1
|
Pereira PA, Millner T, Vilela M, Sousa S, Cardoso A, Madeira MD. Nerve growth factor-induced plasticity in medial prefrontal cortex interneurons of aged Wistar rats. Exp Gerontol 2016; 85:59-70. [DOI: 10.1016/j.exger.2016.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/04/2016] [Accepted: 09/20/2016] [Indexed: 01/03/2023]
|
2
|
Alterations in nitric oxide synthase in the aged CNS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:718976. [PMID: 22829960 PMCID: PMC3399597 DOI: 10.1155/2012/718976] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/03/2012] [Accepted: 06/05/2012] [Indexed: 01/27/2023]
Abstract
Aging is associated with neuronal loss, gross weight reduction of the brain, and glial proliferation in the cortex, all of which lead to functional changes in the brain. It is known that oxidative stress is a critical factor in the pathogenesis of aging; additionally, growing evidence suggests that excessive nitric oxide (NO) production contributes to the aging process. However, it is still unclear how NO plays a role in the aging process. This paper describes age-related changes in the activity of NADPH-diaphorase (NADPH-d), a marker for neurons containing nitric oxide synthase (NOS), in many CNS regions. Understanding these changes may provide a novel perspective in identifying the aging mechanism.
Collapse
|
3
|
Age-related changes in nitric oxide synthase in the lateral geniculate nucleus of rats. J Mol Histol 2010; 41:129-35. [PMID: 20473709 DOI: 10.1007/s10735-010-9268-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 05/06/2010] [Indexed: 01/23/2023]
Abstract
Age-related changes in nitric oxide production in the visual system have not been well characterized. Therefore, we used staining and image-processing approaches to describe changes in levels of neuronal nitric oxide synthase (nNOS), the NADPH-diaphorase (NADPH-d) histochemical marker, and 3-nitrotyrosine in the lateral geniculate nucleus (LGN) of young and aged rats. The LGN plays an important role in the visual system, as it acts as a visual relay nucleus. Quantitative analysis of NADPH-d-positive and nNOS-immunoreactive neurons revealed significant optical density increases in the dorsal LGN and ventral LGN of aged rats; however, no significant changes were observed in the number of neurons with age. 3-Nitrotyrosine immunoreactivity was increased in the dorsal LGN and ventral LGN of aged rats. These results indicate that increased nitric oxide production and peroxynitrite may be associated with alterations in visual function during aging.
Collapse
|
4
|
Huh Y, Choon Park D, Huh Y, Choon Park D, Geun Yeo S, Cha Il C. Evidence for increased NADPH-diaphorase-positive neurons in the central auditory system of the aged rat. Acta Otolaryngol 2008; 128:648-53. [PMID: 18568499 DOI: 10.1080/00016480701636868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONCLUSIONS The age-related increase in the production of nitric oxide (NO) suggests that this increase was related to neuron aging. Additional studies may provide information regarding aging-related changes in the central auditory system. OBJECTIVES Although NO has been associated with aging, it is unclear whether specific areas of the central auditory system are involved. We therefore assayed aging-related changes in NADPH-diaphorase (NADPH-d), a selective histochemical marker for NO, in the neurons of the central auditory system and other brain regions. MATERIALS AND METHODS The numbers of NADPH-d-stained neurons and the area and staining density of cell bodies were examined in aged (24 months old) and younger (4 months old) Wistar rats. RESULTS The number of NADPH-d-positive neurons in the inferior colliculus was significantly increased in aged rats (p<0.05), whereas the area of NADPH-d-positive neurons in all areas did not differ significantly between aged and younger rats (p>0.05). The staining densities of NADPH-d-positive neurons in the inferior colliculus, the auditory cortex, and the visual cortex were significantly greater in aged compared with younger rats (p<0.05).
