PMID: 39281687 PMCID: PMC11393737 DOI: 10.3389/fimmu.2024.1401015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction In post-COVID survivors, transforming growth factor-beta-1 (TGF-β1) might mediate fibroblast activation, resulting in persistent fibrosis. Methods In this study, 82 survivors of COVID-19-associated ARDS were examined at 6- and 24-months post-ICU discharge. At 6-months, quantitative CT analysis of lung attenuation was performed and active TGF-β1 was measured in blood and exhaled breath condensate (EBC). Results At 6-months of ICU-discharge, patients with reduced DmCO/alveolar volume ratio exhibited higher plasma and EBC levels of active TGF-β1. Plasma TGF-β1 levels were elevated in dyspneic survivors and directly related to the high-attenuation lung volume. In vitro, plasma and EBC from survivors induced profibrotic changes in human primary fibroblasts in a TGF-β receptor-dependent manner. Finally, at 6-months, plasma and EBC active TGF-β1 levels discriminated patients who, 24-months post-ICU-discharge, developed gas exchange impairment. Discussion TGF-β1 pathway plays a pivotal role in the early-phase fibrotic abnormalities in COVID-19-induced ARDS survivors, with significant implications for long-term functional impairment.
Collapse
Affiliation(s)
- Enrique Alfaro
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Raquel Casitas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Elena Díaz-García
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Sara García-Tovar
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
| | - Raúl Galera
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - María Torres-Vargas
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | | | - Cristina López-Fernández
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| | - José M. Añón
- Department of Intensive Medicine, La Paz University Hospital, Madrid, Spain
| | - Manuel Quintana-Díaz
- Department of Intensive Medicine, La Paz University Hospital, Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Francisco García-Río
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Carolina Cubillos-Zapata
- Respiratory Diseases Group, Respiratory Service, La Paz University Hospital, IdiPAZ, Madrid, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
3
|
Hu W, Xu Y. Transcriptomics in idiopathic pulmonary fibrosis unveiled: a new perspective from differentially expressed genes to therapeutic targets. Front Immunol 2024; 15:1375171. [PMID: 38566986 PMCID: PMC10985171 DOI: 10.3389/fimmu.2024.1375171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Background The underlying molecular pathways of idiopathic pulmonary fibrosis (IPF), a progressive lung condition with a high death rate, are still mostly unknown. By using microarray datasets, this study aims to identify new genetic targets for IPF and provide light on the genetic factors that contribute to the development of IPF. Method We conducted a comprehensive analysis of three independent IPF datasets from the Gene Expression Omnibus (GEO) database, employing R software for data handling and normalization. Our evaluation of the relationships between differentially expressed genes (DEGs) and IPF included differential expression analysis, expression quantitative trait loci (eQTL) analysis, and Mendelian Randomization(MR) analyses. Additionally, we used Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to explore the functional roles and pathways of these genes. Finally, we validated the results obtained for the target genes. Results We identified 486 highly expressed genes and 468 lowly expressed genes that play important roles in IPF. MR analysis identified six significantly co-expressed genes associated with IPF, specifically C12orf75, SPP1, ZG16B, LIN7A, PPP1R14A, and TLR2. These genes participate in essential biological processes and pathways, including macrophage activation and neural system regulation. Additionally, CIBERSORT analysis indicated a unique immune cell distribution in IPF, emphasized the significance of immunological processes in the disease. The MR analysis was consistent with the results of the analysis of variance in the validation cohort, which strengthens the reliability of our MR findings. Conclusion Our findings provide new insights into the molecular basis of IPF and highlight the promise of therapeutic interventions. They emphasize the potential of targeting specific molecular pathways for the treatment of IPF, laying the foundation for further research and clinical work.
