1
|
Zhang X, Lei F, Wang XM, Deng KQ, Ji YX, Zhang Y, Li H, Zhang XD, Lu Z, Zhang P. NULP1 Alleviates Cardiac Hypertrophy by Suppressing NFAT3 Transcriptional Activity. J Am Heart Assoc 2020; 9:e016419. [PMID: 32805187 PMCID: PMC7660797 DOI: 10.1161/jaha.120.016419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The development of pathological cardiac hypertrophy involves the coordination of a series of transcription activators and repressors, while their interplay to trigger pathological gene reprogramming remains unclear. NULP1 (nuclear localized protein 1) is a member of the basic helix-loop-helix family of transcription factors and its biological functions in pathological cardiac hypertrophy are barely understood. Methods and Results Immunoblot and immunostaining analyses showed that NULP1 expression was consistently reduced in the failing hearts of patients and hypertrophic mouse hearts and rat cardiomyocytes. Nulp1 knockout exacerbates aortic banding-induced cardiac hypertrophy pathology, which was significantly blunted by transgenic overexpression of Nulp1. Signal pathway screening revealed the nuclear factor of activated T cells (NFAT) pathway to be dramatically suppressed by NULP1. Coimmunoprecipitation showed that NULP1 directly interacted with the topologically associating domain of NFAT3 via its C-terminal region, which was sufficient to suppress NFAT3 transcriptional activity. Inactivation of the NFAT pathway by VIVIT peptides in vivo rescued the aggravated pathogenesis of cardiac hypertrophy resulting from Nulp1 deficiency. Conclusions NULP1 is an endogenous suppressor of NFAT3 signaling under hypertrophic stress and thus negatively regulates the pathogenesis of cardiac hypertrophy. Targeting overactivated NFAT by NULP1 may be a novel therapeutic strategy for the treatment of pathological cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China
| | - Fang Lei
- Institute of Model Animal Wuhan University Wuhan China
| | - Xiao-Ming Wang
- School of Basic Medical Sciences Wuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China
| | - Ke-Qiong Deng
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China
| | - Yan-Xiao Ji
- Institute of Model Animal Wuhan University Wuhan China.,Medical Science Research Center Zhongnan Hospital of Wuhan University Wuhan China
| | - Yan Zhang
- Institute of Model Animal Wuhan University Wuhan China
| | - Hongliang Li
- School of Basic Medical Sciences Wuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China.,Medical Science Research Center Zhongnan Hospital of Wuhan University Wuhan China.,Department of Cardiology Renmin Hospital of Wuhan University Wuhan China
| | - Xiao-Dong Zhang
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China
| | - Zhibing Lu
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China
| | - Peng Zhang
- Department of Cardiology College of Life Sciences Zhongnan Hospital of Wuhan UniversityWuhan University Wuhan China.,Institute of Model Animal Wuhan University Wuhan China.,Medical Science Research Center Zhongnan Hospital of Wuhan University Wuhan China
| |
Collapse
|
2
|
Akaike T, Du N, Lu G, Minamisawa S, Wang Y, Ruan H. A Sarcoplasmic Reticulum Localized Protein Phosphatase Regulates Phospholamban Phosphorylation and Promotes Ischemia Reperfusion Injury in the Heart. ACTA ACUST UNITED AC 2017; 2:160-180. [PMID: 29057374 PMCID: PMC5648354 DOI: 10.1016/j.jacbts.2016.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
PP2Ce is Ser-Thr phosphatase specifically localized on SR and expressed in cardiomyocytes. PP2Ce has specific phosphatase activity to dephosphorylate Thr-17 site of phospholamban. PP2Ce expression is induced upon pathological stress, including beta-AR stimulation and ROS. PP2Ce induction suppresses cardiomyocyte calcium cycling, reduces beta-AR-induced contractility, and promotes oxidative ischemia/reperfusion injury. PP2Ce is a new molecular component of stress-mediated cardiomyocyte calcium regulation.
Phospholamban (PLN) is a key regulator of sarcolemma calcium uptake in cardiomyocyte; its inhibitory activity to sarcolemma-endoplasmic reticulum calcium ATPase is regulated by phosphorylation. PLN hypophosphorylation is a common molecular feature in the failing heart. The current study provided evidence at the molecular, cellular, and whole-heart levels to implicate a sarcolemma membrane-targeted protein phosphatase, PP2Ce, as a specific and potent PLN phosphatase. PP2Ce expression was elevated in failing human heart and induced acutely at protein level by β-adrenergic stimulation or oxidative stress in cardiomyocytes. PP2Ce expression in mouse heart blunted β-adrenergic response and exacerbated ischemia/reperfusion injury. Therefore, PP2Ce is a new regulator for cardiac function and pathogenesis.
