1
|
Paoli S, Eidelman DH, Mann KK, Baglole C. Sex-specific alterations in pulmonary metabolic, xenobiotic and lipid signalling pathways after e-cigarette aerosol exposure during adolescence in mice. BMJ Open Respir Res 2024; 11:e002423. [PMID: 39299769 PMCID: PMC11418501 DOI: 10.1136/bmjresp-2024-002423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND E-cigarette use is now prevalent among adolescents and young adults, raising concerns over potential adverse long-term health effects. Although it is hypothesised that e-cigarettes promote inflammation, studies have yielded conflicting evidence. Our previous work showed that JUUL, a popular e-cigarette brand, elicited minimal lung inflammation but induced significant molecular changes in adult C57BL/6 mice. METHODS Now, we have profiled immunological and proteomic changes in the lungs of adolescent male and female BALB/c and C57BL/6 mice exposed to a flavoured JUUL aerosol containing 18 mg/mL of nicotine for 14 consecutive days. We evaluated changes in the immune composition by flow cytometry, gene expression levels by reverse transcription-quantitative PCR and assessed the proteomic profile of the lungs and bronchoalveolar lavage (BAL) by tandem mass tag-labelled mass spectroscopy. RESULTS While there were few significant changes in the immune composition of the lungs, proteomic analysis revealed that JUUL exposure caused significant sex-dependent and strain-dependent differences in lung and BAL proteins that are implicated in metabolic pathways, including those related to lipids and atherosclerosis, as well as pathways related to immune function and response to xenobiotics. Notably, these changes were more pronounced in male mice. CONCLUSIONS These findings raise the possibility that vaping dysregulates numerous biological responses in lungs that may affect disease risk, disproportionally impacting males and raising significant concerns for the future health of male youth who currently vape.
Collapse
Affiliation(s)
- Sofia Paoli
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | - Carolyn Baglole
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Caruana V, Giles BH, Kukolj N, Juran R, Baglole CJ, Mann KK. Chronic exposure to E-cigarette aerosols potentiates atherosclerosis in a sex-dependent manner. Toxicol Appl Pharmacol 2024; 492:117095. [PMID: 39245079 DOI: 10.1016/j.taap.2024.117095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Despite being designed for smoking cessation, e-cigarettes and their variety of flavors have become increasingly attractive to teens and young adults. This trend has fueled concerns regarding the potential role of e-cigarettes in advancing chronic diseases, notably those affecting the cardiovascular system. E-cigarettes contain a mixture of metals and chemical compounds, some of which have been implicated in cardiovascular diseases like atherosclerosis. Our laboratory has optimized in vivo exposure regimens to mimic human vaping patterns. Using these established protocols in an inducible (AAV-PCSK9) hyperlipidemic mouse model, this study tests the hypothesis that a chronic exposure to e-cigarette aerosols will increase atherosclerotic plaques. The exposures were conducted using the SCIREQ InExpose™ nose-only inhalation system and STLTH or Vuse products for 16 weeks. We observed that only male mice exposed to STLTH or Vuse aerosols had significantly increased plasma total cholesterol, triglycerides, and LDL cholesterol levels compared to mice exposed to system air. Moreover, these male mice also had a significant increase in aortic and sinus plaque area. Male mice exposed to e-cigarette aerosol had a significant reduction in weight gain over the exposure period. Our data indicate that e-cigarette use in young hyperlipidemic male mice increases atherosclerosis in the absence of significant pulmonary and systemic inflammation. These results underscore the need for extensive research to unravel the long-term health effects of e-cigarettes.