Collapse
Affiliation(s)
- Wenzhong Hu
- Guang’anmen Hospital South Campus, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yun Xu
- People's Hospital of Beijing Daxing District, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Yang Y, Yang H, Yang C. Circ-AMOTL1 enhances cardiac fibrosis through binding with EIF4A3 and stabilizing MARCKS expression in diabetic cardiomyopathy. Cell Signal 2023; 111:110853. [PMID: 37586467 DOI: 10.1016/j.cellsig.2023.110853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE To evaluate the effects and possible mechanisms of circular RNAs (circRNAs) on diabetic myocardial fibrosis (DMF). METHODS We used an in vivo mice model of streptozotocin (STZ)-induced diabetes and conducted in vitro studies using cultured mouse cardiac fibroblast cells (CFs). RESULTS We found that the expression of circ-AMOTL1 was significantly upregulated in the myocardial tissue of diabetic mice compared to that in normal tissues. Inhibition of circ-AMOTL1 improved cardiac function in mice with type I diabetes and significantly repressed STZ-induced myocardial mesenchymal and perivascular fibrosis. In addition, silencing circ-AMOTL1 inhibited cell proliferation, decreased the expression levels of TGF-β1, collagen 1, collagen III, and α-SMA, and reduced the levels of ROS and NO in HG-treated CFs. Our data also indicated that silencing circ-AMOTL1 significantly reduced the expression of myristoylated alanine-rich C-kinase substrate (MARCKS). Finally, circ-AMOTL1 combined with the RNA-binding protein EIF4A3 to improve MARCKS stability. Moreover, co-transfection with si-circ-AMOTL1 and MARCKS reversed the effects of si-circ-AMOTL1 on cell proliferation, fibrotic marker proteins, and ROS and NO levels in vitro. CONCLUSION Our data suggest that circ-AMOTL1 plays a key role in STZ-induced DMF by modulating MARCKS, and that targeting circ-AMOTL1 may be a potential strategy to treat DMF.
Collapse
Affiliation(s)
- Yang Yang
- Emergency Department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China
| | - Huan Yang
- Emergency Department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China
| | - Chong Yang
- Cardiology department, Dingzhou city People's Hospital, Dingzhou 073000, Hebei, PR China.
| |
Collapse
|
5
|
Li JM, Chang WH, Li L, Yang DC, Hsu SW, Kenyon NJ, Chen CH. Inositol possesses antifibrotic activity and mitigates pulmonary fibrosis. Respir Res 2023; 24:132. [PMID: 37194070 PMCID: PMC10189934 DOI: 10.1186/s12931-023-02421-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/13/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Myo-inositol (or inositol) and its derivatives not only function as important metabolites for multiple cellular processes but also act as co-factors and second messengers in signaling pathways. Although inositol supplementation has been widely studied in various clinical trials, little is known about its effect on idiopathic pulmonary fibrosis (IPF). Recent studies have demonstrated that IPF lung fibroblasts display arginine dependency due to loss of argininosuccinate synthase 1 (ASS1). However, the metabolic mechanisms underlying ASS1 deficiency and its functional consequence in fibrogenic processes are yet to be elucidated. METHODS Metabolites extracted from primary lung fibroblasts with different ASS1 status were subjected to untargeted metabolomics analysis. An association of ASS1 deficiency with inositol and its signaling in lung fibroblasts was assessed using molecular biology assays. The therapeutic potential of inositol supplementation in fibroblast phenotypes and lung fibrosis was evaluated in cell-based studies and a bleomycin animal model, respectively. RESULTS Our metabolomics studies showed that ASS1-deficient lung fibroblasts derived from IPF patients had significantly altered inositol phosphate metabolism. We observed that decreased inositol-4-monophosphate abundance and increased inositol abundance were associated with ASS1 expression in fibroblasts. Furthermore, genetic knockdown of ASS1 expression in primary normal lung fibroblasts led to the activation of inositol-mediated signalosomes, including EGFR and PKC signaling. Treatment with inositol significantly downregulated ASS1 deficiency-mediated signaling pathways and reduced cell invasiveness in IPF lung fibroblasts. Notably, inositol supplementation also mitigated bleomycin-induced fibrotic lesions and collagen deposition in mice. CONCLUSION These findings taken together demonstrate a novel function of inositol in fibrometabolism and pulmonary fibrosis. Our study provides new evidence for the antifibrotic activity of this metabolite and suggests that inositol supplementation may be a promising therapeutic strategy for IPF.