Collapse
Affiliation(s)
- Toru Akaike
- Department of Anesthesiology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1735.,Department of Cell Physiology, The Jikei University School of Medicine
| | - Na Du
- Department of Anesthesiology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1735
| | - Gang Lu
- Department of Anesthesiology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1735
| | - Susumu Minamisawa
- Department of Cell Physiology, The Jikei University School of Medicine
| | - Yibin Wang
- Department of Anesthesiology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1735
| | - Hongmei Ruan
- Department of Anesthesiology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095-1735
| |
Collapse
|
3
|
Gαi2 signaling: friend or foe in cardiac injury and heart failure? Naunyn Schmiedebergs Arch Pharmacol 2012; 385:443-53. [PMID: 22411356 DOI: 10.1007/s00210-011-0705-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/13/2011] [Indexed: 12/20/2022]
Abstract
Receptors coupled to G proteins have many effects on the heart. Enhanced signaling by Gα(s) and Gα(q) leads to cardiac injury and heart failure, while Gα(i2) signaling in cardiac myocytes can protect against ischemic injury and β-adrenergic-induced heart failure. We asked whether enhanced Gα(i2) signaling in mice could protect against heart failure using a point mutation in Gα(i2) (G184S), which prevents negative regulation by regulators of G protein signaling. Contrary to our expectation, it worsened effects of a genetic dilated cardiomyopathy (DCM) and catecholamine-induced cardiac injury. Gα (i2) (G184S/+) /DCM double heterozygote mice (TG9(+)Gα (i2) (G184S/+)) had substantially decreased survival compared to DCM animals. Furthermore, heart weight/body weight ratios (HW/BW) were significantly greater in TG9(+)Gα (i2) (G184S/+) mice as was expression of natriuretic peptide genes. Catecholamine injury in Gα (i2) (G184S/G184S) mutant mice produced markedly increased isoproterenol-induced fibrosis and collagen III gene expression vs WT mice. Cardiac fibroblasts from Gα (i2) (G184S/G184S) mice also showed a serum-dependent increase in proliferation and ERK phosphorylation, which were blocked by pertussis toxin and a mitogen-activated protein/extracellular signal-regulated kinase kinase inhibitor. Gα(i2) signaling in cardiac myocytes protects against ischemic injury but enhancing Gα(i2) signaling overall may have detrimental effects in heart failure, perhaps through actions on cardiac fibroblasts.
Collapse
|
4
|
Transforming growth factor beta 1 (TGF-beta 1) in atrial fibrillation and acute congestive heart failure. Clin Res Cardiol 2010; 100:335-42. [PMID: 21069358 DOI: 10.1007/s00392-010-0248-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
PURPOSE Atrial fibrillation (AF) and acute congestive heart failure (aCHF) are characterized by an adverse cardiac remodeling. Arrhythmogenic or structural remodeling can be caused by interstitial fibrosis. Transforming growth factor beta 1 (TGF-beta 1) represents a central regulator of cardiac fibrosis. This study investigates serum levels of TGF-beta 1 in patients with AF and aCHF. METHODS 401 patients presenting with symptoms of dyspnea or peripheral edema were prospectively enrolled. Blood samples for measurement of TGF-beta 1 (R&D Systems, Inc.) and amino-terminal pro-brain natriuretic peptide (NT-proBNP) (DadeBehring ltd.) were collected after the initial clinical evaluation. RESULTS Median TGF-beta 1 levels were lower in patients with AF (21.0 ng/ml, interquartile range (IR) 15.4-27.6 ng/ml, n = 107) compared to those without (25.0 ng/ml, IR 18.5-31.6 ng/ml, n = 294) (p = 0.009). Patients with aCHF had lower TGF-beta 1 levels (median 22.0 ng/ml, IR 15.6-27.1 ng/ml, n = 122) than those without (median 24.9 ng/ml, IR 18.1-31.9 ng/ml, n = 279) (p = 0.0005). In logistic regression models TGF-beta 1 was still associated with AF (odds ratio (OR) 3.00, 95% CI 1.37-6.61, p = 0.0001) and aCHF (OR 3.98, 95% CI 1.55-10.19, p = 0.004). TGF-beta 1 inversely correlated with left atrial diameter (r = -0.30, p = 0.007) and NT-proBNP (r = -0.14, p = 0.007). CONCLUSIONS Low serum levels of TGF-beta 1 are associated with AF and aCHF. This decrease may result from a higher consumption of TGF-beta 1 within the impaired myocardium or antifibrotic functions of natriuretic peptides.