1
|
Russo AF, Hay DL. CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol Rev 2023; 103:1565-1644. [PMID: 36454715 PMCID: PMC9988538 DOI: 10.1152/physrev.00059.2021] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP) is a neuropeptide with diverse physiological functions. Its two isoforms (α and β) are widely expressed throughout the body in sensory neurons as well as in other cell types, such as motor neurons and neuroendocrine cells. CGRP acts via at least two G protein-coupled receptors that form unusual complexes with receptor activity-modifying proteins. These are the CGRP receptor and the AMY1 receptor; in rodents, additional receptors come into play. Although CGRP is known to produce many effects, the precise molecular identity of the receptor(s) that mediates CGRP effects is seldom clear. Despite the many enigmas still in CGRP biology, therapeutics that target the CGRP axis to treat or prevent migraine are a bench-to-bedside success story. This review provides a contextual background on the regulation and sites of CGRP expression and CGRP receptor pharmacology. The physiological actions of CGRP in the nervous system are discussed, along with updates on CGRP actions in the cardiovascular, pulmonary, gastrointestinal, immune, hematopoietic, and reproductive systems and metabolic effects of CGRP in muscle and adipose tissues. We cover how CGRP in these systems is associated with disease states, most notably migraine. In this context, we discuss how CGRP actions in both the peripheral and central nervous systems provide a basis for therapeutic targeting of CGRP in migraine. Finally, we highlight potentially fertile ground for the development of additional therapeutics and combinatorial strategies that could be designed to modulate CGRP signaling for migraine and other diseases.
Collapse
Affiliation(s)
- Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
- Department of Neurology, University of Iowa, Iowa City, Iowa
- Center for the Prevention and Treatment of Visual Loss, Department of Veterans Affairs Health Center, Iowa City, Iowa
| | - Debbie L Hay
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Löken LS, Braz JM, Etlin A, Sadeghi M, Bernstein M, Jewell M, Steyert M, Kuhn J, Hamel K, Llewellyn-Smith IJ, Basbaum A. Contribution of dorsal horn CGRP-expressing interneurons to mechanical sensitivity. eLife 2021; 10:e59751. [PMID: 34061020 PMCID: PMC8245130 DOI: 10.7554/elife.59751] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 05/29/2021] [Indexed: 11/13/2022] Open
Abstract
Primary sensory neurons are generally considered the only source of dorsal horn calcitonin gene-related peptide (CGRP), a neuropeptide critical to the transmission of pain messages. Using a tamoxifen-inducible CalcaCreER transgenic mouse, here we identified a distinct population of CGRP-expressing excitatory interneurons in lamina III of the spinal cord dorsal horn and trigeminal nucleus caudalis. These interneurons have spine-laden, dorsally directed, dendrites, and ventrally directed axons. As under resting conditions, CGRP interneurons are under tonic inhibitory control, neither innocuous nor noxious stimulation provoked significant Fos expression in these neurons. However, synchronous, electrical non-nociceptive Aβ primary afferent stimulation of dorsal roots depolarized the CGRP interneurons, consistent with their receipt of a VGLUT1 innervation. On the other hand, chemogenetic activation of the neurons produced a mechanical hypersensitivity in response to von Frey stimulation, whereas their caspase-mediated ablation led to mechanical hyposensitivity. Finally, after partial peripheral nerve injury, innocuous stimulation (brush) induced significant Fos expression in the CGRP interneurons. These findings suggest that CGRP interneurons become hyperexcitable and contribute either to ascending circuits originating in deep dorsal horn or to the reflex circuits in baseline conditions, but not in the setting of nerve injury.
