1
|
Höfling C, Donkersloot P, Ulrich L, Burghardt S, Opitz M, Geissler S, Schilling S, Cynis H, Michalski D, Roßner S. Dipeptidyl peptidase 4 deficiency improves survival after focal cerebral ischemia in mice and ameliorates microglia activation and specific inflammatory markers. Neurobiol Dis 2024; 201:106671. [PMID: 39293688 DOI: 10.1016/j.nbd.2024.106671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/11/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024] Open
Abstract
Dipeptidyl peptidase 4 (DPP4; CD26) is involved in the regulation of various metabolic, immunological, and neurobiological processes in healthy individuals. Observations based on epidemiological data indicate that DPP4 inhibition by gliptins, typically used in patients with diabetes, may reduce the risk for cerebral ischemia and may also improve related outcomes. However, as DPP4 inhibitor application is neither complete nor specific for suppression of DPP4 enzymatic activity and DPP4 has non-enzymatic functions as well, the variety of consequences is a matter of debate. Therefore, we here used DPP4 knock-out (KO) mice to analyze the specific contribution of DPP4 to cellular, immunological, and functional consequences of experimental focal cerebral ischemia. We observed a significantly higher survival rate of DPP4 KO mice after ischemia, which was accompanied by a lower abundance of the pro-inflammatory chemokine CCL2 and reduced activation of Iba1-positive microglia cells in brain tissue of DPP4 KO mice. In addition, after ischemia for 24 h to 72 h, decreased concentrations of CCL5 and CCL12 in plasma and of CCL17 in brain tissue of DPP4 KO mice were observed when compared to wild type mice. Other aspects analyzed, such as the functional Menzies score, astrocyte activation and chemokine levels in plasma and brain tissue were affected by ischemia but appeared to be unaffected by the DPP4 KO genotype. Taken together, experimental ablation of DPP4 functions in mice improves survival and ameliorates aspects of cellular and molecular inflammation after focal cerebral ischemia.
Collapse
Affiliation(s)
- Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany; Department of Neurology, University of Leipzig, 04103 Leipzig, Germany
| | - Philippa Donkersloot
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Luise Ulrich
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Sina Burghardt
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Michael Opitz
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Stefanie Geissler
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle (Saale), Germany
| | - Stephan Schilling
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle (Saale), Germany; Anhalt University of Applied Sciences, Faculty of Applied Biosciences and Process Engineering, 06366 Köthen, Germany
| | - Holger Cynis
- Fraunhofer Institute for Cell Therapy and Immunology, Department of Molecular Drug Design and Target Validation, 06120 Halle (Saale), Germany; Junior Research Group "Immunomodulation in Pathophysiological Processes" Faculty of Medicine, Martin Luther University Halle-Wittenberg, Germany
| | - Dominik Michalski
- Department of Neurology, University of Leipzig, 04103 Leipzig, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
2
|
Jiang X, Li J, Yao X, Ding H, Gu A, Zhou Z. Neuroprotective effects of dipeptidyl peptidase 4 inhibitor on Alzheimer's disease: a narrative review. Front Pharmacol 2024; 15:1361651. [PMID: 38405664 PMCID: PMC10884281 DOI: 10.3389/fphar.2024.1361651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024] Open
Abstract
Insulin resistance in brain and amyloidogenesis are principal pathological features of diabetes-related cognitive decline and development of Alzheimer's disease (AD). A growing body of evidence suggests that maintaining glucose under control in diabetic patients is beneficial for preventing AD development. Dipeptidyl peptidase 4 inhibitors (DDP4is) are a class of novel glucose-lowering medications through increasing insulin excretion and decreasing glucagon levels that have shown neuroprotective potential in recent studies. This review consolidates extant evidence from earlier and new studies investigating the association between DPP4i use, AD, and other cognitive outcomes. Beyond DPP4i's benefits in alleviating insulin resistance and glucose-lowering, underlying mechanisms for the potential neuroprotection with DPP4i medications were categorized into the following sections: (Ferrari et al., Physiol Rev, 2021, 101, 1,047-1,081): the benefits of DPP4is on directly ameliorating the burden of β-amyloid plaques and reducing the formation of neurofibrillary tangles; DPP4i increasing the bioactivity of neuroprotective DPP4 substrates including glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic peptide (GIP), and stromal-derived factor-1α (SDF-1α) etc.; pleiotropic effects of DPP4is on neuronal cells and intracerebral structure including anti-inflammation, anti-oxidation, and anti-apoptosis. We further revisited recently published epidemiological studies that provided supportive data to compliment preclinical evidence. Given that there remains a lack of completed randomized trials that aim at assessing the effect of DPP4is in preventing AD development and progression, this review is expected to provide a useful insight into DPP4 inhibition as a potential therapeutic target for AD prevention and treatment. The evidence is helpful for informing the rationales of future clinical research and guiding evidence-based clinical practice.