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Acute kidney injury (AKI) continues to contribute significantly to morbidity and mortality in the ICU setting, especially when associated with distant organ dysfunction. There is increasing evidence that AKI directly contributes to organ dysfunction in lung, brain, liver, heart and other organs. This review will examine our current understanding of the deleterious organ crosstalk in the critically ill, which can provide a framework for developing novel therapeutics. RECENT FINDINGS The majority of studies correlating AKI with distant organ dysfunction have demonstrated the pathophysiological importance of proinflammatory and proapoptotic pathways as well as oxidative stress and reactive oxygen species (ROS) production. Leukocyte activation and infiltration, changes in levels of soluble factors such as cytokines and chemokines, and regulation of cell death in extra-renal organs are potentially important mechanisms by which AKI modulates multiorgan dysfunction. SUMMARY There is increasing knowledge of AKI and deleterious interorgan crosstalk that arises, at least in part, due to the imbalance of immune, inflammatory, and soluble mediator metabolism that attends severe insults to the kidney. Further studies can build on these new mechanistic observations to develop strategies to improve outcomes in the critically ill patient.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
6
|
Freire G, Ocampo C, Ilbawi N, Griffin AJ, Gupta M. Overt expression of AP-1 reduces alpha myosin heavy chain expression and contributes to heart failure from chronic volume overload. J Mol Cell Cardiol 2007; 43:465-78. [PMID: 17720185 DOI: 10.1016/j.yjmcc.2007.07.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/26/2007] [Accepted: 07/11/2007] [Indexed: 11/22/2022]
Abstract
Reduced expression of alpha-MHC plays a significant role in cardiac contractile dysfunction from hemodynamic overload. Previously, Pur proteins and YY1 have been shown to play a role in alpha-MHC repression during heart failure induced by pressure overload and by spontaneous hypertension, respectively. This was not observed in volume-overload-induced heart failure, suggesting additional regulatory mechanisms for alpha-MHC repression. The present study was performed to identify volume overload responsive transcription factors involved in alpha-MHC gene regulation. DNA binding activity of several transcription factors was evaluated in a functionally characterized rat model of heart failure induced by aorto-caval shunt. After 10 weeks of shunt, severe LV dilatation and reduced LV function were accompanied by increased expression of ANF and beta-MHC, and decreased expression of alpha-MHC. This was associated with dramatic (10-fold) activation of AP-1 together with increased expression of c-fos and c-jun. AP-1 activation was not observed following 4 weeks of shunt when cardiac function was preserved. In cultured cardiomyocytes, induction of AP-1 by PMA attenuated alpha-MHC mRNA by 60%. Transient transfection assays mapped PMA responsive sequence to -582 to -588 bp of alpha-MHC promoter. Deletion or mutation of these nucleotides had minimal effect on basal promoter activity but played a dominant role in PMA-mediated repression of alpha-MHC promoter activity. Over-expression of c-fos and c-jun in cardiomyocytes inhibited alpha-MHC promoter activity in a concentration dependent manner. Data suggest a repressive role of AP-1 in alpha-MHC expression and its possible involvement in the transition from compensatory hypertrophy to heart failure in chronic volume overload.
