1
|
Leung WL, Casillas-Espinosa P, Sharma P, Perucca P, Powell K, O'Brien TJ, Semple BD. An animal model of genetic predisposition to develop acquired epileptogenesis: The FAST and SLOW rats. Epilepsia 2019; 60:2023-2036. [PMID: 31468516 DOI: 10.1111/epi.16329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022]
Abstract
Epidemiological data and gene association studies suggest a genetic predisposition to developing epilepsy after an acquired brain insult, such as traumatic brain injury. An improved understanding of genetic determinants of vulnerability is imperative for early disease diagnosis and prognosis prediction, with flow-on benefits for the development of targeted antiepileptogenic treatments as well as optimal clinical trial design. In the laboratory, one approach to investigate why some individuals are more vulnerable to acquired epilepsy than others is to examine unique rodent models exhibiting either vulnerability or resistance to epileptogenesis. This review focuses on the most well-characterized of these models, the FAST (seizure-prone) and SLOW (seizure-resistant) rat strains, which were derived by selective breeding for differential amygdala electrical kindling rates. We describe how these strains differ in their seizure profiles, neuroanatomy, and neurobehavioral phenotypes, both at baseline and after a brain insult, with this knowledge proving fruitful to identify common pathological abnormalities associated with seizure susceptibility and psychiatric comorbidities. It is important to note that accruing data on strain differences in multiple biological processes provides insight into why some individuals may be more vulnerable to epileptogenesis, although future studies are evidently needed to identify the precise molecular and genetic risk factors. Together, the FAST and SLOW rat strains, and other similar experimental models, are invaluable neurobiological tools to investigate the effect of genetic background on acquired epilepsy risk, as well as the poorly understood relationship between epilepsy development and associated comorbidities.
Collapse
Affiliation(s)
- Wai Lam Leung
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic., Australia
| | - Pablo Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Vic., Australia
| | - Pragati Sharma
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Vic., Australia.,Department of Neurology, Alfred Health, Melbourne, Vic., Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Vic., Australia.,Department of Neurology, Alfred Health, Melbourne, Vic., Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Vic., Australia
| | - Kim Powell
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Vic., Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Vic., Australia.,Department of Neurology, Alfred Health, Melbourne, Vic., Australia.,Department of Neurology, Royal Melbourne Hospital, Parkville, Vic., Australia
| | - Bridgette D Semple
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
2
|
Curran MM, Sandman CA, Poggi Davis E, Glynn LM, Baram TZ. Abnormal dendritic maturation of developing cortical neurons exposed to corticotropin releasing hormone (CRH): Insights into effects of prenatal adversity? PLoS One 2017; 12:e0180311. [PMID: 28658297 PMCID: PMC5489219 DOI: 10.1371/journal.pone.0180311] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/13/2017] [Indexed: 01/17/2023] Open
Abstract
Corticotropin releasing hormone (CRH) produced by the hypothalamus initiates the hypothalamic-pituitary-adrenal (HPA) axis, which regulates the body's stress response. CRH levels typically are undetectable in human plasma, but during pregnancy the primate placenta synthesizes and releases large amounts of CRH into both maternal and fetal circulations. Notably, placental CRH synthesis increases in response to maternal stress signals. There is evidence that human fetal exposure to high concentrations of placental CRH is associated with behavioral consequences during infancy and into childhood, however the direct effects on of the peptide on the human brain are unknown. In this study, we used a rodent model to test the plausibility that CRH has direct effects on the developing cortex. Because chronic exposure to CRH reduces dendritic branching in hippocampal neurons, we tested the hypothesis that exposure to CRH would provoke impoverishment of dendritic trees in cortical neurons. This might be reflected in humans as cortical thinning. We grew developing cortical neurons in primary cultures in the presence of graded concentrations of CRH. We then employed Sholl analyses to measure dendritic branching and total dendritic length of treated cells. A seven-day exposure to increasing levels of CRH led to a significant, dose-dependent impoverishment of the branching of pyramidal-like cortical neurons. These results are consistent with the hypothesis that, rather than merely being a marker of prenatal stress, CRH directly decreases dendritic branching. Because dendrites comprise a large portion of cortical volume these findings might underlie reduced cortical thickness and could contribute to the behavioral consequences observed in children exposed to high levels of CRH in utero.
Collapse
Affiliation(s)
- Megan M. Curran
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, California, United States of America
| | - Curt A. Sandman
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America
| | - Elysia Poggi Davis
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, United States of America
- Department of Psychology, University of Denver, Denver, Colorado, United States of America
| | - Laura M. Glynn
- Department of Psychology, Chapman University, Orange, CA, United States of America
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California Irvine, Irvine, California, United States of America
- Department of Pediatrics, University of California Irvine, Irvine, California, United States of America
- Department of Neurology, University of California Irvine, Irvine, California, United States of America
| |
Collapse
|
3
|
Kouis P, Mikroulis A, Psarropoulou C. A single episode of juvenile status epilepticus reduces the threshold to adult seizures in a stimulus-specific way. Epilepsy Res 2014; 108:1564-71. [DOI: 10.1016/j.eplepsyres.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 11/29/2022]
|
4
|
Sandman CA, Davis EP. Neurobehavioral risk is associated with gestational exposure to stress hormones. Expert Rev Endocrinol Metab 2012; 7:445-459. [PMID: 23144647 PMCID: PMC3493169 DOI: 10.1586/eem.12.33] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The developmental origins of disease or fetal programming model predict that early exposures to threat or adverse conditions have lifelong consequences that result in harmful outcomes for health. The maternal endocrine 'fight or flight' system is a source of programming information for the human fetus to detect threats and adjust their developmental trajectory for survival. Fetal exposures to intrauterine conditions including elevated stress hormones increase the risk for a spectrum of health outcomes depending on the timing of exposure, the timetable of organogenesis and the developmental milestones assessed. Recent prospective studies, reviewed here, have documented the neurodevelopmental consequences of fetal exposures to the trajectory of stress hormones over the course of gestation. These studies have shown that fetal exposures to biological markers of adversity have significant and largely negative consequences for fetal, infant and child emotional and cognitive regulation and reduced volume in specific brain structures.
Collapse
Affiliation(s)
- Curt A Sandman
- Department of Psychiatry & Human Behavior, Women and Children’s Health and Well-Being Project, University of California, Irvine, Orange, CA, USA
| | - Elysia Poggi Davis
- Department of Psychiatry & Human Behavior, Women and Children’s Health and Well-Being Project, University of California, Irvine, Orange, CA, USA
- Department of Pediatrics, University of California, Irvine, CA, USA
| |
Collapse
|
5
|
Wu J, Ma DL, Ling EA, Tang FR. Corticotropin releasing factor (CRF) in the hippocampus of the mouse pilocarpine model of status epilepticus. Neurosci Lett 2012; 512:83-8. [PMID: 22326386 DOI: 10.1016/j.neulet.2012.01.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/20/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
Abstract
We investigated the cellular localization and progressive changes of corticotropin releasing factor (CRF) in the mouse hippocampus, during and after pilocarpine induced status epilepticus (PISE) and subsequent epileptogenesis. We found that CRF gene expression was up-regulated significantly at 2h during and 1d after PISE in comparison to control mice. Immunohistochemical analysis showed that the number of CRF and Fos immunoreactive cells was increased significantly in the strata oriens and pyramidale of CA1 area and in the stratum pyramidale of CA3 area at 2h during and 1d after PISE. CRF was induced in calbindin (CB) or calretinin (CR) immunoreactive interneurons in stratum oriens at 2h during PISE. It suggests that induced CRF may be related to the over excitation of hippocampal neurons and occurrence of status epilepticus. It may also cause excitoneurotoxicity and delayed loss of CA3 and CA1 pyramidal neurons, leading to the onset of epilepsy.
Collapse
Affiliation(s)
- Jing Wu
- Department of Biochemistry, Kunming Medical College, Kunming, PR China
| | | | | | | |
Collapse
|
6
|
Sandman CA, Davis EP, Buss C, Glynn LM. Exposure to prenatal psychobiological stress exerts programming influences on the mother and her fetus. Neuroendocrinology 2012; 95:7-21. [PMID: 21494029 PMCID: PMC7068789 DOI: 10.1159/000327017] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/10/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND/AIMS Accumulating evidence from a relatively small number of prospective studies indicates that exposure to prenatal stress profoundly influences the developing human fetus with consequences that persist into childhood and very likely forever. METHODS Maternal/fetal dyads are assessed at ∼20, ∼25, ∼31 and ∼36 weeks of gestation. Infant assessments begin 24 h after delivery with the collection of cortisol and behavioral responses to the painful stress of the heel-stick procedure and measures of neonatal neuromuscular maturity. Infant cognitive, neuromotor development, stress and emotional regulation are evaluated at 3, 6 12 and 24 months of age. Maternal psychosocial stress and demographic information is collected in parallel with infant assessments. Child neurodevelopment is assessed with cognitive tests, measures of adjustment and brain imaging between 5 and 8 years of age. RESULTS Psychobiological markers of stress during pregnancy, especially early in gestation, result in delayed fetal maturation, disrupted emotional regulation and impaired cognitive performance during infancy and decreased brain volume in areas associated with learning and memory in 6- to 8-year-old children. We review findings from our projects that maternal endocrine alterations that accompany pregnancy and influence fetal/infant/child development are associated with decreased affective responses to stress, altered memory function and increased risk for postpartum depression. CONCLUSIONS Our findings indicate that the mother and her fetus both are influenced by exposure to psychosocial and biological stress. The findings that fetal and maternal programming occur in parallel may have important implications for long-term child development and mother/child interactions.
Collapse
Affiliation(s)
- Curt A Sandman
- Department of Psychiatry and Human Behavior, Women and Children's Health and Well-Being Project, Orange, CA 92868, USA.
| | | | | | | |
Collapse
|
7
|
Prenatal programming of human neurological function. INTERNATIONAL JOURNAL OF PEPTIDES 2011; 2011:837596. [PMID: 21760821 PMCID: PMC3133795 DOI: 10.1155/2011/837596] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Accepted: 02/10/2011] [Indexed: 12/13/2022]
Abstract
The human placenta expresses the genes for proopiomelanocortin and the major stress hormone, corticotropin-releasing hormone (CRH), profoundly altering the "fight or flight" stress system in mother and fetus. As pregnancy progresses, the levels of these stress hormones, including maternal cortisol, increase dramatically. These endocrine changes are important for fetal maturation, but if the levels are altered (e.g., in response to stress), they influence (program) the fetal nervous system with long-term consequences. The evidence indicates that fetal exposure to elevated levels of stress hormones (i) delays fetal nervous system maturation, (ii) restricts the neuromuscular development and alters the stress response of the neonate, (iii) impairs mental development and increases fearful behavior in the infant, and (iv) may result in diminished gray matter volume in children. The studies reviewed indicate that fetal exposure to stress peptides and hormones exerts profound programming influences on the nervous system and may increase the risk for emotional and cognitive impairment.