Collapse
Affiliation(s)
- Ji-Min Li
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Wen-Hsin Chang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Linhui Li
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - David C Yang
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Ssu-Wei Hsu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA
| | - Nicholas J Kenyon
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA
| | - Ching-Hsien Chen
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA.
- Division of Nephrology, Department of Internal Medicine, University of California Davis, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Ji H, Dong H, Lan Y, Bi Y, Gu X, Han Y, Yang C, Cheng M, Gao J. Metformin attenuates fibroblast activation during pulmonary fibrosis by targeting S100A4 via AMPK-STAT3 axis. Front Pharmacol 2023; 14:1089812. [PMID: 36817136 PMCID: PMC9936158 DOI: 10.3389/fphar.2023.1089812] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Fibroblasts activation is a crucial process for development of fibrosis during idiopathic pulmonary fibrosis pathogenesis, and transforming growth factor (TGF)-β1 plays a key regulatory role in fibroblast activation. It has been reported that metformin (MET) alleviated bleomycin (BLM)-induced pulmonary fibrosis (PF) by regulating TGF-β1-induced fibroblasts activation, but the underlying mechanisms still deserve further investigations. In this study, MET blocked α-smooth muscle actin (α-SMA) accumulation in vivo accompanied with S100A4 expression and STAT3 phosphorylation inhibition, resulting in attenuating the progression of lung fibrosis after BLM administration. We determined that S100A4 plays critical roles in fibroblasts activation in vitro, evidenced by siRNA knockdown of S100A4 expression downregulated TGF-β1 induced α-SMA production in Human fetal lung fibroblast (HFL1) cells. Importantly, we found for the first time that the expression of S100A4 in fibroblasts was regulated by STAT3. Stattic, an effective small molecule inhibitor of STAT3 phosphorylation, reduced S100A4 level in TGF-β1- treated HFL1 cells accompanied with less α-SMA production. We further found that MET, which inhibits STAT3 phosphorylation by AMPK activation, also inhibits fibroblasts activation by targeting S100A4 in vitro. Together all these results, we conclude that S100A4 contributes to TGF-β1- induced pro-fibrogenic function in fibroblasts activation, and MET was able to protect against TGF-β1-induced fibroblasts activation and BLM-induced PF by down-regulating S100A4 expression through AMPK-STAT3 axis. These results provide a useful clue for a clinical strategy to prevent PF.
Collapse
Affiliation(s)
- Huimin Ji
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Hongliang Dong
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuejiao Lan
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Jilin Province People's Hospital, Changchun, Jilin, China
| | - Yuqian Bi
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xuan Gu
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,3201 Hospital, Hanzhong, Shaanxi, China
| | - Yongyue Han
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chongyang Yang
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Minghan Cheng
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Jian Gao, ; Minghan Cheng,
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Jian Gao, ; Minghan Cheng,
| |
Collapse
|
7
|
Huber R, Diekmann M, Hoffmeister L, Kühl F, Welz B, Brand K. MARCKS Is an Essential Regulator of Reactive Oxygen Species Production in the Monocytic Cell Type. Antioxidants (Basel) 2022; 11:antiox11081600. [PMID: 36009319 PMCID: PMC9404745 DOI: 10.3390/antiox11081600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Myristoylated alanine-rich C-kinase substrate (MARCKS) is a ubiquitous protein mediating versatile effects in a variety of cell types, including actin crosslinking, signal transduction, and intracellular transport processes. MARCKS’s functional role in monocyte/macrophages, however, has not yet been adequately addressed. Thus, the aim of this study was to further elucidate the impact of MARCKS on central cellular functions of monocytic cells. To address this topic, we generated monocytic THP-1 (Tohoku Hospital Pediatrics-1)-derived MARCKS wildtype and knockout (KO) cells using the CRISPR/Cas9 technique. Remarkably, in the absence of MARCKS, both total and intracellular reactive oxygen species (ROS) production were strongly suppressed but restored following transient MARCKS re-transfection. In contrast, proliferation, differentiation, cytokine expression, and phagocytosis remained unaltered. A complete inhibition of ROS production could also be achieved in THP-1-derived PKCβ KO cells or in PKC inhibitor Staurosporine-treated primary human monocytes. MARCKS deficiency also involved reduced basal Akt phosphorylation and delayed re-phosphorylation. Further analyses indicated that long-term TNF pre-incubation strongly enhances monocytic ROS production, which was completely blocked in MARCKS and PKCβ KO cells. Collectively, our study demonstrates that MARCKS is an essential molecule enabling ROS production by monocytic cells and suggests that MARCKS is part of a signal cascade involved in ROS formation.
