1
|
Augière C, Campolina-Silva G, Vijayakumaran A, Medagedara O, Lavoie-Ouellet C, Joly Beauparlant C, Droit A, Barrachina F, Ottino K, Battistone MA, Narayan K, Hess R, Mennella V, Belleannée C. ARL13B controls male reproductive tract physiology through primary and Motile Cilia. Commun Biol 2024; 7:1318. [PMID: 39397107 PMCID: PMC11471856 DOI: 10.1038/s42003-024-07030-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
ARL13B is a small regulatory GTPase that controls ciliary membrane composition in both motile cilia and non-motile primary cilia. In this study, we investigated the role of ARL13B in the efferent ductules, tubules of the male reproductive tract essential to male fertility in which primary and motile cilia co-exist. We used a genetically engineered mouse model to delete Arl13b in efferent ductule epithelial cells, resulting in compromised primary and motile cilia architecture and functions. This deletion led to disturbances in reabsorptive/secretory processes and triggered an inflammatory response. The observed male reproductive phenotype showed significant variability linked to partial infertility, highlighting the importance of ARL13B in maintaining a proper physiological balance in these small ducts. These results emphasize the dual role of both motile and primary cilia functions in regulating efferent duct homeostasis, offering deeper insights into how cilia related diseases affect the male reproductive system.
Collapse
Affiliation(s)
- Céline Augière
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| | - Gabriel Campolina-Silva
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Aaran Vijayakumaran
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Odara Medagedara
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
| | - Camille Lavoie-Ouellet
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | | | - Arnaud Droit
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada
| | - Ferran Barrachina
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kiera Ottino
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Maria Agustina Battistone
- Program in Membrane Biology, Nephrology Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, MA, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rex Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, IL, USA
| | - Vito Mennella
- Medical Research Council Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, UK
- Department of Pathology, 10 Tennis Court Road, University of Cambridge, Cambridge, UK
| | - Clémence Belleannée
- CHU de Québec Research Center (CHUL)- Université Laval, Quebec City, QC, Canada.
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
2
|
Vinay L, Hess RA, Belleannée C. Human efferent ductules and epididymis display unique cell lineages with motile and primary cilia. Andrology 2024. [PMID: 39212979 DOI: 10.1111/andr.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Previous research has illustrated the role of cilia as mechanical and sensory antennae in various organs within the mammalian male reproductive system across different developmental stages. Despite their significance in both organ development and homeostasis, primary cilia in the human male reproductive excurrent duct have been overlooked due to limited access to human specimens. OBJECTIVE This study aimed to characterize the unique cellular composition of human efferent and epididymal ducts, with a focus on their association with primary cilia. MATERIALS AND METHODS Human efferent ductules/epididymides from five donors aged 32-47 years, were obtained through our local organ transplant program. Cell lineage specificity and primary cilia features were examined by immunofluorescent staining and confocal microscopy in the efferent ductules and the distinct segments of the epididymis. RESULTS The epithelium of the human efferent duct exhibited estrogen receptor-positive cells with primary cilia, FoxJ1-positive multiciliated cells with numerous motile cilia, and non-ciliated intraepithelial immune cells. Notably, intraluminal macrophages, identified by CD163/CD68 positivity, were observed to engage in sperm phagocytosis. In all three segments of the human epididymis, primary cilia were found on the surface of principal and basal cells. DISCUSSION AND CONCLUSIONS Our research indicates that the human efferent ductules create a distinct environment, characterized by the presence of two types of ciliated cells that are in contact with immune cells. The discovery of sensory primary cilia exposed on the surface of reabsorptive cells in the efferent ductules, as well as on basal and principal cells in the epididymis, lays the foundation for complementary functional studies. This research uncovers novel characteristics exclusive to human efferent ductules and epididymides, providing a basis for exploring innovative approaches to male contraception and infertility treatment.