Collapse
|
8
|
Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci U S A 2010; 107:13123-8. [PMID: 20615973 DOI: 10.1073/pnas.1003825107] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stress affects the hippocampus, a brain region crucial for memory. In rodents, acute stress may reduce density of dendritic spines, the location of postsynaptic elements of excitatory synapses, and impair long-term potentiation and memory. Steroid stress hormones and neurotransmitters have been implicated in the underlying mechanisms, but the role of corticotropin-releasing hormone (CRH), a hypothalamic hormone also released during stress within hippocampus, has not been elucidated. In addition, the causal relationship of spine loss and memory defects after acute stress is unclear. We used transgenic mice that expressed YFP in hippocampal neurons and found that a 5-h stress resulted in profound loss of learning and memory. This deficit was associated with selective disruption of long-term potentiation and of dendritic spine integrity in commissural/associational pathways of hippocampal area CA3. The degree of memory deficit in individual mice correlated significantly with the reduced density of area CA3 apical dendritic spines in the same mice. Moreover, administration of the CRH receptor type 1 (CRFR(1)) blocker NBI 30775 directly into the brain prevented the stress-induced spine loss and restored the stress-impaired cognitive functions. We conclude that acute, hours-long stress impairs learning and memory via mechanisms that disrupt the integrity of hippocampal dendritic spines. In addition, establishing the contribution of hippocampal CRH-CRFR(1) signaling to these processes highlights the complexity of the orchestrated mechanisms by which stress impacts hippocampal structure and function.
Collapse
|
9
|
Friedman LK, Saghyan A, Peinado A, Keesey R. Age- and region-dependent patterns of Ca2+ accumulations following status epilepticus. Int J Dev Neurosci 2008; 26:779-90. [PMID: 18687397 DOI: 10.1016/j.ijdevneu.2008.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 01/16/2023] Open
Abstract
Elevated Ca(2+) concentrations have been implicated in cell death mechanisms following seizures, however, the age and brain region of intracellular Ca(2+) accumulations [Ca(2+)](i), may influence whether or not they are toxic. Therefore, we examined regional accumulations of (45)Ca(2+) by autoradiography from rats of several developmental stages (P14, P21, P30 and P60) at 5, 14, and 24h after status epilepticus. To determine whether the uptake was intracellular, Ca(2+) was also assessed in hippocampal slices with the dye indicator, Fura 2AM at P14. Control animals accumulated low homogeneous levels of (45)Ca(2+); however, highly specific and age-dependent patterns of (45)Ca(2+) uptake were observed at 5h. (45)Ca(2+) accumulations were predominant in dorsal hippocampal regions, CA1/CA2/CA3a, in P14 and P21 rats and in CA3a and CA3c neurons of P30 and P60 rats. Selective midline and amygdala nuclei were marked at P14 but not at P21 and limbic accumulations recurred with maturation that were extensive at P30 and even more so at P60. At 14 h, P14 and P21 rats had no persistent accumulations whereas P30 and P60 rats showed persistent uptake patterns within selective amygdala, thalamic and hypothalamic nuclei, and other limbic cortical regions that continued to differ at these ages. For example, piriform cortex accumulation was highest at P60. Fura 2AM imaging at P14 confirmed that Ca(2+) rises were intracellular and occurred in both vulnerable and invulnerable regions of the hippocampus, such as CA2 pyramidal and dentate granule cells. Silver impregnation showed predominant CA1 injury at P20 and P30 but CA3 injury at P60 whereas little or no injury was found in extrahippocampal structures at P14 and P20 but was modest at P30 and maximal at P60. Thus, at young ages there was an apparent dissociation between high (45)Ca(2+) accumulations and neurotoxicity whereas in adults a closer relationship was observed, particularly in the extrahippocampal structures.
Collapse
Affiliation(s)
- Linda K Friedman
- Department of Neuroscience, New York College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11581, United States.
| | | | | | | |
Collapse
|
10
|
Abstract
Knowledge of the processes by which epilepsy is generated (epileptogenesis) is incomplete and has been a topic of major research efforts. Animal models can inform us about these processes. We focus on the distinguishing features of epileptogenesis in the developing brain and model prolonged febrile seizures (FS) that are associated with human temporal lobe epilepsy. In the animal model of FS, epileptogenesis occurs in approximately 35% of rats. Unlike the majority of acquired epileptogeneses in adults, this process early in life (in the febrile seizures model as well as in several others) does not require "damage" (cell death). Rather, epileptogenesis early in life involves molecular mechanisms including seizure-evoked, long-lasting alterations of the expression of receptors and ion channels. Whereas transient changes in gene expression programs are common after early-life seizures, enduring effects, such as found after experimental FS, are associated with epileptogenesis. The ability of FS to generate long-lasting molecular changes and epilepsy suggests that mechanisms, including cytokine activation that are intrinsic to FS generation, may play a role also in the epileptogenic consequences of these seizures.
Collapse
Affiliation(s)
- Roland A Bender
- Department of Pediatrics and Anatomy, University of California at Irvine, Irvine, California 92697-4475, USA
| | | |
Collapse
|
11
|
Abstract
Laboratory models of prolonged seizures and status epilepticus in developing animals demonstrate age- and model-dependent propensity for brain injury. Even in models without overt brain injury, plasticity, which leads to epileptogenicity as well as to behavioral and cognitive effects, has been demonstrated. Brief, recurrent seizures in the neonatal period not only appear to exhibit plasticity that can be anatomically and physiologically meaningful but also seem to produce cognitive deficits. Translation of these findings into clinical practice is limited by the effects chronic therapy may have on brain development. There is little evidence that available treatments can effectively alter epileptogenesis. However, it is widely agreed that prolonged seizures and status epilepticus can carry negative consequences. Preventing epileptogenesis remains an important goal to modify the development of comorbidities, and it represents an area of research in need of much progress. For now, prevention of prolonged seizures with early intervention is important and is the most effective available option to minimize the potential short- and long-term adverse effects of prolonged seizures and optimize patient outcomes.
Collapse
Affiliation(s)
- Raman Sankar
- David Geffen School of Medicine, UCLA, Los Angeles, California, USA.
| | | |
Collapse
|
12
|
Marsh ED, Brooks-Kayal AR, Porter BE. Seizures and Antiepileptic Drugs: Does Exposure Alter Normal Brain Development? Epilepsia 2006; 47:1999-2010. [PMID: 17201696 DOI: 10.1111/j.1528-1167.2006.00894.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Seizures and antiepileptic drugs (AEDs) affect brain development and have long-term neurological consequences. The specific molecular and cellular changes, the precise timing of their influence during brain development, and the full extent of the long-term consequences of seizures and AEDs exposure have not been established. This review critically assesses both the basic and clinical science literature on the effects of seizures and AEDs on the developing brain and finds that evidence exists to support the hypothesis that both seizures and antiepileptic drugs influence a variety of biological process, at specific times during development, which alter long-term cognition and epilepsy susceptibility. More research, both clinical and experimental, is needed before changes in current clinical practice, based on the scientific data, can be recommended.
Collapse
Affiliation(s)
- Eric D Marsh
- Division of Child Neurology and Pediatric Regional Epilepsy Program, Children's Hospital of Philadelphia, and Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
13
|
Chen Y, Fenoglio KA, Dubé CM, Grigoriadis DE, Baram TZ. Cellular and molecular mechanisms of hippocampal activation by acute stress are age-dependent. Mol Psychiatry 2006; 11:992-1002. [PMID: 16801951 PMCID: PMC2927976 DOI: 10.1038/sj.mp.4001863] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effects of stress, including their putative contribution to pathological psychiatric conditions, are crucially governed by the age at which the stress takes place. However, the cellular and molecular foundations for the impact of stress on neuronal function, and their change with age, are unknown. For example, it is not known whether 'psychological' stress signals are perceived by similar neuronal populations at different ages, and whether they activate similar or age-specific signaling pathways that might then mediate the spectrum of stress-evoked neuronal changes. We employed restraint and restraint/noise stress to address these issues in juvenile (postnatal day 18, [P18]) and adult rats, and used phosphorylation of the transcription factor CREB (pCREB) and induction of c-fos as markers of hippocampal neuronal responses. Stress-activated neuronal populations were identified both anatomically and biochemically, and selective blockers of the stress-activated hippocampal peptide, corticotropin-releasing hormone (CRH) were used to probe the role of this molecule in stress-induced hippocampal cell activation. Stress evoked strikingly different neuronal response patterns in immature vs adult hippocampus. Expression of pCREB appeared within minutes in hippocampal CA3 pyramidal cells of P18 rats, followed by delayed induction of Fos protein in the same cell population. In contrast, basal pCREB levels were high in adult hippocampus and were not altered at 10-120 min by stress. Whereas Fos induction was elicited by stress in the adult, it was essentially confined to area CA1, with little induction in CA3. At both age groups, central pretreatment with either a nonselective blocker of CRH receptors (alpha-helical CRH [9-41]) or the CRF1-selective antagonist, NBI 30775, abolished stress-evoked neuronal activation. In conclusion, hippocampal neuronal responses to psychological stress are generally more rapid and robust in juvenile rats, compared to fully mature adults, and at both ages, CRH plays a key role in this process. Enhanced hippocampal response to stress during development, and particularly the activation of the transcription factor CREB, may contribute to the enduring effects of stress during this period on hippocampal function.
Collapse
Affiliation(s)
- Y Chen
- Department of Pediatrics, University of California at Irvine, Irvine, CA, USA
| | - KA Fenoglio
- Department of Anatomy/Neurobiology, University of California at Irvine, Irvine, CA, USA
| | - CM Dubé
- Department of Pediatrics, University of California at Irvine, Irvine, CA, USA
| | | | - TZ Baram
- Department of Pediatrics, University of California at Irvine, Irvine, CA, USA
- Department of Anatomy/Neurobiology, University of California at Irvine, Irvine, CA, USA
| |
Collapse
|
14
|
Fenoglio KA, Brunson KL, Baram TZ. Hippocampal neuroplasticity induced by early-life stress: functional and molecular aspects. Front Neuroendocrinol 2006; 27:180-92. [PMID: 16603235 PMCID: PMC2937188 DOI: 10.1016/j.yfrne.2006.02.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2005] [Revised: 02/11/2006] [Accepted: 02/13/2006] [Indexed: 12/16/2022]
Abstract
Whereas genetic factors contribute crucially to brain function, early-life events, including stress, exert long-lasting influence on neuronal function. Here, we focus on the hippocampus as the target of these early-life events because of its crucial role in learning and memory. Using a novel immature-rodent model, we describe the deleterious consequences of chronic early-life 'psychological' stress on hippocampus-dependent cognitive tasks. We review the cellular mechanisms involved and discuss the roles of stress-mediating molecules, including corticotropin releasing hormone, in the process by which stress impacts the structure and function of hippocampal neurons.
