1
|
Pharmacological traits of delta opioid receptors: pitfalls or opportunities? Psychopharmacology (Berl) 2013; 228:1-18. [PMID: 23649885 PMCID: PMC3679311 DOI: 10.1007/s00213-013-3129-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/15/2013] [Indexed: 12/11/2022]
Abstract
RATIONALE Delta opioid receptors (DORs) have been considered as a potential target to relieve pain as well as treat depression and anxiety disorders and are known to modulate other physiological responses, including ethanol and food consumption. A small number of DOR-selective drugs are in clinical trials, but no DOR-selective drugs have been approved by the Federal Drug Administration and some candidates have failed in phase II clinical trials, highlighting current difficulties producing effective delta opioid-based therapies. Recent studies have provided new insights into the pharmacology of the DOR, which is often complex and at times paradoxical. OBJECTIVE This review will discuss the existing literature focusing on four aspects: (1) Two DOR subtypes have been postulated based on differences in pharmacological effects of existing DOR-selective ligands. (2) DORs are expressed ubiquitously throughout the body and central nervous system and are, thus, positioned to play a role in a multitude of diseases. (3) DOR expression is often dynamic, with many reports of increased expression during exposure to chronic stimuli, such as stress, inflammation, neuropathy, morphine, or changes in endogenous opioid tone. (4) A large structural variety in DOR ligands implies potential different mechanisms of activating the receptor. CONCLUSION The reviewed features of DOR pharmacology illustrate the potential benefit of designing tailored or biased DOR ligands.
Collapse
|
2
|
Bowman BR, Kumar NN, Hassan SF, McMullan S, Goodchild AK. Brain sources of inhibitory input to the rat rostral ventrolateral medulla. J Comp Neurol 2013; 521:213-32. [PMID: 22740031 DOI: 10.1002/cne.23175] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 05/02/2012] [Accepted: 06/20/2012] [Indexed: 12/19/2022]
Abstract
The rostral ventrolateral medulla (RVLM) contains neurons critical for cardiovascular, respiratory, metabolic, and motor control. The activity of these neurons is controlled by inputs from multiple identified brain regions; however, the neurochemistry of these inputs is largely unknown. Gamma-aminobutyric acid (GABA) and enkephalin tonically inhibit neurons within the RVLM. The aim of this study was to identify all brain regions that provide GABAergic or enkephalinergic input to the rat RVLM. Neurons immunoreactive for cholera toxin B (CTB-ir), retrogradely transported from the RVLM, were assessed for expression of glutamic acid decarboxylase (GAD67) or preproenkephalin (PPE) mRNA using in situ hybridization. GAD67 mRNA was expressed in CTB-ir neurons in the following regions: the nucleus of the solitary tract (NTS, 6% of CTB-ir neurons), area postrema (AP, 8%), caudal ventrolateral medulla (17%), midline raphe (40%), ventrolateral periaqueductal gray (VLPAG, 15%), lateral hypothalamic area (LHA, 25%), central nucleus of the amygdala (CeA, 77%), sublenticular extended amygdala (SLEA, 86%), interstitial nucleus of the posterior limb of the anterior commissure (IPAC, 56%), bed nucleus of the stria terminals (BNST, 59%), and medial preoptic area (MPA, 53%). PPE mRNA was expressed in CTB-ir neurons in the following regions: the NTS (14% of CTB-ir neurons), midline raphe (26%), LHA (22%), zona incerta (ZI, 15%), CeA (5%), paraventricular nucleus (PVN, 13%), SLEA (66%), and MPA (26%). Thus, limited brain regions contribute GABAergic and/or enkephalinergic input to the RVLM. Multiple neurochemically distinct pathways originate from these brain regions projecting to the RVLM.
