1
|
Dinger N, Russo C, Fusco S, Netti PA, Sirignano M, Panzetta V. Carbon quantum dots in breast cancer modulate cellular migration via cytoskeletal and nuclear structure. Nanotoxicology 2024; 18:618-644. [PMID: 39484725 DOI: 10.1080/17435390.2024.2419418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/02/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024]
Abstract
Carbon nanomaterials have been widely applied for cutting edge therapeutic applications as they offer tunable physio-chemical properties with economic scale-up options. Nuclear delivery of cancer drugs has been of prime focus since it controls important cellular signaling functions leading to greater anti-cancer drug efficacies. Better cellular drug uptake per unit drug injection drastically reduces severe side-effects of cancer therapies. Similarly, carbon dots (CDs) uptaken by the nucleus can also be used to set-up cutting edge nano delivery systems. In an earlier paper, we showed the cellular uptake and plasma membrane impact of combustion generated yellow luminescing CDs produced by our group from fuel rich combustion reactors in a one-step tunable production. In this paper, we aim to specifically study the nucleus by establishing the uptake kinetics of these combustion-generated yellow luminescing CDs. At sub-lethal doses, after crossing the plasma membrane, they impact the actin and microtubule mesh, affecting cell adhesion and migration; enter nucleus by diffusion processes; modify the overall appearance of the nucleus in terms of morphology; and alter chromatin condensation. We thus establish how this one-step produced, cost and bulk production friendly carbon dots from fuel rich combustion flames can be innovatively repurposed as potential nano delivery agents in cancer cells.
Collapse
Affiliation(s)
- Nikita Dinger
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Carmela Russo
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilita Sostenibili- CNR - P.le V. Tecchio, Napoli, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Campobasso, Italy
| | - Paolo A Netti
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - Mariano Sirignano
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Panzetta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Interdisciplinary Research Centre on Biomaterials, CRIB, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare IIT@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
2
|
Behrooz AB, Shojaei S. Mechanistic insights into mesenchymal-amoeboid transition as an intelligent cellular adaptation in cancer metastasis and resistance. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167332. [PMID: 38960056 DOI: 10.1016/j.bbadis.2024.167332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/26/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Malignant cell plasticity is an important hallmark of tumor biology and crucial for metastasis and resistance. Cell plasticity lets cancer cells adapt to and escape the therapeutic strategies, which is the leading cause of cancer patient mortality. Epithelial cells acquire mobility via epithelial-mesenchymal transition (EMT), whereas mesenchymal cells enhance their migratory ability and clonogenic potential by acquiring amoeboid characteristics through mesenchymal-amoeboid transition (MAT). Tumor formation, progression, and metastasis depend on the tumor microenvironment (TME), a complex ecosystem within and around a tumor. Through increased migration and metastasis of cancer cells, the TME also contributes to malignancy. This review underscores the distinction between invasion pattern morphological manifestations and the diverse structures found within the TME. Furthermore, the mechanisms by which amoeboid-associated characteristics promote resistance and metastasis and how these mechanisms may represent therapeutic opportunities are discussed.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahla Shojaei
- Department of Human Anatomy and Cell Sciences, University of Manitoba, Max Rady College of Medicine, Winnipeg, Manitoba, Canada.
| |
Collapse
|
3
|
Urbanska M, Guck J. Single-Cell Mechanics: Structural Determinants and Functional Relevance. Annu Rev Biophys 2024; 53:367-395. [PMID: 38382116 DOI: 10.1146/annurev-biophys-030822-030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The mechanical phenotype of a cell determines its ability to deform under force and is therefore relevant to cellular functions that require changes in cell shape, such as migration or circulation through the microvasculature. On the practical level, the mechanical phenotype can be used as a global readout of the cell's functional state, a marker for disease diagnostics, or an input for tissue modeling. We focus our review on the current knowledge of structural components that contribute to the determination of the cellular mechanical properties and highlight the physiological processes in which the mechanical phenotype of the cells is of critical relevance. The ongoing efforts to understand how to efficiently measure and control the mechanical properties of cells will define the progress in the field and drive mechanical phenotyping toward clinical applications.
Collapse
Affiliation(s)
- Marta Urbanska
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Erlangen, Germany; ,
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
4
|
Conboy JP, Istúriz Petitjean I, van der Net A, Koenderink GH. How cytoskeletal crosstalk makes cells move: Bridging cell-free and cell studies. BIOPHYSICS REVIEWS 2024; 5:021307. [PMID: 38840976 PMCID: PMC11151447 DOI: 10.1063/5.0198119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Cell migration is a fundamental process for life and is highly dependent on the dynamical and mechanical properties of the cytoskeleton. Intensive physical and biochemical crosstalk among actin, microtubules, and intermediate filaments ensures their coordination to facilitate and enable migration. In this review, we discuss the different mechanical aspects that govern cell migration and provide, for each mechanical aspect, a novel perspective by juxtaposing two complementary approaches to the biophysical study of cytoskeletal crosstalk: live-cell studies (often referred to as top-down studies) and cell-free studies (often referred to as bottom-up studies). We summarize the main findings from both experimental approaches, and we provide our perspective on bridging the two perspectives to address the open questions of how cytoskeletal crosstalk governs cell migration and makes cells move.
Collapse
Affiliation(s)
- James P. Conboy
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Irene Istúriz Petitjean
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Anouk van der Net
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
5
|
Cambria E, Coughlin MF, Floryan MA, Offeddu GS, Shelton SE, Kamm RD. Linking cell mechanical memory and cancer metastasis. Nat Rev Cancer 2024; 24:216-228. [PMID: 38238471 PMCID: PMC11146605 DOI: 10.1038/s41568-023-00656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 03/01/2024]
Abstract
Metastasis causes most cancer-related deaths; however, the efficacy of anti-metastatic drugs is limited by incomplete understanding of the biological mechanisms that drive metastasis. Focusing on the mechanics of metastasis, we propose that the ability of tumour cells to survive the metastatic process is enhanced by mechanical stresses in the primary tumour microenvironment that select for well-adapted cells. In this Perspective, we suggest that biophysical adaptations favourable for metastasis are retained via mechanical memory, such that the extent of memory is influenced by both the magnitude and duration of the mechanical stress. Among the mechanical cues present in the primary tumour microenvironment, we focus on high matrix stiffness to illustrate how it alters tumour cell proliferation, survival, secretion of molecular factors, force generation, deformability, migration and invasion. We particularly centre our discussion on potential mechanisms of mechanical memory formation and retention via mechanotransduction and persistent epigenetic changes. Indeed, we propose that the biophysical adaptations that are induced by this process are retained throughout the metastatic process to improve tumour cell extravasation, survival and colonization in the distant organ. Deciphering mechanical memory mechanisms will be key to discovering a new class of anti-metastatic drugs.