Collapse
Affiliation(s)
- Kristina A. Fenoglio
- Department of Anatomy/Neurobiology, University of California at Irvine, Irvine, CA 92697-4475, USA
| | - Kristen L. Brunson
- Department of Anatomy/Neurobiology, University of California at Irvine, Irvine, CA 92697-4475, USA
| | - Tallie Z. Baram
- Department of Anatomy/Neurobiology, University of California at Irvine, Irvine, CA 92697-4475, USA
- Department of Pediatrics, University of California at Irvine, Irvine, CA 92697-4475, USA
- Corresponding author. Fax: +1 949 824 1106. (T.Z. Baram)
| |
Collapse
|
15
|
Liu H, Friedman LK, Kaur J. Perinatal seizures preferentially protect CA1 neurons from seizure-induced damage in prepubescent rats. Seizure 2005; 15:1-16. [PMID: 16309925 DOI: 10.1016/j.seizure.2005.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 06/08/2005] [Accepted: 09/28/2005] [Indexed: 01/15/2023] Open
Abstract
Neonatal seizures may increase neuronal vulnerability later in life. Therefore, status epilepticus was induced with kainate (KA) during the first and second postnatal (P) weeks to determine whether early seizures shift the window of neuronal vulnerability to a younger age. KA was injected (i.p.) once (1x KA) on P13, P20 or P30 or three times (3 x KA), once on P6 and P9, and then either on P13, P20 or P30. After 1x KA, onset to behavioral seizures increased with age. Electroencephalography (EEG) showed interictal events appeared with maturation. After 3 x KA, spike number, frequency, spike amplitude, and high-frequency synchronous events and duration were increased at P13 when compared to age-matched controls. In contrast, P20 and P30 rats had decreases in EEG parameters relative to P20 and P30 rats with 1x KA despite that these animals had the same history of perinatal seizures on P6 and P9. In P13 rats with 1x KA, silver impregnation, hematoxylin/eosin and TUNEL methods showed no significant hippocampal injury and damage was minimal with 3 x KA. In contrast, P20 and P30 rats with 1x KA had robust eosinophilic or TUNEL positive labeling and preferential accumulation of silver ions within inner layer CA1 neurons. After 3 x KA, the CA1 but not CA3 of P20 and P30 rats was preferentially protected following 3 or 6 days. Although paradoxical changes occur in the EEG with maturation, the results indicate that early perinatal seizures do not significantly shift the window of hippocampal vulnerability to an earlier age but induce a tolerance that leads to long-term neuroprotection that differentially affects endogenous properties of CA1 versus CA3 neurons.
Collapse
Affiliation(s)
- H Liu
- NJ Neuroscience Institute, Seton Hall University, South Orange, NJ 07079, USA
| | | | | |
Collapse
|
16
|
Wang W, Murphy B, Dow KE, David Andrew R, Fraser DD. Systemic adrenocorticotropic hormone administration down-regulates the expression of corticotropin-releasing hormone (CRH) and CRH-binding protein in infant rat hippocampus. Pediatr Res 2004; 55:604-10. [PMID: 14711894 DOI: 10.1203/01.pdr.0000112105.33521.dc] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Systemic adrenocorticotropic hormone (ACTH) administration is a first-line therapy for the treatment of infantile spasms, an age-specific seizure disorder of infancy. It is proposed that exogenous ACTH acts via negative feedback to suppress the synthesis of corticotropin-releasing hormone (CRH), a possible endogenous convulsant in infant brain tissue. The aim of this study was to determine whether systemic ACTH treatment in infant rats down-regulates the hippocampal CRH system, including CRH, CRH-binding protein (CRH-BP), and CRH receptors (CRH-R1 and CRH-R2). Daily i.p. injection of ACTH for 7 consecutive days (postnatal days 3-9) elevated serum corticosterone levels 20-fold measured on postnatal day 10, indicating systemic absorption and circulation of the ACTH. Semiquantitative reverse transcriptase-PCR demonstrated that both CRH and CRH-BP mRNA obtained from the hippocampi of ACTH-injected infant rats was significantly depressed relative to saline-injected animals. Comparable reductions in both CRH and CRH-BP synthesis were further demonstrated with radioimmunoassay. In contrast, neither CRH-R1 nor CRH-R2 mRNA was altered by ACTH treatment, relative to saline-injected rats. This latter finding was confirmed electrophysiologically by measuring the enhancement of hippocampal population spikes by exogenous CRH, also showing no differences between ACTH- and saline-injected rats. The results of this study support the proposal that systemic ACTH treatment down-regulates CRH expression in infant brain, perhaps contributing to the therapeutic efficacy observed during treatment of infantile spasms.
Collapse
Affiliation(s)
- Wei Wang
- Department of Paediatrics, Kingston General Hospital, Queen's University, Ontario, Canada
| | | | | | | | | |
Collapse
|
17
|
Baram TZ. Long-term neuroplasticity and functional consequences of single versus recurrent early-life seizures. Ann Neurol 2004; 54:701-5. [PMID: 14681879 PMCID: PMC2981791 DOI: 10.1002/ana.10833] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
An SJ, Park SK, Hwang IK, Kim HS, Seo MO, Suh JG, Oh YS, Bae JC, Won MH, Kang TC. Altered corticotropin-releasing factor (CRF) receptor immunoreactivity in the gerbil hippocampal complex following spontaneous seizure. Neurochem Int 2003; 43:39-45. [PMID: 12605881 DOI: 10.1016/s0197-0186(02)00195-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Considerable attention has been focused on the role of corticotropin-releasing factor (CRF) in neuropsychiatric disorders and neurodegenerative diseases including epilepsy. Therefore, in the present study, we investigated the temporal and spatial alteration of CRF receptor in the gerbil hippocampal complex in order to characterize the possible changes and associations with different sequelae of spontaneous seizure in these animals. Thirty minutes postictal, a decline in CRF receptor immunoreactivity was observed in the granule cells and hilar neurons. In the subiculum, CRF receptor immunoreactivity was also significantly decreased at this time point. Twenty-four hours after seizure onset, the immunoreactivity in these regions recovered to the pre-seizure level. Moreover, 30 min after seizure in the entorhinal cortex, the density of CRF receptor immunoreactivity began to decrease, particularly in the layers II and III, compared to pre-seizure group. Nevertheless, 24h after seizure onset, CRF receptor immunodensity had recovered to its seizure-sensitive (SS) level. These results suggest that altered CRF receptor expression in the hippocampal complex may affect tissue excitability and seizure activity in SS gerbils.
Collapse
Affiliation(s)
- Sung-Jin An
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, 200-702, Kangwon-Do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Raol YSH, Budreck EC, Brooks-Kayal AR. Epilepsy after early-life seizures can be independent of hippocampal injury. Ann Neurol 2003; 53:503-11. [PMID: 12666118 DOI: 10.1002/ana.10490] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prolonged early-life seizures are considered potential risk factors for later epilepsy development, but mediators of this process remain largely unknown. Seizure-induced structural damage in hippocampus, including cell loss and mossy fiber sprouting, is thought to contribute to the hyperexcitability characterizing epilepsy, but a causative role has not been established. To determine whether early-life insults that lead to epilepsy result in similar structural changes, we subjected rat pups to lithium-pilocarpine-induced status epilepticus during postnatal development (day 20) and examined them as adults for the occurrence of spontaneous seizures and alterations in hippocampal morphology. Sixty-seven percent of rats developed spontaneous seizures after status epilepticus, yet only one third of these epileptic animals exhibited visible hippocampal cell loss or mossy fiber sprouting in dentate gyrus. Most epileptic rats had no apparent structural alterations in the hippocampus detectable using standard light microscopy methods (profile counts and Timm's staining). These results suggest that hippocampal cell loss and mossy fiber sprouting can occur after early-life status epilepticus but may not be necessary prerequisites for epileptogenesis in the developing brain.
Collapse
Affiliation(s)
- Yogendra Sinh H Raol
- Division of Neurology, Pediatric Regional Epilepsy Program, Children's Hospital of Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
20
|
Brunson KL, Chen Y, Avishai-Eliner S, Baram TZ. Stress and the developing hippocampus: a double-edged sword? Mol Neurobiol 2003; 27:121-36. [PMID: 12777683 PMCID: PMC3084035 DOI: 10.1385/mn:27:2:121] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mechanisms that regulate neuronal function are a sum of genetically determined programs and experience. The effect of experience on neuronal function is particularly important during development, because early-life positive and adverse experience (stress) may influence the still "plastic" nervous system long-term. Specifically, for hippocampal-mediated learning and memory processes, acute stress may enhance synaptic efficacy and overall learning ability, and conversely, chronic or severe stress has been shown to be detrimental. The mechanisms that enable stress to act as this "double-edged sword" are unclear. Here, we discuss the molecular mediators of the stress response in the hippocampus with an emphasis on novel findings regarding the role of the neuropeptide known as corticotropin-releasing hormone (CRH). We highlight the physiological and pathological roles of this peptide in the developing hippocampus, and their relevance to the long-term effects of early-life experience on cognitive function during adulthood.