Collapse
Affiliation(s)
- Ludovic Vinay
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec City, Canada
| | - Rex A Hess
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec City, Canada
| |
Collapse
|
3
|
Zhang J, Xie Y, Wang X, Kang Y, Wang C, Xie Q, Dong X, Tian Y, Huang D. The single-cell atlas of the epididymis in mice reveals the changes in epididymis function before and after sexual maturity. Front Cell Dev Biol 2024; 12:1440914. [PMID: 39161591 PMCID: PMC11330779 DOI: 10.3389/fcell.2024.1440914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Introduction: The epididymis is important for sperm transport, maturation, and storage. Methods: The head and tail of the epididymis of 5-week-old and 10-week-old C57 BL/6J male mice were used for single-cell sequencing. Results: 10 cell types including main, basal, and narrow/clear cells are identified. Next, we performed cell subgroup analysis, functional enrichment analysis, and differentiation potential prediction on principal cells, clear cells, and basal cells. Our study indicates that the principal cells are significantly involved in sperm maturation, as well as in antiviral and anti-tumor immune responses. Clear cells are likely to play a crucial role in safeguarding sperm and maintaining epididymal pH levels. Basal cells are implicated in the regulation of inflammatory and stress responses. The composition and functions of the various cell types within the epididymis undergo significant changes before and after sexual maturity. Furthermore, pseudo-temporal analysis elucidates the protective and supportive roles of epididymal cells in sperm maturation during sexual maturation. Discussion: This study offers a theoretical framework and forecasts for the investigation of epididymal sperm maturation and epididymal immunity.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Xie
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wang
- Reproductive Center, Qingdao Women and Children’s Hospital, Qingdao Women and Children’s Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yafei Kang
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuxiong Wang
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinying Xie
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Dong
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonghong Tian
- Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Donghui Huang
- Institute of Reproduction Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, China
| |
Collapse
|
4
|
Alves MBR, Girardet L, Augière C, Moon KH, Lavoie-Ouellet C, Bernet A, Soulet D, Calvo E, Teves ME, Beauparlant CJ, Droit A, Bastien A, Robert C, Bok J, Hinton BT, Belleannée C. Hedgehog signaling regulates Wolffian duct development through the primary cilium†. Biol Reprod 2023; 108:241-257. [PMID: 36525341 PMCID: PMC9930401 DOI: 10.1093/biolre/ioac210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/01/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Primary cilia play pivotal roles in embryonic patterning and organogenesis through transduction of the Hedgehog signaling pathway (Hh). Although mutations in Hh morphogens impair the development of the gonads and trigger male infertility, the contribution of Hh and primary cilia in the development of male reproductive ductules, including the epididymis, remains unknown. From a Pax2Cre; IFT88fl/fl knock-out mouse model, we found that primary cilia deletion is associated with imbalanced Hh signaling and morphometric changes in the Wolffian duct (WD), the embryonic precursor of the epididymis. Similar effects were observed following pharmacological blockade of primary cilia formation and Hh modulation on WD organotypic cultures. The expression of genes involved in extracellular matrix, mesenchymal-epithelial transition, canonical Hh and WD development was significantly altered after treatments. Altogether, we identified the primary cilia-dependent Hh signaling as a master regulator of genes involved in WD development. This provides new insights regarding the etiology of sexual differentiation and male infertility issues.
Collapse
Affiliation(s)
- Maíra Bianchi Rodrigues Alves
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Laura Girardet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Céline Augière
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Kyeong Hye Moon
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Camille Lavoie-Ouellet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Agathe Bernet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Denis Soulet
- Faculty of Pharmacy, Department of Neurosciences, CHU de Québec Research Center (CHUL)—Université Laval, Quebec City, QC, Canada
| | - Ezequiel Calvo
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Maria E Teves
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, USA
| | - Charles Joly Beauparlant
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Arnaud Droit
- Computational Biology Laboratory Research Centre, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Alexandre Bastien
- Faculty of Agriculture and Food Sciences, Department of Animal Sciences—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Claude Robert
- Faculty of Agriculture and Food Sciences, Department of Animal Sciences—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, CHU de Québec Research Center (CHUL)—Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle—Université Laval, Quebec City, QC, Canada
| |
Collapse
|
5
|
Belleannée C, Viana AGDA, Lavoie-Ouellet C. Intra and intercellular signals governing sperm maturation. Reprod Fertil Dev 2022; 35:27-38. [PMID: 36592975 DOI: 10.1071/rd22226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
After their production in the testis, spermatozoa do not have the capacity to move progressively and are unable to fertilise an oocyte. They sequentially acquire these abilities following their maturation in the epididymis and their capacitation/hyperactivation in the female reproductive system. As gene transcription is silenced in spermatozoa, extracellular factors released from the epididymal epithelium and from secretory glands allow spermatozoa to acquire bioactive molecules and to undergo intrinsic modifications. These modifications include epigenetic changes and post-translational modifications of endogenous proteins, which are important processes in sperm maturation. This article emphasises the roles played by extracellular factors secreted by the epididymis and accessory glands in the control of sperm intercellular signallings and fertilising abilities.