Collapse
Affiliation(s)
- Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mark F Coughlin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni S Offeddu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Garcia-Fossa F, de Jesus MB. Cationic solid lipid nanoparticles (SLN) complexed with plasmid DNA enhance prostate cancer cells (PC-3) migration. Nanotoxicology 2024; 18:36-54. [PMID: 38300021 DOI: 10.1080/17435390.2024.2307616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Nanotechnology applications in biomedicine have increased in recent decades, primarily as therapeutic agents, drugs, and gene delivery systems. Among the nanoparticles used in medicine, we highlight cationic solid lipid nanoparticles (SLN). Given their nontoxic properties, much research has focused on the beneficial effects of SLN for drug or gene delivery system. However, little attention has been paid to the adverse impacts of SLN on the cellular environment, particularly their influence on intracellular signaling pathways. In this work, we investigate the effects triggered by cationic SLN on human prostate non-tumor cells (PNT1A) and tumor cells (PC-3). Our results demonstrate that cationic SLN enhances the migration of PC-3 prostate cancer cells but not PNT1A non-tumor prostate cells, an unexpected and unprecedented development. Furthermore, we observed that the enhanced cell migration velocity is a concentration-dependent and nanoparticle-dependent effect, and not related to any individual nanoparticle component. Moreover, cationic SLN increased vimentin expression (p < 0.05) but SLN did not affect Smad2 nuclear translocation. Meanwhile, EMT-related (epithelial-to-mesenchymal transition) proteins, such as ZEB1, underwent nuclear translocation when treated with cationic SLN, thereby affecting PC-3 cell motility through ZEB1 and vimentin modulation. From a therapeutic perspective, cationic SLN could potentially worsen a patient's condition if these results were reproduced in vivo. Understanding the in vitro molecular mechanisms triggered by nanomaterials and their implications for cell function is crucial for defining their safe and effective use.
Collapse
Affiliation(s)
- Fernanda Garcia-Fossa
- Nano-cell Interactions Laboratory, Department of Biochemistry & Tissue Biology, Biology Institute, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Marcelo Bispo de Jesus
- Nano-cell Interactions Laboratory, Department of Biochemistry & Tissue Biology, Biology Institute, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
7
|
Neagu AN, Whitham D, Bruno P, Arshad A, Seymour L, Morrissiey H, Hukovic AI, Darie CC. Onco-Breastomics: An Eco-Evo-Devo Holistic Approach. Int J Mol Sci 2024; 25:1628. [PMID: 38338903 PMCID: PMC10855488 DOI: 10.3390/ijms25031628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Known as a diverse collection of neoplastic diseases, breast cancer (BC) can be hyperbolically characterized as a dynamic pseudo-organ, a living organism able to build a complex, open, hierarchically organized, self-sustainable, and self-renewable tumor system, a population, a species, a local community, a biocenosis, or an evolving dynamical ecosystem (i.e., immune or metabolic ecosystem) that emphasizes both developmental continuity and spatio-temporal change. Moreover, a cancer cell community, also known as an oncobiota, has been described as non-sexually reproducing species, as well as a migratory or invasive species that expresses intelligent behavior, or an endangered or parasite species that fights to survive, to optimize its features inside the host's ecosystem, or that is able to exploit or to disrupt its host circadian cycle for improving the own proliferation and spreading. BC tumorigenesis has also been compared with the early embryo and placenta development that may suggest new strategies for research and therapy. Furthermore, BC has also been characterized as an environmental disease or as an ecological disorder. Many mechanisms of cancer progression have been explained by principles of ecology, developmental biology, and evolutionary paradigms. Many authors have discussed ecological, developmental, and evolutionary strategies for more successful anti-cancer therapies, or for understanding the ecological, developmental, and evolutionary bases of BC exploitable vulnerabilities. Herein, we used the integrated framework of three well known ecological theories: the Bronfenbrenner's theory of human development, the Vannote's River Continuum Concept (RCC), and the Ecological Evolutionary Developmental Biology (Eco-Evo-Devo) theory, to explain and understand several eco-evo-devo-based principles that govern BC progression. Multi-omics fields, taken together as onco-breastomics, offer better opportunities to integrate, analyze, and interpret large amounts of complex heterogeneous data, such as various and big-omics data obtained by multiple investigative modalities, for understanding the eco-evo-devo-based principles that drive BC progression and treatment. These integrative eco-evo-devo theories can help clinicians better diagnose and treat BC, for example, by using non-invasive biomarkers in liquid-biopsies that have emerged from integrated omics-based data that accurately reflect the biomolecular landscape of the primary tumor in order to avoid mutilating preventive surgery, like bilateral mastectomy. From the perspective of preventive, personalized, and participatory medicine, these hypotheses may help patients to think about this disease as a process governed by natural rules, to understand the possible causes of the disease, and to gain control on their own health.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania
| | - Danielle Whitham
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Pathea Bruno
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Aneeta Arshad
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Logan Seymour
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Angiolina I. Hukovic
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (D.W.); (P.B.); (A.A.); (L.S.); (H.M.); (A.I.H.)
| |
Collapse
|
8
|
Kim JH, Yang D, Park S. Experimental validation for the interconversion between generalized Kelvin-Voigt and Maxwell models using human skin tissues. J Biomech 2024; 162:111908. [PMID: 38142667 PMCID: PMC10842778 DOI: 10.1016/j.jbiomech.2023.111908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Mechanical properties of biological systems provide essential insights into their component, physiological function, and disease mechanism under various conditions, such as age, health, and other environmental factors. Viscoelasticity is one of the most important and investigated properties to study biomaterials, cells, and tissues, as they exhibit the characteristics of both fluid-like behavior, viscosity, and solid-like behavior, elasticity. Various mathematical models, such as the Kelvin-Voigt and Maxwell models, have been developed and practiced to estimate and extract viscoelastic properties. However, one of the inherent challenges with the use of these models is the poor transferability of mathematically estimated viscoelastic properties across different models, largely due to variations in constituent elements and their arrangements within each model. This issue impedes the interconversion of parameters of one model to another and complicates comparison across models. In this study, we demonstrate the equivalence between the generalized Maxwell and generalized Kelvin-Voigt models through two distinct approaches: indirect, Maxwell model-based Kelvin-Voigt model estimation and direct, curve fitting-based Kelvin-Voigt model estimation. We utilized human melanoma skin tissues to estimate viscoelastic properties using the Prony series. The estimated parameters and resulting viscoelastic properties revealed no significant difference between the two approaches and between the two patients. This study is the first experimental validation of the mathematical interconversion of the two models, signifying that this approach will enable an accurate and objective analysis and comparison of mechanical properties across various viscoelastic models.