Collapse
Affiliation(s)
- Kristen L Brunson
- Department of Anatomy and Neurobiology, University of CA at Irvine, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
21
|
Bender RA, Dubé C, Gonzalez-Vega R, Mina EW, Baram TZ. Mossy fiber plasticity and enhanced hippocampal excitability, without hippocampal cell loss or altered neurogenesis, in an animal model of prolonged febrile seizures. Hippocampus 2003; 13:399-412. [PMID: 12722980 PMCID: PMC2927853 DOI: 10.1002/hipo.10089] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Seizures induced by fever (febrile seizures) are the most frequent seizures affecting infants and children; however, their impact on the developing hippocampal formation is not completely understood. Such understanding is highly important because of the potential relationship of prolonged febrile seizures to temporal lobe epilepsy. Using an immature rat model, we have previously demonstrated that prolonged experimental febrile seizures render the hippocampus hyperexcitable throughout life. Here we examined whether (1) neuronal loss, (2) altered neurogenesis, or (3) mossy fiber sprouting, all implicated in epileptogenesis in both animal models and humans, were involved in the generation of a pro-epileptic, hyperexcitable hippocampus by these seizures. The results demonstrated that prolonged experimental febrile seizures did not result in appreciable loss of any vulnerable hippocampal cell population, though causing strikingly enhanced sensitivity to hippocampal excitants later in life. In addition, experimental febrile seizures on postnatal day 10 did not enhance proliferation of granule cells, whereas seizures generated by kainic acid during the same developmental age increased neurogenesis in the immature hippocampus. However, prolonged febrile seizures resulted in long-term axonal reorganization in the immature hippocampal formation: Mossy fiber densities in granule cell- and molecular layers were significantly increased by 3 months (but not 10 days) after the seizures. Thus, the data indicate that prolonged febrile seizures influence connectivity of the immature hippocampus long-term, and this process requires neither significant neuronal loss nor altered neurogenesis. In addition, the temporal course of the augmented mossy fiber invasion of the granule cell and molecular layers suggests that it is a consequence, rather than the cause, of the hyperexcitable hippocampal network resulting from these seizures.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cell Death/drug effects
- Cell Death/physiology
- Cell Division/drug effects
- Cell Division/physiology
- Dentate Gyrus/drug effects
- Dentate Gyrus/pathology
- Dentate Gyrus/physiopathology
- Disease Models, Animal
- Epilepsy, Temporal Lobe/etiology
- Epilepsy, Temporal Lobe/pathology
- Epilepsy, Temporal Lobe/physiopathology
- Hippocampus/drug effects
- Hippocampus/pathology
- Hippocampus/physiopathology
- Kainic Acid/pharmacology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Mossy Fibers, Hippocampal/drug effects
- Mossy Fibers, Hippocampal/pathology
- Mossy Fibers, Hippocampal/physiopathology
- Neural Pathways/drug effects
- Neural Pathways/pathology
- Neural Pathways/physiopathology
- Neuronal Plasticity/drug effects
- Neuronal Plasticity/physiology
- Rats
- Rats, Sprague-Dawley
- Seizures, Febrile/complications
- Seizures, Febrile/pathology
- Seizures, Febrile/physiopathology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- Roland A. Bender
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine California
- Department of Pediatrics, University of California at Irvine, Irvine California
| | - Celine Dubé
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine California
| | - Rebeca Gonzalez-Vega
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine California
| | - Erene W. Mina
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine California
| | - Tallie Z. Baram
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine California
- Department of Pediatrics, University of California at Irvine, Irvine California
- Department of Neurology, University of California at Irvine, Irvine California
- Correspondence to: Tallie Z. Baram, Departments of Anatomy and Neurobiology and Pediatrics, Medical Science I, 4475, University of California at Irvine, Irvine, CA 92697-4475.
| |
Collapse
|
22
|
Park SK, Choi DI, Hwang IK, An SJ, Suh JG, Oh YS, Won MH, Kang TC. The differential expression of corticotropin releasing factor and its binding protein in the gerbil hippocampal complex following seizure. Neurochem Int 2003; 42:57-65. [PMID: 12441168 DOI: 10.1016/s0197-0186(02)00060-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Considerable attention has been focused on the role of corticotropin releasing factor (CRF) as well as CRF-binding protein (CRF-BP) in neuropsychiatric disorders and neurodegenerative diseases including epilepsy. Therefore, in the present study, we investigated the temporal and spatial alteration of CRF and CRF-BP in the gerbil hippocampal complex in order to characterize the possible changes and associations with different sequelae of spontaneous seizure in these animals. CRF immunoreactivity was shown in the interneurons of the hippocampal complex at 30 min following seizure. Additionally, alteration of CRF-BP immunoreactivity was restricted to the entorhinal cortex after seizure. These results indicate some factors for consideration. First, in the gerbil hippocampal complex, the delayed increase of CRF immunoreactivity, in spite of its excitatory function, may attenuate seizure activity, but may not do so in epileptogenesis. Second, in contrast to the hippocampal complex, the increase in CRF-BP immunoreactivity in the entorhinal cortex following seizure may participate in feedback inhibitory modulation.
Collapse
Affiliation(s)
- Seung-Kook Park
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Stafstrom CE, Holmes GL. Infantile spasms: criteria for an animal model. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2002; 49:391-411. [PMID: 12040904 DOI: 10.1016/s0074-7742(02)49023-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infantile spasms is an epilepsy syndrome with several distinctive features, including age specificity during infancy, characteristic semiology (epileptic spasms), specific electroencephalographic patterns (interictal hypsarrhythmia and ictal voltage suppression), and responsiveness to the adrenocorticotropic hormone (ACTH). There is no adequate animal model of infantile spasms, perhaps due to these clinically unique features, that is specific for the developing human brain. An informative animal model would provide insights into the pathophysiology of this syndrome and form the basis for the development of innovative therapies. This chapter considers criteria for an "ideal" animal model of infantile spasms, as well as "minimal" criteria that we consider essential to yield useful information. Two animal models of infantile spasms have been described in rodents: seizures induced by corticotropin-releasing factor and N-methyl-D-aspartic acid. Neither of these models conforms exactly to the human analog, but each possesses intriguing similarities that provide testable hypotheses for future investigations.
Collapse
Affiliation(s)
- Carl E Stafstrom
- Departments of Neurology and Pediatrics, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | |
Collapse
|
24
|
Sankar R, Shin D, Liu H, Wasterlain C, Mazarati A. Epileptogenesis during development: injury, circuit recruitment, and plasticity. Epilepsia 2002; 43 Suppl 5:47-53. [PMID: 12121295 DOI: 10.1046/j.1528-1157.43.s.5.11.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PURPOSE To use animal models of variable seizure induction in rats at different developmental stages to determine contributing factors for spontaneous seizures resulting from status epilepticus (SE) early in life. METHODS Two models of SE with distinct modes of seizure induction, lithium-pilocarpine (LiPC) and perforant path stimulation (PPS), were used at different ages. Multiple methods of determining neurodegeneration during an acute period and plastic changes in those monitored during the chronic phase were used. RESULTS Different modes of seizure induction lead to varying types and extents of damage, dependent on the age of the animals at the time of insult. LiPC resulted in injury to animals as young as 2 weeks and became widespread in animals 3 weeks old, whereas widespread damage after PPS was not seen until P35. Rats at an age with widespread damage in response to seizures also showed extensive immediate-early gene activation and often developed spontaneous seizures and features of hippocampal plasticity seen in the epileptic brain. CONCLUSIONS SE early in life results in multiple consequences to the developing brain. These changes, coexisting in the nonepileptic brain, can overlap in a maladaptive combination to result in the diseased state of epilepsy. The consequence of early seizures in immature animals is a function of both the developmental stage and the method of seizure induction.
Collapse
Affiliation(s)
- Raman Sankar
- Department of Pediatrics, 22-474 MDCC, UCLA School of Medicine, Los Angeles, CA 90095, USA.
| | | | | | | | | |
Collapse
|
25
|
Brunson KL, Grigoriadis DE, Lorang MT, Baram TZ. Corticotropin-releasing hormone (CRH) downregulates the function of its receptor (CRF1) and induces CRF1 expression in hippocampal and cortical regions of the immature rat brain. Exp Neurol 2002; 176:75-86. [PMID: 12093084 PMCID: PMC2930769 DOI: 10.1006/exnr.2002.7937] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to regulating the neuroendocrine stress response, corticotropin-releasing hormone (CRH) has been implicated in both normal and pathological behavioral and cognitive responses to stress. CRH-expressing cells and their target neurons possessing CRH receptors (CRF1 and CRF2) are distributed throughout the limbic system, but little is known about the regulation of limbic CRH receptor function and expression, including regulation by the peptide itself. Because CRH is released from limbic neuronal terminals during stress, this regulation might play a crucial role in the mechanisms by which stress contributes to human neuropsychiatric conditions such as depression or posttraumatic stress disorder. Therefore, these studies tested the hypothesis that CRH binding to CRF1 influenced the levels and mRNA expression of this receptor in stress-associated limbic regions of immature rat. Binding capacities and mRNA levels of both CRF1 and CRF2 were determined at several time points after central CRH administration. CRH downregulated CRF1 binding in frontal cortex significantly by 4 h. This transient reduction (no longer evident at 8 h) was associated with rapid increase of CRF1 mRNA expression, persisting for >8 h. Enhanced CRF1 expression-with a different time course-occurred also in hippocampal CA3, but not in CA1 or amygdala, CRF2 binding and mRNA levels were not altered by CRH administration. To address the mechanisms by which CRH regulated CRF1, the specific contributions of ligand-receptor interactions and of the CRH-induced neuronal stimulation were examined. Neuronal excitation without occupation of CRF1 induced by kainic acid, resulted in no change of CRF1 binding capacity, and in modest induction of CRF1 mRNA expression. Furthermore, blocking the neuroexcitant effects of CRH (using pentobarbital) abolished the alterations in CRF1 binding and expression. These results indicate that CRF1 regulation involves both occupancy of this receptor by its ligand, as well as "downstream" cellular activation and suggest that stress-induced perturbation of CRH-CRF1 signaling may contribute to abnormal neuronal communication after some stressful situations.
Collapse
Affiliation(s)
- Kristen L Brunson
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, California 92697, USA
| | | | | | | |
Collapse
|
26
|
Brunson KL, Eghbal-Ahmadi M, Baram TZ. How do the many etiologies of West syndrome lead to excitability and seizures? The corticotropin releasing hormone excess hypothesis. Brain Dev 2001; 23:533-8. [PMID: 11701250 PMCID: PMC3107538 DOI: 10.1016/s0387-7604(01)00312-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
West syndrome (WS) is associated with diverse etiological factors. This fact has suggested that there must be a 'final common pathway' for these etiologies, which operates on the immature brain to result in WS only at the maturational state present during infancy. Any theory for the pathogenesis of WS has to account for the unique features of this disorder. For example, how can a single entity have so many etiologies? Why does WS arise only in infancy, even when a known insult had occurred prenatally, and why does it disappear? Why is WS associated with lasting cognitive dysfunction? And, importantly, why do these seizures--unlike most others--respond to treatment by a hormone, ACTH? The established hormonal role of ACTH in human physiology is to function in the neuroendocrine cascade of the responses to all stressful stimuli, including insults to the brain. As part of this function, ACTH is known to suppress the production of corticotropin releasing hormone (CRH), a peptide that is produced in response to diverse insults and stressors.The many etiologies of WS all lead to activation of the stress response, including increased production and secretion of the stress-neurohormone CRH. CRH has been shown, in infant animal models, to cause severe seizures and death of neurons in areas involved with learning and memory. These effects of CRH are restricted to the infancy period because the receptors for CRH, which mediate its action on neurons, are most abundant during this developmental period. ACTH administration is known to inhibit production and release of CRH via a negative feedback mechanism. Therefore, the efficacy of ACTH for WS may depend on its ability to decrease the levels of the seizure-promoting stress-neurohormone CRH.This CRH-excess theory for the pathophysiology of WS is consistent not only with the profile of ACTH effects, but also with the many different 'causes' of WS, with the abnormal ACTH levels in the cerebrospinal fluid of affected infants and with the spontaneous disappearance of the seizures. Furthermore, if CRH is responsible for the seizures, and CRH-mediated neuronal injury contributes to the worsened cognitive outcome of individuals with WS, then drugs which block the actions of CRH on its receptors may provide a better therapy for this disorder.