Collapse
Affiliation(s)
- Line S Löken
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Joao M Braz
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Alexander Etlin
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Mahsa Sadeghi
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Mollie Bernstein
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Madison Jewell
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Marilyn Steyert
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Julia Kuhn
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Katherine Hamel
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| | - Ida J Llewellyn-Smith
- Discipline of Physiology, Adelaide Medical School, University of AdelaideAdelaideAustralia
- Department of Cardiology, Flinders Medical CentreBedford ParkAustralia
| | - Allan Basbaum
- Department of Anatomy, University California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
3
|
Mentis AFA, Bougea AM, Chrousos GP. Amyotrophic lateral sclerosis (ALS) and the endocrine system: Are there any further ties to be explored? AGING BRAIN 2021; 1:100024. [PMID: 36911507 PMCID: PMC9997134 DOI: 10.1016/j.nbas.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) belongs to the family of neurodegenerative disorders and is classified as fronto-temporal dementia (FTD), progressive muscular atrophy, primary lateral sclerosis, and pseudobulbar palsy. Even though endocrine dysfunction independently impacts the ALS-related survival rate, the complex connection between ALS and the endocrine system has not been studied in depth. Here we review earlier and recent findings on how ALS interacts with hormones a) of the hypothalamus and pituitary gland, b) the thyroid gland, c) the pancreas, d) the adipose tissue, e) the parathyroid glands, f) the bones, g) the adrenal glands, and h) the gonads (ovaries and testes). Of note, endocrine issues should always be explored in patients with ALS, especially those with low skeletal muscle and bone mass, vitamin D deficiency, and decreased insulin sensitivity (diabetes mellitus). Because ALS is a progressively deteriorating disease, addressing any potential endocrine co-morbidities in patients with this malady is quite important for decreasing the overall ALS-associated disease burden. Importantly, as this burden is estimated to increase globally in the decades to follow, in part because of an increasingly aging population, it is high time for future multi-center, multi-ethnic studies to assess the link between ALS and the endocrine system in significantly larger patient populations. Last, the psychosocial stress experienced by patients with ALS and its psycho-neuro-endocrinological sequelae, including hypothalamic-pituitaryadrenal dysregulation, should become an area of intensive study in the future.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Anastasia M Bougea
- Memory & Movement Disorders Clinic, 1st Department of Neurology, Aeginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.,UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| |
Collapse
|
4
|
Dorsal Horn of Mouse Lumbar Spinal Cord Imaged with CLARITY. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3689380. [PMID: 32855963 PMCID: PMC7443243 DOI: 10.1155/2020/3689380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022]
Abstract
The organization of the mouse spinal dorsal horn has been delineated in 2D for the six Rexed laminae in our publication Atlas of the Spinal Cord: Mouse, Rat, Rhesus, Marmoset, and Human. In the present study, the tissue clearing technique CLARITY was used to observe the cyto- and chemoarchitecture of the mouse spinal cord in 3D, using a variety of immunohistochemical markers. We confirm prior observations regarding the location of glycine and serotonin immunoreactivities. Novel observations include the demonstration of numerous calcitonin gene-related peptide (CGRP) perikarya, as well as CGRP fibers and terminals in all laminae of the dorsal horn. We also observed sparse choline acetyltransferase (ChAT) immunoreactivity in small perikarya and fibers and terminals in all dorsal horn laminae, while gamma aminobutyric acid (GABA) and glutamate decarboxylase-67 (GAD67) immunoreactivities were found only in small perikarya and fibers. Finally, numerous serotonergic fibers were observed in all laminae of the dorsal horn. In conclusion, CLARITY confirmed the 2D immunohistochemical properties of the spinal cord. Furthermore, we observed novel anatomical characteristics of the spinal cord and demonstrated that CLARITY can be used on spinal cord tissue to examine many proteins of interest.