Collapse
Affiliation(s)
- Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Daejong Yang
- Department of Mechanical and Automotive Engineering, Kongju National University, Cheonan 31080, Republic of Korea
| | - Seungman Park
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA.
| |
Collapse
|
9
|
Flora K, Ishihara M, Zhang Z, Bowen ES, Wu A, Ayoub T, Huang J, Cano-Ruiz C, Jackson M, Reghu K, Ayoub Y, Zhu Y, Tseng HR, Zhou ZH, Hu J, Wu L. Exosomes from Von Hippel-Lindau-Null Cancer Cells Promote Metastasis in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:17307. [PMID: 38139136 PMCID: PMC10743428 DOI: 10.3390/ijms242417307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Exosomes are extracellular vesicles that modulate essential physiological and pathological signals. Communication between cancer cells that express the von Hippel-Lindau (VHL) tumor suppressor gene and those that do not is instrumental to distant metastasis in renal cell carcinoma (RCC). In a novel metastasis model, VHL(-) cancer cells are the metastatic driver, while VHL(+) cells receive metastatic signals from VHL(-) cells and undergo aggressive transformation. This study investigates whether exosomes could be mediating metastatic crosstalk. Exosomes isolated from paired VHL(+) and VHL(-) cancer cell lines were assessed for physical, biochemical, and biological characteristics. Compared to the VHL(+) cells, VHL(-) cells produce significantly more exosomes that augment epithelial-to-mesenchymal transition (EMT) and migration of VHL(+) cells. Using a Cre-loxP exosome reporter system, the fluorescent color conversion and migration were correlated with dose-dependent delivery of VHL(-) exosomes. VHL(-) exosomes even induced a complete cascade of distant metastasis when added to VHL(+) tumor xenografts in a duck chorioallantoic membrane (dCAM) model, while VHL(+) exosomes did not. Therefore, this study supports that exosomes from VHL(-) cells could mediate critical cell-to-cell crosstalk to promote metastasis in RCC.
Collapse
Affiliation(s)
- Kailey Flora
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA;
| | - Moe Ishihara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
| | - Zhicheng Zhang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
| | - Elizabeth S. Bowen
- Department of Computational and Systems Biology, University of California, Los Angeles, CA 90095, USA;
| | - Aimee Wu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; (A.W.); (J.H.); (M.J.); (K.R.)
| | - Tala Ayoub
- Department of Physiology, University of California, Los Angeles, CA 90095, USA;
| | - Julian Huang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; (A.W.); (J.H.); (M.J.); (K.R.)
| | - Celine Cano-Ruiz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
| | - Maia Jackson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; (A.W.); (J.H.); (M.J.); (K.R.)
| | - Kaveeya Reghu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; (A.W.); (J.H.); (M.J.); (K.R.)
| | - Yasmeen Ayoub
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA;
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (Y.Z.); (H.-R.T.); (Z.H.Z.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (Y.Z.); (H.-R.T.); (Z.H.Z.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (Y.Z.); (H.-R.T.); (Z.H.Z.)
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Bao L, Kong H, Ja Y, Wang C, Qin L, Sun H, Dai S. The relationship between cancer and biomechanics. Front Oncol 2023; 13:1273154. [PMID: 37901315 PMCID: PMC10602664 DOI: 10.3389/fonc.2023.1273154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
The onset, development, diagnosis, and treatment of cancer involve intricate interactions among various factors, spanning the realms of mechanics, physics, chemistry, and biology. Within our bodies, cells are subject to a variety of forces such as gravity, magnetism, tension, compression, shear stress, and biological static force/hydrostatic pressure. These forces are perceived by mechanoreceptors as mechanical signals, which are then transmitted to cells through a process known as mechanical transduction. During tumor development, invasion and metastasis, there are significant biomechanical influences on various aspects such as tumor angiogenesis, interactions between tumor cells and the extracellular matrix (ECM), interactions between tumor cells and other cells, and interactions between tumor cells and the circulatory system and vasculature. The tumor microenvironment comprises a complex interplay of cells, ECM and vasculature, with the ECM, comprising collagen, fibronectins, integrins, laminins and matrix metalloproteinases, acting as a critical mediator of mechanical properties and a key component within the mechanical signaling pathway. The vasculature exerts appropriate shear forces on tumor cells, enabling their escape from immune surveillance, facilitating their dissemination in the bloodstream, dictating the trajectory of circulating tumor cells (CTCs) and playing a pivotal role in regulating adhesion to the vessel wall. Tumor biomechanics plays a critical role in tumor progression and metastasis, as alterations in biomechanical properties throughout the malignant transformation process trigger a cascade of changes in cellular behavior and the tumor microenvironment, ultimately culminating in the malignant biological behavior of the tumor.
Collapse
Affiliation(s)
- Liqi Bao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Renji College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongru Kong
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yang Ja
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chengchao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lei Qin
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hongwei Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengjie Dai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
11
|
Mandal S, Melo M, Gordiichuk P, Acharya S, Poh YC, Li N, Aung A, Dane EL, Irvine DJ, Kumari S. WASP facilitates tumor mechanosensitivity in T lymphocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560434. [PMID: 37873483 PMCID: PMC10592916 DOI: 10.1101/2023.10.02.560434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Cytotoxic T lymphocytes (CTLs) carry out immunosurveillance by scanning target cells of diverse physical properties for the presence of antigens. While the recognition of cognate antigen by the T cell receptor is the primary signal for CTL activation, it has become increasingly clear that the mechanical stiffness of target cells plays an important role in antigen-triggered T cell responses. However, the molecular machinery within CTLs that transduces the mechanical information of tumor cells remains unclear. We find that CTL's mechanosensitive ability requires the activity of the actin-organizing protein Wiskott-Aldrich Syndrome Protein (WASP). WASP activation is modulated by the mechanical properties of antigen-presenting contexts across a wide range of target cell stiffnesses and activated WASP then mediates mechanosensitive activation of early TCR signaling markers in the CTL. Our results provide a molecular link between antigen mechanosensing and CTL immune response and suggest that CTL-intrinsic cytoskeletal organizing principles enable the processing of mechanical information from diverse target cells.