Collapse
Affiliation(s)
- Kristen L. Brunson
- Department of Pediatrics, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Neurology, University of California at Irvine, Irvine, CA, 92697-4475, USA
| | - Mariam Eghbal-Ahmadi
- Department of Pediatrics, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Neurology, University of California at Irvine, Irvine, CA, 92697-4475, USA
| | - Tallie Z. Baram
- Department of Pediatrics, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Department of Neurology, University of California at Irvine, Irvine, CA, 92697-4475, USA
- Corresponding author. Tel.: +1-949-824-1063; fax: +1-949-824-1106. (T.Z. Baram)
| |
Collapse
|
27
|
Wang W, Dow KE, Fraser DD. Elevated corticotropin releasing hormone/corticotropin releasing hormone-R1 expression in postmortem brain obtained from children with generalized epilepsy. Ann Neurol 2001; 50:404-9. [PMID: 11558798 DOI: 10.1002/ana.1138] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The corticotropin releasing hormone (CRH) system has been suggested to initiate seizure activity in the developing brain. However, human data to support this theory is lacking. In this study, we have demonstrated that the expression of CRH, CRH-binding protein, and CRH-R1 (a CRH membrane receptor) were significantly elevated in cortical tissue obtained from 6 children with generalized epilepsy (mean age 8.2+/-1.5 years) relative to age-matched controls (mean age 7.8+/-1.4 years). In contrast, no significant difference in the expression of CRH-R2 was observed. The advent of CRH-R1 receptor antagonists may prove useful as novel anticonvulsants.
Collapse
Affiliation(s)
- W Wang
- Department of Paediatrics, Kingston General Hospital, Ontario, Canada
| | | | | |
Collapse
|
28
|
Brunson KL, Eghbal-Ahmadi M, Bender R, Chen Y, Baram TZ. Long-term, progressive hippocampal cell loss and dysfunction induced by early-life administration of corticotropin-releasing hormone reproduce the effects of early-life stress. Proc Natl Acad Sci U S A 2001; 98:8856-61. [PMID: 11447269 PMCID: PMC37525 DOI: 10.1073/pnas.151224898] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2001] [Accepted: 05/07/2001] [Indexed: 01/13/2023] Open
Abstract
Stress early in postnatal life may result in long-term memory deficits and selective loss of hippocampal neurons. The mechanisms involved are poorly understood, but they may involve molecules and processes in the immature limbic system that are activated by stressful challenges. We report that administration of corticotropin-releasing hormone (CRH), the key limbic stress modulator, to the brains of immature rats reproduced the consequences of early-life stress, reducing memory functions throughout life. These deficits were associated with progressive loss of hippocampal CA3 neurons and chronic up-regulation of hippocampal CRH expression. Importantly, they did not require the presence of stress levels of glucocorticoids. These findings indicate a critical role for CRH in the mechanisms underlying the long-term effects of early-life stress on hippocampal integrity and function.
Collapse
Affiliation(s)
- K L Brunson
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697-4475, USA
| | | | | | | | | |
Collapse
|
29
|
Naquet R. Hippocampal lesions in epilepsy: a historical review. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2001; 45:447-67. [PMID: 11130911 DOI: 10.1016/s0074-7742(01)45023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- R Naquet
- Institut de Neurobiologie Alfred Fessard, CNRS Gif sur Yvette, France
| |
Collapse
|
30
|
Lado FA, Sankar R, Lowenstein D, Moshé SL. Age-dependent consequences of seizures: relationship to seizure frequency, brain damage, and circuitry reorganization. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2001; 6:242-52. [PMID: 11107189 DOI: 10.1002/1098-2779(2000)6:4<242::aid-mrdd3>3.0.co;2-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Seizures in the developing brain pose a challenge to the clinician. In addition to the acute effects of the seizure, there are questions regarding the impact of severe or recurrent seizures on the developing brain. Whether provoked seizures cause brain damage, synaptic reorganization, or epilepsy is of paramount importance to patients and physicians. Such questions are especially relevant in the decision to treat or not treat febrile seizures, a common occurrence in childhood. These clinical questions have been addressed using clinical and animal research. The largest prospective studies do not find a causal connection between febrile seizures and later temporal lobe epilepsy. The immature brain seems relatively resistant to the seizure-induced neuronal loss and new synapse formation seen in the mature brain. Laboratory investigations using a developmental rat model corresponding to human febrile seizures find that even though structural changes do not result from hyperthermic seizures, synaptic function may be chronically altered. The increased understanding of the cellular and synaptic mechanisms of seizure-induced damage may benefit patients and clinicians in the form of improved therapies to attenuate damage and changes induced by seizures and to prevent the development of epilepsy.
Collapse
Affiliation(s)
- F A Lado
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
31
|
Orozco-Suarez S, Brunson KL, Feria-Velasco A, Ribak CE. Increased expression of gamma-aminobutyric acid transporter-1 in the forebrain of infant rats with corticotropin-releasing hormone-induced seizures but not in those with hyperthermia-induced seizures. Epilepsy Res 2000; 42:141-57. [PMID: 11074187 DOI: 10.1016/s0920-1211(00)00174-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
High affinity, gamma-aminobutyric acid (GABA) plasma membrane transporters (GATs) influence the availability of GABA, the main inhibitory neurotransmitter in the brain. Recent studies suggest a crucial role for GATs in maintaining levels of synaptic GABA in normal as well as abnormal (i.e., epileptic) adult brain. However, the role of GATs during development and specifically changes in their expression in response to developmental seizures are unknown. The present study examined GAT-1-immunolabeling in infant rats with two types of developmental seizures, one induced by corticotropin-releasing hormone (CRH) lasting about 2 h and the other by hyperthermia (a model of febrile seizures) lasting only 20 min. The number of GAT-1-immunoreactive (ir) neurons was increased in several forebrain regions 24 h after induction of seizures by CRH as compared to the control group. Increased numbers of detectable GAT-1-ir cell bodies were found in the hippocampal formation including the dentate gyrus and CA1, and in the neocortex, piriform cortex and amygdala. In contrast, hyperthermia-induced seizures did not cause significant changes in the number of detectable GAT-1-ir somata. The increase in GAT-1-ir somata in the CRH model and not in the hyperthermia model may reflect the difference in the duration of seizures. The brain regions where this increase occurs correlate with the occurrence of argyrophyllic neurons in the CRH model.
Collapse
Affiliation(s)
- S Orozco-Suarez
- Department of Anatomy and Neurobiology, University of California at Irvine, Irvine, CA 92697-1275, USA
| | | | | | | |
Collapse
|
32
|
Chen Y, Brunson KL, Müller MB, Cariaga W, Baram TZ. Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 (CRF(1))-like immunoreactivity in the mouse brain: light microscopy analysis using an antibody directed against the C-terminus. J Comp Neurol 2000; 420:305-23. [PMID: 10754504 PMCID: PMC3119344 DOI: 10.1002/(sici)1096-9861(20000508)420:3<305::aid-cne3>3.0.co;2-8] [Citation(s) in RCA: 185] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Corticotropin-releasing hormone (CRH) receptor type 1 (CRF(1)) is a member of the receptor family mediating the effects of CRH, a critical neuromediator of stress-related endocrine, autonomic, and behavioral responses. The detailed organization and fine localization of CRF(1)-like immunoreactivity (CRF(1)-LI) containing neurons in the rodent have not been described, and is important to better define the functions of this receptor. Here we characterize in detail the neuroanatomical distribution of CRF(1)-immunoreactive (CRF(1)-ir) neurons in the mouse brain, using an antiserum directed against the C-terminus of the receptor. We show that CRF(1)-LI is abundantly yet selectively expressed, and its localization generally overlaps the target regions of CRH-expressing projections and the established distribution of CRF(1) mRNA, with several intriguing exceptions. The most intensely CRF(1)-LI-labeled neurons are found in discrete neuronal systems, i.e., hypothalamic nuclei (paraventricular, supraoptic, and arcuate), major cholinergic and monoaminergic cell groups, and specific sensory relay and association thalamic nuclei. Pyramidal neurons in neocortex and magnocellular cells in basal amygdaloid nucleus are also intensely CRF(1)-ir. Finally, intense CRF(1)-LI is evident in brainstem auditory associated nuclei and several cranial nerves nuclei, as well as in cerebellar Purkinje cells. In addition to their regional specificity, CRF(1)-LI-labeled neurons are characterized by discrete patterns of the intracellular distribution of the immunoreaction product. While generally membrane associated, CRF(1)-LI may be classified as granular, punctate, or homogenous deposits, consistent with differential membrane localization. The selective distribution and morphological diversity of CRF(1)-ir neurons suggest that CRF(1) may mediate distinct functions in different regions of the mouse brain.
Collapse
Affiliation(s)
- Yuncai Chen
- Departments of Anatomy and Neurobiology, University of California at Irvine, Irvine, California 92697-4475
- Department of Pediatrics, University of California at Irvine, Irvine, California 92697-4475
| | - Kristen L. Brunson
- Departments of Anatomy and Neurobiology, University of California at Irvine, Irvine, California 92697-4475
| | | | - Wayna Cariaga
- Departments of Anatomy and Neurobiology, University of California at Irvine, Irvine, California 92697-4475
| | - Tallie Z. Baram
- Departments of Anatomy and Neurobiology, University of California at Irvine, Irvine, California 92697-4475
- Department of Pediatrics, University of California at Irvine, Irvine, California 92697-4475
| |
Collapse
|
33
|
Sandman CA, Wadhwa P, Glynn L, Chicz-Demet A, Porto M, Garite TJ. Corticotrophin-releasing hormone and fetal responses in human pregnancy. Ann N Y Acad Sci 2000; 897:66-75. [PMID: 10676436 DOI: 10.1111/j.1749-6632.1999.tb07879.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
During human pregnancy, maternal and fetal compartments of the human placenta produce and release corticotrophic-releasing hormone (CRH). Elevations of placental CRH are associated with decreased gestational length (including preterm delivery). The effects of elevated placental CRH on human fetal neurological development are not known. Pregnant women in the 31st and 32nd week of gestation consented to procedures for collection of blood and measurement of fetal heart rate (FHR) in response to a series of 40 vibro-acoustic stimuli (VAS). Measures of habituation and dishabituation were calculated from the FHR. All subjects were followed to delivery. Fetuses (N = 33) of women with highly elevated CRH were least responsive (p < .03) to stimulation after presentation of a novel (dishabituating) stimulus with control for parity, fetal gender, medical (antepartum) risk, and gestational length at term. In a larger sample (N = 156) a polynomial model predicted the pattern of FHR reactivity for the first 15 trials. Placental CRH concentration significantly predicted FHR reactivity after controlling for the effects of trial number, baseline FHR, inter-trial interval, and presence of uterine contractions. Increased maternal CRH levels were significantly related to the length of gestation after controlling for the effects of fetal gender, parity, and medical risk (p = .05). The relationship between length of gestation and FHR was not significant suggesting separate actions of CRH on these events. Elevated placental CRH appears to accelerate certain developmental events (gestational length) and may influence the fetal nervous system. The impaired fetal responses to novelty and increased arousal observed in this study suggest that neurological systems may be targets for placental CRH during sensitive developmental periods.
