1
|
Raines NH, Leone DA, Amador JJ, Lopez-Pilarte D, Ramírez-Rubio O, Delgado IS, Francey LJ, Leibler JH, Asara JM, Scammell MK, Parikh SM, Brooks DR, Friedman DJ. Derangement in Nicotinamide Adenine Dinucleotide Metabolism is Observed During Acute Kidney Injury Among Male Agricultural Workers at Risk for Mesoamerican Nephropathy. Kidney Int Rep 2024; 9:2250-2259. [PMID: 39081728 PMCID: PMC11284402 DOI: 10.1016/j.ekir.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/08/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction Mesoamerican nephropathy (MeN) is a chronic kidney disease (CKD) which may be caused by recurrent acute kidney injury (AKI). We investigated urinary quinolinate-to-tryptophan ratio (Q/T), a validated marker of nicotinamide adenine dinucleotide (NAD+) biosynthesis that is elevated during ischemic and inflammatory AKI, in a sugarcane worker population in Nicaragua with high rates of MeN. Methods Among 693 male sugarcane workers studied, we identified 45 who developed AKI during the harvest season. We matched them 1:1 based on age and job category with 2 comparison groups: (i) "no kidney injury," active sugarcane workers with serum creatinine (sCr) <1.1 mg/dl; and (ii) "CKD," individuals no longer working in sugarcane due to their CKD, who had additional 1:1 matching for sCr. We measured urine metabolites using liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) and compared Q/T and other metabolic features between the AKI and comparison groups. Results Urine Q/T was significantly higher in workers with AKI than in those with no kidney injury (median interquartile Range [IQR]: 0.104 [0.074-0.167] vs. 0.060 [0.045-0.091], P < 0.0001) and marginally higher than in workers with CKD (0.086 [0.063-0.142], P = 0.059). Urine levels of the NAD+ precursor nicotinamide were lower in the AKI group than in comparison groups. Conclusion Workers at risk for MeN who develop AKI demonstrate features of impaired NAD+ biosynthesis, thereby providing new insights into the metabolic mechanisms of injury in this population. Therapeutic use of oral nicotinamide, which may ameliorate NAD+ biosynthetic derangement and fortify against kidney injury, should be investigated to prevent AKI in this setting.
Collapse
Affiliation(s)
- Nathan H. Raines
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Dominic A. Leone
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Juan Jose Amador
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Damaris Lopez-Pilarte
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Oriana Ramírez-Rubio
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain
| | - Iris S. Delgado
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Lauren J. Francey
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jessica H. Leibler
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - John M. Asara
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Madeleine K. Scammell
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Samir M. Parikh
- Division of Nephrology, Department of Medicine, University of Texas Southwestern Medical School, Dallas, Texas, USA
| | - Daniel R. Brooks
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - David J. Friedman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Zhou Y, Ling T, Shi W. Current state of signaling pathways associated with the pathogenesis of idiopathic pulmonary fibrosis. Respir Res 2024; 25:245. [PMID: 38886743 PMCID: PMC11184855 DOI: 10.1186/s12931-024-02878-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) represents a chronic and progressive pulmonary disorder distinguished by a notable mortality rate. Despite the elusive nature of the pathogenic mechanisms, several signaling pathways have been elucidated for their pivotal roles in the progression of this ailment. This manuscript aims to comprehensively review the existing literature on the signaling pathways linked to the pathogenesis of IPF, both within national and international contexts. The objective is to enhance the comprehension of the pathogenic mechanisms underlying IPF and offer a scholarly foundation for the advancement of more efficacious therapeutic strategies, thereby fostering research and clinical practices within this domain.
