1
|
Gogishvili D, Honey MIJ, Verberk IMW, Vermunt L, Hol EM, Teunissen CE, Abeln S. The GFAP proteoform puzzle: How to advance GFAP as a fluid biomarker in neurological diseases. J Neurochem 2025; 169:e16226. [PMID: 39289040 DOI: 10.1111/jnc.16226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Glial fibrillary acidic protein (GFAP) is a well-established biomarker of reactive astrogliosis in the central nervous system because of its elevated levels following brain injury and various neurological disorders. The advent of ultra-sensitive methods for measuring low-abundant proteins has significantly enhanced our understanding of GFAP levels in the serum or plasma of patients with diverse neurological diseases. Clinical studies have demonstrated that GFAP holds promise both as a diagnostic and prognostic biomarker, including but not limited to individuals with Alzheimer's disease. GFAP exhibits diverse forms and structures, herein referred to as its proteoform complexity, encompassing conformational dynamics, isoforms and post-translational modifications (PTMs). In this review, we explore how the proteoform complexity of GFAP influences its detection, which may affect the differential diagnostic performance of GFAP in different biological fluids and can provide valuable insights into underlying biological processes. Additionally, proteoforms are often disease-specific, and our review provides suggestions and highlights areas to focus on for the development of new assays for measuring GFAP, including isoforms, PTMs, discharge mechanisms, breakdown products, higher-order species and interacting partners. By addressing the knowledge gaps highlighted in this review, we aim to support the clinical translation and interpretation of GFAP in both CSF and blood and the development of reliable, reproducible and specific prognostic and diagnostic tests. To enhance disease pathology comprehension and optimise GFAP as a biomarker, a thorough understanding of detected proteoforms in biofluids is essential.
Collapse
Affiliation(s)
- Dea Gogishvili
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Madison I J Honey
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Centre, University Medical Centre Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam University Medical Centers, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, The Netherlands
| | - Sanne Abeln
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
2
|
Liu H, Lu Y, Zong J, Zhang B, Li X, Qi H, Yu T, Li Y. Engineering dendritic cell biomimetic membrane as a delivery system for tumor targeted therapy. J Nanobiotechnology 2024; 22:663. [PMID: 39465376 PMCID: PMC11520105 DOI: 10.1186/s12951-024-02913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Targeted immunotherapies make substantial strides in clinical cancer care due to their ability to counteract the tumor's capacity to suppress immune responses. Advances in biomimetic technology with minimally immunogenic and highly targeted, are addressing issues of targeted drug delivery and disrupting the tumor's immunosuppressive environment to trigger immune activation. Specifically, the use of dendritic cell (DC) membranes to coat nanoparticles ensures targeted delivery due to DC's unique ability to activate naive T cells, spotlighting their role in immunotherapy aimed at disrupting the tumor microenvironment. The potential of DC's biomimetic membrane to mediate immune activation and target tumors is gaining momentum, enhancing the effectiveness of cancer treatments in conjunction with other immune responses. This review delves into the methodologies behind crafting DC membranes and the fusion of dendritic and tumor cell membranes for encapsulating therapeutic nanoparticles. It explores their applications and recent advancements in combating cancer, offering an all-encompassing perspective on DC biomimetic nanosystems, immunotherapy driven by antigen presentation, and the collaborative efforts of drug delivery in chemotherapy and photodynamic therapies. Current evidence shows promise in augmenting combined therapeutic approaches for cancer treatment and holds translational potential for various cancer treatments in a clinical setting.
Collapse
Affiliation(s)
- Huiyang Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China
| | - Yiming Lu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China
| | - Jinbao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| | - Yu Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China.
| |
Collapse
|
3
|
Coelho-Rato LS, Parvanian S, Andrs Salajkova S, Medalia O, Eriksson JE. Intermediate filaments at a glance. J Cell Sci 2024; 137:jcs261386. [PMID: 39206824 DOI: 10.1242/jcs.261386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Intermediate filaments (IFs) comprise a large family of versatile cytoskeletal proteins, divided into six subtypes with tissue-specific expression patterns. IFs have a wide repertoire of cellular functions, including providing structural support to cells, as well as active roles in mechanical support and signaling pathways. Consequently, defects in IFs are associated with more than 100 diseases. In this Cell Science at a Glance article, we discuss the established classes of IFs and their general features, their functions beyond structural support, and recent advances in the field. We also highlight their involvement in disease and potential use as clinical markers of pathological conditions. Finally, we provide our view on current knowledge gaps and the future directions of the IF field.