Collapse
|
5
|
Sánchez-Zuriaga D, Martí-Gutiérrez N, De La Cruz MAP, Peris-Sanchis MR. Age-related changes of NADPH-diaphorase-positive neurons in the rat inferior colliculus and auditory cortex. Microsc Res Tech 2008; 70:1051-9. [PMID: 17722059 DOI: 10.1002/jemt.20512] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nitric oxide (NO) has been implied in age-related changes of the central nervous system (CNS) and the central auditory pathway. The present study was conducted to investigate whether the number of NO-producing cells and their morphometric characteristics in the inferior colliculus (IC) and the auditory cortex (AC) are changed with the increasing age of the subjects. IC and AC sections of adult and senile Wistar rats were studied using the histochemical detection of NADPH-diaphorase activity (NADPH-d), a marker for neurons containing nitric oxide synthase (NOS). Our results showed a decreased area of the somas of NADPH-d-positive neurons in the dorsal cortex (DC) of the IC and a diffuse loss of NADPH-d-positive neurons in the senile IC and primary cortical auditory area (Te1). However, an increased number of NO-producing cells have been shown by other authors in different parts of the ageing auditory pathway and CNS. It seems that age-related changes in NADPH-d-positive cells may follow a region-specific route. These changes may be related to hearing impairments with increasing age.
Collapse
Affiliation(s)
- Daniel Sánchez-Zuriaga
- Department of Anatomy and Human Embryology, Faculty of Medicine, University of València, València 46010, Spain
| | | | | | | |
Collapse
|
6
|
Díaz F, Villena A, Vidal L, Moreno M, De Vargas IP. NADPH-diaphorase activity in the superficial layers of the superior colliculus of rats during aging. Microsc Res Tech 2006; 69:21-8. [PMID: 16416407 DOI: 10.1002/jemt.20262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Neurons in the superficial layers of the superior colliculus are key elements in the visual system of rodents since they receive extensive afferent projections from retinal ganglion cells. The NADPH-diaphorase histochemical technique was used to detect differences in neuronal nitric oxide synthase (nNOS) in the superficial layers of the superior colliculus (sSC) of young adult (3 months) and aged (24 and 26 months) rats. The orientation of the dendritic processes of NADPH-diaphorase-positive neurons, cross-sectional area, and number of neurons per mm2 were analyzed. NADPH-d histochemistry revealed a high number of NADPH-d-positive cells in the stratum zonale and stratum griseum superficiale in adult and aged animals. NADPH-d-positive neurons were classified into the following morphological types: marginal, horizontal, pyriform, narrow-field vertical, wide-field vertical, and stellate. During aging, narrow field vertical and wide field vertical neurons present somatic atrophy and an increase in dendritic processes with dorsoventral orientation, whereas wide field vertical neurons show a decrease in those with lateromedial orientation. Marginal neurons undergo somatic hypertrophy at 26 months when compared with those at 3 months. The remaining types of neurons do not undergo size changes. Finally, the number of NADPH-d-positive neurons per mm2 in the various types of morphology does not significantly change with age. It is suggested to be likely that the aging process in the nitrergic neurons of the sSC does not lead to significant changes in the synthesis of NO from the constitutive NOS isoforms.
Collapse
Affiliation(s)
- Florentina Díaz
- Department of Histology and Pathology, School of Medicine, University of Málaga, 29071 Málaga, Spain.
| | | | | | | | | |
Collapse
|
7
|
Kanaan NM, Collier TJ, Marchionini DM, McGuire SO, Fleming MF, Sortwell CE. Exogenous erythropoietin provides neuroprotection of grafted dopamine neurons in a rodent model of Parkinson's disease. Brain Res 2005; 1068:221-9. [PMID: 16368081 DOI: 10.1016/j.brainres.2005.10.078] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 10/27/2005] [Accepted: 10/31/2005] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease marked by severe loss of dopamine (DA) neurons in the nigrostriatal system, which results in depletion of striatal DA. Transplantation of embryonic ventral mesencephalic (VM) DA neurons into the striatum is a currently explored experimental treatment aimed at replacing lost DA in the nigrostriatal system, but is plagued with poor survival (5-20%) of implanted neurons. Here, we tested the ability of erythropoietin (Epo) to provide neuroprotection for embryonic day 14 (E14) VM DA neurons. Epo was tested in vitro for the ability to augment tyrosine hydroxylase-immunoreactive (TH-ir) neuron survival under normal cell culture conditions. In vitro, Epo did not increase the number of TH-ir neurons when administered at the time of plating the E14 VM cells in culture. We also tested the efficacy of Epo to enhance E14 VM transplants in vivo. Rats unilaterally lesioned with 6-hydroxydopamine received transplants that were incubated in Epo. Treatment with Epo produced significant increases in TH-ir neuron number, soma size, and staining intensity. Animals receiving Epo-treated grafts exhibited significantly accelerated functional improvements and significantly greater overall improvements from rotational asymmetry compared to control grafted rats. These data indicate that the survival of embryonic mesencephalic TH-ir neurons is increased when Epo is administered with grafted cells in a rodent model of PD. As direct neurotrophic effects of Epo were not observed in vitro, the mechanism of Epo neuroprotection remains to be elucidated.