Collapse
Affiliation(s)
- Yang Zhou
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Tingting Ling
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China
| | - Weihong Shi
- School of Medicine, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 224005, China.
| |
Collapse
|
3
|
Ren M, Li J, Xu Z, Nan B, Gao H, Wang H, Lin Y, Shen H. Arsenic exposure induced renal fibrosis via regulation of mitochondrial dynamics and the NLRP3-TGF-β1/SMAD signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:3679-3693. [PMID: 38511876 DOI: 10.1002/tox.24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/18/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
Environmental arsenic exposure is one of the major global public health problems. Studies have shown that arsenic exposure can cause renal fibrosis, but the underlying mechanism is still unclear. Integrating the in vivo and in vitro models, this study investigated the potential molecular pathways for arsenic-induced renal fibrosis. In this study, SD rats were treated with 0, 5, 25, 50, and 100 mg/L NaAsO2 for 8 weeks via drinking water, and HK2 cells were treated with different doses of NaAsO2 for 48 h. The in vivo results showed that arsenic content in the rats' kidneys increased as the dose increased. Body weight decreased and kidney coefficient increased at 100 mg/L. As a response to the elevated NaAsO2 dose, inflammatory cell infiltration, renal tubular injury, glomerular atrophy, tubulointerstitial hemorrhage, and fibrosis became more obvious indicated by HE and Masson staining. The kidney transcriptome profiles further supported the protein-protein interactions involved in NaAsO2-induced renal fibrosis. The in vivo results, in together with the in vitro experiments, have revealed that exposure to NaAsO2 disturbed mitochondrial dynamics, promoted mitophagy, activated inflammation and the TGF-β1/SMAD signaling pathway, and finally resulted in fibrosis. In summary, arsenic exposure contributed to renal fibrosis via regulating the mitochondrial dynamics and the NLRP3-TGF-β1/SMAD signaling axis. This study presented an adverse outcome pathway for the development of renal fibrosis due to arsenic exposure through drinking water.
Collapse
Affiliation(s)
- Miaomiao Ren
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Jing Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zehua Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Hongying Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Heng Wang
- Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, Zhejiang, China
| | - Yi Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Gao X, Wu Y. Perioperative acute kidney injury: The renoprotective effect and mechanism of dexmedetomidine. Biochem Biophys Res Commun 2024; 695:149402. [PMID: 38159412 DOI: 10.1016/j.bbrc.2023.149402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Dexmedetomidine (DEX) is a highly selective and potent α2-adrenoceptor (α2-AR) agonist that is widely used as a clinical anesthetic to induce anxiolytic, sedative, and analgesic effects. In recent years, a growing body of evidence has demonstrated that DEX protects against acute kidney injury (AKI) caused by sepsis, drugs, surgery, and ischemia-reperfusion (I/R) in organs or tissues, indicating its potential role in the prevention and treatment of AKI. In this review, we summarized the evidence of the renoprotective effects of DEX on different models of AKI and explored the mechanism. We found that the renoprotective effects of DEX mainly involved antisympathetic effects, reducing inflammatory reactions and oxidative stress, reducing apoptosis, increasing autophagy, reducing ferroptosis, protecting renal tubular epithelial cells (RTECs), and inhibiting renal fibrosis. Thus, the use of DEX is a promising strategy for the management and treatment of perioperative AKI. The aim of this review is to further clarify the renoprotective mechanism of DEX to provide a theoretical basis for its use in basic research in various AKI models, clinical management, and the treatment of perioperative AKI.
Collapse
Affiliation(s)
- Xiong Gao
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yaohua Wu
- Department of Anesthesiology, Huanggang Central Hospital, Huanggang, Hube, China.