Collapse
Affiliation(s)
- Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Sarka Andrs Salajkova
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
- Euro-Bioimaging ERIC, 20520 Turku, Finland
| |
Collapse
|
4
|
Li Q, Xu J. Research on the Inhibitory Effect of Doxorubicin-loaded Liposomes Targeting GFAP for Glioma Cells. Anticancer Agents Med Chem 2024; 24:177-184. [PMID: 37936466 DOI: 10.2174/0118715206265311231030102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Glioma is the most common and devastating brain tumor. In recent years, doxorubicin (DOX) is one of the drugs used in the treatment of gliomas, but it has side effects and poor clinical outcomes. Therefore, the delivery of drugs to the tumor site by targeted transport is a new approach to tumor treatment. OBJECTIVE This study focuses on the anti-tumor effects of GFAP-modified drug-carrying liposomes loaded with DOX (GFAP-DOX-LPs) on gliomas. METHODS GFAP-DOX-LPs were prepared by solvent evaporation method. After characterization analysis of GFAP-DOX-LPs, the encapsulation efficiency, the drug loading capacity and in vitro release performance were determined. Then, the MTT method was used to investigate the cytotoxicity and proliferative behavior of U251 and U87 cell lines. After that, flow cytometry was used to investigate the effect of the drug administration group on tumor cell apoptosis. Eventually, the anti-tumor activity was tested in vivo. RESULTS The average particle size of GFAP-DOX-LPs was determined to be 116.3 ± 6.2 nm, and the average potential was displayed as 22.8 ± 7.2 mv. Besides, the morphology of the particle indicated a spherical shape. The encapsulation rate and drug loading were calculated and determined, which were 91.84 ± 0.41% and 9.27 ± 0.55%. In an acidic medium, the DOX release rate reached about 87%. GFAP-DOX-LPs could target glioma cells with low cytotoxicity and inhibit glioma cell proliferation with high efficiency, resulting in promoting apoptosis. The anti-tumor effect of GFAP-DOX-LPs was significantly enhanced. At the same time, the number of GFAPpositive cells in tumor tissues was significantly lower after treatment. Therefore, the overall survival time could be significantly prolonged. CONCLUSION The prepared GFAP-DOX-LPs had good targeting and glioma cell inhibition ability. This demonstrated the promising application of the prepared liposomes in tumor targeting, especially in the field of targeted drug delivery for the treatment of brain tumor.
Collapse
Affiliation(s)
- Qifeng Li
- Department of Neurosurgery, Hangzhou Children's Hospital, Hangzhou, 310000, China
- Department of Pediatric Neurosurgery, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiaming Xu
- Department of Neurosurgery, Hangzhou Children's Hospital, Hangzhou, 310000, China
| |
Collapse
|
5
|
Huang Y, Wang Z, Huang ZX, Liu Z. Biomarkers and the outcomes of ischemic stroke. Front Mol Neurosci 2023; 16:1171101. [PMID: 37342100 PMCID: PMC10277488 DOI: 10.3389/fnmol.2023.1171101] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/22/2023] Open
Abstract
Biomarkers are measurable substances that could be used as objective indicators for disease diagnosis, responses to treatments, and outcomes predictions. In this review, we summarized the data on a number of important biomarkers including glutamate, S100B, glial fibrillary acidic protein, receptor for advanced glycation end-products, intercellular adhesion molecule-1, von willebrand factor, matrix metalloproteinase-9, interleukin-6, tumor necrosis factor-a, activated protein C, copeptin, neuron-specific enolase, tau protein, gamma aminobutyric acid, blood glucose, endothelial progenitor cells, and circulating CD34-positive cells that could be potentially used to indicate the disease burden and/or predict clinical outcome of ischemic stroke. We examined the relationship between specific biomarkers and disease burden and outcomes and discussed the potential mechanisms underlying the relationship. The clinical significance and implications of these biomarkers were also discussed.