Collapse
Affiliation(s)
- Grace Freire
- The Heart Institute for Children, Advocate Hope Children's Hospital, Oak Lawn, IL, USA
| | | | | | | | | |
Collapse
|
7
|
Hamm EE, Voth DE, Ballard JD. Identification of Clostridium difficile toxin B cardiotoxicity using a zebrafish embryo model of intoxication. Proc Natl Acad Sci U S A 2006; 103:14176-81. [PMID: 16966605 PMCID: PMC1599930 DOI: 10.1073/pnas.0604725103] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Clostridium difficile toxin B (TcdB) has been studied extensively by using cell-free systems and tissue culture, but, like many bacterial toxins, the in vivo targets of TcdB are unknown and have been difficult to elucidate with traditional animal models. In the current study, the transparent Danio rerio (zebrafish) embryo was used as a model for imaging of in vivo TcdB localization and organ-specific damage in real time. At 24 h after treatment, TcdB was found to localize at the pericardial region, and zebrafish exhibited the first signs of cardiovascular damage, including a 90% reduction in systemic blood flow and a 20% reduction in heart rate. Within 72 h of exposure to TcdB, the ventricle chamber of the heart became deformed and was unable to contract or pump blood, and the fish exhibited extensive pericardial edema. In line with the observed defects in ventricle contraction, TcdB was found to directly disrupt coordinated contractility and rhythmicity in primary cardiomyocytes. Furthermore, using a caspase-3 inhibitor, we were able to block TcdB-related cardiovascular damage and prevent zebrafish death. These findings present an insight into the in vivo targets of TcdB, as well as demonstrate the strength of the zebrafish embryo as a tractable model for identification of in vivo targets of bacterial toxins and evaluation of novel candidate therapeutics.
Collapse
Affiliation(s)
- Elaine E. Hamm
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Daniel E. Voth
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
8
|
Abstract
Acute renal failure is a frequent clinical problem with an increasing incidence, an unacceptably high mortality rate that has not improved in more than 40 years, and no specific treatment, yet renal failure is not the usual cause of death. The role of inflammation has been documented in both acute renal injury and cardiac dysfunction. Several investigators have shown that congestive heart failure is associated with increased mortality in patients with acute renal failure. This article reviews some of the cardiac and other distant organ effects of acute renal injury that may be important in the morbidity and mortality observed clinically. Cardiac changes after experimental renal ischemia include cytokine induction, leukocyte infiltration, cell death by apoptosis, and impaired function. I propose that the extrarenal effects of kidney injury must be considered in designing therapies. Acute renal failure has systemic consequences and must be thought of as more than a kidney disease.
Collapse
Affiliation(s)
- K J Kelly
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
9
|
Brunton LL. A positive feedback loop contributes to the deleterious effects of angiotensin. Proc Natl Acad Sci U S A 2005; 102:14483-4. [PMID: 16203975 PMCID: PMC1253591 DOI: 10.1073/pnas.0507070102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Laurence L Brunton
- Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, CA 92093-0636, USA.
| |
Collapse
|
10
|
Reigle J. Ask the Experts. Crit Care Nurse 2004. [DOI: 10.4037/ccn2004.24.6.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Juanita Reigle
- Juanita Reigle is a nurse practitioner in the Heart Failure and Cardiac Transplantation Program at the University of Virginia Health Sciences Center, Charlottesville, Va
| |
Collapse
|
11
|
Diedrichs H, Chi M, Boelck B, Mehlhorn U, Mehlhorm U, Schwinger RHG. Increased regulatory activity of the calcineurin/NFAT pathway in human heart failure. Eur J Heart Fail 2004; 6:3-9. [PMID: 15012912 DOI: 10.1016/j.ejheart.2003.07.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2003] [Revised: 07/01/2003] [Accepted: 07/08/2003] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Cardiac hypertrophy may initiate progression to a compromised cardiac function. While the clinical consequences of hypertrophy are well understood, only little is known about the underlying molecular pathways. As reported from animal experiments, the Ca(2+)-calmodulin activated phosphatase calcineurin and its downstream transcriptional effector NFAT have been implicated as transducers of the hypertrophic response. METHODS AND RESULTS To study whether the calcineurin pathway is activated in human heart failure, we investigated samples of human left ventricular myocardium from patients with dilated (idiopathic) cardiomyopathy (DCM, NYHA IV, n=8) in comparison with non-failing controls (NF, n=8). We not only analyzed the pathway by measuring the calcineurin activity, but also by determination of the protein expression of the calcineurin B subunit and additional key markers of the calcineurin signaling cascade (NFAT-3, GATA-4). Calcineurin enzymatic activity was increased by 80% in human dilated cardiomyopathy compared with non-failing human hearts (135.424+/-11.69 and 83.484+/-1.81 nmol Pi/min per microl). This was in line with increased protein expression of calcineurin B in DCM (71.18+9.11 vs. 46.41+/-11.23 densitometric units (DU)/microg protein). In order to verify the activated calcineurin pathway as described in animal models, we compared the protein expression of NFAT-3 in homogenates within nuclear extracts. In nuclear extracts the protein level of NFAT-3 was increased in dilated cardiomyopathy compared with non-failing myocardium (104.01+/-8.85 vs. 71.47+/-8.79 DU/microg protein). In contrast, in homogenates the expression of NFAT-3 was higher in the non-failing tissue indicating subcellular redistribution (19.56+/-3.36 vs. 25.84+/-3.16 DU/microg protein). The protein expression of GATA-4 was increased in DCM (43.14+/-2.89 vs. 29.87+/-2.17 DU/microg protein). CONCLUSIONS In human heart failure (DCM) the calcineurin signaling pathway is activated not only by an increased activity of calcineurin and expression of GATA-4, but also by the shift from dephosphorylated NFAT-3 to the nucleus indicating subcellular redistribution and regulatory activation.