Collapse
Affiliation(s)
- Xin Jiang
- Baoying People’s Hospital, Yangzhou, China
| | | | | | - Hao Ding
- Baoying People’s Hospital, Yangzhou, China
| | - Aihong Gu
- Baoying People’s Hospital, Yangzhou, China
| | - Zhen Zhou
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Razavi SM, Arab ZN, Niknejad A, Hosseini Y, Fouladi A, Khales SD, Shahali M, Momtaz S, Butler AE, Sukhorukov VN, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. Therapeutic effects of anti-diabetic drugs on traumatic brain injury. Diabetes Metab Syndr 2024; 18:102949. [PMID: 38308863 DOI: 10.1016/j.dsx.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
AIMS In this narrative review, we have analyzed and synthesized current studies relating to the effects of anti-diabetic drugs on traumatic brain injury (TBI) complications. METHODS Eligible studies were collected from Scopus, Google Scholar, PubMed, and Cochrane Library for clinical, in-vivo, and in-vitro studies published on the impact of anti-diabetic drugs on TBI. RESULTS Traumatic brain injury (TBI) is a serious brain disease that is caused by any type of trauma. The pathophysiology of TBI is not yet fully understood, though physical injury and inflammatory events have been implicated in TBI progression. Several signaling pathways are known to play pivotal roles in TBI injuries, including Nuclear factor erythroid 2-related factor 2 (Nrf2), High mobility group box 1 protein/Nuclear factor kappa B (HMGB1/NF-κB), Adiponectin, Mammalian Target of Rapamycin (mTOR), Toll-Like Receptor (TLR), Wnt/β-catenin, Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Nod-like receptor protein3 (NLRP3) inflammasome, Phosphoglycerate kinase 1/Kelch-like ECH-associated protein 1 (PGK1/KEAP1)/Nrf2, and Mitogen-activated protein kinase (MAPK) . Recent studies suggest that oral anti-diabetic drugs such as biguanides, thiazolidinediones (TZDs), sulfonylureas (SUs), sodium-glucose cotransporter-2 inhibitors (SGLT2is), dipeptidyl peptidase-4 inhibitors (DPPIs), meglitinides, and alpha-glucosidase inhibitors (AGIs) could have beneficial effects in the management of TBI complications. These drugs may downregulate the inflammatory pathways and induce antioxidant signaling pathways, thus alleviating complications of TBI. CONCLUSION Based on this comprehensive literature review, antidiabetic medications might be considered in the TBI treatment protocol. However, evidence from clinical trials in patients with TBI is still warranted.
Collapse
Affiliation(s)
- Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yasamin Hosseini
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abtin Fouladi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Darban Khales
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mostafa Shahali
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran; Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Vasily N Sukhorukov
- Institute of General Pathology and Pathophysiology, Moscow, Russia; Institute of Experimental Cardiology Named after Academician V.N. Smirnov, Federal State Budgetary Institution National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Moscow, Russia
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Abubakar M, Nama L, Ansari MA, Ansari MM, Bhardwaj S, Daksh R, Syamala KLV, Jamadade MS, Chhabra V, Kumar D, Kumar N. GLP-1/GIP Agonist as an Intriguing and Ultimate Remedy for Combating Alzheimer's Disease through its Supporting DPP4 Inhibitors: A Review. Curr Top Med Chem 2024; 24:1635-1664. [PMID: 38803170 DOI: 10.2174/0115680266293416240515075450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a widespread neurological illness in the elderly, which impacted about 50 million people globally in 2020. Type 2 diabetes has been identified as a risk factor. Insulin and incretins are substances that have various impacts on neurodegenerative processes. Preclinical research has shown that GLP-1 receptor agonists decrease neuroinflammation, tau phosphorylation, amyloid deposition, synaptic function, and memory formation. Phase 2 and 3 studies are now occurring in Alzheimer's disease populations. In this article, we present a detailed assessment of the therapeutic potential of GLP-1 analogues and DPP4 inhibitors in Alzheimer's disease. AIM This study aimed to gain insight into how GLP-1 analogues and associated antagonists of DPP4 safeguard against AD. METHODS This study uses terms from search engines, such as Scopus, PubMed, and Google Scholar, to explore the role, function, and treatment options of the GLP-1 analogue for AD. RESULTS The review suggested that GLP-1 analogues may be useful for treating AD because they have been linked to anti-inflammatory, neurotrophic, and neuroprotective characteristics. Throughout this review, we discuss the underlying causes of AD and how GLP signaling functions. CONCLUSION With a focus on AD, the molecular and pharmacological effects of a few GLP-1/GIP analogs, both synthetic and natural, as well as DPP4 inhibitors, have been mentioned, which are in the preclinical and clinical studies. This has been demonstrated to improve cognitive function in Alzheimer's patients.