Collapse
Affiliation(s)
- Ying Huang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhenzhen Wang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhi-Xin Huang
- Department of Neurology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States
| |
Collapse
|
6
|
Ran Z, Yang J, Liu Y, Chen X, Ma Z, Wu S, Huang Y, Song Y, Gu Y, Zhao S, Fa M, Lu J, Chen Q, Cao Z, Li X, Sun S, Yang T. GlioMarker: An integrated database for knowledge exploration of diagnostic biomarkers in gliomas. Front Oncol 2022; 12:792055. [PMID: 36081550 PMCID: PMC9446481 DOI: 10.3389/fonc.2022.792055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 07/15/2022] [Indexed: 11/23/2022] Open
Abstract
Gliomas are the most frequent malignant and aggressive tumors in the central nervous system. Early and effective diagnosis of glioma using diagnostic biomarkers can prolong patients' lives and aid in the development of new personalized treatments. Therefore, a thorough and comprehensive understanding of the diagnostic biomarkers in gliomas is of great significance. To this end, we developed the integrated and web-based database GlioMarker (http://gliomarker.prophetdb.org/), the first comprehensive database for knowledge exploration of glioma diagnostic biomarkers. In GlioMarker, accurate information on 406 glioma diagnostic biomarkers from 1559 publications was manually extracted, including biomarker descriptions, clinical information, associated literature, experimental records, associated diseases, statistical indicators, etc. Importantly, we integrated many external resources to provide clinicians and researchers with the capability to further explore knowledge on these diagnostic biomarkers based on three aspects. (1) Obtain more ontology annotations of the biomarker. (2) Identify the relationship between any two or more components of diseases, drugs, genes, and variants to explore the knowledge related to precision medicine. (3) Explore the clinical application value of a specific diagnostic biomarker through online analysis of genomic and expression data from glioma cohort studies. GlioMarker provides a powerful, practical, and user-friendly web-based tool that may serve as a specialized platform for clinicians and researchers by providing rapid and comprehensive knowledge of glioma diagnostic biomarkers to subsequently facilitates high-quality research and applications.
Collapse
Affiliation(s)
- Zihan Ran
- Department of Research, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
- The Genius Medicine Consortium (TGMC), Shanghai, China
| | - Jingcheng Yang
- The Genius Medicine Consortium (TGMC), Shanghai, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine, Guangzhou, China
| | - Yaqing Liu
- The Genius Medicine Consortium (TGMC), Shanghai, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - XiuWen Chen
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Zijing Ma
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Shaobo Wu
- Department of Laboratory Medicine, Tinglin Hospital of Jinshan District, Shanghai, China
| | - Yechao Huang
- The Genius Medicine Consortium (TGMC), Shanghai, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yueqiang Song
- The Genius Medicine Consortium (TGMC), Shanghai, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yu Gu
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Shuo Zhao
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Mengqi Fa
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jiangjie Lu
- Inspection and Quarantine Department, The College of Medical Technology, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Qingwang Chen
- The Genius Medicine Consortium (TGMC), Shanghai, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Zehui Cao
- The Genius Medicine Consortium (TGMC), Shanghai, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xiaofei Li
- The Genius Medicine Consortium (TGMC), Shanghai, China
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Shanyue Sun
- The Genius Medicine Consortium (TGMC), Shanghai, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Tao Yang
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
7
|
Lin NH, Yang AW, Chang CH, Perng MD. Elevated GFAP isoform expression promotes protein aggregation and compromises astrocyte function. FASEB J 2021; 35:e21614. [PMID: 33908669 DOI: 10.1096/fj.202100087r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 01/22/2023]
Abstract
Alexander disease (AxD) caused by mutations in the coding region of GFAP is a neurodegenerative disease characterized by astrocyte dysfunction, GFAP aggregation, and Rosenthal fiber accumulation. Although how GFAP mutations cause disease is not fully understood, Rosenthal fibers could be induced by forced overexpression of human GFAP and this could be lethal in mice implicate that an increase in GFAP levels is central to AxD pathogenesis. Our recent studies demonstrated that intronic GFAP mutations cause disease by altering GFAP splicing, suggesting that an increase in GFAP isoform expression could lead to protein aggregation and astrocyte dysfunction that typify AxD. Here we test this hypothesis by establishing primary astrocyte cultures from transgenic mice overexpressing human GFAP. We found that GFAP-δ and GFAP-κ were disproportionately increased in transgenic astrocytes and both were enriched in Rosenthal fibers of human AxD brains. In vitro assembly studies showed that while the major isoform GFAP-α self-assembled into typical 10-nm filaments, minor isoforms including GFAP-δ, -κ, and -λ were assembly-compromised and aggregation prone. Lentiviral transduction showed that expression of these minor GFAP isoforms decreased filament solubility and increased GFAP stability, leading to the formation of Rosenthal fibers-like aggregates that also disrupted the endogenous intermediate filament networks. The aggregate-bearing astrocytes lost their normal morphology and glutamate buffering capacity, which had a toxic effect on neighboring neurons. In conclusion, our findings provide evidence that links elevated GFAP isoform expression with GFAP aggregation and impaired glutamate transport, and suggest a potential non-cell-autonomous mechanism underlying neurodegeneration through astrocyte dysfunction.
Collapse
Affiliation(s)
- Ni-Hsuan Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ai-Wen Yang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hsuan Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Ming-Der Perng
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan.,Department of Medical Science, College of Life Sciences, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|