Collapse
Affiliation(s)
- Belinda R Bowman
- Australian School of Advanced Medicine, Macquarie University, 2109, NSW Australia
| | | | | | | | | |
Collapse
|
3
|
Pilowsky PM, Lung MSY, Spirovski D, McMullan S. Differential regulation of the central neural cardiorespiratory system by metabotropic neurotransmitters. Philos Trans R Soc Lond B Biol Sci 2009; 364:2537-52. [PMID: 19651655 DOI: 10.1098/rstb.2009.0092] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Central neurons in the brainstem and spinal cord are essential for the maintenance of sympathetic tone, the integration of responses to the activation of reflexes and central commands, and the generation of an appropriate respiratory motor output. Here, we will discuss work that aims to understand the role that metabotropic neurotransmitter systems play in central cardiorespiratory mechanisms. It is well known that blockade of glutamatergic, gamma-aminobutyric acidergic and glycinergic pathways causes major or even complete disruption of cardiorespiratory systems, whereas antagonism of other neurotransmitter systems barely affects circulation or ventilation. Despite the lack of an 'all-or-none' role for metabotropic neurotransmitters, they are nevertheless significant in modulating the effects of central command and peripheral adaptive reflexes. Finally, we propose that a likely explanation for the plethora of neurotransmitters and their receptors on cardiorespiratory neurons is to enable differential regulation of outputs in response to reflex inputs, while at the same time maintaining a tonic level of sympathetic activity that supports those organs that significantly autoregulate their blood supply, such as the heart, brain, retina and kidney. Such an explanation of the data now available enables the generation of many new testable hypotheses.
Collapse
Affiliation(s)
- Paul M Pilowsky
- Australian School of Advanced Medicine, Dow-Corning Building, Level 1, 3 Innovation Road, Macquarie University, 2109 NSW, Australia.
| | | | | | | |
Collapse
|
4
|
Pilowsky PM, Goodchild AK. Neuropeptides and the Central Neural Regulation of the Cardiorespiratory System. Tzu Chi Med J 2009. [DOI: 10.1016/s1016-3190(09)60019-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
5
|
Pilowsky PM. Neurochemical phenotypes of cardiorespiratory neurons. Respir Physiol Neurobiol 2009; 164:12-7. [PMID: 18707031 DOI: 10.1016/j.resp.2008.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/20/2008] [Accepted: 07/21/2008] [Indexed: 02/07/2023]
Abstract
Interactions between the cardiovascular and respiratory systems have been known for many years but the functional significance of the interactions is still widely debated. Here I discuss the possible role of metabotropic receptors in regulating cardiorespiratory neurons in the brainstem and spinal cord. It is clear that, although much has been discovered, cardiorespiratory regulation is certainly one area that still has a long way to go before its secrets are fully divulged and their function in controlling circulatory and respiratory function is revealed.
Collapse
Affiliation(s)
- Paul M Pilowsky
- Australian School ofAdvanced Medicine, Dow-Corning Building, Level 1, 3 Innovation Road, Macquarie University, Sydney 2109, NSW, Australia.
| |
Collapse
|
6
|
Farnham MMJ, Li Q, Goodchild AK, Pilowsky PM. PACAP is expressed in sympathoexcitatory bulbospinal C1 neurons of the brain stem and increases sympathetic nerve activity in vivo. Am J Physiol Regul Integr Comp Physiol 2008; 294:R1304-11. [DOI: 10.1152/ajpregu.00753.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an excitatory neuropeptide present in the rat brain stem. The extent of its localization within catecholaminergic groups and bulbospinal sympathoexcitatory neurons is not established. Using immunohistochemistry and in situ hybridization, we determined the extent of any colocalization with catecholaminergic and/or bulbospinal projections from the brain stem was determined. PACAP mRNA was found in tyrosine hydroxylase-immunoreactive (TH-ir) neurons in the C1-C3 cell groups. In the rostral ventrolateral medulla (RVLM), PACAP mRNA was found in 84% of the TH-ir neurons and 82% of bulbospinal TH-ir neurons. The functional significance of these PACAP mRNA positive bulbospinal neurons was tested by intrathecal administration of PACAP-38 in anaesthetized rats. Splanchnic sympathetic nerve activity doubled (110%) and heart rate rose significantly (19%), although blood pressure was unaffected. In addition, as previously reported, PACAP was found in the A1 cell group but not in the A5 cell group or in the locus coeruleus. The RVLM is the primary site responsible for the tonic and reflex control of blood pressure through the activity of bulbospinal presympathetic neurons, the majority of which contain TH. The results indicate 1) that pontomedullary neurons containing both TH and PACAP that project to the intermediolateral cell column originate from C1-C3 and not A5, and 2) intrathecal PACAP-38 causes a prolonged, sympathoexcitatory effect.