Collapse
Affiliation(s)
- Holger Diedrichs
- Laboratory of Muscle Research and Molecular Cardiology, University of Cologne, Joseph-Stelzmann-Str. 9, 50924 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Brancaccio M, Fratta L, Notte A, Hirsch E, Poulet R, Guazzone S, De Acetis M, Vecchione C, Marino G, Altruda F, Silengo L, Tarone G, Lembo G. Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat Med 2003; 9:68-75. [PMID: 12496958 DOI: 10.1038/nm805] [Citation(s) in RCA: 225] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Accepted: 11/22/2002] [Indexed: 01/08/2023]
Abstract
Cardiac hypertrophy is an adaptive response to a variety of mechanical and hormonal stimuli, and represents an early event in the clinical course leading to heart failure. By gene inactivation, we demonstrate here a crucial role of melusin, a muscle-specific protein that interacts with the integrin beta1 cytoplasmic domain, in the hypertrophic response to mechanical overload. Melusin-null mice showed normal cardiac structure and function in physiological conditions, but when subjected to pressure overload--a condition that induces a hypertrophic response in wild-type controls--they developed an abnormal cardiac remodeling that evolved into dilated cardiomyopathy and contractile dysfunction. In contrast, the hypertrophic response was identical in wild-type and melusin-null mice after chronic administration of angiotensin II or phenylephrine at doses that do not increase blood pressure--that is, in the absence of cardiac biomechanical stress. Analysis of intracellular signaling events induced by pressure overload indicated that phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) was specifically blunted in melusin-null hearts. Thus, melusin prevents cardiac dilation during chronic pressure overload by specifically sensing mechanical stress.
Collapse
Affiliation(s)
- Mara Brancaccio
- Department of Genetics, Biology, and Biochemistry, Turin University, 10126 Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Petrich BG, Gong X, Lerner DL, Wang X, Brown JH, Saffitz JE, Wang Y. c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes. Circ Res 2002; 91:640-7. [PMID: 12364393 DOI: 10.1161/01.res.0000035854.11082.01] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of gap junctions and impaired intercellular communication are characteristic features of pathological remodeling in heart failure as a result of stress or injury, yet the underlying regulatory mechanism has not been identified. Here, we report that in cultured myocytes, rapid loss of the gap junction protein connexin43 (Cx43) occurs in conjunction with the activation of c-Jun N-terminal kinase (JNK), a stress-activated protein kinase, on stress stimulation. To investigate the specific role of JNK activation in the regulation of connexin in cardiomyocytes, an activated mutant of mitogen-activated protein kinase kinase 7 (mutant D), a JNK-specific upstream activator, was expressed in myocytes by adenovirus-mediated gene transfer. JNK activation in infected cardiomyocytes resulted in significant reduction of Cx43 expression at both mRNA and protein levels and impaired cell-cell communication. To evaluate the role of JNK in the regulation of Cx43 expression and gap junction structure in vivo, a Cre-LoxP-mediated gene-switch system was used to establish a transgenic animal model with targeted activation of JNK in ventricular myocardium. The transgenic hearts exhibited significant downregulation of Cx43 expression and loss of gap junctions in myocardium that may contribute to the cardiac dysfunction and premature death phenotype. Our report represents the first evidence, both in vitro and in vivo, implicating JNK as an important mediator of stress-induced Cx43 downregulation and impaired intercellular communication in the failing heart.