| |
Collapse
|
5
|
Chen Z, Ye L, Zhu M, Xia C, Fan J, Chen H, Li Z, Mou S. Single cell multi-omics of fibrotic kidney reveal epigenetic regulation of antioxidation and apoptosis within proximal tubule. Cell Mol Life Sci 2024; 81:56. [PMID: 38270638 PMCID: PMC10811088 DOI: 10.1007/s00018-024-05118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/10/2023] [Accepted: 01/07/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Until now, there has been no particularly effective treatment for chronic kidney disease (CKD). Fibrosis is a common pathological change that exist in CKD. METHODS To better understand the transcriptional dynamics in fibrotic kidney, we make use of single-nucleus assay for transposase-accessible chromatin sequencing (snATAC-seq) and single-cell RNA sequencing (scRNA-seq) from GEO datasets and perform scRNA-seq of human biopsy to seek possible transcription factors (TFs) regulating target genes in the progress of kidney fibrosis across mouse and human kidneys. RESULTS Our analysis has displayed chromatin accessibility, gene expression pattern and cell-cell communications at single-cell level in kidneys suffering from unilateral ureteral obstruction (UUO) or chronic interstitial nephritis (CIN). Using multimodal data, there exists epigenetic regulation producing less Sod1 and Sod2 mRNA within the proximal tubule which is hard to withstand oxidative stress during fibrosis. Meanwhile, a transcription factor Nfix promoting the apoptosis-related gene Ifi27 expression found by multimodal data was validated by an in vitro study. And the gene Ifi27 upregulated by in situ AAV injection within the kidney cortex aggravates kidney fibrosis. CONCLUSIONS In conclusion, as we know oxidation and apoptosis are traumatic factors during fibrosis, thus enhancing antioxidation and inhibiting the Nfix-Ifi27 pathway to inhibit apoptosis could be a potential treatment for kidney fibrosis.
Collapse
Affiliation(s)
- Zhejun Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, Zhejiang, China.
| | - Liqing Ye
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, Zhejiang, China
| | - Minyan Zhu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No 1630, Dong Fang Road, Shanghai, 200127, China
| | - Cong Xia
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, Zhejiang, China
| | - Junfen Fan
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, Zhejiang, China
| | - Hongbo Chen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, 310000, Zhejiang, China.
| | - Zhijian Li
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No 1630, Dong Fang Road, Shanghai, 200127, China.
| |
Collapse
|
6
|
Zhen X, Sun Y, Lin H, Huang Y, Liu T, Li Y, Peng H. Elucidating the role of nicotinamide N-methyltransferase-p53 axis in the progression of chronic kidney disease. PeerJ 2023; 11:e16301. [PMID: 37953778 PMCID: PMC10638915 DOI: 10.7717/peerj.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
Background Chronic kidney disease (CKD) is a significant global health issue characterized by progressive loss of kidney function. Renal interstitial fibrosis (TIF) is a common feature of CKD, but current treatments are seldom effective in reversing TIF. Nicotinamide N-methyltransferase (NNMT) has been found to increase in kidneys with TIF, but its role in renal fibrosis is unclear. Methods Using mice with unilateral ureteral obstruction (UUO) and cultured renal interstitial fibroblast cells (NRK-49F) stimulated with transforming growth factor-β1 (TGF-β1), we investigated the function of NNMT in vivo and in vitro. Results We performed single-cell transcriptome sequencing (scRNA-seq) on the kidneys of mice and found that NNMT increased mainly in fibroblasts of UUO mice compared to sham mice. Additionally, NNMT was positively correlated with the expression of renal fibrosis-related genes after UUO injury. Knocking down NNMT expression reduced fibroblast activation and was accompanied by an increase in DNA methylation of p53 and a decrease in its phosphorylation. Conclusions Our findings suggest that chronic kidney injury leads to an accumulation of NNMT, which might decrease p53 methylation, and increase the expression and activity of p53. We propose that NNMT promotes fibroblast activation and renal fibrosis, making NNMT a novel target for preventing and treating renal fibrosis.