Collapse
Affiliation(s)
| | - Mariane Melo
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | | | | | - Yeh-Chuin Poh
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Na Li
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Aereas Aung
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Eric L. Dane
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| | - Darrell J. Irvine
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
- Department of Biological Engineering, MIT, Cambridge, USA
- Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Sudha Kumari
- Indian Institute of Science, Bengaluru, India
- Koch Institute of Integrative Cancer Research, MIT, Cambridge, USA
| |
Collapse
|
12
|
Chen J, Yan D, Chen Y. Understanding the driving force for cell migration plasticity. Biophys J 2023; 122:3570-3576. [PMID: 37041746 PMCID: PMC10541478 DOI: 10.1016/j.bpj.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 04/07/2023] [Indexed: 04/13/2023] Open
Abstract
Cell migration is a complex phenomenon. Not only do different cells migrate in different default modes, but the same cell can also change its migration mode to adapt to different terrains. This complexity has riddled cell biologists and biophysicists for decades in that, despite the development of many powerful tools over the past 30 years, how cells move is still being actively investigated. This is because we have yet to fully understand the mystery of cell migration plasticity, particularly the reciprocal relation between force generation and migration mode transition. Herein we explore the future directions, in terms of measurement platforms and imaging-based techniques, to facilitate the undertaking of elucidating the relation between force generation machinery and migration mode transition. By briefly reviewing the evolution of the platforms and techniques developed in the past, we propose the desirable features to be added to achieve high measurement accuracy and improved temporal and spatial resolution, permitting us to unveil the mystery of cell migration plasticity.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins University, Baltimore, Maryland
| | - Daniel Yan
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins University, Baltimore, Maryland
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
13
|
Desjardins-Lecavalier N, Annis MG, Nowakowski A, Kiepas A, Binan L, Roy J, Modica G, Hébert S, Kleinman CL, Siegel PM, Costantino S. Migration speed of captured breast cancer subpopulations correlates with metastatic fitness. J Cell Sci 2023; 136:jcs260835. [PMID: 37313743 PMCID: PMC10657211 DOI: 10.1242/jcs.260835] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
The genetic alterations contributing to migration proficiency, a phenotypic hallmark of metastatic cells required for colonizing distant organs, remain poorly defined. Here, we used single-cell magneto-optical capture (scMOCa) to isolate fast cells from heterogeneous human breast cancer cell populations, based on their migratory ability alone. We show that captured fast cell subpopulations retain higher migration speed and focal adhesion dynamics over many generations as a result of a motility-related transcriptomic profile. Upregulated genes in isolated fast cells encoded integrin subunits, proto-cadherins and numerous other genes associated with cell migration. Dysregulation of several of these genes correlates with poor survival outcomes in people with breast cancer, and primary tumors established from fast cells generated a higher number of circulating tumor cells and soft tissue metastases in pre-clinical mouse models. Subpopulations of cells selected for a highly migratory phenotype demonstrated an increased fitness for metastasis.
Collapse
Affiliation(s)
- Nicolas Desjardins-Lecavalier
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
- Institut de genie biomedical, University of Montreal, Pavillon Paul-G.-Desmarais, 2960, chemin de la Tour, Montréal, QC H3T 1J4, Canada
| | - Matthew G. Annis
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Alexander Nowakowski
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Alexander Kiepas
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MA 20892-4370, USA
| | - Loïc Binan
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
| | - Joannie Roy
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
| | - Graziana Modica
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
| | - Steven Hébert
- Lady Davis Institute, McGill University, Montréal, QC H3T 1E2, Canada
| | - Claudia L. Kleinman
- Lady Davis Institute, McGill University, Montréal, QC H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3T 1E2, Canada
| | - Peter M. Siegel
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Santiago Costantino
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
- Department of Ophthalmology, University of Montreal, Pavillon Roger-Gaudry, Bureau S-700, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
14
|
Oh M, Batty S, Banerjee N, Kim TH. High extracellular glucose promotes cell motility by modulating cell deformability and contractility via the cAMP-RhoA-ROCK axis in human breast cancer cells. Mol Biol Cell 2023; 34:ar79. [PMID: 37195739 PMCID: PMC10398875 DOI: 10.1091/mbc.e22-12-0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
The mechanical properties, or mechanotypes, of cells are largely determined by their deformability and contractility. The ability of cancer cells to deform and generate contractile force is critical in multiple steps of metastasis. Identifying soluble cues that regulate cancer cell mechanotypes and understanding the underlying molecular mechanisms regulating these cellular mechanotypes could provide novel therapeutic targets to prevent metastasis. Although a strong correlation between high glucose level and cancer metastasis has been demonstrated, the causality has not been elucidated, and the underlying molecular mechanisms remain largely unknown. In this study, using novel high-throughput mechanotyping assays, we show that human breast cancer cells become less deformable and more contractile with increased extracellular glucose levels (>5 mM). These altered cell mechanotypes are due to increased F-actin rearrangement and nonmuscle myosin II (NMII) activity. We identify the cAMP-RhoA-ROCK-NMII axis as playing a major role in regulating cell mechanotypes at high extracellular glucose levels, whereas calcium and myosin light-chain kinase (MLCK) are not required. The altered mechanotypes are also associated with increased cell migration and invasion. Our study identifies key components in breast cancer cells that convert high extracellular glucose levels into changes in cellular mechanotype and behavior relevant in cancer metastasis.
Collapse
Affiliation(s)
- Mijung Oh
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
| | - Skylar Batty
- Undergraduate Pipeline Network Summer Research Program, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Nayan Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Tae-Hyung Kim
- Department of Pathology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131
| |
Collapse
|
15
|
Liu Y, Nemec S, Kopecky C, Stenzel MH, Kilian KA. Hydrogel Microtumor Arrays to Evaluate Nanotherapeutics. Adv Healthc Mater 2023; 12:e2201696. [PMID: 36373218 PMCID: PMC11323127 DOI: 10.1002/adhm.202201696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Nanoparticle drug formulations have many advantages for cancer therapy due to benefits in targeting selectivity, lack of systemic toxicity, and increased drug concentration in the tumor microenvironment after delivery. However, the promise of nanomedicine is limited by preclinical models that fail to accurately assess new drugs before entering human trials. In this work a new approach to testing nanomedicine using a microtumor array formed through hydrogel micropatterning is demonstrated. This technique allows partitioning of heterogeneous cell states within a geometric pattern-where boundary regions of curvature prime the stem cell-like fraction-allowing to simultaneously probe drug uptake and efficacy in different cancer cell fractions with high reproducibility. Using melanoma cells of different metastatic potential, a relationship between stem fraction and nanoparticle uptake is discovered. Deformation cytometry reveals that the stem cell-like population exhibits a more mechanically deformable cell membrane. Since the stem fraction in a tumor is implicated in drug resistance, recurrence, and metastasis, the findings suggest that nanoparticle drug formulations are well suited for targeting this dangerous cell population in cancer therapy.