Collapse
Affiliation(s)
- C A Sandman
- Department of Psychiatry and Human Behavior, University of California, Irvine 92697, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Lee SH, Han SH, Lee KW. Kainic acid-induced seizures cause neuronal death in infant rats pretreated with lipopolysaccharide. Neuroreport 2000; 11:507-10. [PMID: 10718304 DOI: 10.1097/00001756-200002280-00016] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A major controversy in human epilepsy is whether severe seizures in infants or young children cause brain damage and subsequent epilepsy. Kainic acid (KA) produces severe seizures in infant rats, but hippocampal neuronal death and mossy fibre sprouting have not been previously demonstrated. There are similarities between lipopolysaccharide (LPS) pretreatment and KA-induced seizures in rats and the febrile convulsion of young children, in that both processes are associated with an immune stimulus and seizures. Infant rats, co-treated with LPS and KA, showed hippocampal neuronal death and mossy fibre sprouting. Taken together, our results suggest that severe febrile convulsion of young children may cause hippocampal damage and synaptic reorganization.
Collapse
Affiliation(s)
- S H Lee
- Department of Neurology, College of Medicine, Chungbuk National University, South Korea
| | | | | |
Collapse
|
35
|
Hsieh PF, Watanabe Y. Time course of c-FOS expression in status epilepticus induced by amygdaloid stimulation. Neuroreport 2000; 11:571-4. [PMID: 10718316 DOI: 10.1097/00001756-200002280-00028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Decaying of c-FOS immunoreactivity (FIR) was studied in adult rats with 1 h self-sustaining limbic status epilepticus (SSLSE) induced by amygdaloid electrical stimulation. Rats that failed to enter SSLSE showed localized FIR in the ipsilateral limbic cortex, neocortex, and amygdala. FIR became bilaterally extensive, including the hippocampal formation 0.5 h after SSLSE. It decreased gradually between 2 and 6 h and returned to basal levels around 1 day. Neocortical FIR in clonic SSLSE persisted longer than in other types of SSLSE. We demonstrate for the first time that FIR in SSLSE lasts much longer than several hours, its decaying is related to the seizure behavior, and absent or weak FIR at the hippocampal formation is associated with failed SSLSE entry.
Collapse
Affiliation(s)
- P F Hsieh
- Division of Neurology, Taichung Veterans General Hospital, Taiwan, Republic of China
| | | |
Collapse
|
36
|
HATALSKI CG, BRUNSON KL, TANTAYANUBUTR B, CHEN Y, BARAM TZ. Neuronal activity and stress differentially regulate hippocampal and hypothalamic corticotropin-releasing hormone expression in the immature rat. Neuroscience 2000; 101:571-80. [PMID: 11113306 PMCID: PMC3129847 DOI: 10.1016/s0306-4522(00)00386-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Corticotropin-releasing hormone, a major neuromodulator of the neuroendocrine stress response, is expressed in the immature hippocampus, where it enhances glutamate receptor-mediated excitation of principal cells. Since the peptide influences hippocampal synaptic efficacy, its secretion from peptidergic interneuronal terminals may augment hippocampal-mediated functions such as learning and memory. However, whereas information regarding the regulation of corticotropin-releasing hormone's abundance in CNS regions involved with the neuroendocrine responses to stress has been forthcoming, the mechanisms regulating the peptide's levels in the hippocampus have not yet been determined. Here we tested the hypothesis that, in the immature rat hippocampus, neuronal stimulation, rather than neuroendocrine challenge, influences the peptide's expression. Messenger RNA levels of corticotropin-releasing hormone in hippocampal CA1, CA3 and the dentate gyrus, as well as in the hypothalamic paraventricular nucleus, were determined after cold, a physiological challenge that activates the hypothalamic pituitary adrenal system in immature rats, and after activation of hippocampal neurons by hyperthermia. These studies demonstrated that, while cold challenge enhanced corticotropin-releasing hormone messenger RNA levels in the hypothalamus, hippocampal expression of this neuropeptide was unchanged. Secondly, hyperthermia stimulated expression of hippocampal immediate-early genes, as well as of corticotropin-releasing hormone. Finally, the mechanism of hippocampal corticotropin-releasing hormone induction required neuronal stimulation and was abolished by barbiturate administration. Taken together, these results indicate that neuronal stimulation may regulate hippocampal corticotropin-releasing hormone expression in the immature rat, whereas the peptide's expression in the hypothalamus is influenced by neuroendocrine challenges.
Collapse
Affiliation(s)
| | | | | | | | - T. Z. BARAM
- To whom correspondence should be addressed. Tel.: + 1-949-824-1064; fax: + 1-949-824-1106. (T. Z. Baram)
| |
Collapse
|
37
|
Baram TZ, Mitchell WG, Brunson K, Haden E. Infantile spasms: hypothesis-driven therapy and pilot human infant experiments using corticotropin-releasing hormone receptor antagonists. Dev Neurosci 1999; 21:281-9. [PMID: 10575251 PMCID: PMC3139473 DOI: 10.1159/000017407] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND AND RATIONALE Infantile spasms (IS) are an age-specific seizure disorder occurring in 1:2,000 infants and associated with mental retardation in approximately 90% of affected individuals. The costs of IS in terms of loss of lifetime productivity and emotional and financial burdens on families are enormous. It is generally agreed that the seizures associated with IS respond poorly to most conventional anticonvulsants. In addition, in the majority of patients, a treatment course with high-dose corticotropin (ACTH) arrests the seizures completely within days, often without recurrence on discontinuation of the hormone. However, the severe side effects of ACTH require development of better treatments for IS. Based on the rapid, all-or-none and irreversible effects of ACTH and on the established physiological actions of this hormone, it was hypothesized that ACTH eliminated IS via an established neuroendocrine feedback mechanism involving suppression of the age-specific endogenous convulsant neuropeptide corticotropin-releasing hormone (CRH). Indeed, IS typically occur in the setting of injury or insult that activate the CNS stress system, of which CRH is a major component. CRH levels may be elevated in the IS brain, and the neuropeptide is known to cause seizures in infant rats, as well as neuronal death in brain regions involved in learning and memory. If 'excess' CRH is involved in the pathogenesis of IS, then blocking CRH receptors should eliminate both seizures and the excitotoxicity of CRH-receptor-rich neurons subserving learning and memory. PATIENTS AND METHODS With FDA approval, alpha-helical CRH, a competitive antagonist of the peptide, was given as a phase I trial to 6 infants with IS who have either failed conventional treatment or who have suffered a recurrence. The study was performed at the Clinical Research Center of the Childrens Hospital, Los Angeles. The effects of alpha-helical CRH on autonomic parameters (blood pressure, pulse, temperature, respiration) were determined. In addition, immediate and short-term effects on ACTH and cortisol and on electrolytes and glucose were examined. The potential efficacy of alpha-helical CRH for IS was studied, using clinical diaries and video EEG. RESULTS alpha-Helical CRH, a peptide, did not alter autonomic or biochemical parameters. Blocking peripheral CRH receptors was evident from a transient reduction in plasma ACTH and cortisol. No evidence for the compound's penetration of the blood-brain barrier was found, since no central effects on arousal, activity or seizures and EEG patterns were observed. In addition, a striking resistance of the patients' plasma ACTH to the second infusion of alpha-helical CRH was noted. CONCLUSIONS Peptide analogs of CRH do not cross the blood-brain barrier, and their effects on peripheral stress hormones are transient and benign. Nonpeptide compouds that reach CNS receptors are required to test the hypothesis that blocking CRH receptors may ameliorate IS and its cognitive consequences.
Collapse
Affiliation(s)
- T Z Baram
- Department of Anatomy/Neurobiology, University of California at Irvine, CA 92697-4475, USA.
| | | | | | | |
Collapse
|
38
|
Sperber EF, Haas KZ, Romero MT, Stanton PK. Flurothyl status epilepticus in developing rats: behavioral, electrographic histological and electrophysiological studies. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 116:59-68. [PMID: 10446347 DOI: 10.1016/s0165-3806(99)00075-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Status epilepticus and repeated seizures have age-dependent morphological and neurophysiological alterations in the hippocampus. In the present study, effects of flurothyl-induced status epilepticus were examined in awake and free moving immature (2 weeks old) and adult rats. Without exception, adult rats died of respiratory arrest before the onset of status epilepticus. We were unable to find a concentration of flurothyl that produced status epilepticus and a low mortality in adult rats. In contrast, immature rats survived flurothyl status epilepticus for up to 60 min with a very low mortality. In rat pups, behavioral manifestations correlated with electrographic seizures in both the cortex and hippocampus. Neuropathological damage (cell loss, pyknotic cells or gliosis) was not observed in the immature hippocampus, thalamus, amygdala, substantia nigra or cortex at 24 h, 2 days or 2 weeks after status epilepticus. In addition, no aberrant mossy fiber reorganization or decrease in cells counts were observed in the hippocampus. Young rats did not show alterations in paired-pulse perforant path inhibition following flurothyl status epilepticus. The present findings are consistent with studies in other seizure models, indicating that immature rats are highly resistant to seizure-induced changes.