Collapse
|
7
|
Pilowsky PM, Abbott SB, Burke PGR, Farnham MMJ, Hildreth CM, Kumar NN, Li Q, Lonergan T, McMullan S, Spirovski D, Goodchild AK. METABOTROPIC NEUROTRANSMISSION AND INTEGRATION OF SYMPATHETIC NERVE ACTIVITY BY THE ROSTRAL VENTROLATERAL MEDULLA IN THE RAT. Clin Exp Pharmacol Physiol 2008; 35:508-11. [DOI: 10.1111/j.1440-1681.2008.04906.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Lonergan T, Goodchild AK, Christie MJ, Pilowsky PM. Presynaptic Δ opioid receptors differentially modulate rhythm and pattern generation in the ventral respiratory group of the rat. Neuroscience 2003; 121:959-73. [PMID: 14580946 DOI: 10.1016/s0306-4522(03)00591-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The specific role of the Delta opioid receptor (DOR), in opioid-induced respiratory depression in the ventral respiratory group (VRG) is largely unknown. Here, we sought to determine (1) the relationship between DOR-immunoreactive (ir) boutons, bulbospinal and functionally identified respiratory neurons in the VRG and (2) the effects of microinjection of the selective DOR agonist, D-Pen 2,5-enkephalin (DPDPE), into different subdivisions of the VRG, on phrenic nerve discharge and mean arterial pressure. Following injections of retrograde tracer into the spinal cord or intracellular labelling of respiratory neurons, in Sprague-Dawley rats, brainstem sections were processed for retrograde or intracellular labelling and DOR-ir. Bulbospinal neurons were apposed by DOR-ir boutons regardless of whether they projected to single (cervical or thoracic ventral horn) or multiple (cervical and thoracic ventral horn) targets in the spinal cord. In the VRG, a total of 24 +/- 5% (67 +/- 13/223 +/- 49) of neurons projecting to the cervical ventral horn, and 37 +/- 3% (96 +/- 22/255 +/- 37) of neurons projecting to the thoracic ventral horn, received close appositions from DOR-ir boutons. Furthermore, DOR-ir boutons closely apposed six of seven intracellularly labelled neurons, whilst the remaining neuron itself possessed boutons that were DOR-ir. DPDPE was microinjected (10 mM, 60 nl, unilateral) into regions of respiratory field activity in the VRG of anaesthetised, vagotomised rats, and the effects on phrenic nerve discharge and mean arterial pressure were recorded. DPDPE depressed phrenic nerve amplitude, with little effect on phrenic nerve frequency in the Bötzinger complex, pre-Bötzinger complex and rVRG, the greatest effects occurring in the Bötzinger complex. The results indicate that the DOR is located on afferent inputs to respiratory neurons in the VRG. Activation of the DOR in the VRG is likely to inhibit the release of neurotransmitters from afferent inputs that modulate the pattern of activity of VRG neurons.
Collapse
Affiliation(s)
- T Lonergan
- Department of Pharmacology, University of Sydney, Camperdown, New South Wales, 2006, Australia
| | | | | | | |
Collapse
|
9
|
Abstract
The central nervous system plays a critical role in the management of blood flow to the tissues and its return to the heart and lungs. This is achieved by a complex interplay of neural efferent pathways, humoral mechanisms and afferent pathways. In this review, we focus on recent progress (within the past 10 years) that has been made in the sympathetic control of arterial blood pressure with a special emphasis on the role of baroreceptor mechanisms and central neurotransmitters. In particular, we focus on new features since 1991, such as neurotransmission in the nucleus tractus solitarius, the role of neurons in the most caudal part of the ventrolateral medulla oblongata and the increasing understanding of the exquisite control of different sympathetic pathways by different neurotransmitter systems.
Collapse
Affiliation(s)
- Paul M Pilowsky
- Department of Physiology, University of Sydney, Royal North Shore Hospital, Sydney, Australia.