Collapse
Affiliation(s)
- Nicholas M Kanaan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Villena A, Díaz F, Vidal L, Moreno M, Pérez de Vargas I. Quantitative age-related changes in NADPH-diaphorase-positive neurons in the ventral lateral geniculate nucleus. Neurosci Res 2003; 46:63-72. [PMID: 12725913 DOI: 10.1016/s0168-0102(03)00030-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Age-related changes in nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) were examined in the rat ventral lateral geniculate nucleus (vLGN) using histochemical methods. Eighteen rats aged 3, 24, and 26 months were studied using quantitative methods to investigate the number of neurons per mm(2), the cross-sectional area, and the orientation of dendritic processes of NADPH-d-positive neurons. We have described three types of neurons: types A and B are both located in the lateral and medial vLGN (vLGN-l and vLGN-m, respectively), and type C neurons over the optic tract. The number of NADPH-d-positive neurons was significantly reduced in the old rats (-39%) when compared with controls (3-month-old rats). The quantitative analysis of cell areas revealed a significant decrease of somatic size in type B neurons, both in the lateral and medial vLGN, and in C neurons; however, type A neurons did not show significant changes. By quantifying the orientation of dendritic processes, we observed a predominant dorsolateral orientation in type A and B neurons. During aging, there are no changes in the dendritic orientation of neurons located in the vLGN-m; however, vLGN-l neurons show an increase in dendritic processes with dorsoventral orientation. In type C neurons, our results show that 87.4% of dendritic processes are lateromedially oriented at 26 months old. Therefore, the types A and B neurons behave differently during senescence. Type A neurons do not change in size, but those located in the vLGN-l modify the orientation of their dendritic processes; however, type B neurons, reduce their size and those located in the vLGN-l also modify their dendritic process orientation. Finally, the type C neurons modify their size and dendritic process.
Collapse
Affiliation(s)
- Alicia Villena
- Department of Histology and Pathology, School of Medicine, University of Málaga, 29071 Málaga, Spain.
| | | | | | | | | |
Collapse
|
9
|
Bassant MH, Poindessous-Jazat F. Sleep-related increase in activity of mesopontine neurons in old rats. Neurobiol Aging 2002; 23:615-24. [PMID: 12009510 DOI: 10.1016/s0197-4580(01)00339-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Relationships between age-related changes in sleep patterns and neuronal activity have received scant attention. In the present study, reticularis pontis oralis (RPO) and ventral tegmental nucleus of Gudden (VTN) neurons were recorded in unanesthetized restrained young (3 months) and old (23 months) Sprague-Dawley rats during wakefulness (W), slow wave sleep (SWS) and rapid eye movement (REM) sleep. All RPO neurons displayed a tonic activity. Firing rates were similar during W in young and old rats. In contrast, firing rates were higher during SWS in old rats (P < 0.001). In both young and old rats, firing rates increased significantly during REM sleep as compared to W and SWS but this increase was markedly greater in old rats. Neurons recorded from VTN displayed bursting activity at theta frequencies during W and REM sleep. The frequency of VTN bursting neurons was higher during REM sleep as compared to W in both groups of age. This difference was significantly more pronounced in old as compared to young rats (P < 0.001). Sleep-related hyperactivity of pontine neurons is discussed in terms of a possible deficit in inhibitory processes in old rats.
Collapse
Affiliation(s)
- M H Bassant
- Neurobiologie de la croissance et de la sénescence, INSERM U 549, 2 ter rue d'Alésia, 75014 Paris, France.