Collapse
|
5
|
Kälin S, Miller KR, Kälin RE, Jendrach M, Witzel C, Heppner FL. CNS myeloid cells critically regulate heat hyperalgesia. J Clin Invest 2018; 128:2774-2786. [PMID: 29634489 DOI: 10.1172/jci95305] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/27/2018] [Indexed: 11/17/2022] Open
Abstract
Activation of non-neuronal microglia is thought to play a causal role in spinal processing of neuropathic pain. To specifically investigate microglia-mediated effects in a model of neuropathic pain and overcome the methodological limitations of previous approaches exploring microglia function upon nerve injury, we selectively ablated resident microglia by intracerebroventricular ganciclovir infusion into male CD11b-HSVTK-transgenic mice, which was followed by a rapid, complete, and persistent (23 weeks) repopulation of the CNS by peripheral myeloid cells. In repopulated mice that underwent sciatic nerve injury, we observed a normal response to mechanical stimuli, but an absence of thermal hypersensitivity ipsilateral to the injured nerve. Furthermore, we found that neuronal expression of calcitonin gene-related peptide (CGRP), which is a marker of neurons essential for heat responses, was diminished in the dorsal horn of the spinal cord in repopulated mice. These findings identify distinct mechanisms for heat and mechanical hypersensitivity and highlight a crucial contribution of CNS myeloid cells in the facilitation of noxious heat.
Collapse
Affiliation(s)
| | | | | | | | - Christian Witzel
- Department of Plastic Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Frank L Heppner
- Department of Neuropathology and.,Cluster of Excellence, NeuroCure, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| |
Collapse
|
6
|
Role of calcitonin gene-related peptide in nociception resulting from hind paw incision in rats. J ANAT SOC INDIA 2017. [DOI: 10.1016/j.jasi.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Kibaly C, Lin HY, Loh HH, Law PY. Spinal or supraspinal phosphorylation deficiency at the MOR C-terminus does not affect morphine tolerance in vivo. Pharmacol Res 2017; 119:153-168. [PMID: 28179123 DOI: 10.1016/j.phrs.2017.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/20/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022]
Abstract
The development of tolerance to morphine, one of the most potent analgesics, in the management of chronic pain is a significant clinical problem and its mechanisms are poorly understood. Morphine exerts its pharmacological effects via the μ-opioid receptor (MOR). Tolerance is highly connected to G-protein-coupled receptors (GPCR) phosphorylation and desensitization increase. Because morphine desensitization previously has been shown to be MOR phosphorylation- and ß-arrestin2-independent (in contrast to agonists such as fentanyl), we examined the contribution of phosphorylation of the entire C-terminus to the development of antinociceptive tolerance to the partial (morphine) and full (fentanyl) MOR agonists in vivo. In MOR knockout (MORKO) mice, we delivered via lentivirus the genes encoding the wild-type MOR (WTMOR) or a phosphorylation-deficient MOR (Cterm(-S/T)MOR) in which all of the serine and threonine residues were mutated to alanine into the ventrolateral periaqueductal grey matter (vlPAG) or lumbar spinal cord (SC), structures that are involved in nociception. We compared the analgesic ED50 in WTMOR- and Cterm(-S/T)MOR-expressing MORKO mice before and after morphine or fentanyl tolerance was induced. Morphine acute antinociception was partially restored in WTMOR- or Cterm(-S/T)MOR-transferred MORKO mice. Fentanyl acute antinociception was observed only in MORKO mice with the transgenes expressed in the SC. Morphine antinociceptive tolerance was not affected by expressing Cterm(-S/T)MOR in the vlPAG or SC of MORKO mice. Fentanyl-induced tolerance in MORKO mice expressing WTMOR or Cterm(-S/T)MOR, is greater than morphine-induced tolerance. Thus, MOR C-terminus phosphorylation does not appear to be critical for morphine tolerance in vivo.