Collapse
Affiliation(s)
- Yiling Liu
- School of ChemistryThe University of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicineSydneyNSW2052Australia
| | - Stephanie Nemec
- Australian Centre for NanoMedicineSydneyNSW2052Australia
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Chantal Kopecky
- School of ChemistryThe University of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicineSydneyNSW2052Australia
| | - Martina H. Stenzel
- School of ChemistryThe University of New South WalesSydneyNSW2052Australia
| | - Kristopher A. Kilian
- School of ChemistryThe University of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicineSydneyNSW2052Australia
- School of Materials Science and EngineeringThe University of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
16
|
Park S, Chien AL, Brown ID, Chen J. Characterizing viscoelastic properties of human melanoma tissue using Prony series. Front Bioeng Biotechnol 2023; 11:1162880. [PMID: 37091343 PMCID: PMC10117758 DOI: 10.3389/fbioe.2023.1162880] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
Melanoma is the most invasive and deadly skin cancer, which causes most of the deaths from skin cancer. It has been demonstrated that the mechanical properties of tumor tissue are significantly altered. However, data about characterizing the mechanical properties of in vivo melanoma tissue are extremely scarce. In addition, the viscoelastic or viscous properties of melanoma tissue are rarely reported. In this study, we measured and quantitated the viscoelastic properties of human melanoma tissues based on the stress relaxation test, using the indentation-based mechanical analyzer that we developed previously. The melanoma tissues from eight patients of different ages (57–95), genders (male and female patients), races (White and Asian), and sites (nose, arm, shoulder, and chest) were excised and tested. The results showed that the elastic property (i.e., shear modulus) of melanoma tissue was elevated compared to normal tissue, while the viscous property (i.e., relaxation time) was reduced. Moreover, the tissue thickness had a significant impact on the viscoelastic properties, probably due to the amount of the adipose layer. Our findings provide new insights into the role of the viscous and elastic properties of melanoma cell mechanics, which may be implicated in the disease state and progression.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical Engineering, University of Nevada, Las Vegas, NV, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Seungman Park,
| | - Anna L. Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Isabelle D. Brown
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| |
Collapse
|
17
|
Schwager SC, Young KM, Hapach LA, Carlson CM, Mosier JA, McArdle TJ, Wang W, Schunk C, Jayathilake AL, Bates ME, Bordeleau F, Antonyak MA, Cerione RA, Reinhart-King CA. Weakly migratory metastatic breast cancer cells activate fibroblasts via microvesicle-Tg2 to facilitate dissemination and metastasis. eLife 2022; 11:e74433. [PMID: 36475545 PMCID: PMC9767463 DOI: 10.7554/elife.74433] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer cell migration is highly heterogeneous, and the migratory capability of cancer cells is thought to be an indicator of metastatic potential. It is becoming clear that a cancer cell does not have to be inherently migratory to metastasize, with weakly migratory cancer cells often found to be highly metastatic. However, the mechanism through which weakly migratory cells escape from the primary tumor remains unclear. Here, utilizing phenotypically sorted highly and weakly migratory human breast cancer cells, we demonstrate that weakly migratory metastatic cells disseminate from the primary tumor via communication with stromal cells. While highly migratory cells are capable of single cell migration, weakly migratory cells rely on cell-cell signaling with fibroblasts to escape the primary tumor. Weakly migratory cells release microvesicles rich in tissue transglutaminase 2 (Tg2) which activate murine fibroblasts and lead weakly migratory cancer cell migration in vitro. These microvesicles also induce tumor stiffening and fibroblast activation in vivo and enhance the metastasis of weakly migratory cells. Our results identify microvesicles and Tg2 as potential therapeutic targets for metastasis and reveal a novel aspect of the metastatic cascade in which weakly migratory cells release microvesicles which activate fibroblasts to enhance cancer cell dissemination.
Collapse
Affiliation(s)
- Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Katherine M Young
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Lauren A Hapach
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
- Department of Biomedical Engineering, Cornell UniversityIthacaUnited States
| | - Caroline M Carlson
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | | | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Curtis Schunk
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | | | - Madison E Bates
- Department of Biomedical Engineering, Vanderbilt UniversityNashvilleUnited States
| | - Francois Bordeleau
- CHU de Québec-Université Laval Research Center (Oncology division), UniversitéLaval Cancer Research Center and Faculty of Medicine, Université LavalQuébeccCanada
| | - Marc A Antonyak
- Department of Biomedical Science, Cornell UniversityIthacaUnited States
| | - Richard A Cerione
- Department of Biomedical Science, Cornell UniversityIthacaUnited States
| | | |
Collapse
|
18
|
Mazumder S, Mitra Ghosh T, Mukherjee UK, Chakravarti S, Amiri F, Waliagha RS, Hemmati F, Mistriotis P, Ahmed S, Elhussin I, Salam AB, Dean-Colomb W, Yates C, Arnold RD, Mitra AK. Integrating Pharmacogenomics Data-Driven Computational Drug Prediction with Single-Cell RNAseq to Demonstrate the Efficacy of a NAMPT Inhibitor against Aggressive, Taxane-Resistant, and Stem-like Cells in Lethal Prostate Cancer. Cancers (Basel) 2022; 14:6009. [PMID: 36497496 PMCID: PMC9738762 DOI: 10.3390/cancers14236009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Metastatic prostate cancer/PCa is the second leading cause of cancer deaths in US men. Most early-stage PCa are dependent on overexpression of the androgen receptor (AR) and, therefore, androgen deprivation therapies/ADT-sensitive. However, eventual resistance to standard medical castration (AR-inhibitors) and secondary chemotherapies (taxanes) is nearly universal. Further, the presence of cancer stem-like cells (EMT/epithelial-to-mesenchymal transdifferentiation) and neuroendocrine PCa (NEPC) subtypes significantly contribute to aggressive/lethal/advanced variants of PCa (AVPC). In this study, we introduced a pharmacogenomics data-driven optimization-regularization-based computational prediction algorithm ("secDrugs") to predict novel drugs against lethal PCa. Integrating secDrug with single-cell RNA-sequencing/scRNAseq as a 'Double-Hit' drug screening tool, we demonstrated that single-cells representing drug-resistant and stem-cell-like cells showed high expression of the NAMPT pathway genes, indicating potential efficacy of the secDrug FK866 which targets NAMPT. Next, using several cell-based assays, we showed substantial impact of FK866 on clinically advanced PCa as a single agent and in combination with taxanes or AR-inhibitors. Bulk-RNAseq and scRNAseq revealed that, in addition to NAMPT inhibition, FK866 regulates tumor metastasis, cell migration, invasion, DNA repair machinery, redox homeostasis, autophagy, as well as cancer stemness-related genes, HES1 and CD44. Further, we combined a microfluidic chip-based cell migration assay with a traditional cell migration/'scratch' assay and demonstrated that FK866 reduces cancer cell invasion and motility, indicating abrogation of metastasis. Finally, using PCa patient datasets, we showed that FK866 is potentially capable of reversing the expression of several genes associated with biochemical recurrence, including IFITM3 and LTB4R. Thus, using FK866 as a proof-of-concept candidate for drug repurposing, we introduced a novel, universally applicable preclinical drug development pipeline to circumvent subclonal aggressiveness, drug resistance, and stemness in lethal PCa.