Collapse
|
8
|
Cai H, Chen S, Li X, Liu H, Zhang Y, Zhuang Q. The Combined Model of CX3CR1-Related Immune Infiltration Genes to Evaluate the Prognosis of Idiopathic Pulmonary Fibrosis. Front Immunol 2022; 13:837188. [PMID: 35222428 PMCID: PMC8866189 DOI: 10.3389/fimmu.2022.837188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 12/23/2022] Open
Abstract
Background High expression of chemokine (C-X3-C motif) receptor 1 (CX3CR1) was shown to contribute to the progression of many fibrotic diseases. However, there is still no study for the role of CX3CR1 in idiopathic pulmonary fibrosis (IPF). Therefore, we aimed to identify CX3CR1-related immune infiltration genes (IIGs) in IPF and establish a combined risk model to evaluate the prognosis of IPF. Methods A discovery cohort of IPF patients (GSE70867) was downloaded from the Gene Expression Omnibus dataset. We identified the composition of 22 kinds of immune cells infiltration by CIBERSORT. The Cox regression model with the LASSO method was used for identifying prognostic genes and developing CX3CR1-related IIGs. Kaplan–Meier was applied to plot the survival curve of prognosis model. Peripheral blood mononuclear cell (PBMC) and bronchoalveolar lavage fluid (BALF) were collected to be tested by quantitative reverse transcriptase-PCR (qRT-PCR) from 15 clinical samples, including 8 healthy controls (HC), 4 patients with usual interstitial pneumonia (UIP) and 3 patients with pulmonary fibrosis (FIB). Results We found that high expression of CX3CR1 in BALF contributed to the poor prognosis in IPF patients. ALR4C, RAB37, GPR56, MARCKS, PXN and RASSF2 were identified as CX3CR1-related IIGs, which were highly expressed in PBMC of UIP/FIB patients than that of HC. Moreover, the expression of PXN was higher in FIB patients’ PBMC than that of UIP ones. In the cohort of IPF patients, high infiltration of activated NK cells in BALF caused poor survival compared to low infiltration group. The infiltration of activated NK was regulated by CX3CR1-related IIGs. The combined risk model predicted that high expression of CX3CR1-related IIGs and high infiltrated activated NK cells caused poor prognosis in IPF patients. Conclusion We identified a group of CX3CR1-related IIGs in IPF patients. This combined risk model provided new insights in the prognosis and therapy of IPF.