Collapse
Affiliation(s)
- Xin Zhen
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxiang Sun
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongchun Lin
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuebo Huang
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tianwei Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuanqing Li
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Peng
- Nephrology Division, Department of Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Curran CS, Kopp JB. The complexity of nicotinamide adenine dinucleotide (NAD), hypoxic, and aryl hydrocarbon receptor cell signaling in chronic kidney disease. J Transl Med 2023; 21:706. [PMID: 37814337 PMCID: PMC10563221 DOI: 10.1186/s12967-023-04584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/30/2023] [Indexed: 10/11/2023] Open
Abstract
Early-stage detection of chronic kidney diseases (CKD) is important to treatment that may slow and occasionally halt CKD progression. CKD of diverse etiologies share similar histologic patterns of glomerulosclerosis, tubular atrophy, and interstitial fibrosis. Macro-vascular disease and micro-vascular disease promote tissue ischemia, contributing to injury. Tissue ischemia promotes hypoxia, and this in turn activates the hypoxia-inducible transcription factors (HIFs). HIF-1α and HIF-2α, share a dimer partner, HIF-1β, with the aryl hydrocarbon receptor (AHR) and are each activated in CKD and associated with kidney cellular nicotinamide adenine dinucleotide (NAD) depletion. The Preiss-Handler, salvage, and de novo pathways regulate NAD biosynthesis and gap-junctions regulate NAD cellular retention. In the Preiss-Handler pathway, niacin forms NAD. Niacin also exhibits crosstalk with HIF and AHR cell signals in the regulation of insulin sensitivity, which is a complication in CKD. Dysregulated enzyme activity in the NAD de novo pathway increases the levels of circulating tryptophan metabolites that activate AHR, resulting in poly-ADP ribose polymerase activation, thrombosis, endothelial dysfunction, and immunosuppression. Therapeutically, metabolites from the NAD salvage pathway increase NAD production and subsequent sirtuin deacetylase activity, resulting in reduced activation of retinoic acid-inducible gene I, p53, NF-κB and SMAD2 but increased activation of FOXO1, PGC-1α, and DNA methyltransferase-1. These post-translational responses may also be initiated through non-coding RNAs (ncRNAs), which are additionally altered in CKD. Nanoparticles traverse biological systems and can penetrate almost all tissues as disease biomarkers and drug delivery carriers. Targeted delivery of non-coding RNAs or NAD metabolites with nanoparticles may enable the development of more effective diagnostics and therapies to treat CKD.
Collapse
Affiliation(s)
- Colleen S Curran
- National Heart Lung and Blood Institute, NIH, BG 10 RM 2C135, 10 Center Drive, Bethesda, MD, 20814, USA.
| | | |
Collapse
|
8
|
Ye Q, Xu G, Huang H, Pang S, Xie B, Feng B, Liang P, Qin Y, Li S, Luo Y, Xue C, Li W. Nicotinamide N-Methyl Transferase as a Predictive Marker of Tubular Fibrosis in CKD. Int J Gen Med 2023; 16:3331-3344. [PMID: 37576910 PMCID: PMC10417815 DOI: 10.2147/ijgm.s420706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Purpose Chronic kidney disease (CKD) progression is complex. There are not standardized methods for predicting the prognosis of CKD. Nicotinamide N-methyltransferase (NNMT) has been shown to be associated with renal fibrosis. This study aimed to validate NNMT as a prognostic biomarker of progressive CKD. Patients and Methods We explored the relationship between NNMT expression and CKD-related outcome variables using the NephroseqV5 and GEO databases. Additionally, a validation set of 37 CKD patients was enrolled to measure the correlation between NNMT expression levels and CKD outcomes. Furthermore, single-cell RNA sequencing data and the Human Protein Atlas were reanalyzed to investigate the expression specificity of NNMT in the kidney. Finally, to detect the status of NNMT expression with tubular fibrosis in vivo, we constructed a unilateral ureteral obstruction (UUO) mouse treated with an NNMT inhibitor. Results Analyzing the datasets showed that NNMT was expressed mainly in proximal tubule compartments. And patients with high NNMT expression levels had a significantly lower overall survival rate compared to those with low NNMT expression levels (P = 0.013). NNMT was independent of prognosis factors in the multivariate Cox regression model, and the AUCs for CKD progression at 1, 3, and 5 years were 0.849, 0.775, and 0.877, respectively. Pathway enrichment analysis indicated that NNMT regulates the biological processes of tubulointerstitial fibrosis (TIF). In the validation group, NNMT levels were significantly higher in the CKD group combined with interstitial fibrosis. In vivo, NNMT was a high expression in the UUO group, peaking at postoperative day 21. Treatment with an NNMT inhibitor improved renal tubular interstitial fibrosis, and expression levels of FN, α-SMA, VIM, and TGF-β1 were decreased compared with UUO (P < 0.05). Conclusion NNMT was expressed mainly in tubular renal compartments, and associated with CKD prognosis. It holds potential as a diagnostic biomarker for tubular fibrosis in CKD.