Collapse
Affiliation(s)
- Suman Mazumder
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Taraswi Mitra Ghosh
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Department of Urology Research, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Ujjal K. Mukherjee
- Department of Business Administration, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
- Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Sayak Chakravarti
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Farshad Amiri
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Razan S. Waliagha
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Farnaz Hemmati
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Panagiotis Mistriotis
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL 36849, USA
| | - Salsabil Ahmed
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Isra Elhussin
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Ahmad-Bin Salam
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
| | - Windy Dean-Colomb
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Piedmont Hospital, Newnan, GA 30309, USA
| | - Clayton Yates
- Department of Biology and Canter for Cancer Research, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| | - Amit K. Mitra
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Center for Pharmacogenomics and Single-Cell Omics (AUPharmGx), Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- UAB O’Neal Comprehensive Cancer, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35233, USA
| |
Collapse
|
19
|
Schwager SC, Mosier JA, Padmanabhan RS, White A, Xing Q, Hapach LA, Taufalele PV, Ortiz I, Reinhart-King CA. Link between glucose metabolism and epithelial-to-mesenchymal transition drives triple-negative breast cancer migratory heterogeneity. iScience 2022; 25:105190. [PMID: 36274934 PMCID: PMC9579510 DOI: 10.1016/j.isci.2022.105190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 07/07/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Intracellular and environmental cues result in heterogeneous cancer cell populations with different metabolic and migratory behaviors. Although glucose metabolism and epithelial-to-mesenchymal transition have previously been linked, we aim to understand how this relationship fuels cancer cell migration. We show that while glycolysis drives single-cell migration in confining microtracks, fast and slow cells display different migratory sensitivities to glycolysis and oxidative phosphorylation inhibition. Phenotypic sorting of highly and weakly migratory subpopulations (MDA+, MDA-) reveals that more mesenchymal, highly migratory MDA+ preferentially use glycolysis while more epithelial, weakly migratory MDA- utilize mitochondrial respiration. These phenotypes are plastic and MDA+ can be made less glycolytic, mesenchymal, and migratory and MDA- can be made more glycolytic, mesenchymal, and migratory via modulation of glucose metabolism or EMT. These findings reveal an intrinsic link between EMT and glucose metabolism that controls migration. Identifying mechanisms fueling phenotypic heterogeneity is essential to develop targeted metastatic therapeutics.
Collapse
Affiliation(s)
- Samantha C. Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Jenna A. Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Reethi S. Padmanabhan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Addison White
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Qinzhe Xing
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Lauren A. Hapach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul V. Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Ismael Ortiz
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | | |
Collapse
|
20
|
Molter CW, Muszynski EF, Tao Y, Trivedi T, Clouvel A, Ehrlicher AJ. Prostate cancer cells of increasing metastatic potential exhibit diverse contractile forces, cell stiffness, and motility in a microenvironment stiffness-dependent manner. Front Cell Dev Biol 2022; 10:932510. [PMID: 36200037 PMCID: PMC9527313 DOI: 10.3389/fcell.2022.932510] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
During metastasis, all cancer types must migrate through crowded multicellular environments. Simultaneously, cancers appear to change their biophysical properties. Indeed, cell softening and increased contractility are emerging as seemingly ubiquitous biomarkers of metastatic progression which may facilitate metastasis. Cell stiffness and contractility are also influenced by the microenvironment. Stiffer matrices resembling the tumor microenvironment cause metastatic cells to contract more strongly, further promoting contractile tumorigenic phenotypes. Prostate cancer (PCa), however, appears to deviate from these common cancer biophysics trends; aggressive metastatic PCa cells appear stiffer, rather than softer, to their lowly metastatic PCa counterparts. Although metastatic PCa cells have been reported to be more contractile than healthy cells, how cell contractility changes with increasing PCa metastatic potential has remained unknown. Here, we characterize the biophysical changes of PCa cells of various metastatic potential as a function of microenvironment stiffness. Using a panel of progressively increasing metastatic potential cell lines (22RV1, LNCaP, DU145, and PC3), we quantified their contractility using traction force microscopy (TFM), and measured their cortical stiffness using optical magnetic twisting cytometry (OMTC) and their motility using time-lapse microscopy. We found that PCa contractility, cell stiffness, and motility do not universally scale with metastatic potential. Rather, PCa cells of various metastatic efficiencies exhibit unique biophysical responses that are differentially influenced by substrate stiffness. Despite this biophysical diversity, this work concludes that mechanical microenvironment is a key determinant in the biophysical response of PCa with variable metastatic potentials. The mechanics-oriented focus and methodology of the study is unique and complementary to conventional biochemical and genetic strategies typically used to understand this disease, and thus may usher in new perspectives and approaches.
Collapse
Affiliation(s)
- Clayton W. Molter
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Eliana F. Muszynski
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Neuroscience, McGill University, Montreal, QC, Canada
| | - Yuanyuan Tao
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
| | - Tanisha Trivedi
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Anna Clouvel
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Allen J. Ehrlicher
- Department of Bioengineering, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
21
|
Biomechanics of cancer stem cells. Essays Biochem 2022; 66:359-369. [PMID: 35942932 DOI: 10.1042/ebc20220014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/27/2022] [Accepted: 08/02/2022] [Indexed: 12/27/2022]
Abstract
Cancer stem cells (CSCs) have been believed to be one driving force for tumor progression and drug resistance. Despite the significance of biochemical signaling in malignancy, highly malignant tumor cells or CSCs exhibit lower cellular stiffness than weakly malignant cells or non-CSCs, which are softer than their healthy counterparts, suggesting the inverse correlation between cell stiffness and malignancy. Recent years have witnessed the rapid accumulation of evidence illustrating the reciprocity between cell cytoskeleton/mechanics and CSC functions and the potential of cellular stiffness for specific targeting of CSCs. However, a systematic understanding of tumor cell mechanics and their role in CSCs and tumor progression is still lacking. The present review summarizes the recent progress in the alterations of tumor cell cytoskeleton and stiffness at different stages of tumor progression and recapitulates the relationship between cellular stiffness and CSC functions. The altered cell mechanics may mediate the mechanoadaptive responses that possibly empower CSCs to survive and thrive during metastasis. Furthermore, we highlight the possible impact of tumor cell mechanics on CSC malignancy, which may potentiate low cell stiffness as a mechanical marker for CSC targeting.
Collapse
|
22
|
Zeng Y, Hao J, Zhang J, Jiang L, Youn S, Lu G, Yan D, Kang H, Sun Y, Shung KK, Shen K, Zhou Q. Manipulation and Mechanical Deformation of Leukemia Cells by High-Frequency Ultrasound Single Beam. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1889-1897. [PMID: 35468061 PMCID: PMC9753557 DOI: 10.1109/tuffc.2022.3170074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Ultrasound single-beam acoustic tweezer system has attracted increasing attention in the field of biomechanics. Cell biomechanics play a pivotal role in leukemia cell functions. To better understand and compare the cell mechanics of the leukemia cells, herein, we fabricated an acoustic tweezer system in-house connected with a 50-MHz high-frequency cylinder ultrasound transducer. Selected leukemia cells (Jurkat, K562, and MV-411 cells) were cultured, trapped, and manipulated by high-frequency ultrasound single beam, which was transmitted from the ultrasound transducer without contacting any cells. The relative deformability of each leukemia cell was measured, characterized, and compared, and the leukemia cell (Jurkat cell) gaining the highest deformability was highlighted. Our results demonstrate that the high-frequency ultrasound single beam can be utilized to manipulate and characterize leukemia cells, which can be applied to study potential mechanisms in the immune system and cell biomechanics in other cell types.