| | | |
Collapse
|
10
|
Milner TA, Drake CT, Aicher SA. C1 adrenergic neurons are contacted by presynaptic profiles containing DELTA-opioid receptor immunoreactivity. Neuroscience 2002; 110:691-701. [PMID: 11934476 DOI: 10.1016/s0306-4522(01)00487-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ligands of the delta-opioid receptor tonically influence sympathetic outflow. Some of the actions of delta-opioid receptor agonists may be mediated through C1 adrenergic neurons in the rostral ventrolateral medulla. The goal of this study was to determine whether C1 adrenergic neurons or their afferents contain delta-opioid receptors. Single sections through the rostral ventrolateral medulla were labeled for delta-opioid receptor using the immunoperoxidase method and the epinephrine synthesizing enzyme phenylethanolamine N-methyltransferase (PNMT) using the immunogold method, and examined at the light and electron microscopic level. Few ( approximately 5% of 903) profiles dually labeled for PNMT and delta-opioid receptor were detected; most of these were dendrites with diameters < 1.5 microm. delta-Opioid receptor immunoreactivity was affiliated with multivesicular bodies in dually labeled perikarya, whereas delta-opioid receptor immunoperoxidase labeling appeared as isolated clusters within both singly and dually labeled dendrites. The majority ( approximately 83% of 338) of delta-opioid receptor-immunoreactive profiles were axons and axon terminals. delta-Opioid receptor-immunoreactive terminals averaged 0.75 microm in diameter, contained numerous large dense-core vesicles and usually formed appositions or asymmetric (excitatory-type) synapses with their targets. The majority (>50% of 250) of delta-opioid receptor-immunoreactive axons and axon terminals contacted PNMT-immunoreactive profiles. Most of the contacts formed by delta-opioid receptor-immunoreactive profiles ( approximately 75% of 132) were on single-labeled PNMT-immunoreactive dendrites with diameters <1.5 microm. The prominent localization of delta-opioid receptors to dense-core vesicle-rich presynaptic profiles suggests that delta-opioid receptor activation by endogenous or exogenous agonists may modulate neuropeptide release. Furthermore, the presence of delta-opioid receptors on axon terminals that form excitatory-type synapses with PNMT-immunoreactive dendrites suggests that delta-opioid receptor ligands may modulate afferent activity to C1 adrenergic neurons. The observation that some PNMT-immunoreactive neurons contain delta-opioid receptor immunoreactivity associated with multivesicular bodies and other intracellular organelles suggests that some C1 adrenergic neurons may present, endocytose and/or recycle delta-opioid receptors.
Collapse
Affiliation(s)
- T A Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021, USA.
| | | | | |
Collapse
|
11
|
Miyawaki T, Goodchild AK, Pilowsky PM. Activation of mu-opioid receptors in rat ventrolateral medulla selectively blocks baroreceptor reflexes while activation of delta opioid receptors blocks somato-sympathetic reflexes. Neuroscience 2002; 109:133-44. [PMID: 11784705 DOI: 10.1016/s0306-4522(01)00439-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of activation of mu and delta-opioid receptors in the rostral ventrolateral medulla (RVLM) on somato-sympathetic, baroreceptor and chemoreceptor reflexes, as well as respiratory rhythmicity in sympathetic nerves, were examined in urethane anaesthetized (1.1-1.2 g/kg) and artificially ventilated Sprague-Dawley rats. Microinjection of the delta-opioid receptor agonist [D-Pen(2,5)]-enkephalin (DPDPE; 8 mM, 50 nl) bilaterally into the RVLM potently inhibited the post-inspiratory-related burst discharges of lumbar sympathetic nerve activity (LSNA) but had only limited effects on splanchnic sympathetic nerve activity (SSNA) and phrenic nerve discharge. Injection of DPDPE into the RVLM strongly attenuated the somato-sympathetic reflex (approximately 50-80%) evoked in the lumbar sympathetic nerve and splanchnic sympathetic nerve by tibial nerve stimulation but had no effect on baroreceptor reflexes and chemoreceptor reflexes evoked by aortic nerve stimulation and brief hypoxia, respectively. Injection of the mu-opioid receptor agonist, [D-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin (DAMGO; 4 mM, 50 nl), also elicited a greater inhibition of LSNA than SSNA accompanied by an abolition of phrenic nerve discharge. Injection of DAMGO inhibited the baroreceptor reflex without significant effect on either the somato-sympathetic or the chemoreceptor reflexes. We propose that opioid peptides diminish specific excitatory and inhibitory inputs to the presympathetic neurons in RVLM via distinct presynaptic receptor subclasses.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Analgesics, Opioid/pharmacology
- Animals
- Baroreflex/drug effects
- Baroreflex/physiology
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Cardiovascular Physiological Phenomena/drug effects
- Electric Stimulation
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Male