Collapse
Affiliation(s)
- Qinglin Ye
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Guiling Xu
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Haizhen Huang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Shuting Pang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Boji Xie
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Bingmei Feng
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Peng Liang
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yijie Qin
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Siji Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yin Luo
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Chao Xue
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Wei Li
- Department of Nephrology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| |
Collapse
|
9
|
Hall SM, Raines NH, Ramirez-Rubio O, Amador JJ, López-Pilarte D, O'Callaghan-Gordo C, Gil-Redondo R, Embade N, Millet O, Peng X, Vences S, Keogh SA, Delgado IS, Friedman DJ, Brooks DR, Leibler JH. Urinary Metabolomic Profile of Youth at Risk of Chronic Kidney Disease in Nicaragua. KIDNEY360 2023; 4:899-908. [PMID: 37068179 PMCID: PMC10371259 DOI: 10.34067/kid.0000000000000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/22/2023] [Indexed: 04/19/2023]
Abstract
Key Points Urinary concentrations of glycine, a molecule associated with thermoregulation, were elevated among youth from a high-risk region for chronic kidney disease of non-traditional etiology (CKDnt). Urinary concentrations of pyruvate, citric acid, and inosine were lower among youth at higher risk of CKDnt, suggesting renal stress. Metabolomic analyses may shed light on early disease processes or profiles or risk in the context of CKDnt. Background CKD of a nontraditional etiology (CKDnt) is responsible for high mortality in Central America, although its causes remain unclear. Evidence of kidney dysfunction has been observed among youth, suggesting that early kidney damage contributing to CKDnt may initiate in childhood. Methods Urine specimens of young Nicaraguan participants 12–23 years without CKDnt (n =136) were analyzed by proton nuclear magnetic resonance spectroscopy for 50 metabolites associated with kidney dysfunction. Urinary metabolite levels were compared by, regional CKDnt prevalence, sex, age, and family history of CKDnt using supervised statistical methods and pathway analysis in MetaboAnalyst. Magnitude of associations and changes over time were assessed through multivariable linear regression. Results In adjusted analyses, glycine concentrations were higher among youth from high-risk regions (β =0.82, [95% confidence interval, 0.16 to 1.85]; P = 0.01). Pyruvate concentrations were lower among youth with low eGFR (β = −0.36 [95% confidence interval, −0.57 to −0.04]; P = 0.03), and concentrations of other citric acid cycle metabolites differed by key risk factors. Over four years, participants with low eGFR experienced greater declines in 1-methylnicotinamide and 2-oxoglutarate and greater increases in citrate and guanidinoacetate concentrations. Conclusion Urinary concentration of glycine, a molecule associated with thermoregulation and kidney function preservation, was higher among youth in high-risk CKDnt regions, suggestive of greater heat exposure or renal stress. Lower pyruvate concentrations were associated with low eGFR, and citric acid cycle metabolites, such as pyruvate, likely relate to mitochondrial respiration rates in the kidneys. Participants with low eGFR experienced longitudinal declines in concentrations of 1-methylnicotinamide, an anti-inflammatory metabolite associated with anti-fibrosis in tubule cells. These findings merit further consideration in research on the origins of CKDnt.