Collapse
Affiliation(s)
- E F Sperber
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
39
|
Liu Z, Yang Y, Silveira DC, Sarkisian MR, Tandon P, Huang LT, Stafstrom CE, Holmes GL. Consequences of recurrent seizures during early brain development. Neuroscience 1999; 92:1443-54. [PMID: 10426498 DOI: 10.1016/s0306-4522(99)00064-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
It is well documented that prolonged seizures (status epilepticus) can cause neuronal injury and result in synaptic reorganization in certain brain regions. However, the effect of recurrent, relatively short seizures in young animals on subsequent brain development is not known. To study the consequences of recurrent seizures on the developing brain, we subjected immature rats to a total of 50 flurothyl-induced seizures from postnatal day 11 until day 23. Immunohistochemistry for c-fos was performed to characterize the pattern of neuronal activation following the seizures. Cell counting of dentate granule cells, CA3, CA1, and hilar neurons, using unbiased stereological methods, and the silver impregnation method were used to evaluate neuronal death following the recurrent seizures. Timm and Golgi staining were performed four weeks after the 50th seizure to evaluate the effects of recurrent seizures on synaptic organization. Our results show that recurrent flurothyl-induced seizures progressively increased excitability of the brain, as revealed by a dramatic increase in the extent and intensity of c-fos immunostaining. While no cell loss was detected in the hippocampus with either Cresyl Violet or silver stains, animals experiencing multiple daily seizures developed increased mossy fiber sprouting in both the supragranular layer of the dentate gyrus and the infrapyramidale layer of the CA3 region. Golgi staining confirmed that there was an increase in mossy fibers in the pyramidal cell layer. Our results suggest that serial recurrent seizures in the immature brain can lead to significant changes in mossy fiber distribution even though the seizures do not cause significant hippocampal cell loss.
Collapse
Affiliation(s)
- Z Liu
- Department of Neurology, Harvard Medical School, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sandman CA, Wadhwa PD, Chicz-DeMet A, Porto M, Garite TJ. Maternal corticotropin-releasing hormone and habituation in the human fetus. Dev Psychobiol 1999; 34:163-73. [PMID: 10204092 DOI: 10.1002/(sici)1098-2302(199904)34:3<163::aid-dev1>3.0.co;2-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Elevated concentrations of maternal corticotrophin-releasing hormone (CRH) during the 2nd and early 3rd trimester of human pregnancy are associated with spontaneous preterm birth, but the effects of maternal CRH on the fetus are unknown. Maternal plasma was collected for analysis of CRH concentration, m = 156.24 +/- 130.91 pg/ml, from 33 pregnant women during Weeks 31-33 of gestation. Immediately after collection of plasma, fetal heart rate (FHR) measures were obtained in response to a challenge with a series of vibroacoustic stimuli. Fetuses of mothers with highly elevated CRH did not respond significantly to the presence of a novel stimulus in a repeated series, p = 0.016. These effects on the FHR response were not related to parity, fetal gender, medical (antepartum) risk, or eventual birth outcomes. Impaired dishabituation in these fetuses of mothers with high concentrations of CRH suggests that neurological systems rich with CRH receptors that support learning and memory, such as parahippocampal regions, may be targets for maternal/placental CRH, with implications for fetal neurological development.
Collapse
Affiliation(s)
- C A Sandman
- Department of Psychiatry, University of California, Irvine 92697, USA
| | | | | | | | | |
Collapse
|
41
|
Holmes GL, Sarkisian M, Ben-Ari Y, Chevassus-Au-Louis N. Mossy fiber sprouting after recurrent seizures during early development in rats. J Comp Neurol 1999; 404:537-53. [PMID: 9987996 DOI: 10.1002/(sici)1096-9861(19990222)404:4<537::aid-cne9>3.0.co;2-#] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In some children, epilepsy is a catastrophic condition, leading to significant intellectual and behavioral impairment, but little is known about the consequences of recurrent seizures during development. In the present study, we evaluated the effects of 15 daily pentylenetetrazol-induced convulsions in immature rats beginning at postnatal day (P) 1, 10, or 60. In addition, we subjected another group of P10 rats to twice daily seizures for 15 days. Both supragranular and terminal sprouting in the CA3 hippocampal subfield was assessed in Timm-stained sections by using a rating scale and density measurements. Prominent sprouting was seen in the CA3 stratum pyramidale layer in all rats having 15 daily seizures, regardless of the age when seizures began. Based on Timm staining in control P10, P20, and P30 rats, the terminal sprouting in CA3 appears to be new growth of axons and synapses as opposed to a failure of normal regression of synapses. In addition to CA3 terminal sprouting, rats having twice daily seizures had sprouting noted in the dentate supragranular layer, predominately in the inferior blade of the dentate, and had a decreased seizure threshold when compared with controls. Cell counting of dentate granule cells, CA3, CA1, and hilar neurons, with unbiased stereological methods demonstrated no differences from controls in rats with daily seizures beginning at P1 or P10, whereas adult rats with daily seizures had a significant decrease in CA1 neurons. Rats that received twice daily seizures on P10-P25 had an increase in dentate granule cells. This study demonstrates that, like the mature brain, immature animals have neuronal reorganization after recurrent seizures, with mossy fiber sprouting in both the CA3 subfield and supragranular region. In the immature brain, repetitive seizures also result in granule cell neurogenesis without loss of principal neurons. Although the relationship between these morphological changes after seizures during development and subsequent cognitive impairment is not yet clear, our findings indicate that during development recurrent seizures can result in significant alterations in cell number and axonal growth.
Collapse
Affiliation(s)
- G L Holmes
- Department of Neurology, Harvard Medical School, Children's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | |
Collapse
|
42
|
Abstract
Studies dating back more than 150 years reported a relationship between hippocampal sclerosis and epilepsy. Retrospective studies of patients who underwent temporal lobectomy for intractable partial epilepsy found a relationship between a history of early childhood convulsions, hippocampal sclerosis, and the development of temporal lobe epilepsy. Many believe that febrile seizures lead to hippocampal damage and this in turn predisposes the patient to the development of temporal lobe epilepsy. Studies in adult rats have shown that seizures can lead to hippocampal damage and unprovoked recurrent seizures. However, many questions remain as to the relevance of early childhood seizures to hippocampal sclerosis and temporal lobe epilepsy. Human prospective epidemiologic studies have not shown a relationship between early childhood seizures and temporal lobe epilepsy. Recent MRI studies in humans suggest that a preexisting hippocampal lesion may predispose infants to experience febrile seizures, later on hippocampal sclerosis, and possibly temporal lobe epilepsy may occur. Unlike the studies in adult rats, normal immature rats with seizures have not been shown to develop hippocampal damage or unprovoked seizures in adulthood. Furthermore, animal studies reveal that preexisting brain abnormalities can predispose to hippocampal damage following seizures early in life. This paper reviews evidence for and against the view that early childhood convulsions, hippocampal sclerosis, and temporal lobe epilepsy are related, while also exploring clinical and animal studies on how seizures can lead to hippocampal damage, and how this can result in temporal lobe epilepsy. By better understanding the cause and effect relationship between early childhood seizures and hippocampal injury in normal and abnormal brains specific treatments can be developed that target the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- P D Fisher
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
43
|
Holmes GL, Gairsa JL, Chevassus-Au-Louis N, Ben-Ari Y. Consequences of neonatal seizures in the rat: morphological and behavioral effects. Ann Neurol 1998; 44:845-57. [PMID: 9851428 DOI: 10.1002/ana.410440602] [Citation(s) in RCA: 293] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Whereas neonatal seizures are a predictor of adverse neurological outcome, there is controversy regarding whether seizures simply reflect an underlying brain injury or can cause damage. We subjected neonatal rats to a series of 25 brief flurothyl-induced seizures. Once mature the rats were compared with control littermates for spatial learning and activity level. Short-term effects of recurrent seizures on hippocampal excitation were assessed by using the intact hippocampus formation preparation and long-term effects by assessing seizure threshold. Brains were analyzed for neuronal loss, sprouting of granule cell axons (mossy fibers), and neurogenesis. Compared with controls, rats subjected to neonatal seizures had impaired learning and decreased activity levels. There were no differences in paired-pulse excitation or inhibition or duration of afterdischarges in the intact hippocampal preparation. However, when studied as adults, rats with recurrent flurothyl seizures had a significantly lower seizure threshold to pentylenetetrazol than controls. Rats with recurrent seizures had greater numbers of dentate granule cells and more newly formed granule cells than the controls. Rats with recurrent seizures also had sprouting of mossy fibers in CA3 and the supragranular region. Recurrent brief seizures during the neonatal period have long-term detrimental effects on behavior, seizure susceptibility, and brain development.
Collapse
Affiliation(s)
- G L Holmes
- Department of Neurology, Harvard Medical School, Children's Hospital, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
44
|
Brunson KL, Schultz L, Baram TZ. The in vivo proconvulsant effects of corticotropin releasing hormone in the developing rat are independent of ionotropic glutamate receptor activation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 111:119-28. [PMID: 9804917 PMCID: PMC3129849 DOI: 10.1016/s0165-3806(98)00130-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Corticotropin releasing hormone (CRH) produces age-dependent limbic seizures in the infant rat. Both the phenotype and the neuroanatomic matrix of CRH-induced seizures resemble the seizures induced by the rigid glutamate analogue, kainic acid (KA), and by rapid amygdala kindling. The experiments described in this study tested the hypothesis that the in vivo proconvulsant effects of CRH require activation of ionotropic glutamate receptors. Non-competitive (+MK-801) or competitive (CGP-39551) antagonists of N-methyl-d-aspartate (NMDA) receptors decreased or eliminated the motor effects of CRH, but electrographic CRH-induced seizures were unaffected. Administration of CRH antagonists did not affect the acquisition or the maintenance of rapid kindling, which are mediated by NMDA and alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) receptor activation, respectively. CRH receptor blockers failed to alter the latency or duration of seizures induced by activation of KA receptors, and threshold doses of CRH and KA had additive effects. CRH given repeatedly decreased the convulsant threshold dose of KA, probably via injury to hippocampal neurons. These results suggest that CRH and glutamate increase neuronal excitability via independent mechanisms. Because the proconvulsant effects of CRH are highly specific to the developmental period, glutamate-receptor-independent, CRH-receptor mediated excitation may account for some of the enhanced susceptibility to seizures during this period.