Collapse
Affiliation(s)
- Haozheng Cai
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Shijie Chen
- Department of Spine Surgery, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xinyu Li
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hanying Liu
- Department of Respiratory Diseases, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Ying Zhang
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center, The 3rd Xiangya Hospital, Central South University, Changsha, China.,Research Center of National Health Ministry on Transplantation Medicine, Changsha, China
| |
Collapse
|
9
|
Liu S, Yang Q, Dong B, Qi C, Yang T, Li M, He S, Liu B, Wu J. Gypenosides Attenuate Pulmonary Fibrosis by Inhibiting the AKT/mTOR/c-Myc Pathway. Front Pharmacol 2022; 12:806312. [PMID: 35095515 PMCID: PMC8795913 DOI: 10.3389/fphar.2021.806312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/20/2021] [Indexed: 12/29/2022] Open
Abstract
Gypenosides (Gyps), the major active constituents isolated from Gynostemma pentaphyllum, possess anti-inflammatory and antioxidant activities. Previous studies have demonstrated that Gyps displayed potent ameliorative effects on liver fibrosis and renal fibrosis. In this study, we found that Gyps significantly reduced the mortality of bleomycin-induced pulmonary fibrosis mice (40% mortality rate of mice in the model group versus 0% in the treatment group). Masson staining showed that Gyps could reduce the content of collagen in the lung tissue of pulmonary fibrosis mice Masson staining and immunohistochemistry demonstrated that the expression of the collagen gene α-SMA and fibrosis gene Col1 markedly decreased after Gyps treatment. The active mitosis of fibroblasts is one of the key processes in the pathogenesis of fibrotic diseases. RNA-seq showed that Gyps significantly inhibited mitosis and induced the G2/M phase cell cycle arrest. The mTOR/c-Myc axis plays an important role in the pathological process of pulmonary fibrosis. RNA-seq also demonstrated that Gyps inhibited the mTOR and c-Myc signaling in pulmonary fibrosis mice, which was further validated by Western blot and immunohistochemistry. AKT functions as an upstream molecule that regulates mTOR. Our western blot data showed that Gyps could suppress the activation of AKT. In conclusion, Gyps exerted anti-pulmonary fibrosis activity by inhibiting the AKT/mTOR/c-Myc pathway.
Collapse
Affiliation(s)
- Suqing Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingqing Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Binbin Dong
- Department of Pediatrics, Huashan Hospital North, Fudan University, Shanghai, China
| | - Chunhui Qi
- Department of Respiratory Medicine, Qingpu District Traditional Chinese Medicine Hospital, Institute of Integrative Medicine, Fudan University, Shanghai, China
| | - Tao Yang
- Department of Cardiovascular Disease, Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Li
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shan He
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
A Novel Renoprotective Strategy: Upregulation of PD-L1 Mitigates Cisplatin-Induced Acute Kidney Injury. Int J Mol Sci 2021; 22:ijms222413304. [PMID: 34948109 PMCID: PMC8706395 DOI: 10.3390/ijms222413304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 11/21/2022] Open
Abstract
The innate and adaptive immunities have been documented to participate in the pathogenesis of nephrotoxic acute kidney injury (AKI); however, the mechanisms controlling these processes have yet to be established. In our cisplatin-induced AKI mouse model, we show pathological damage to the kidneys, with the classical markers elevated, consistent with the response to cisplatin treatment. Through assessments of the components of the immune system, both locally and globally, we demonstrate that the immune microenvironment of injured kidneys was associated with an increased infiltration of CD4+ T cells and macrophages concomitant with decreased Treg cell populations. Our cell-based assays and animal studies further show that cisplatin exposure downregulated the protein levels of programmed death-ligand 1 (PD-L1), an immune checkpoint protein, in primary renal proximal tubular epithelial cells, and that these inhibitions were dose-dependent. After orthotopic delivery of PD-L1 gene into the kidneys, cisplatin-exposed mice displayed lower levels of both serum urea nitrogen and creatinine upon PD-L1 expression. Our data suggest a renoprotective effect of the immune checkpoint protein, and thereby provide a novel therapeutic strategy for cisplatin-induced AKI.