Collapse
Affiliation(s)
- Brian G Petrich
- Department of Cell Biology, The Scripps Research Institute, La Jolla, Calif, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Fortuño MA, Ravassa S, Fortuño A, Zalba G, Díez J. Cardiomyocyte apoptotic cell death in arterial hypertension: mechanisms and potential management. Hypertension 2001; 38:1406-12. [PMID: 11751726 DOI: 10.1161/hy1201.099615] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypertensive heart disease is a progressive condition in which the compensatory left ventricular hypertrophy that maintains cardiac output leads to myocardial remodeling, characterized by fibrosis, insufficient vascularization, and alterations in cardiomyocytes, including contractile disturbances, changes in gene expression, and decrease in the number of cells. Structural abnormalities in the myocardial wall accelerate the development of diastolic and systolic dysfunction, resulting in heart failure. Many observations point to the apoptotic cell death of cardiomyocytes as a relevant factor in the transition from compensatory hypertrophy to pump failure in experimental and human hypertension. Potential inducers of cardiomyocyte apoptosis in overloaded hearts include extrinsic factors, such as mechanical forces, neurohormonal activation, oxidative stress, hypoxia, and cytokines. Some lines of evidence indicate that angiotensin II and the overstretching of cardiomyocytes are originally involved in the triggering of apoptosis in hypertension, whereas other factors are being investigated. Furthermore, intracellular changes, such as downregulation of survival proteins or activation of death proteins, seem to play an important role. The assumption that the apoptosis of cardiomyocytes worsens hypertensive heart disease prognosis brings forth new approaches to avoid or slow the transition to pump failure. In this respect, experimental data indicate that currently used antihypertensive drugs interfere with cardiomyocyte apoptosis. Moreover, the knowledge of intracellular apoptotic processes in cardiomyocytes provides novel therapeutic strategies to be added to the multimodal approach in the prevention of heart failure.
Collapse
Affiliation(s)
- M A Fortuño
- Division of Cardiovascular Pathophysiology, School of Medicine, University of Navarra, Pamplona, Spain.
| | | | | | | | | |
Collapse
|
15
|
Laugwitz KL, Moretti A, Weig HJ, Gillitzer A, Pinkernell K, Ott T, Pragst I, Städele C, Seyfarth M, Schömig A, Ungerer M. Blocking caspase-activated apoptosis improves contractility in failing myocardium. Hum Gene Ther 2001; 12:2051-63. [PMID: 11747596 DOI: 10.1089/10430340152677403] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
Abstract
Cardiac myocyte apoptosis has been demonstrated in end-stage failing human hearts. The therapeutic utility of blocking apoptosis in congestive heart failure (CHF) has not been elucidated. This study investigated the role of caspase activation in cardiac contractility and sarcomere organization in the development of CHF. In a rabbit model of heart failure obtained by rapid ventricular pacing, we demonstrate, using in vivo transcoronary adenovirus-mediated gene delivery of the potent caspase inhibitor p35, that caspase activation is associated with a reduction in contractile force of failing myocytes by destroying sarcomeric structure. In this animal model gene transfer of p35 prevented the rise in caspase 3 activity and DNA-histone formation. Genetically manipulated hearts expressing p35 had a significant improvement in left ventricular pressure rise (+dp/dt), decreased end-diastolic chamber pressure (LVEDP), and the development of heart failure was delayed. To better understand this benefit, we examined the effects of caspase 3 on cardiomyocyte dysfunction in vitro. Microinjection of activated caspase 3 into the cytoplasm of intact myocytes induced sarcomeric disorganization and reduced contractility of the cells. These results demonstrate a direct impact of caspases on cardiac function and may lead to novel therapeutic strategies via antiapoptotic regimens.
Collapse
Affiliation(s)
- K L Laugwitz
- Medizinische Klinik and Deutsches Herzzentrum München, 81675 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Schwartzbauer G, Robbins J. The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival. J Biol Chem 2001; 276:35786-93. [PMID: 11448956 DOI: 10.1074/jbc.m102479200] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Cardiac hypertrophy is a complex process involving the coordinated actions of many genes. In a high throughput screen designed to identify transcripts that are actively translated during cardiac hypertrophy, we identified a number of genes with established links to hypertrophy, including those coding for Sp3, c-Jun, annexin II, cathepsin B, and HB-EGF, thus showing the general utility of the screen. Focusing on a candidate transcript that has not been previously linked to hypertrophy, we found that protein levels of the tumor suppressor PTEN (phosphatase and tensin homologue on chromosome ten) were increased in the absence of increased messenger RNA levels. Increased PTEN expression by recombinant adenovirus in cultured neonatal rat primary cardiomyocytes caused cardiomyocyte apoptosis as evidenced by increased caspase-3 activity and cleaved poly(A)DP-ribose polymerase. Expression of PTEN was also able to block growth factor signaling through the phosphatidylinositol 3,4,5-triphosphate pathway. Surprisingly, expression of a catalytically inactive PTEN mutant led to cardiomyocyte hypertrophy, with increased protein synthesis, cell surface area, and atrial natriuretic factor expression. This hypertrophy was accompanied by an increase in Akt activity and improved cell viability in culture.