Collapse
Affiliation(s)
- Kristen L. Brunson
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697, USA
| | - Linda Schultz
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697, USA
| | - Tallie Z. Baram
- Department of Anatomy/Neurobiology, University of California, Irvine, CA 92697, USA
- Department of Pediatrics, ZOT 4475, University of California, Irvine, CA 92697-4475, USA
- Department of Neurology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
45
|
Baram TZ, Hatalski CG. Neuropeptide-mediated excitability: a key triggering mechanism for seizure generation in the developing brain. Trends Neurosci 1998; 21:471-6. [PMID: 9829688 PMCID: PMC3372323 DOI: 10.1016/s0166-2236(98)01275-2] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Most human seizures occur early in life,consistent with established excitability-promoting features of the developing brain. Surprisingly, the majority of developmental seizures are not spontaneous but are provoked by injurious or stressful stimuli. What mechanisms mediate'triggering' of seizures and limit such reactive seizures to early postnatal life? Recent evidence implicates the excitatory neuropeptide, corticotropin-releasing hormone (CRH). Stress activates expression of the CRH gene in several limbic regions, and CRH-expressing neurons are strategically localized in the immature rat hippocampus, in which this neuropeptide increases the excitability of pyramidal cells in vitro. Indeed, in vivo, activation of CRH receptors--maximally expressed in hippocampus and amygdala during the developmental period which is characterized by peak susceptibility to 'provoked' convulsions--induces severe, age-dependent seizures. Thus, converging data indicate that activation of expression of CRH constitutes an important mechanism for generating developmentally regulated, triggered seizures, with considerable clinical relevance.
Collapse
Affiliation(s)
- T Z Baram
- Dept of Anatomy, University of California at Irvine, 92697-4475, USA
| | | |
Collapse
|
46
|
Pitkänen A, Tuunanen J, Kälviäinen R, Partanen K, Salmenperä T. Amygdala damage in experimental and human temporal lobe epilepsy. Epilepsy Res 1998; 32:233-53. [PMID: 9761324 DOI: 10.1016/s0920-1211(98)00055-2] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The amygdala complex is one component of the temporal lobe that may be damaged unilaterally or bilaterally in children and adults with temporal lobe epilepsy (TLE) or following status epilepticus. Most MR (magnetic resonance) imaging studies of epileptic patients have shown that volume reduction of the amygdala ranges from 10-30%. In the human amygdala, neuronal loss and gliosis have been reported in the lateral and basal nuclei. Studies in rats have more specifically identified the amygdaloid regions that are sensitive to status epilepticus-induced neuronal damage. These areas include the medial division of the lateral nucleus, the parvicellular division of the basal nucleus, the accessory basal nucleus, the posterior cortical nucleus, and portions of the anterior cortical and medial nuclei. Otherwise, other amygdala nuclei, such as the magnocellular and intermediate divisions of the basal nucleus and the central nucleus, remain relatively well preserved. Amygdala kindling studies in rats have shown that the density of a subpopulation of GABAergic inhibitory neurons that also contain somatostatin may be reduced even after a low number of generalized seizures. While analyses of histological sections and MR images indicate that in approximately 10% of TLE patients, seizure-induced damage is isolated to the amygdala, more often amygdala damage is combined with damage to the hippocampus and/or other brain areas. Moreover, recent data from rodents and nonhuman primates suggest that structural and functional alterations caused by seizure activity originating in the amygdala are not limited to the amygdala itself, but may also affect other temporal lobe structures. The information gathered so far on damage to the amygdala in epilepsy or after status epilepticus suggests that local alterations in inhibitory circuitries may contribute to a lowered seizure threshold and greater excitability within the amygdala. Furthermore, damage to select nuclei in the amygdala may predict impairment of performance in behavioral tasks that depend on the integrity of the amygdaloid circuits.
Collapse
Affiliation(s)
- A Pitkänen
- A.I. Virtanen Institute, University of Kuopio, Finland.
| | | | | | | | | |
Collapse
|
47
|
GERTH ANGELIKA, HATALSKI CAROLYNG, VISHAI-ELINER SARITA, BARAM TALLIEZ. Corticotropin releasing hormone antagonist does not prevent adrenalectomy-induced apoptosis in the dentate gyrus of the rat hippocampus. Stress 1998; 2:159-69. [PMID: 9787264 PMCID: PMC3392172 DOI: 10.3109/10253899809167280] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adrenalectomy in the mature rat leads to death of granule cells in the dentate gyrus of the hippocampal formation. The mechanisms underlying this cell death have not been fully clarified: It has been considered that the granule cells require adrenal steroids for their survival, since corticosterone replacement prevents their death. However, adrenalectomy-induced loss of negative feedback also increases levels of corticotropin releasing hormone (CRH) in several limbic brain regions. CRH is known to induce neuronal death in hippocampal regions rich in CRH receptors. This study tested the hypothesis that adrenalectomy-induced granule cell death is mediated via the enhanced activation of CRH receptors. The extent of granule cell degeneration was compared among 4 groups of young adult male rats: Sham-adrenalectomy controls, adrenalectomized rats, adrenalectomized rats infused with a CRH antagonist from the onset of steroid deprivation to the time of sacrifice, and adrenalectomized rats infused with vehicle only. (9-41)-alpha-helical CRH was administered using an osmotic pump into the cerebral ventricles. Adrenalectomy led to robust granule cell degeneration, which was maximal in the suprapyramidal blade of the dentate gyrus. Infusion of the CRH antagonist in doses shown to block CRH actions on limbic neurons did not decrease the number of degenerating granule cells compared with the untreated or vehicle-infused adrenalectomized groups. Therefore, blocking the actions of CRH does not prevent adrenalectomy-induced granule cell death, consistent with a direct effect of corticoids on the survival of these neurons.
Collapse
Affiliation(s)
- ANGELIKA GERTH
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697–4475, USA
| | - CAROLYN G. HATALSKI
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697–4475, USA
| | - SARIT A VISHAI-ELINER
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697–4475, USA
| | - TALLIE Z. BARAM
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, 92697–4475, USA
- Department of Pediatrics, University of California, Irvine, Irvine, CA, 92697–4475, USA
| |
Collapse
|
48
|
Abstract
Febrile seizures are the most common seizure type in young children. Whether they induce death of hippocampal and amygdala neurons and consequent limbic (temporal lobe) epilepsy has remained controversial, with conflicting data from prospective and retrospective studies. Using an appropriate-age rat model of febrile seizures, we investigated the acute and chronic effects of hyperthermic seizures on neuronal integrity and survival in the hippocampus and amygdala via molecular and neuroanatomical methods. Hyperthermic seizures-but not hyperthermia alone-resulted in numerous argyrophilic neurons in discrete regions of the limbic system; within 24 hr of seizures, a significant proportion of neurons in the central nucleus of the amygdala and in the hippocampal CA3 and CA1 pyramidal cell layer were affected. These physicochemical alterations of hippocampal and amygdala neurons persisted for at least 2 weeks but were not accompanied by significant DNA fragmentation, as determined by in situ end labeling. By 4 weeks after the seizures, no significant neuronal dropout in these regions was evident. In conclusion, in the immature rat model, hyperthermic seizures lead to profound, yet primarily transient alterations in neuronal structure.
Collapse
|
49
|
Tang P, Liachenko S, Melick JA, Xu Y. [31P]/[1H] nuclear magnetic resonance study of mitigating effects of GYKI 52466 on kainate-induced metabolic impairment in perfused rat cerebrocortical slices. Epilepsia 1998; 39:577-83. [PMID: 9637598 DOI: 10.1111/j.1528-1157.1998.tb01424.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Kainic acid (KA) has long been used in experimental animals to induce status epilepticus (SE). A mechanistic implication of this is the association between excitotoxicity and brain damage during or after SE. We evaluated KA-induced metabolic impairment and the potential mitigating effects of GYKI 52466 [1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine] in superfused rat cerebral cortical slices. METHODS Interleaved [31P]/[1H] magnetic resonance spectroscopy (MRS) was used to assess energy metabolism, intracellular pH (pHi), N-acetyl-L-aspartate (NAA) level, and lactate (Lac) formation before, during, and after a 56-min exposure to 4 mM KA in freshly oxygenated artificial cerebrospinal fluid (oxy-ACSF). RESULTS In the absence of GYKI 52466 and during the KA exposure, NAA, PCr, and ATP levels were decreased to 91.1 +/- 0.8, 62.4 +/- 3.9, and 59.1 +/- 4.3% of the control, respectively; Lac was increased to 118.2 +/- 2.1 %, and pH, was reduced from 7.27 +/- 0.02 to 7.13 +/- 0.02. During 4-h recovery with KA-free ACSF, pHi rapidly and Lac gradually recovered, NAA decreased further to 85.5 +/- 0.3%, and PCr and ATP showed little recovery. Removal of Mg2+ from ACSF during KA exposure caused a more profound Lac increase (to 147.1 +/- 4.0%) during KA exposure and a further NAA decrease (to 80.4 +/- 0.5%) during reperfusion, but did not exacerbate PCr, ATP, and pHi changes. Inclusion of 100 microM GYKI 52466 during KA exposure significantly improved energy metabolism: the PCr and ATP levels were above 76.6 +/- 2.1 and 82.0 +/- 2.9% of the control, respectively, during KA exposure and recovered to 101.4 +/- 2.4 and 95.0 +/- 2.4%, respectively, during reperfusion. NAA level remained at 99.8 +/- 0.6% during exposure and decreased only slightly at a later stage of reperfusion. CONCLUSIONS Our finding supports the notion that KA-induced SE causes metabolic disturbance and neuronal injury mainly by overexcitation through non-N-methyl-D-aspartate (NMDA) receptor functions.
Collapse
Affiliation(s)
- P Tang
- Department of Anesthesiology and Critical Care Medicine, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
50
|
Toth Z, Yan XX, Haftoglou S, Ribak CE, Baram TZ. Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J Neurosci 1998; 18:4285-94. [PMID: 9592105 PMCID: PMC3387924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/1997] [Revised: 03/05/1998] [Accepted: 03/10/1998] [Indexed: 02/07/2023] Open
Abstract
Febrile seizures are the most common seizure type in young children. Whether they induce death of hippocampal and amygdala neurons and consequent limbic (temporal lobe) epilepsy has remained controversial, with conflicting data from prospective and retrospective studies. Using an appropriate-age rat model of febrile seizures, we investigated the acute and chronic effects of hyperthermic seizures on neuronal integrity and survival in the hippocampus and amygdala via molecular and neuroanatomical methods. Hyperthermic seizures-but not hyperthermia alone-resulted in numerous argyrophilic neurons in discrete regions of the limbic system; within 24 hr of seizures, a significant proportion of neurons in the central nucleus of the amygdala and in the hippocampal CA3 and CA1 pyramidal cell layer were affected. These physicochemical alterations of hippocampal and amygdala neurons persisted for at least 2 weeks but were not accompanied by significant DNA fragmentation, as determined by in situ end labeling. By 4 weeks after the seizures, no significant neuronal dropout in these regions was evident. In conclusion, in the immature rat model, hyperthermic seizures lead to profound, yet primarily transient alterations in neuronal structure.
Collapse
Affiliation(s)
- Z Toth
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, California 92697-4475, USA
| | | | | | | | | |
Collapse
|