Collapse
|
11
|
Yang DC, Gu S, Li JM, Hsu SW, Chen SJ, Chang WH, Chen CH. Targeting the AXL Receptor in Combating Smoking-related Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 64:734-746. [PMID: 33730527 PMCID: PMC8456879 DOI: 10.1165/rcmb.2020-0303oc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Tobacco smoking is a well-known risk factor for both fibrogenesis and fibrotic progression; however, the mechanisms behind these processes remain enigmatic. RTKs (receptor tyrosine kinases) have recently been reported to drive profibrotic phenotypes in fibroblasts during pulmonary fibrosis (PF). Using a phospho-RTK array screen, we identified the RTK AXL as a top upregulated RTK in response to smoke. Both expression and signaling activity of AXL were indeed elevated in lung fibroblasts exposed to tobacco smoke, whereas no significant change to the levels of a canonical AXL ligand, Gas6 (growth arrest-specific 6), was seen upon smoke treatment. Notably, we found that smoke-exposed human lung fibroblasts exhibited highly proliferative and invasive activities and were capable of inducing fibrotic lung lesions in mice. Conversely, genetic suppression of AXL in smoke-exposed fibroblasts cells led to suppression of AXL downstream pathways and aggressive phenotypes. We further demonstrated that AXL interacted with MARCKS (myristoylated alanine-rich C kinase substrate) and cooperated with MARCKS in regulating downstream signaling activity and fibroblast invasiveness. Pharmacological inhibition of AXL with AXL-specific inhibitor R428 showed selectivity for smoke-exposed fibroblasts. In all, our data suggest that AXL is a potential marker for smoke-associated PF and that targeting of the AXL pathway is a potential therapeutic strategy in treating tobacco smoking-related PF.
Collapse
Affiliation(s)
- David C. Yang
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Shenwen Gu
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Ji-Min Li
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Ssu-Wei Hsu
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Szu-Jung Chen
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| | - Wen-Hsin Chang
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ching-Hsien Chen
- Division of Pulmonary and Critical Care Medicine, and Center for Comparative Respiratory Biology and Medicine, Department of Internal Medicine, and
- Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, California; and
| |
Collapse
|
12
|
Liu J, Chen SJ, Hsu SW, Zhang J, Li JM, Yang DC, Gu S, Pinkerton KE, Chen CH. MARCKS cooperates with NKAP to activate NF-kB signaling in smoke-related lung cancer. Am J Cancer Res 2021; 11:4122-4136. [PMID: 33754052 PMCID: PMC7977464 DOI: 10.7150/thno.53558] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Rationale: Cigarette smoking is a major risk factor for lung cancer development and progression; however, the mechanism of how cigarette smoke activates signaling pathways in promoting cancer malignancy remains to be established. Herein, we aimed to determine the contribution of a signaling protein, myristoylated alanine-rich C kinase substrate (MARCKS), in smoke-mediated lung cancer. Methods: We firstly examined the levels of phosphorylated MARCKS (phospho-MARCKS) in smoke-exposed human lung cancer cells and specimens as well as non-human primate airway epithelium. Next, the MARCKS-interactome and its gene networks were identified. We also used genetic and pharmacological approaches to verify the functionality and molecular mechanism of smoke-induced phospho-MARCKS. Results: We observed that MARCKS becomes activated in airway epithelium and lung cancer cells in response to cigarette smoke. Functional proteomics revealed MARCKS protein directly binds to NF-κB-activating protein (NKAP). Following MARCKS phosphorylation at ser159 and ser163, the MARCKS-NKAP interaction was inhibited, leading to the activation of NF-κB signaling. In a screen of two cohorts of lung cancer patients, we confirmed that phospho-MARCKS is positively correlated with phospho-NF-κB (phospho-p65), and poor survival. Surprisingly, smoke-induced phospho-MARCKS upregulated the expression of pro-inflammatory cytokines, epithelial-mesenchymal transition, and stem-like properties. Conversely, targeting of MARCKS phosphorylation with MPS peptide, a specific MARCKS phosphorylation inhibitor, suppressed smoke-mediated NF-κB signaling activity, pro-inflammatory cytokines expression, aggressiveness and stemness of lung cancer cells. Conclusion: Our results suggest that phospho-MARCKS is a novel NF-kB activator in smoke-mediated lung cancer progression and provide a promising molecular model for developing new anticancer strategies.