Collapse
Affiliation(s)
- Samantha M. Hall
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Nathan H. Raines
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Oriana Ramirez-Rubio
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Juan José Amador
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Damaris López-Pilarte
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Cristina O'Callaghan-Gordo
- Barcelona Institute for Global Health, ISGlobal, Barcelona, Spain
- Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Rubén Gil-Redondo
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Xiaojing Peng
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Selene Vences
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Sinead A. Keogh
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| | - Iris S. Delgado
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - David J. Friedman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Daniel R. Brooks
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Jessica H. Leibler
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
| |
Collapse
|
10
|
Xie Y, Chen X, Li Y, Chen S, Liu S, Yu Z, Wang W. Transforming growth factor-β1 protects against LPC-induced cognitive deficit by attenuating pyroptosis of microglia via NF-κB/ERK1/2 pathways. J Neuroinflammation 2022; 19:194. [PMID: 35902863 PMCID: PMC9336072 DOI: 10.1186/s12974-022-02557-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Background Demyelinating diseases in central nervous system (CNS) are a group of diseases characterized by myelin damage or myelin loss. Transforming growth factor beta1 (TGF-β1) is widely recognized as an anti-inflammatory cytokine, which can be produced by both glial and neuronal cells in CNS. However, the effects of TGF-β1 on demyelinating diseases and its underlying mechanisms have not been well investigated. Methods A demyelinating mouse model using two-point injection of lysophosphatidylcholine (LPC) to the corpus callosum in vivo was established. Exogenous TGF-β1 was delivered to the lesion via brain stereotactic injection. LFB staining, immunofluorescence, and Western blot were applied to examine the severity of demyelination and pyroptosis process in microglia. Morris water maze test was used to assess the cognitive abilities of experimental mice. Furthermore, lipopolysaccharide (LPS) was applied to induce pyroptosis in primary cultured microglia in vitro, to explore potential molecular mechanism. Results The degree of demyelination in LPC-modeling mice was found improved with supplement of TGF-β1. Besides, TGF-β1 treatment evidently ameliorated the activated proinflammatory pyroptosis of microglia, with downregulated levels of the key pyroptosis effector Gasdermin D (GSDMD), inflammasomes, and cleaved-IL-1β, which effectively attenuated neuroinflammation in vivo. Evaluated by behavioral tests, the cognitive deficit in LPC-modeling mice was found mitigated with application of TGF-β1. Mechanistically, TGF-β1 could reverse pyroptosis-like morphology in LPS-stimulated primary cultured microglia observed by scanning electron microscopy, as well as decrease the protein levels of cleaved-GSDMD, inflammasomes, and cleaved-IL-1β. Activation of ERK1/2 and NF-κB pathways largely abolished the protective effects of TGF-β1, which indicated that TGF-β1 alleviated the pyroptosis possibly via regulating NF-κB/ERK1/2 signal pathways. Conclusions Our studies demonstrated TGF-β1 notably relieved the demyelinating injury and cognitive disorder in LPC-modeling mice, by attenuating the inflammatory pyroptosis of microglia via ERK1/2 and NF-κB pathways. Targeting TGF-β1 activity might serve as a promising therapeutic strategy in demyelinating diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02557-0.