Collapse
|
23
|
Micropillar-based phenotypic screening platform uncovers involvement of HDAC2 in nuclear deformability. Biomaterials 2022; 286:121564. [DOI: 10.1016/j.biomaterials.2022.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/18/2022]
|
24
|
Green BJ, Marazzini M, Hershey B, Fardin A, Li Q, Wang Z, Giangreco G, Pisati F, Marchesi S, Disanza A, Frittoli E, Martini E, Magni S, Beznoussenko GV, Vernieri C, Lobefaro R, Parazzoli D, Maiuri P, Havas K, Labib M, Sigismund S, Fiore PPD, Gunby RH, Kelley SO, Scita G. PillarX: A Microfluidic Device to Profile Circulating Tumor Cell Clusters Based on Geometry, Deformability, and Epithelial State. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106097. [PMID: 35344274 DOI: 10.1002/smll.202106097] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Circulating tumor cell (CTC) clusters are associated with increased metastatic potential and worse patient prognosis, but are rare, difficult to count, and poorly characterized biophysically. The PillarX device described here is a bimodular microfluidic device (Pillar-device and an X-magnetic device) to profile single CTCs and clusters from whole blood based on their size, deformability, and epithelial marker expression. Larger, less deformable clusters and large single cells are captured in the Pillar-device and sorted according to pillar gap sizes. Smaller, deformable clusters and single cells are subsequently captured in the X-device and separated based on epithelial marker expression using functionalized magnetic nanoparticles. Clusters of established and primary breast cancer cells with variable degrees of cohesion driven by different cell-cell adhesion protein expression are profiled in the device. Cohesive clusters exhibit a lower deformability as they travel through the pillar array, relative to less cohesive clusters, and have greater collective invasive behavior. The ability of the PillarX device to capture clusters is validated in mouse models and patients of metastatic breast cancer. Thus, this device effectively enumerates and profiles CTC clusters based on their unique geometrical, physical, and biochemical properties, and could form the basis of a novel prognostic clinical tool.
Collapse
Affiliation(s)
- Brenda J Green
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Margherita Marazzini
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Ben Hershey
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Amir Fardin
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
| | - Qingsen Li
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Zongjie Wang
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 144 College St, Toronto, Ontario, M5S 3M2, Canada
| | - Giovanni Giangreco
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
- Tumour Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Federica Pisati
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Stefano Marchesi
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Andrea Disanza
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Emanuela Frittoli
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Emanuele Martini
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Serena Magni
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | | | - Claudio Vernieri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Riccardo Lobefaro
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, Milan, 20133, Italy
| | - Dario Parazzoli
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Paolo Maiuri
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Kristina Havas
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
| | - Mahmoud Labib
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sara Sigismund
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono, 7, Milan, 20122, Italy
| | - Pier Paolo Di Fiore
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono, 7, Milan, 20122, Italy
| | - Rosalind H Gunby
- IEO, Istituto Europeo di Oncologia IRCCS, Via Ripamonti 435, Milan, 20141, Italy
| | - Shana O Kelley
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 144 College St, Toronto, Ontario, M5S 3M2, Canada
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giorgio Scita
- IFOM-FIRC Institute of Molecular Oncology, Via Adamello, 16, Milan, 20139, Italy
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono, 7, Milan, 20122, Italy
| |
Collapse
|
25
|
Choi G, Tang Z, Guan W. Microfluidic high-throughput single-cell mechanotyping: Devices and
applications. NANOTECHNOLOGY AND PRECISION ENGINEERING 2021. [DOI: 10.1063/10.0006042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gihoon Choi
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| | - Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| | - Weihua Guan
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802,
USA
| |
Collapse
|
26
|
Liu C, Jiang X, Gan Y, Yu M. Engineering nanoparticles to overcome the mucus barrier for drug delivery: Design, evaluation and state-of-the-art. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2021.100110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
27
|
Adhesion and Stiffness of Detached Breast Cancer Cells In Vitro: Co-Treatment with Metformin and 2-Deoxy-d-glucose Induces Changes Related to Increased Metastatic Potential. BIOLOGY 2021; 10:biology10090873. [PMID: 34571750 PMCID: PMC8465291 DOI: 10.3390/biology10090873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The process of metastasis is one of the most destructive characteristics of cancer, yet it is still poorly understood. Formation of metastasis comprises several distinct steps: cancer cells first detach from the primary tumor and then enter the bloodstream where they circulate freely in the body and eventually adhere to vessel walls in distant organs where they can form secondary tumors. A recent study discovered that a co-treatment of two common drugs that interfere with cellular metabolism, metformin and 2-deoxy-D-glucose, induced cellular changes resembling those observed in metastasis: the drugs induced detachment of certain breast cancer cells and their proliferation in the floating state. In this study, we investigated if this treatment also induces other changes that are related to metastasis, i.e., if the detached cells are softer and if they are more prone to adhesion than control cells. The results of our in vitro experiments showed that this was indeed the case and thus indicate possible relations between metabolism and metastatic potential. While the results of this study cannot be directly projected to cancers in vivo, they present new observations that can be important for the analysis of cancer cell detachment and anchorage-independent growth. Abstract Metastatic cancer cells can overcome detachment-induced cell death and can proliferate in anchorage-independent conditions. A recent study revealed that a co-treatment with two drugs that interfere with cell metabolism, metformin and 2-deoxy-D-glucose, promotes detachment of viable MDA-MB-231 breast cancer cells. In the present study, we analyzed if these detached viable MDA-MB-231 cells also exhibit other features related to cancer metastatic potential, i.e., if they are softer and more prone to adhere to epithelial cells. The cell mechanics of attached cells and floating cells were analyzed by optical tweezers and cell deformability cytometry, respectively. The adhesion was assessed on a confluent monolayer of HUVEC cells, with MDA-MB-231 cells either in static conditions or in a microfluidic flow. Additionally, to test if adhesion was affected by the state of the epithelial glycocalyx, HUVEC cells were treated with neuraminidase and tunicamycin. It was found that the treated MDA-MB-231 cells were more prone to adhere to HUVEC cells and that they were softer than the control, both in the floating state and after re-seeding to a substrate. The changes in the HUVEC glycocalyx, however, did not increase the adhesion potential of MDA-MB-231.