- Medulla Oblongata/cytology
- Medulla Oblongata/drug effects
- Medulla Oblongata/metabolism
- Narcotic Antagonists/pharmacology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Phrenic Nerve/drug effects
- Phrenic Nerve/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Respiratory Physiological Phenomena/drug effects
- Sympathetic Fibers, Postganglionic/drug effects
- Sympathetic Fibers, Postganglionic/physiology
- Sympathetic Nervous System/cytology
- Sympathetic Nervous System/drug effects
- Sympathetic Nervous System/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- T Miyawaki
- Department of Physiology, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
12
|
Llewellyn-Smith IJ, Schreihofer AM, Guyenet PG. Distribution and amino acid content of enkephalin-immunoreactive inputs onto juxtacellularly labelled bulbospinal barosensitive neurons in rat rostral ventrolateral medulla. Neuroscience 2002; 108:307-22. [PMID: 11734363 DOI: 10.1016/s0306-4522(01)00415-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The activity of bulbospinal (presympathetic) vasomotor neurons of the rostral ventrolateral medulla is modulated pre- and postsynaptically by exogenously applied opioid agonists. To determine whether these neurons receive direct opioid inputs, we examined the relationship between bulbospinal barosensitive neurons and nerve terminals immunoreactive for enkephalin in the rostral ventrolateral medulla of rats. By light microscopy, we mapped the distribution of close appositions by enkephalin-immunoreactive varicosities on 10 bulbospinal barosensitive neurons labelled in vivo with biotinamide. We also examined four labelled neurons ultrastructurally for synapses by enkephalin-immunoreactive terminals and determined with post-embedding immunogold labelling whether these enkephalin-positive terminals contained amino acids. Enkephalin-immunoreactive varicosities closely apposed all bulbospinal barosensitive neurons. Maps of the dendritic distribution of appositions indicated that fast-conducting bulbospinal barosensitive neurons with myelinated axons (conduction velocity >3 m/s; n=3) received many appositions (up to 470/neuron); and slowly conducting neurons with unmyelinated axons (conduction velocity <0.90 m/s; n=3), substantially fewer. Ultrastructural analysis of three fast- and one slowly conducting bulbospinal barosensitive neurons revealed numerous synapses from enkephalin-immunoreactive terminals on cell bodies and dendrites. Enkephalin-positive terminals synapsing on bulbospinal barosensitive neurons contained one or more amino acid: GABA+glycine, glutamate alone or GABA+glutamate. Enkephalin-immunoreactive terminals located near biotinamide-labelled cells contained a similar variety of amino acids. In summary, enkephalin-immunoreactive terminals in the rostral ventrolateral medulla densely innervate lightly myelinated presympathetic neurons and more sparsely those with unmyelinated axons. Enkephalin is present in both excitatory (glutamate-immunoreactive) and inhibitory (GABA- and/or glycine-immunoreactive) terminals. The data suggest that endogenous enkephalin inhibits amino acid release from terminals that innervate bulbospinal barosensitive neurons of the rostral ventrolateral medulla.
Collapse
|
13
|
Guyenet PG, Stornetta RL, Schreihofer AM, Pelaez NM, Hayar A, Aicher S, Llewellyn-Smith IJ. Opioid signalling in the rat rostral ventrolateral medulla. Clin Exp Pharmacol Physiol 2002; 29:238-42. [PMID: 11906491 DOI: 10.1046/j.1440-1681.2002.03636.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The present article reviews several aspects of opioid signalling in the rostral ventrolateral medulla (RVLM) and their implications for the neural control of blood pressure. 2. In the RVLM, preproenkephalin (PPE) mRNA is expressed by bulbospinal cells that are strongly barosensitive. These putative presympathetic neurons includes C1 and non-C1 neurons. 3. In the RVLM, PPE mRNA is also present in GABAergic neurons that do not project to the thoracic spinal cord. 4. Rostral ventrolateral medulla presympathetic cells receive enkephalinergic inputs and express mu-opioid receptors (MOR). Some of their synaptic inputs also contain MOR. 5. Pre- and post-synaptic modulation of RVLM presympathetic neurons by MOR agonists has been demonstrated in slices of neonate brain. The post-synaptic effect is inhibitory (increased gK). Presynaptic effects include disfacilitation (reduction of glutamate release) and possibly dishinhibition (reduction of GABA release). 6. In conclusion, opioid signalling plays a pervasive role in the medullospinal network that controls sympathetic tone and arterial pressure. Opioid peptides are made by the presympathetic, presumably excitatory, cells of the RVLM and by local GABAergic inhibitory neurons. In addition, RVLM presympathetic neurons are also controlled by opioid peptides at the pre- and post-synaptic level. mu-Opioid receptors are found post-synaptically, whereas presynaptic receptors probably include both mu and delta subtypes. Conditions that trigger the release of opioid peptides by presympathetic neurons or by inputs to these cells are not fully understood and may include decompensated haemorrhage and certain types of peripheral sensory stimulation related to acupuncture.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| | | | | | | | | | | | | |