Collapse
Affiliation(s)
- Vincenza Caruana
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Research Institute of the McGill University Health Centre, Montreal, QC, Canada; Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | - Braeden H Giles
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | - Nikola Kukolj
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | - Roni Juran
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | - Carolyn J Baglole
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada; Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Bian T, Lynch A, Ballas K, Mamallapalli J, Freeman B, Scala A, Wang Y, Trabouls H, Chellian RK, Fagan A, Tang Z, Ding H, De U, Fredenburg KM, Huo Z, Baglole CJ, Zhang W, Reznikov LR, Bruijnzeel AW, Xing C. AB-free kava enhances resilience against the adverse health effects of tobacco smoke in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.599576. [PMID: 38979295 PMCID: PMC11230230 DOI: 10.1101/2024.06.25.599576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Tobacco smoke remains a serious global issue, resulting in serious health complications, contributing to the onsets of numerous preventive diseases, and imposing significant financial burdens. Despite regulatory policies and cessation measures aimed at curbing its usage, novel interventions are urgently needed for effective damage reduction. Our preclinical and pilot clinical studies showed that AB-free kava has the potential to reduce tobacco smoke-induced lung cancer risk, mitigate tobacco dependence, and reduce tobacco use. To understand the scope of its benefits in damage reduction and potential limitations, this study evaluated the effects of AB-free kava on a panel of health indicators in mice exposed to 2 - 4 weeks of daily tobacco smoke exposure. Our comprehensive assessments included global transcriptional profiling of the lung and liver tissues, analysis of lung inflammation, evaluation of lung function, exploration of tobacco nicotine withdrawal, and characterization of the causal PKA signaling pathway. As expected, Tobacco smoke exposure perturbed a wide range of biological processes and compromised multiple functions in mice. Remarkably, AB-free kava demonstrated the ability to globally mitigate tobacco smoke-induced deficits at the molecular and functional levels with promising safety profiles, offering a unique promise to mitigate tobacco smoke-related health damages. Further pre-clinical evaluation and clinical translation are warranted to fully harness the potential of AB-free kava in combating tobacco smoke-related harms.
Collapse
|
4
|
Allbright K, Villandre J, Crotty Alexander LE, Zhang M, Benam KH, Evankovich J, Königshoff M, Chandra D. The paradox of the safer cigarette: understanding the pulmonary effects of electronic cigarettes. Eur Respir J 2024; 63:2301494. [PMID: 38609098 DOI: 10.1183/13993003.01494-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
Electronic cigarette (e-cigarette) use continues to rise globally. E-cigarettes have been presented as safer alternatives to combustion cigarettes that can mitigate the harm associated with tobacco products; however, the degree to which e-cigarette use itself can lead to morbidity and mortality is not fully defined. Herein we describe how e-cigarettes function; discuss the current knowledge of the effects of e-cigarette aerosol on lung cell cytotoxicity, inflammation, antipathogen immune response, mucociliary clearance, oxidative stress, DNA damage, carcinogenesis, matrix remodelling and airway hyperresponsiveness; and summarise the impact on lung diseases, including COPD, respiratory infection, lung cancer and asthma. We highlight how the inclusion of nicotine or flavouring compounds in e-liquids can impact lung toxicity. Finally, we consider the paradox of the safer cigarette: the toxicities of e-cigarettes that can mitigate their potential to serve as a harm reduction tool in the fight against traditional cigarettes, and we summarise the research needed in this underinvestigated area.
Collapse
Affiliation(s)
- Kassandra Allbright
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Villandre
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - Laura E Crotty Alexander
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Michael Zhang
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kambez H Benam
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - John Evankovich
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - Melanie Königshoff
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| | - Divay Chandra
- Department of Medicine and the Electronic Cigarette Research Initiative, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Kidane B, Kahnamoui S, Srinathan S, Liu R, Tan L, Morris M, Shawyer A, Halayko AJ, Pascoe CD. Lung transcriptome of e-cigarette users reveals changes related to chronic lung disease. Eur Respir J 2024; 63:2301623. [PMID: 38359961 DOI: 10.1183/13993003.01623-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Affiliation(s)
- Biniam Kidane
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Shana Kahnamoui
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Sadeesh Srinathan
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Richard Liu
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Lawrence Tan
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Melanie Morris
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
- Division of Pediatric General Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Anna Shawyer
- Section of Thoracic Surgery, Department of Surgery, Health Sciences Centre, University of Manitoba, Winnipeg, MB, Canada
- Division of Pediatric General Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Christopher D Pascoe
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
6
|
Alakhtar B, Guilbert C, Subramaniam N, Caruana V, Makhani K, Baglole CJ, Mann KK. E-cigarette exposure causes early pro-atherogenic changes in an inducible murine model of atherosclerosis. FRONTIERS IN TOXICOLOGY 2023; 5:1244596. [PMID: 38164438 PMCID: PMC10757938 DOI: 10.3389/ftox.2023.1244596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction: Evidence suggests that e-cigarette use (vaping) increases cardiovascular disease risk, but decades are needed before people who vape would develop pathology. Thus, murine models of atherosclerosis can be utilized as tools to understand disease susceptibility, risk and pathogenesis. Moreover, there is a poor understanding of how risk factors for atherosclerosis (i.e., hyperlipidemia, high-fat diet) intersect with vaping to promote disease risk. Herein, we evaluated whether there was early evidence of atherosclerosis in an inducible hyperlipidemic mouse exposed to aerosol from commercial pod-style devices and e-liquid. Methods: Mice were injected with adeno-associated virus containing the human protein convertase subtilisin/kexin type 9 (PCSK9) variant to promote hyperlipidemia. These mice were fed a high-fat diet and exposed to room air or aerosol derived from JUUL pods containing polyethylene glycol/vegetable glycerin (PG/VG) or 5% nicotine with mango flavoring for 4 weeks; this timepoint was utilized to assess markers of atherosclerosis that may occur prior to the development of atherosclerotic plaques. Results: These data show that various parameters including weight, circulating lipoprotein/glucose levels, and splenic immune cells were significantly affected by exposure to PG/VG and/or nicotine-containing aerosols. Discussion: Not only can this mouse model be utilized for chronic vaping studies to assess the vascular pathology but these data support that vaping is not risk-free and may increase CVD outcomes later in life.