Collapse
Affiliation(s)
- Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, Center for Research in Reproduction, Development and Intergenerational Health (CRDSI), CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | | | - Camille Lavoie-Ouellet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, Center for Research in Reproduction, Development and Intergenerational Health (CRDSI), CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| |
Collapse
|
6
|
Girardet L, Cyr DG, Belleannée C. Arl13b controls basal cell stemness properties and Hedgehog signaling in the mouse epididymis. Cell Mol Life Sci 2022; 79:556. [PMID: 36261680 DOI: 10.1007/s00018-022-04570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
Epithelial cells orchestrate a series of intercellular signaling events in response to tissue damage. While the epididymis is composed of a pseudostratified epithelium that controls the acquisition of male fertility, the maintenance of its integrity in the context of tissue damage or inflammation remains largely unknown. Basal cells of the epididymis contain a primary cilium, an organelle that controls cellular differentiation in response to Hedgehog signaling cues. Hypothesizing its contribution to epithelial homeostasis, we knocked out the ciliary component ARL13B in keratin 5-positive basal cells. In this model, the reduced size of basal cell primary cilia was associated with impaired Hedgehog signaling and the loss of KRT5, KRT14, and P63 basal cell markers. When subjected to tissue injury, the epididymal epithelium from knock-out mice displayed imbalanced rates of cell proliferation/apoptosis and failed to properly regenerate in vivo. This response was associated with changes in the transcriptomic landscape related to immune response, cell differentiation, cell adhesion, and triggered severe hypoplasia of the epithelium. Together our results indicate that the ciliary GTPase, ARL13B, participates in the transduction of the Hedgehog signaling pathway to maintain basal cell stemness needed for tissue regeneration. These findings provide new insights into the role of basal cell primary cilia as safeguards of pseudostratified epithelia.
Collapse
Affiliation(s)
- Laura Girardet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Daniel G Cyr
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada.,Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada.
| |
Collapse
|
7
|
TLR4 Modulates Senescence and Paracrine Action in Placental Mesenchymal Stem Cells via Inhibiting Hedgehog Signaling Pathway in Preeclampsia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7202837. [PMID: 35757501 PMCID: PMC9214654 DOI: 10.1155/2022/7202837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 01/10/2023]
Abstract
Preeclampsia (PE) is a heterogeneous disease closely associated with the accelerated senescence of the placentas. Placental mesenchymal stem cells (PMSCs) modulate placental development, which is abnormally senescent in PE together with abnormal paracrine. Both pivotal in the placenta development, Toll-like receptor 4 (TLR4) and Hedgehog (HH) pathway are also tightly involved in regulating cellular senescence. This study was aimed at demonstrating that TLR4/HH pathway modulated senescence of placentas and PMSCs in vitro and in vivo. Preeclamptic and normal PMSCs were isolated. Smoothed agonist (SAG) and cyclopamine were used to activate and inhibit HH pathway, respectively. Lipopolysaccharide (LPS) was used to activate TLR4 in vitro and establish the classic PE-like rat model. qRT-PCR, Western blotting, and immunofluorescence were used to detect the expression of TLR4 and HH components (SHH, SMO, and Gli1). Cellular biological function such as proliferation, apoptosis, and migration was compared. Cell cycle analysis, β-galactosidase staining, and the protein expressions of p16 and p53 were detected to analyze the cellular senescence. The secretion levels of human matrix metalloproteinase 9 (MMP-9) and soluble fms-like tyrosine kinase-1 (sFlt-1) were measured in the conditioned medium. Cell migration, invasion, and tube formation were analyzed in HTR8/SVneo cells or human umbilical vein endothelial cells (HUVECs). Our study demonstrated that activation of TLR4 accelerated senescence of PMSCs via suppressing HH pathway both in vitro and in vivo, accompanied by the detrimental paracrine to impair the uterine spiral artery remodeling and placental angiogenesis. Meanwhile, induction of HH pathway could alleviate PE-like manifestations, improve pregnancy outcomes, and ameliorate multiorgan injuries, suggesting that strengthening the HH pathway may serve as a potential therapy in PE.