Collapse
|
14
|
Evans RG, Ventura S, Dampney RA, Ludbrook J. Neural mechanisms in the cardiovascular responses to acute central hypovolaemia. Clin Exp Pharmacol Physiol 2001; 28:479-87. [PMID: 11428384 DOI: 10.1046/j.1440-1681.2001.03473.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The haemodynamic response to acute central hypovolaemia consists of two phases. During phase I, arterial pressure is well maintained in the face of falling cardiac output (CO) by baroreceptor-mediated reflex vasoconstriction and cardio-acceleration. Phase II commences once CO has fallen to a critical level of 50-60% of its resting value, equivalent to loss of approximately 30% of blood volume. 2. During phase II, sympathetic vasoconstrictor and cardiac drive fall abruptly and cardiac vagal drive increases. In humans, this response is invariably associated with fainting and has been termed vasovagal syncope. 3. In both experimental animals and in humans, the responses to acute central hypovolaemia are greatly affected by anaesthetic agents, in that the compensatory responses during phase I (e.g. halothane) or their failure during phase II (e.g. alfentanil) are blunted or abolished. 4. Therefore, our present knowledge of the neurochemical basis of the response to hypovolaemia depends chiefly on the results of experiments in conscious animals. Use of techniques for simulating haemorrhage has greatly enhanced this research effort, by allowing the effects of multiple treatments on the response to acute central hypovolaemia to be tested in the same animal. 5. The results of such experiments indicate that phase II of the response to hypovolaemia is triggered, at least in part, by a signal from cardiac vagal afferents. There is also strong evidence that phase II depends on brainstem delta-opioid receptor and nitrergic mechanisms and can potentially be modulated by circulating or neuronally released adrenocorticotropic hormone, brainstem serotonergic pathways operating through 5-HT1A receptors and opioids acting through mu- and kappa-opioid receptors in the brainstem. 6. Phase II also appears to require input from supramedullary brain centres. Future studies should determine how these neurotransmitter systems interact and their precise neuroanatomical arrangements.
Collapse
Affiliation(s)
- R G Evans
- Department of Physiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | |
Collapse
|
15
|
Aicher SA, Kraus JA, Sharma S, Patel A, Milner TA. Selective distribution of mu-opioid receptors in C1 adrenergic neurons and their afferents. J Comp Neurol 2001; 433:23-33. [PMID: 11283946 DOI: 10.1002/cne.1122] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Agonists of the mu-opioid receptor (MOR) have profound effects on blood pressure, heart rate, and respiration that may be mediated by C1 adrenergic neurons in the rostral ventrolateral medulla (RVL). C1 neurons are sympathoexcitatory and are involved in both tonic and reflex regulation of sympathetic outflow. This study was designed to determine whether C1 neurons, or their afferents, contain MOR. C1 neurons were identified by using an antibody against the epinephrine synthesizing enzyme phenylethanolamine-N-methyl transferase (PNMT), whereas MOR was localized by using an antipeptide antibody that recognizes the cloned MOR, MOR1. Combined immunoperoxidase and immunogold methods were used to examine the cellular distribution of MOR1 relative to PNMT-containing neurons in the RVL. MOR1 was found in 22% of PNMT-containing dendrites (n = 392), whereas MOR1-containing axons or axon terminals contacted 14% of PNMT-containing dendrites. This distribution was heterogenous with regard to dendritic size: PNMT-labeled dendrites containing MOR1 were usually large (60% were >1.2 microm), whereas PNMT-containing dendrites that received MOR1-labeled afferents were usually small (79% were <1.2 microm). Individual dendrites rarely contained MOR1 at both pre- and postsynaptic sites. Together these results suggest that MOR agonists may directly influence the activity of C1 neurons, as well as the activity of select afferents to these cells. Plasmalemmal membrane labeling for MOR1 was more frequent in smaller PNMT-containing dendrites, suggesting that postsynaptic receptors are more readily available for ligand binding in small dendrites, although the receptor was more frequently detected in larger PNMT dendrites. The selective distribution of MORs to specific pre- and postsynaptic sites suggests the receptor may be selectively trafficked to positions where it may regulate afferent activity that is heterogeneously distributed along the dendritic tree of C1 neurons.
Collapse
Affiliation(s)
- S A Aicher
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|