Collapse
|
28
|
Paria D, Convertino A, Raj P, Glunde K, Chen Y, Barman I. Nanowire Assisted Mechanotyping of Cellular Metastatic Potential. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2101638. [PMID: 34512229 PMCID: PMC8425187 DOI: 10.1002/adfm.202101638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 06/13/2023]
Abstract
Nanotechnology has provided tools for next generation biomedical devices which rely on nanostructure interfaces with living cells. In vitro biomimetic structures have enabled observation of cell response to various mechanical and chemical cues, and there is a growing interest in isolating and harnessing the specific cues that three-dimensional microenvironments can provide without the requirement for such culture and the experimental drawbacks associated with it. Here we report a randomly oriented gold coated Si nanowire substrate with patterned hydrophobic-hydrophilic areas for differentiation of isogenic breast cancer cells of varying metastatic potential. When considering synthetic surfaces for the study of cell-nanotopography interfaces, randomly oriented nanowires more closely resemble the isotropic architecture of natural extracellular matrix as compared to currently more widely used vertical nanowire arrays. In the study reported here, we show that primary cancer cells preferably attach to the hydrophilic region of randomly oriented nanowire substrate while secondary cancer cells do not adhere. Using machine learning analysis of fluorescence images, cells were found to spread and elongate on the nanowire substrates as compared to a flat substrate, where they mostly remain round, when neither surface was coated with extracellular matrix (ECM) proteins. Such platforms can not only be used for developing bioassays but also as stepping stones for tissue printing technologies where cells can be selectively patterned at desired locations.
Collapse
Affiliation(s)
- Debadrita Paria
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Annalisa Convertino
- Institute for Microelectronics and Microsystems, National Research Council, Roma, Italia
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kristine Glunde
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Radiology & Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Wang H, An J, He S, Liao C, Wang J, Tuo B. Chloride intracellular channels as novel biomarkers for digestive system tumors (Review). Mol Med Rep 2021; 24:630. [PMID: 34278487 DOI: 10.3892/mmr.2021.12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/19/2021] [Indexed: 11/06/2022] Open
Abstract
Digestive system malignant tumors are common tumors, and the traditional treatment methods for these tumors include surgical resection, radiotherapy, chemotherapy, and molecularly targeted drugs. However, diagnosis remains challenging, and the early detection of postoperative recurrence is complicated. Therefore, it is necessary to explore novel biomarkers to facilitate clinical diagnosis and treatment. Accumulating evidence supports the crucial role of chloride channels in the development of multiple types of cancers. Given that chloride channels are widely expressed and involved in cell proliferation, apoptosis and cell cycle, among other processes, they may serve as a promising diagnostic and therapeutic target. Chloride intracellular channels (CLICs) are a class of chloride channels that are upregulated or downregulated in certain types of cancer. Furthermore, in certain cases, during cell cycle progression, the localization and function of the cytosolic form of the transmembrane proteins of CLICs are also altered, which may provide a key target for cancer therapy. The aim of the present review was to focus on CLICs as biomarkers for digestive system tumors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Suyu He
- The Fourth Department of the Digestive Disease Center, Suining Central Hospital, Suining, Sichuan 629000, P.R. China
| | - Chengcheng Liao
- Special Key Laboratory of Oral Disease Research, Higher Education Institution in Guizhou Province, School of Stomatology, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Juan Wang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
30
|
Paidi SK, Shah V, Raj P, Glunde K, Pandey R, Barman I. Coarse Raman and optical diffraction tomographic imaging enable label-free phenotyping of isogenic breast cancer cells of varying metastatic potential. Biosens Bioelectron 2021; 175:112863. [PMID: 33272866 PMCID: PMC7847362 DOI: 10.1016/j.bios.2020.112863] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Identification of the metastatic potential represents one of the most important tasks for molecular imaging of cancer. While molecular imaging of metastases has witnessed substantial progress as an area of clinical inquiry, determining precisely what differentiates the metastatic phenotype has proven to be more elusive. In this study, we utilize both the morphological and molecular information provided by 3D optical diffraction tomography and Raman spectroscopy, respectively, to propose a label-free route for optical phenotyping of cancer cells at single-cell resolution. By using an isogenic panel of cell lines derived from MDA-MB-231 breast cancer cells that vary in their metastatic potential, we show that 3D refractive index tomograms can capture subtle morphological differences among the parental, circulating tumor cells, and lung metastatic cells. By leveraging its molecular specificity, we demonstrate that coarse Raman microscopy is capable of rapidly mapping a sufficient number of cells for training a random forest classifier that can accurately predict the metastatic potential of cells at a single-cell level. We also perform multivariate curve resolution alternating least squares decomposition of the spectral dataset to demarcate spectra from cytoplasm and nucleus, and test the feasibility of identifying metastatic phenotypes using the spectra only from the cytoplasmic and nuclear regions. Overall, our study provides a rationale for employing coarse Raman mapping to substantially reduce measurement time thereby enabling the acquisition of reasonably large training datasets that hold the key for label-free single-cell analysis and, consequently, for differentiation of indolent from aggressive phenotypes.
Collapse
Affiliation(s)
- Santosh Kumar Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Vaani Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kristine Glunde
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Rishikesh Pandey
- CytoVeris Inc, Farmington, CT, 06032, USA; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
31
|
Gensbittel V, Kräter M, Harlepp S, Busnelli I, Guck J, Goetz JG. Mechanical Adaptability of Tumor Cells in Metastasis. Dev Cell 2020; 56:164-179. [PMID: 33238151 DOI: 10.1016/j.devcel.2020.10.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The most dangerous aspect of cancer lies in metastatic progression. Tumor cells will successfully form life-threatening metastases when they undergo sequential steps along a journey from the primary tumor to distant organs. From a biomechanics standpoint, growth, invasion, intravasation, circulation, arrest/adhesion, and extravasation of tumor cells demand particular cell-mechanical properties in order to survive and complete the metastatic cascade. With metastatic cells usually being softer than their non-malignant counterparts, high deformability for both the cell and its nucleus is thought to offer a significant advantage for metastatic potential. However, it is still unclear whether there is a finely tuned but fixed mechanical state that accommodates all mechanical features required for survival throughout the cascade or whether tumor cells need to dynamically refine their properties and intracellular components at each new step encountered. Here, we review the various mechanical requirements successful cancer cells might need to fulfill along their journey and speculate on the possibility that they dynamically adapt their properties accordingly. The mechanical signature of a successful cancer cell might actually be its ability to adapt to the successive microenvironmental constraints along the different steps of the journey.
Collapse
Affiliation(s)
- Valentin Gensbittel
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ignacio Busnelli
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
32
|
Park S, Jung WH, Pittman M, Chen J, Chen Y. The Effects of Stiffness, Fluid Viscosity, and Geometry of Microenvironment in Homeostasis, Aging, and Diseases: A Brief Review. J Biomech Eng 2020; 142:100804. [PMID: 32803227 PMCID: PMC7477718 DOI: 10.1115/1.4048110] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Cells sense biophysical cues in the micro-environment and respond to the cues biochemically and biophysically. Proper responses from cells are critical to maintain the homeostasis in the body. Abnormal biophysical cues will cause pathological development in the cells; pathological or aging cells, on the other hand, can alter their micro-environment to become abnormal. In this minireview, we discuss four important biophysical cues of the micro-environment-stiffness, curvature, extracellular matrix (ECM) architecture and viscosity-in terms of their roles in health, aging, and diseases.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Matthew Pittman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218; Center for Cell Dynamics, Johns Hopkins University, Baltimore, MD 21218; Department of Mechanical Engineering, Institute for NanoBio Technology, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|