Collapse
Affiliation(s)
- Mohammad Abubakar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Lokesh Nama
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Arif Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohammad Mazharuddin Ansari
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Shivani Bhardwaj
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Rajni Daksh
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Katta Leela Venkata Syamala
- Department of Regulatory and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Mohini Santosh Jamadade
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| | - Dileep Kumar
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institution of Pharmaceutical Education and Research, Hajipur, Vaishali, 844102, Bihar, India
| |
Collapse
|
5
|
Chen CM, Gung PY, Ho YC, Hamdin CD, Yet SF. Probucol treatment after traumatic brain injury activates BDNF/TrkB pathway, promotes neuroregeneration and ameliorates functional deficits in mice. Br J Pharmacol 2023; 180:2605-2622. [PMID: 37263748 DOI: 10.1111/bph.16157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 04/11/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Traumatic brain injury (TBI) is a major cause of mortality and morbidity worldwide, yet pharmacotherapies for TBI are currently lacking. Neuroregeneration is important in brain repair and functional recovery. In this study, probucol, a cholesterol-lowering drug with established safety profiles, was examined for its therapeutic effects and neuroregenerative actions in TBI. EXPERIMENTAL APPROACH Male mice were subjected to the controlled cortical impact model of TBI, followed by daily administration of probucol. Neurological and cognitive functions were evaluated. Histological analyses of the neocortex and hippocampus were performed to detect the lesion, dendritic degeneration (microtubule-associated protein 2), synaptic density (synaptophysin), neurogenesis (doublecortin), brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) activation. Involvement of BDNF/TrkB pathway in probucol-mediated effects was examined in primary cultures of cortical neurons. KEY RESULTS Probucol reduced brain lesion volume, enhanced the recovery of body symmetry, improved motor function and attenuated memory dysfunction after TBI. Meanwhile, probucol promoted post-injury dendritic growth and synaptogenesis and increased hippocampal proliferating neuronal progenitor cells, along with the formation as well as the survival of newborn neurons. Moreover, probucol enhances BDNF expression and TrkB activation. In vitro, probucol promoted neurite outgrowth, which was inhibited by a selective TrkB antagonist ANA-12. CONCLUSIONS AND IMPLICATIONS Probucol enhanced functional restoration and ameliorated cognitive impairment after TBI by promoting post-injury neuronal remodelling and neurogenesis. Increased activation of BDNF/TrkB pathway by probucol, at least in part, contributed to the neuroregenerative effects of probucol. Together, it may be promising to repurpose probucol for TBI.