Collapse
|
8
|
Li R, Cai Y, Lin H, Dong L, Tang M, Lang Y, Qi Y, Peng Y, Zhou B, Yang G, Teng Y, Yang X. Generation of an Ihh-mKate2-Dre knock-in mouse line. Genesis 2022; 60:e23488. [PMID: 35765931 DOI: 10.1002/dvg.23488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/06/2022]
Abstract
Indian hedgehog (Ihh), a member of the Hh family, plays important roles in vertebrate development and homeostasis. To improve our understanding of the function of Ihh-expressing cells and their progeny as well, we generate an Ihh-mKate2tomm20 -Dre knock-in mouse line that can label Ihh-positive cells with a fluorescence protein mKate2 and trace Ihh-positive cells and their progeny via Dre-mediated recombination. Consistent with previous reports, we verified Ihh expression in hypertrophic chondrocytes of growth plate and granulosa cells of ovarian follicles by mKate2 immunostaining, and meanwhile confirmed Dre activity in these cells via a Dre reporter mouse line Rosa26-confetti2. We also found, for the first time, that Ihh can mark some cell types, including retinal ganglion cells, Purkinje cells, and gallbladder epithelial cells. Taken together, the Ihh-mKate2tomm20 -Dre mouse is a genetic tool for examining the precise expression profile of Ihh and tracing Ihh-expressing cells and their progeny.
Collapse
Affiliation(s)
- Rongyu Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yunting Cai
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Huisang Lin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lei Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Mingchuan Tang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yiming Lang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yini Qi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yanli Peng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| |
Collapse
|
9
|
Dufresne J, Gregory M, Pinel L, Cyr DG. Differential gene expression and hallmarks of stemness in epithelial cells of the developing rat epididymis. Cell Tissue Res 2022; 389:327-349. [PMID: 35590013 DOI: 10.1007/s00441-022-03634-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 01/07/2023]
Abstract
Epididymal development can be subdivided into three phases: undifferentiated, a period of differentiation, and expansion. The objectives of this study were (1) to assess gene expression profiles in epididymides, (2) predict signaling pathways, and (3) develop a novel 3D cell culture method to assess the regulation of epididymal development in vitro. Microarray analyses indicate that the largest changes in differential gene expression occurred between the 7- to 18-day period, in which 1452 genes were differentially expressed, while 671 differentially expressed genes were noted between days 18 and 28, and there were 560 differentially expressed genes between days 28 and 60. Multiple signaling pathways were predicted at different phases of development. Pathway associations indicated that in epididymides of 7- to 18-day old rats, there was a significant association of regulated genes implicated in stem cells, estrogens, thyroid hormones, and kidney development, while androgen- and estrogen-related pathways were enriched at other phases of development. Organoids were derived from CD49f + columnar cells from 7-day old rats, while no organoids developed from CD49f- cells. Cells cultured in an epididymal basal cell organoid medium versus a commercial kidney differentiation medium supplemented with DHT revealed that irrespective of the culture medium, cells within differentiating organoids expressed p63, AQP9, and V-ATPase after 14 days of culture. The commercial kidney medium resulted in an increase in the number of organoids positive for p63, AQP9, and V-ATPase. Together, these data indicate that columnar cells represent an epididymal stem/progenitor cell population.
Collapse
Affiliation(s)
- Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, 245 boul. Des Prairies, Laval, QC, H7V 3B7, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, 245 boul. Des Prairies, Laval, QC, H7V 3B7, Canada
| | - Laurie Pinel
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, 245 boul. Des Prairies, Laval, QC, H7V 3B7, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, 245 boul. Des Prairies, Laval, QC, H7V 3B7, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada. .,Department of Obstetrics, Gynecology, and Reproduction, Laval University, Québec, QC, Canada.
| |
Collapse
|
10
|
Xu S, Tang C. Cholesterol and Hedgehog Signaling: Mutual Regulation and Beyond. Front Cell Dev Biol 2022; 10:774291. [PMID: 35573688 PMCID: PMC9091300 DOI: 10.3389/fcell.2022.774291] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The Hedgehog (HH) signaling is one of the key agents that govern the precisely regulated developmental processes of multicellular organisms in vertebrates and invertebrates. The HH pathway in the receiving cell includes Patched1, a twelve-pass transmembrane receptor, and Smoothened, a seven-transmembrane G-protein coupled receptor (GPCR), and the downstream GLI family of three transcriptional factors (GLI1-GLI3). Mutations of HH gene and the main components in HH signaling are also associated with numerous types of diseases. Before secretion, the HH protein undergoes post-translational cholesterol modification to gain full activity, and cholesterol is believed to be essential for proper HH signaling transduction. In addition, results from recent studies show the reciprocal effect that HH signaling functions in cholesterol metabolism as well as in cholesterol homeostasis, which provides feedback to HH pathway. Here, we hope to provide new insights into HH signaling function by discussing the role of cholesterol in HH protein maturation, secretion and HH signaling transduction, and the potential role of HH in regulation of cholesterol as well.