Collapse
Affiliation(s)
- G Schwartzbauer
- Department of Pediatrics, Division of Molecular Cardiovascular Biology, Children's Hospital Research Foundation, Cincinnati Ohio 45229-3039, USA
| | | |
Collapse
|
17
|
Abstract
OBJECTIVE To critically review the pathophysiology of chronic heart failure at the neurohormonal level, and discuss the effect of present and future therapeutic options on these neurohormones. DATA SOURCES A MEDLINE search (1986-November 2000) was used to identify important primary literature and reviews. Additional references were obtained from these articles. DATA SYNTHESIS Chronic heart failure is a common, progressive disorder with high morbidity and mortality. Progression is due in large part to several redundant neurohormonal responses. The neurohormones include angiotensin II, norepinephrine, aldosterone, endothelin-1, arginine vasopressin, and tumor necrosis factor. These responses are initially adaptive, but become maladaptive in the long term, impairing the function of the heart, vasculature, and kidneys. Counter-regulatory hormones, such as bradykinin and natriuretic peptides, are insufficient to offset the adverse effects of the other neurohormones. Most drugs used to treat chronic heart failure, such as angiotensin-converting enzyme inhibitors, beta-adrenergic antagonists, and spironolactone, achieve their benefits through altering the neurohormonal pathways. New agents that affect more or different neurohormones may soon be available. CONCLUSIONS Multiple agents are required for treatment of chronic heart failure, as no single agent can counteract all of the various adverse pathways. The appropriate prescription and use of such inherently complex regimens require significant physician and patient education.
Collapse
Affiliation(s)
- C M Terpening
- Department of Clinical Pharmacy, West Virginia University-Charleston Branch, 25304-1299, USA.
| |
Collapse
|
18
|
Díez J, López B, González A, Ardanaz N, Fortuño MA. [Genetics and molecular biology in cardiology (IV). Myocardial response to biomechanical stress]. Rev Esp Cardiol 2001; 54:507-15. [PMID: 11282056 DOI: 10.1016/s0300-8932(01)76339-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biomechanical stress of the myocardium is the situation resulting from hypoxia, hypertension, and other forms of myocardial injury, that invariably lead to increased demands for cardiac work and/or loss of functional myocardium. As a consequence of biomechanical stress a number of responses develop involving all the myocardial cells, namely cardiomyocytes. As a result some myocardial phenotypic changes develop that are initially compensatory (i.e., hypertrophy) but which may mediate the eventual decline in myocardial function that occurs with the transition from hypertrophy to failure in conditions of persistent stress (i.e., apoptosis and fibrosis). This review focuses on the steps involved in the response of the myocardium to biomechanical stress and highlights the most recent developments in the molecular mechanisms involved in the development of heart failure.
Collapse
Affiliation(s)
- J Díez
- epartamento de Cardiología y Cirugía Cardiovascular, Clínica Universitaria, Pamplona.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Sustained increase in arterial pressure causes left ventricular hypertrophy and adversely affects all myocardial compartments: myocytes, interstitium, and coronary vasculature. Ventricular hypertrophy significantly increases the risk for cardiovascular morbidity and mortality in hypertensive disease. Impairments in coronary circulation and ventricular fibrosis, which are an essential part of hypertensive disease, contribute to that increased risk. This report discusses the mechanisms of hypertension-induced myocardial collagen accumulation and impairments in coronary hemodynamics. Particular attention is given to the interaction of hypertension and aging because aging aggravates hypertensive changes and the incidence of hypertension increases with aging. The effect of therapy on hypertension-induced ventricular fibrosis and impairment in coronary hemodynamics and the risk associated with these changes are also discussed.
Collapse
Affiliation(s)
- D Susic
- Alton Ochsner Medical Foundation, 1516 Jefferson Highway, New Orleans, LA 70121, USA
| | | |
Collapse
|