Collapse
Affiliation(s)
- Chen-Mei Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Pei-Yu Gung
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Yen-Chun Ho
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Candra D Hamdin
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- National Health Research Institutes & Department of Life Sciences, National Central University Joint Ph.D. Program in Biomedicine, Taoyuan City, Taiwan
| | - Shaw-Fang Yet
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Hung YW, Lu GL, Chen HH, Tung HH, Lee SL. Gliptins normalize posttraumatic hippocampal neurogenesis and restore cognitive function after controlled cortical impact on sensorimotor cortex. Biomed Pharmacother 2023; 165:115270. [PMID: 37544280 DOI: 10.1016/j.biopha.2023.115270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Traumatic brain injury (TBI) often leads to long-term neurocognitive dysfunctions. Adult neurogenesis in the hippocampal dentate gyrus (DG) serves critical functions in cognition but can be disrupted by brain injury and insult in serval forms. In the present study, we explore the cellular and molecular targets of DPP-4 inhibitors (or gliptins) as related to hippocampal function and TBI cognitive sequelae. Two structurally different gliptins, sitagliptin and vildagliptin, were examined using a controlled cortical impact (CCI) model of moderate TBI in mice. Sensorimotor CCI, although distal from the hippocampus, impaired hippocampal-dependent cognition without obvious hippocampal tissue destruction. Neurogenic cell proliferation in the DG was increased accompanied by large numbers of reactive astrocyte. Increased numbers of immature granule cells with abnormal dendritic outgrowth were ectopically localized in the outer granule cell layer (GCL) and hilus. Long-term potentiation of dentate immature granule cells was also impaired. Both sitagliptin and vildagliptin attenuated the CCI-induced ectopic migration of doublecortin-positive immature neurons into the outer GCL and hilus, restored the normal dendritic branching pattern of the immature neurons and prevented astrocyte reactivation. Both gliptins prevented loss of normal synaptic integration in the DG after sensorimotor CCI and improved cognitive behavior. Sensorimotor cortical injury thus results in an abnormal neurogenesis pattern and astrocyte reactivation in the distal hippocampus which appears to contribute to the development of cognitive dysfunction after TBI. DPP-4 inhibitors prevent astrocyte reactivation, normalize the posttraumatic hippocampal neurogenesis and help to maintain normal electrophysiology in the DG with positive behavioral effect in a mouse model.
Collapse
Affiliation(s)
- Yu-Wen Hung
- Institute of Cellular and Systems Medicine, Taiwan, R.O.C
| | - Guan-Ling Lu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan Town, Maioli County, Taiwan, R.O.C
| | - Hwei-Hsien Chen
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan Town, Maioli County, Taiwan, R.O.C
| | - Hsiu-Hui Tung
- Institute of Cellular and Systems Medicine, Taiwan, R.O.C
| | - Sheau-Ling Lee
- Institute of Cellular and Systems Medicine, Taiwan, R.O.C; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C; Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
7
|
Lee SL, Lee MHH, Wu KJ, Chiang CW, Chang YX, Fang JD, Tung HH, Kuo LW, Wang Y. Post-ischemic protection of hepatocyte growth factor requires the type II transmembrane serine protease matriptase-A reciprocal regulation of the two for neuroprotection in stroke brain. FASEB J 2022; 36:e22494. [PMID: 35976173 DOI: 10.1096/fj.202200414r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/11/2022]
Abstract
In a rat middle cerebral artery occlusion (MACo) model of ischemic stroke, intracerebroventricular administration of human recombinant hepatocyte growth factor (HGF) mitigated motor impairment and cortical infarction. Recombinant HGF reduced MCAo-induced TNFα and IL1β expression, and alleviated perilesional reactivation of microglia and astrocyte. All of the aforementioned beneficial effects of HGF were antagonized by an inhibitor to the type II transmembrane serine protease matriptase (MTP). MCAo upregulated MTP mRNA and protein in the lesioned cortex. MTP protein, not the mRNA, was increased further by recombinant HGF but reduced when MTP inhibitor (MTPi) was added to the treatment. Changes of the endogenous active HGF by MCAo, HGF or MTPi paralleled with the changes of MTP protein under the same conditions whilst neither HGF mRNA nor the total endogenous HGF protein were altered. These data showed that the therapeutic effects of HGF in stroke brain is attributed to its proteolytic activation and that MTP is a main protease of the event. MCAo enhanced MTP mRNA and thus protein expression; the initial use of the recombinant active HGF stabilized MCAo-induced MTP protein and subsequent activation of endogenous latent HGF which in turn stabilized further MTP protein. A reciprocal regulation between MTP and HGF appears to be present where MTP promotes HGF activation and the active HGF prevents MTP protein turnover. This study, for the first time, shows that MTP can participate in neural protection in stroke brain through activation of HGF. The cycles of HGF-MTP regulation achieved preservation of the neurological activity.