| | | |
Collapse
|
10
|
Park C, Kang M, Kwon YK, Chung JH, Ahn H, Huh Y. Inhibition of neuronal nitric oxide synthase enhances cell proliferation in the dentate gyrus of the adrenalectomized rat. Neurosci Lett 2001; 309:9-12. [PMID: 11489534 DOI: 10.1016/s0304-3940(01)02003-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent studies have demonstrated that the elimination of adrenal steroids by an adrenalectomy (ADX) increases the expression of neuronal nitric oxide synthase (NOS), and that it increases cell proliferation in the rat dentate gyrus. However, no evidence has been presented to date which indicates that NO regulates cell proliferation in the dentate gyrus of the adult rats. In this study, the effect of blocking NO production on ADX-induced increase of cell proliferation and serotonergic innervation was examined in the rat dentate gyrus. 7-nitroindazole (7-NI; 30 mg/kg, intraperitoneally), a selective inhibitor of neuronal NOS, was injected 1 day before an ADX and then once every 24 h for 4 days after the ADX subsequently. The proliferating cells were identified with 5-bromo-2-deoxyuridine (BrdU) immunostaining. Long-term inhibition of the neuronal NOS by 7-NI markedly increased the BrdU-labeled cell population density 4-18-fold in the dentate gyrus of the adrenalectomized rats compared to that in the vehicle-injected adrenalectomized rats. Immunoreactivity of serotonin, known as a mediator of granule cell genesis, was detected only in the dentate gyrus of 7-NI-injected adrenalectomized rats. These results indicate that NO may be involved in the cell proliferation in the dentate gyrus of the adrenalecomized rat and that serotonin may mediate the regulatory effect of NO on the cell proliferation in rat dentate gyrus.
Collapse
Affiliation(s)
- C Park
- Department of Anatomy, College of Medicine, Kyunghee University, Hoeki-Dong 1, Dongdaemun-Gu, 130-701, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
11
|
Aging alters the rhythmic expression of vasoactive intestinal polypeptide mRNA but not arginine vasopressin mRNA in the suprachiasmatic nuclei of female rats. J Neurosci 1998. [PMID: 9614250 DOI: 10.1523/jneurosci.18-12-04767.1998] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our laboratory has shown that the ability of the suprachiasmatic nuclei (SCN) to regulate a number of rhythmic processes may be compromised by the time females reach middle age. Therefore, we examined the effects of aging on the rhythmic expression of two neuropeptides synthesized in the SCN, vasoactive intestinal polypeptide (VIP) and arginine vasopressin (AVP), using in situ hybridization. Because both VIP and AVP are outputs of the SCN, we hypothesized that age-related changes in rhythmicity are associated with alterations in the patterns of expression of these peptides. We found that VIP mRNA levels exhibited a 24 hr rhythm in young females, but by the time animals were middle-aged, this rhythm was gone. The attenuation of rhythmicity was associated with a decline in the level of mRNA per cell and in the number of cells in the SCN producing detectable VIP mRNA. AVP mRNA also showed a robust 24 hr rhythm in young females. However, in contrast to VIP, the AVP rhythm was not altered in the aging animals. The amount of mRNA per cell and the number of cells expressing AVP mRNA also was not affected with age. Based on these results we conclude that (1) various components of the SCN are differentially affected by aging; and (2) age-related changes in various rhythms may be attributable to changes in the ability of the SCN to transmit timing information to target sites. This may explain why the deterioration of various rhythmic processes occurs at different rates and at different times during the aging process.
Collapse
|
12
|
Huh Y, Lee W, Cho J, Ahn H. Regional changes of NADPH-diaphorase and neuropeptide Y neurons in the cerebral cortex of aged Fischer 344 rats. Neurosci Lett 1998; 247:79-82. [PMID: 9655597 DOI: 10.1016/s0304-3940(98)00240-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study examined the effects of aging on neuropeptide Y (NPY) and NADPH-diaphorase (NADPH-d)-positive neurons of the cerebral cortex in young (3 months) and aged (24 months) Fischer 344 rats by immunohistochemical and histochemical methods. In the aged group, the number of NPY-immunoreactive (IR)/NADPH-d-positive neurons was not significantly changed in all regions of the cerebral cortex compared to the control group. However, the number of NPY-IR/NADPH-d-negative neurons was significantly decreased in frontal association, primary motor, secondary somatosensory, insular, ectorhinal, perirhinal and auditory cortex in the aged group. In the aged rats, about 5-10% of NPY-IR/NADPH-d-positive neurons were dystrophic and scattered within the cerebral cortex. These results suggested that NPY-IR neurons that do not contain NADPH-d are affected by aging and that aging influences NPY-IR/NADPH-d-negative neurons in a region-specific pattern within the cerebral cortex of rats.
Collapse
Affiliation(s)
- Y Huh
- Department of Anatomy, College of Medicine, Kyunghee University, Kohwang Medical Research Institute, Seoul, South Korea
| | | | | | | |
Collapse
|