Collapse
|
11
|
Zhao Z, Qian B, Peng X, Yin W, Cai Q, Zhang P, He B, Shi S, Peng W, Tu G, Tao Y, Wang X, Yu F, Li Y. Metagenomic analysis of the microbiome of lung adenocarcinoma with pure ground‐glass opacity. Clin Transl Med 2022; 12:e698. [PMID: 35060677 PMCID: PMC8778636 DOI: 10.1002/ctm2.698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/11/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Zhenyu Zhao
- Department of Thoracic Surgery The Second Xiangya Hospital of Central South University Changsha China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer The Second Xiangya Hospital of Central South University Changsha China
| | - Banglun Qian
- Department of Thoracic Surgery The Second Xiangya Hospital of Central South University Changsha China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer The Second Xiangya Hospital of Central South University Changsha China
| | - Xiong Peng
- Department of Thoracic Surgery The Second Xiangya Hospital of Central South University Changsha China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer The Second Xiangya Hospital of Central South University Changsha China
| | - Wei Yin
- Department of Thoracic Surgery The Second Xiangya Hospital of Central South University Changsha China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer The Second Xiangya Hospital of Central South University Changsha China
| | - Qidong Cai
- Department of Thoracic Surgery The Second Xiangya Hospital of Central South University Changsha China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer The Second Xiangya Hospital of Central South University Changsha China
| | - Pengfei Zhang
- Department of Thoracic Surgery The Second Xiangya Hospital of Central South University Changsha China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer The Second Xiangya Hospital of Central South University Changsha China
| | - Boxue He
- Department of Thoracic Surgery The Second Xiangya Hospital of Central South University Changsha China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer The Second Xiangya Hospital of Central South University Changsha China
| | - Shuai Shi
- Department of Thoracic Surgery The Second Xiangya Hospital of Central South University Changsha China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer The Second Xiangya Hospital of Central South University Changsha China
| | - Weilin Peng
- Department of Thoracic Surgery The Second Xiangya Hospital of Central South University Changsha China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer The Second Xiangya Hospital of Central South University Changsha China
| | - Guangxu Tu
- Department of Thoracic Surgery The Second Xiangya Hospital of Central South University Changsha China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer The Second Xiangya Hospital of Central South University Changsha China
| | - Yongguang Tao
- Department of Thoracic Surgery The Second Xiangya Hospital of Central South University Changsha China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer The Second Xiangya Hospital of Central South University Changsha China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital Central South University Changsha China
- NHC Key Laboratory of Carcinogenesis (Central South University) Cancer Research Institute and School of Basic Medicine Central South University Changsha China
| | - Xiang Wang
- Department of Thoracic Surgery The Second Xiangya Hospital of Central South University Changsha China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer The Second Xiangya Hospital of Central South University Changsha China
| | - Fenglei Yu
- Department of Thoracic Surgery The Second Xiangya Hospital of Central South University Changsha China
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer The Second Xiangya Hospital of Central South University Changsha China
| | - Yunping Li
- Department of Ophthalmology The Second Xiangya Hospital of Central South University Changsha China
| |
Collapse
|
12
|
Ferreira LGA, Nishino FA, Fernandes SG, Ribeiro CM, Hinton BT, Avellar MCW. Epididymal embryonic development harbors TLR4/NFKB signaling pathway as a morphogenetic player. J Reprod Immunol 2021; 149:103456. [PMID: 34915277 DOI: 10.1016/j.jri.2021.103456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022]
Abstract
The Wolffian duct (WD) is an embryonic tissue that undergoes androgen-induced morphological changes to become the epididymis. Toll-like receptor 4 (TLR4)- and nuclear factor kB (NFKB)-induced effectors are expressed in the adult epididymis and represent important players in epididymal innate immune responses. TLR4/NFKB signaling pathway is evolutionarily conserved and plays a critical morphogenetic role in several species; however, its function during WD morphogenesis is unknown. We hypothesized that TLR4/NFKB pathway plays a role during WD development. Here we examined TLR4 expression and regulation of TLR4-target genes during rat WD morphogenesis between embryonic days (e) 17.5-20.5. The functionality of TLR4/NFKB signaling was examined using WD organotypic cultures treated with lipopolysaccharide (LPS) from E. coli (TLR4 agonist) and PDTC (NFKB inhibitor). TLR4 was detected at mRNA level in e17.5 (uncoiled duct) and e20.5 (coiled duct) WDs, and spatio-temporal changes in TLR4 immunoreactivity were observed between these two time points. Expression level analysis of a subset of TLR4-regulated genes showed that TLR4/NFKB pathway was activated after exposure of cultured WD to LPS (4 h), an event that was abrogated by PDTC. Long-term exposure of cultured WDs to LPS (96 h) resulted in dysregulations of morphogenetic events and LAMA1 immunodistribution changes, suggesting the extracellular matrix at the intersection between WD morphogenesis and balance of innate immune components. Our results unveil the epididymal morphogenesis as an event equipped with TLR4/NFKB signaling components that may serve developmental functions, and eventually transition to host defense function when the fetus is exposed to an infectious or noninfectious threat.