Collapse
|
13
|
Li JM, Yang DC, Oldham J, Linderholm A, Zhang J, Liu J, Kenyon NJ, Chen CH. Therapeutic targeting of argininosuccinate synthase 1 (ASS1)-deficient pulmonary fibrosis. Mol Ther 2021; 29:1487-1500. [PMID: 33508432 DOI: 10.1016/j.ymthe.2021.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 12/30/2022] Open
Abstract
Argininosuccinate synthase 1 (ASS1) serves as a critical enzyme in arginine biosynthesis; however, its role in interstitial lung diseases, particularly idiopathic pulmonary fibrosis (IPF), remains largely unknown. This study aims at characterization and targeting of ASS1 deficiency in pulmonary fibrosis. We find that ASS1 was significantly decreased and inversely correlated with fibrotic status. Transcriptional downregulation of ASS1 was noted in fibroblastic foci of primary lung fibroblasts isolated from IPF patients. Genetic manipulations of ASS1 studies confirm that ASS1 expression inhibited fibroblast cell proliferation, migration, and invasion. We further show that the hepatocyte growth factor receptor (Met) receptor was activated and acted upstream of the Src-STAT3 axis signaling in ASS1-knockdown fibroblasts. Interestingly, both arginine-free conditions and arginine deiminase treatment were demonstrated to kill fibrotic fibroblasts, attenuated bleomycin-induced pulmonary fibrosis in mice, as well as synergistically increased nintedanib efficacy. Our data suggest ASS1 deficiency as a druggable target and also provide a unique therapeutic strategy against pulmonary fibrosis.
Collapse
Affiliation(s)
- Ji-Min Li
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - David C Yang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Justin Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Angela Linderholm
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Jun Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Jun Liu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Nicholas J Kenyon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Ching-Hsien Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA; Division of Nephrology, Department of Internal Medicine, University of California, Davis, Davis, CA 95616, USA.
| |
Collapse
|
14
|
Li X, Yu H, Liang L, Bi Z, Wang Y, Gao S, Wang M, Li H, Miao Y, Deng R, Ma L, Luan J, Li S, Liu M, Lin J, Zhou H, Yang C. Myricetin ameliorates bleomycin-induced pulmonary fibrosis in mice by inhibiting TGF-β signaling via targeting HSP90β. Biochem Pharmacol 2020; 178:114097. [PMID: 32535102 DOI: 10.1016/j.bcp.2020.114097] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 01/06/2023]
Abstract
Idiopathic pulmonary fibrosis is a progressive-fibrosing lung disease with high mortality and limited therapy, which characterized by myofibroblasts proliferation and extracellular matrix deposition. Myricetin, a natural flavonoid, has been shown to possess a variety of biological characteristics including anti-inflammatory and anti-tumor. In this study we explored the potential effect and mechanisms of myricetin on pulmonary fibrosis in vivo and vitro. The in vivo studies showed that myricetin effectively alleviated bleomycin (BLM)-induced pulmonary fibrosis. KEGG analysis of RNA-seq data indicated that myricetin could regulate the transforming growth factor (TGF)-β signaling pathway. In vitro studies indicated that myricetin could dose-dependently suppress TGF-β1/Smad signaling and attenuate TGF-β1-induced fibroblast activation and epithelial-mesenchymal transition (EMT). Molecular docking indicated that heat shock protein (HSP) 90β may be a potential target of myricetin, and MST assay demonstrated that the dissociation constant (Kd) of myricetin and HSP90β was 331.59 nM. We demonstrated that myricetin interfered with the binding of HSP90β and TGF-β receptor II and impeded fibroblast activation and EMT. In conclusion, myricetin impedes TGF-β1-induced lung fibroblast activation and EMT via targeting HSP90β and attenuates BLM-induced pulmonary fibrosis in mice.
Collapse
Affiliation(s)
- Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Haiyan Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Lu Liang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Zhun Bi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yanhua Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Shaoyan Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Mukuo Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Hailong Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Yang Miao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China
| | - Ruxia Deng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Ling Ma
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Jiaoyan Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Shuangling Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Menghan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China.
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin 300353, People's Republic of China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300457, People's Republic of China.
| |
Collapse
|