Collapse
Affiliation(s)
- Bayan Alakhtar
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Cynthia Guilbert
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
| | - Nivetha Subramaniam
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Vincenza Caruana
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Kiran Makhani
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Carolyn J. Baglole
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Koren K. Mann
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
7
|
Lamb T, Kaur G, Rahman I. Tobacco-Derived and Tobacco-Free Nicotine cause differential inflammatory cell influx and MMP9 in mouse lung. RESEARCH SQUARE 2023:rs.3.rs-3650978. [PMID: 38077054 PMCID: PMC10705704 DOI: 10.21203/rs.3.rs-3650978/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Electronic nicotine delivery systems (ENDS) or electronic cigarettes (e-cigarettes) have propylene glycol (PG) and vegetable glycerin (VG) as humectants, flavoring chemicals, and nicotine. Nicotine naturally occurs in two isomers R- and S-nicotine, with both tobacco-derived nicotine (TDN) composed of S-nicotine and synthetic nicotine (TFN) composed of a racemic mixture of R- and S-nicotine. Currently there is limited knowledge of the potential differences in the toxicity of TFN vs TDN. We hypothesized that exposure of TFN salts to C57BL/6J mice will result in a differential response in inflammation and lung protease and antiprotease imbalance compared to TDN salts exposed mice. We studied the toxicological impact of these isomers by exposing mice to air, PG/VG, PG/VG with TFN salts, or PG/VG with TDN salts by nose-only exposure and measured the cytokine levels in BALF and lung homogenate along with MMP protein abundance in the lungs of exposed mice. Exposure to the humectants, PG/VG, used in e-cigarettes alone was able to increase cytokine levels-IL-6, KC, and MCP-1 in BALF and KC levels in lung homogenate. Further, it showed differential responses on exposure to PG/VG with TDN salts and PG/VG with TFN salts since PG/VG with TDN salts did not alter the cytokine levels in lung homogenate while PG/VG with TFN salts resulted in an increase in KC levels. PG/VG with TDN salts increased the levels of MMP9 protein abundance in female exposed mice, while PG/VG with TFN salts did not alter MMP9 levels in female mice. The metabolism of nicotine or the clearance of cotinine from TFN may differ from the metabolism of nicotine or the clearance of cotinine from TDN. Thus exposure of humectants alone to induce an inflammatory response while PG/VG with TFN salts and PG/VG with TDN salts may differentially alter inflammatory responses and lung proteases in acute exposures. These data suggest the harmful effects of synthetic/natural nicotine and PG/VG and potential toxicological risk for users.
Collapse
|
8
|
Warren KJ, Beck EM, Callahan SJ, Helms MN, Middleton E, Maddock S, Carr JR, Harris D, Blagev DP, Lanspa MJ, Brown SM, Paine R. Alveolar macrophages from EVALI patients and e-cigarette users: a story of shifting phenotype. Respir Res 2023; 24:162. [PMID: 37330506 PMCID: PMC10276465 DOI: 10.1186/s12931-023-02455-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/19/2023] [Indexed: 06/19/2023] Open
Abstract
Exposure to e-cigarette vapors alters important biologic processes including phagocytosis, lipid metabolism, and cytokine activity in the airways and alveolar spaces. Little is known about the biologic mechanisms underpinning the conversion to e-cigarette, or vaping, product use-associated lung injury (EVALI) from normal e-cigarette use in otherwise healthy individuals. We compared cell populations and inflammatory immune populations from bronchoalveolar lavage fluid in individuals with EVALI to e-cigarette users without respiratory disease and healthy controls and found that e-cigarette users with EVALI demonstrate a neutrophilic inflammation with alveolar macrophages skewed towards inflammatory (M1) phenotype and cytokine profile. Comparatively, e-cigarette users without EVALI demonstrate lower inflammatory cytokine production and express features associated with a reparative (M2) phenotype. These data indicate macrophage-specific changes are occurring in e-cigarette users who develop EVALI.