Collapse
Affiliation(s)
- Yi Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuejiao Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Simiao Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, 310003, China
| | - Shuai Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
11
|
Chasapi SA, Karagkouni E, Kalavrizioti D, Vamvakas S, Zompra A, Takis PG, Goumenos DS, Spyroulias GA. NMR-Based Metabolomics in Differential Diagnosis of Chronic Kidney Disease (CKD) Subtypes. Metabolites 2022; 12:490. [PMID: 35736423 PMCID: PMC9230636 DOI: 10.3390/metabo12060490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic Kidney Disease (CKD) is considered as a major public health problem as it can lead to end-stage kidney failure, which requires replacement therapy. A prompt and accurate diagnosis, along with the appropriate treatment, can delay CKD's progression, significantly. Herein, we sought to determine whether CKD etiology can be reflected in urine metabolomics during its early stage. This is achieved through the analysis of the urine metabolic fingerprint from 108 CKD patients by means of Nuclear Magnetic Resonance (NMR) spectroscopy metabolomic analysis. We report the first NMR-metabolomics data regarding the three most common etiologies of CKD: Chronic Glomerulonephritis (IgA and Membranous Nephropathy), Diabetic Nephropathy (DN) and Hypertensive Nephrosclerosis (HN). Analysis aided a moderate glomerulonephritis clustering, providing characterization of the metabolic fluctuations between the CKD subtypes and control disease. The urine metabolome of IgA Nephropathy reveals a specific metabolism, reflecting its different etiology or origin and is useful for determining the origin of the disease. In contrast, urine metabolomes from DN and HN patients did not reveal any indicative metabolic pattern, which is consistent with their fused clinical phenotype. These findings may contribute to improving diagnostics and prognostic approaches for CKD, as well as improving our understanding of its pathology.
Collapse
Affiliation(s)
- Styliani A. Chasapi
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (S.A.C.); (E.K.); (A.Z.)
| | - Evdokia Karagkouni
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (S.A.C.); (E.K.); (A.Z.)
| | - Dimitra Kalavrizioti
- Department of Nephrology and Renal Transplantation, University Hospital of Patras, 26504 Patras, Greece; (D.K.); (S.V.)
| | - Sotirios Vamvakas
- Department of Nephrology and Renal Transplantation, University Hospital of Patras, 26504 Patras, Greece; (D.K.); (S.V.)
| | - Aikaterini Zompra
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (S.A.C.); (E.K.); (A.Z.)
| | - Panteleimon G. Takis
- Section of Bioanalytical Chemistry, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, South Kensington Campus, London SW7 2AZ, UK;
- National Phenome Centre, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, IRDB Building, London W120NN, UK
| | - Dimitrios S. Goumenos
- Department of Nephrology and Renal Transplantation, University Hospital of Patras, 26504 Patras, Greece; (D.K.); (S.V.)
| | - Georgios A. Spyroulias
- Department of Pharmacy, University of Patras, 26504 Patras, Greece; (S.A.C.); (E.K.); (A.Z.)
| |
Collapse
|
12
|
Abstract
Acute kidney injury (AKI) is a serious and highly prevalent disease, yet only supportive treatment is available. Nicotinamide adenine dinucleotide (NAD+) is a cofactor necessary for adenosine triphosphate (ATP) production and cell survival. Changes in renal NAD+ biosynthesis and energy utilization are features of AKI. Targeting NAD+ as an AKI therapy shows promising potential. However, the pursuit of NAD+-based treatments requires deeper understanding of the unique drivers and effects of the NAD+ biosynthesis derangements that arise in AKI. This article summarizes the NAD+ biosynthesis alterations in the kidney in AKI, chronic disease, and aging. To enhance this understanding, we explore instances of NAD+ biosynthesis alterations outside the kidney in inflammation, pregnancy, and cancer. In doing so, we seek to highlight that the different NAD+ biosynthesis pathways are not interconvertible and propose that the way in which NAD+ is synthesized may be just as important as the NAD+ produced.
Collapse
Affiliation(s)
- Amanda J Clark
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, TX; Division of Pediatric Nephrology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX
| | - Marie Christelle Saade
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, TX
| | - Samir M Parikh
- Division of Nephrology, Department of Medicine, University of Texas Southwestern, Dallas, TX; Department of Pharmacology, University of Texas Southwestern, Dallas, TX.
| |
Collapse
|