Collapse
Affiliation(s)
- Sheau-Ling Lee
- Institute of Cellular and Systems Medicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Michelle Hui-Hsin Lee
- Institute of Cellular and Systems Medicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C
| | - Kuo-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, R.O.C
| | - Chia-Wen Chiang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C
| | - Yun-Xuan Chang
- Institute of Cellular and Systems Medicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C
| | - Jung-Da Fang
- Institute of Cellular and Systems Medicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C
| | - Hsiu-Hui Tung
- Institute of Cellular and Systems Medicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Zhunan, Taiwan, R.O.C
| |
Collapse
|
8
|
Mozafari N, Dehshahri A, Ashrafi H, Mohammadi-Samani S, Shahbazi MA, Heidari R, Azarpira N, Azadi A. Vesicles of yeast cell wall-sitagliptin to alleviate neuroinflammation in Alzheimer's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102575. [PMID: 35714923 DOI: 10.1016/j.nano.2022.102575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
A cell-based drug delivery system based on yeast-cell wall loaded with sitagliptin, a drug with an anti-inflammatory effect, was developed to control neuroinflammation associated with Alzheimer's disease. The optimized nanoparticles had a spherical shape with a negative surface charge, and were shown to be less toxic than the carrier and sitagliptin. Moreover, the nanoparticles caused anti-inflammatory effects against tumor necrosis factor-alpha in mice model of neuroinflammation. The pharmacokinetics study showed the brain concentration of drug in the nanoparticles group was much higher than in the control group. To evaluate the effect of P-glycoprotein on brain entry of sitagliptin, the experiment was repeated with verapamil, as a P-glycoprotein inhibitor. Brain concentration of the nanoparticles group remained approximately unchanged, proving the "Trojan Horse" effect of the developed nanocarriers. The results are promising for using yeast-cell wall as a carrier for targeted delivery to immune cells for the management of inflammation.
Collapse
Affiliation(s)
- Negin Mozafari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Zhang Y, Zhang X, Wee Yong V, Xue M. Vildagliptin improves neurological function by inhibiting apoptosis and ferroptosis following intracerebral hemorrhage in mice. Neurosci Lett 2022; 776:136579. [PMID: 35304193 DOI: 10.1016/j.neulet.2022.136579] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/07/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023]
Abstract
Intracerebral hemorrhage (ICH) is a fatal health problem which lacks effective treatment. The apoptosis caused by hematoma constituents, and the ferroptosis due to iron overload, are prominent contributors of neurologic impairment after ICH. Targeting cell death pathways may thus be a therapeutic strategy for neuroprotection and functional recovery in ICH. Vildagliptin (Vilda), a dipeptidyl peptidase (DPP)-4 inhibitor, has been reported to have potent anti-apoptosis and anti-ferroptotic capacity. However, it is not clear whether Vilda has anti-cell death efficacy in ICH. In the present study, the potential neuroprotective effect of Vilda in ICH mice was investigated. Mice were randomly divided into three groups: sham, ICH + saline or ICH + Vilda. ICH was induced by collagenase type VII micro-injection into the right basal ganglia. Vilda (50 mg/kg/day; gavage) daily treatment for 3 days after ICH improved neurological deficit scores, reduced hematoma volume, and inhibited degeneration of neurons. The activation of microglia/macrophages and infiltration of neutrophil were restrained by Vilda. Moreover, Vilda attenuated brain cell apoptosis as determined by TUNEL staining, raised Bcl-2 protein level, and simultaneously suppressed Bax as validated by western blots. In addition, Vilda reduced malondialdehyde level, elevated glutathione peroxidase brain content, and alleviated iron deposition at 3 days after ICH in mice. In conclusion, Vilda exerts neuroprotective effects in ICH, at least in part by inhibiting neuroinflammation, and preventing neuronal apoptosis and ferroptosis following ICH.
Collapse
Affiliation(s)
- Yan Zhang
- Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangyu Zhang
- Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
| | - Mengzhou Xue
- Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Mima A. Mitochondria-targeted drugs for diabetic kidney disease. Heliyon 2022; 8:e08878. [PMID: 35265754 PMCID: PMC8899696 DOI: 10.1016/j.heliyon.2022.e08878] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/17/2022] [Accepted: 01/30/2022] [Indexed: 12/15/2022] Open
|
11
|
Targeted drug delivery systems to control neuroinflammation in central nervous system disorders. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|