Collapse
Affiliation(s)
- Kristi J Warren
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA.
- George E. Wahlen VA Medical Center, 500 Foothill Dr, Salt Lake City, UT, 84148, USA.
| | - Emily M Beck
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA
- George E. Wahlen VA Medical Center, 500 Foothill Dr, Salt Lake City, UT, 84148, USA
| | - Sean J Callahan
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA
- George E. Wahlen VA Medical Center, 500 Foothill Dr, Salt Lake City, UT, 84148, USA
| | - My N Helms
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Elizabeth Middleton
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Sean Maddock
- George E. Wahlen VA Medical Center, 500 Foothill Dr, Salt Lake City, UT, 84148, USA
- Division of Pulmonary and Critical Care Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Jason R Carr
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA
- Intermountain Healthcare, Department of Pulmonary & Critical Care Medicine, Murray, UT, 84107, USA
| | - Dixie Harris
- Intermountain Healthcare, Department of Pulmonary & Critical Care Medicine, Murray, UT, 84107, USA
| | - Denitza P Blagev
- Intermountain Healthcare, Department of Pulmonary & Critical Care Medicine, Murray, UT, 84107, USA
| | - Michael J Lanspa
- Intermountain Healthcare, Department of Pulmonary & Critical Care Medicine, Murray, UT, 84107, USA
| | - Samuel M Brown
- Intermountain Healthcare, Department of Pulmonary & Critical Care Medicine, Murray, UT, 84107, USA
| | - Robert Paine
- Department of Internal Medicine, Division of Pulmonary & Critical Care Medicine, University of Utah, Salt Lake City, UT, 84132, USA
- George E. Wahlen VA Medical Center, 500 Foothill Dr, Salt Lake City, UT, 84148, USA
| |
Collapse
|
9
|
Day NJ, Wang J, Johnston CJ, Kim SY, Olson HM, House EL, Attah IK, Clair GC, Qian WJ, McGraw MD. Rat bronchoalveolar lavage proteome changes following e-cigarette aerosol exposures. Am J Physiol Lung Cell Mol Physiol 2023; 324:L571-L583. [PMID: 36881561 PMCID: PMC10085554 DOI: 10.1152/ajplung.00016.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
E-cigarette liquids are complex mixtures of chemicals consisting of humectants, such as propylene glycol (PG) and vegetable glycerin (VG), with nicotine or flavorings added. Published literature emphasizes the toxicity of e-cigarette aerosols with flavorings whereas much less attention has been given to the biologic effects of humectants. The purpose of the current study was to provide a comprehensive view of the acute biologic effects of e-cigarette aerosols on rat bronchoalveolar lavage (BAL) using mass spectrometry-based global proteomics. Sprague-Dawley rats were exposed to e-cigarette aerosol for 3 h/day for three consecutive days. Groups included: PG/VG alone, PG/VG + 2.5% nicotine (N), or PG/VG + N + 3.3% vanillin (V). Right lung lobes were lavaged for BAL and supernatants prepared for proteomics. Extracellular BAL S100A9 concentrations and BAL cell staining for citrullinated histone H3 (citH3) were also performed. From global proteomics, ∼2,100 proteins were identified from rat BAL. The greatest change in number of BAL proteins occurred with PG/VG exposures alone compared with controls with biological pathways enriched for acute phase responses, extracellular trap formation, and coagulation. Extracellular BAL S100A9 concentrations and the number of citH3 + BAL cells also increased significantly in PG/VG and PG/VG + 2.5% N. In contrast to PG/VG or PG/VG + N, the addition of vanillin to PG/VG + N increased BAL neutrophilia and downregulated lipid transport proteins. In summary, global proteomics support e-cigarette aerosol exposures to PG/VG alone as having a significant biologic effect on the lung independent of nicotine or flavoring with increased markers of extracellular trap formation.
Collapse
Affiliation(s)
- Nicholas J Day
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Juan Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Carl J Johnston
- Division of Pulmonology, Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - So-Young Kim
- Division of Pulmonology, Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Heather M Olson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Emma L House
- Division of Pulmonology, Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| | - Isaac Kwame Attah
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Geremy C Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States
| | - Matthew D McGraw
- Division of Pulmonology, Department of Pediatric Pulmonology, University of Rochester Medical Center, Rochester, New York, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States
| |
Collapse
|