Collapse
Affiliation(s)
- Lucas G A Ferreira
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, SP, 04044-020, Brazil
| | - Fernanda A Nishino
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, SP, 04044-020, Brazil
| | - Samuel G Fernandes
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, SP, 04044-020, Brazil
| | - Camilla M Ribeiro
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, SP, 04044-020, Brazil; Centro Universitário do Planalto de Araxá (UNIARAXÁ), Araxá, MG, 38180-084, Brazil
| | - Barry T Hinton
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22903, USA
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, São Paulo, SP, 04044-020, Brazil.
| |
Collapse
|
13
|
Chen H, Alves MBR, Belleannée C. Contribution of epididymal epithelial cell functions to sperm epigenetic changes and the health of progeny. Hum Reprod Update 2021; 28:51-66. [PMID: 34618012 DOI: 10.1093/humupd/dmab029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Spermatozoa acquire their motility and fertilizing abilities during their maturation through the epididymis. This process is controlled by epididymal epithelial cells that possess features adapted to sense and respond to their surrounding environment and to communicate with spermatozoa. During the past decade, new intercellular communication processes have been discovered, including the secretion and transport of molecules from the epithelium to spermatozoa via extracellular vesicles (EVs), as well as sensing of the intraluminal milieu by cellular extensions. OBJECTIVE AND RATIONALE This review addresses recent findings regarding epididymal epithelial cell features and interactions between spermatozoa and the epididymal epithelium as well as epigenetic modifications undergone by spermatozoa during transit through the epididymal microenvironment. SEARCH METHODS A systematic search was conducted in Pubmed with the keyword 'epididymis'. Results were filtered on original research articles published from 2009 to 2021 and written in the English language. One hundred fifteen original articles presenting recent advancements on the epididymis contribution to sperm maturation were selected. Some additional papers cited in the primary reference were also included. A special focus was given to higher mammalian species, particularly rodents, bovines and humans, that are the most studied in this field. OUTCOMES This review provides novel insights into the contribution of epididymal epithelium and EVs to post-testicular sperm maturation. First, new immune cell populations have been described in the epididymis, where they are proposed to play a role in protecting the environment surrounding sperm against infections or autoimmune responses. Second, novel epididymal cell extensions, including dendrites, axopodia and primary cilia, have been identified as sensors of the environment surrounding sperm. Third, new functions have been outlined for epididymal EVs, which modify the sperm epigenetic profile and participate in transgenerational epigenetic inheritance of paternal traits. WIDER IMPLICATIONS Although the majority of these findings result from studies in rodents, this fundamental research will ultimately improve our knowledge of human reproductive physiopathologies. Recent discoveries linking sperm epigenetic modifications with paternal environmental exposure and progeny outcome further stress the importance of advancing fundamental research on the epididymis. From this, new therapeutic options for infertile couples and better counseling strategies may arise to increase positive health outcomes in children conceived either naturally or with ART.
Collapse
Affiliation(s)
- Hong Chen
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec, Canada
| | | | - Clémence Belleannée
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Quebec, Canada
| |
Collapse
|
14
|
Figueiredo AFA, Hess RA, Batlouni SR, Wnuk NT, Tavares AO, Abarikwu SO, Costa GMJ, França LR. Insights into differentiation and function of the transition region between the seminiferous tubule and rete testis. Differentiation 2021; 120:36-47. [PMID: 34229995 DOI: 10.1016/j.diff.2021.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 01/15/2023]
Abstract
Seminiferous tubules physically connect to the rete testis through short segments called the transition region (TR). During fetal development, this specialized junction is considered the initial site where testis cords begin to form and to grow in length well beyond birth and into adulthood and form convoluted tubular cores. Mitotic activity of the Sertoli cell, the somatic cell of the epithelium, ceases before puberty, but modified Sertoli cells in the TR remain immature and capable of proliferation. This review presents what is known about this specialized region of the testis, with an emphasis on the morphological, molecular and physiological features, which support the hypothesis that this short region of epithelial transition serves as a specialized niche for undifferentiated Sertoli cells and spermatogonial stem cells. Also, the region is populated by an elevated number of immune cells, suggesting an important activity in monitoring and responding to any leakage of autoantigens, as sperm enter the rete testis. Several structure/function characteristics of the transition region are discussed and compared across species.
Collapse
Affiliation(s)
- A F A Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rex A Hess
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, IL, USA
| | - S R Batlouni
- Aquaculture Center (CAUNESP), São Paulo State University, São Paulo, SP, Brazil
| | - N T Wnuk
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A O Tavares
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - S O Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - G M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - L R França
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
15
|
Ho EK, Stearns T. Hedgehog signaling and the primary cilium: implications for spatial and temporal constraints on signaling. Development 2021; 148:dev195552. [PMID: 33914866 PMCID: PMC8126410 DOI: 10.1242/dev.195552] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mechanisms of vertebrate Hedgehog signaling are linked to the biology of the primary cilium, an antenna-like organelle that projects from the surface of most vertebrate cell types. Although the advantages of restricting signal transduction to cilia are often noted, the constraints imposed are less frequently considered, and yet they are central to how Hedgehog signaling operates in developing tissues. In this Review, we synthesize current understanding of Hedgehog signal transduction, ligand secretion and transport, and cilia dynamics to explore the temporal and spatial constraints imposed by the primary cilium on Hedgehog signaling in vivo.
Collapse
Affiliation(s)
- Emily K. Ho
- Department of Developmental Biology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Shireman JM, Atashi F, Lee G, Ali ES, Saathoff MR, Park CH, Savchuk S, Baisiwala S, Miska J, Lesniak MS, James CD, Stupp R, Kumthekar P, Horbinski CM, Ben-Sahra I, Ahmed AU. De novo purine biosynthesis is a major driver of chemoresistance in glioblastoma. Brain 2021; 144:1230-1246. [PMID: 33855339 DOI: 10.1093/brain/awab020] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is a primary brain cancer with a near 100% recurrence rate. Upon recurrence, the tumour is resistant to all conventional therapies, and because of this, 5-year survival is dismal. One of the major drivers of this high recurrence rate is the ability of glioblastoma cells to adapt to complex changes within the tumour microenvironment. To elucidate this adaptation's molecular mechanisms, specifically during temozolomide chemotherapy, we used chromatin immunoprecipitation followed by sequencing and gene expression analysis. We identified a molecular circuit in which the expression of ciliary protein ADP-ribosylation factor-like protein 13B (ARL13B) is epigenetically regulated to promote adaptation to chemotherapy. Immuno-precipitation combined with liquid chromatography-mass spectrometry binding partner analysis revealed that that ARL13B interacts with the purine biosynthetic enzyme inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). Further, radioisotope tracing revealed that this interaction functions as a negative regulator for purine salvaging. Inhibition of the ARL13B-IMPDH2 interaction enhances temozolomide-induced DNA damage by forcing glioblastoma cells to rely on the purine salvage pathway. Targeting the ARLI3B-IMPDH2 circuit can be achieved using the Food and Drug Administration-approved drug, mycophenolate mofetil, which can block IMPDH2 activity and enhance the therapeutic efficacy of temozolomide. Our results suggest and support clinical evaluation of MMF in combination with temozolomide treatment in glioma patients.
Collapse
Affiliation(s)
- Jack M Shireman
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Fatemeh Atashi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Gina Lee
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Eunus S Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Miranda R Saathoff
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Cheol H Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Sol Savchuk
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Shivani Baisiwala
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Priya Kumthekar
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| |
Collapse
|