Collapse
Affiliation(s)
- Cherkaouia Kibaly
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Hong-Yiou Lin
- Beaumont Hospital, 3601 West 13 Mile Road, Royal Oak, MI 48073, USA
| | - Horace H Loh
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ping-Yee Law
- Department of Pharmacology and Basic Research Center on Molecular and Cell Biology of Drug Addiction, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Kestell GR, Anderson RL, Clarke JN, Haberberger RV, Gibbins IL. Primary afferent neurons containing calcitonin gene-related peptide but not substance P in forepaw skin, dorsal root ganglia, and spinal cord of mice. J Comp Neurol 2015; 523:2555-69. [PMID: 26010480 DOI: 10.1002/cne.23804] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 12/11/2022]
Abstract
In mice dorsal root ganglia (DRG), some neurons express calcitonin gene-related peptide (CGRP) without substance P (SP; CGRP(+) SP(-) ). The projections and functions of these neurons are unknown. Therefore, we combined in vitro axonal tracing with multiple-labeling immunohistochemistry to neurochemically define these neurons and characterize their peripheral and central projections. Cervical spinal cord, DRG, and forepaw skin were removed from C57Bl/6 mice and multiple-labeled for CGRP, SP, and either marker for the sensory neuron subpopulations transient receptor potential vanilloid type 1 (TRPV1), neurofilament 200 (NF200), or vesicular glutamate transporter 2 (VGluT1). To determine central projections of CGRP(+) SP(-) neurons, Neurobiotin (NB) was applied to the C7 ventral ramus and visualized in DRG and spinal cord sections colabeled for CGRP and SP. Half (50%) of the CGRP-immunoreactive DRG neurons lacked detectable SP and had a mean soma size of 473 ± 14 μm(2) (n = 5); 89% of the CGRP(+) SP(-) neurons expressed NF200 (n = 5), but only 32% expressed TRPV1 (n = 5). Cutaneous CGRP(+) SP(-) fibers were numerous within dermal papillae and around hair shafts (n = 4). CGRP(+) SP(-) boutons were prevalent in lateral lamina I and in lamina IV/V of the dorsal horn (n = 5). NB predominantly labeled fibers penetrating lamina IV/V, 6 ± 3% contained CGRP (n = 5), and 21 ± 2% contained VGluT1 (n = 3). CGRP(+) SP(-) afferent neurons are likely to be non-nociceptive. Their soma size, neurochemical profile, and peripheral and central targets suggest that CGRP(+) SP(-) neurons are polymodal mechanoceptors.
Collapse
Affiliation(s)
- Garreth R Kestell
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Rebecca L Anderson
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Jennifer N Clarke
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Rainer V Haberberger
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Ian L Gibbins
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
9
|
McCarthy CJ, Tomasella E, Malet M, Seroogy KB, Hökfelt T, Villar MJ, Gebhart GF, Brumovsky PR. Axotomy of tributaries of the pelvic and pudendal nerves induces changes in the neurochemistry of mouse dorsal root ganglion neurons and the spinal cord. Brain Struct Funct 2015; 221:1985-2004. [PMID: 25749859 DOI: 10.1007/s00429-015-1019-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/24/2015] [Indexed: 12/31/2022]
Abstract
Using immunohistochemical techniques, we characterized changes in the expression of several neurochemical markers in lumbar 4-sacral 2 (L4-S2) dorsal root ganglion (DRG) neuron profiles (NPs) and the spinal cord of BALB/c mice after axotomy of the L6 and S1 spinal nerves, major tributaries of the pelvic (targeting pelvic visceral organs) and pudendal (targeting perineum and genitalia) nerves. Sham animals were included. Expression of cyclic AMP-dependent transcription factor 3 (ATF3), calcitonin gene-related peptide (CGRP), transient receptor potential cation channel subfamily V, member 1 (TRPV1), tyrosine hydroxylase (TH) and vesicular glutamate transporters (VGLUT) types 1 and -2 was analysed seven days after injury. L6-S1 axotomy induced dramatic de novo expression of ATF3 in many L6-S1 DRG NPs, and parallel significant downregulations in the percentage of CGRP-, TRPV1-, TH- and VGLUT2-immunoreactive (IR) DRG NPs, as compared to their expression in uninjured DRGs (contralateral L6-S1-AXO; sham mice); VGLUT1 expression remained unaltered. Sham L6-S1 DRGs only showed a small ipsilateral increase in ATF3-IR NPs (other markers were unchanged). L6-S1-AXO induced de novo expression of ATF3 in several lumbosacral spinal cord motoneurons and parasympathetic preganglionic neurons; in sham mice the effect was limited to a few motoneurons. Finally, a moderate decrease in CGRP- and TRPV1-like-immunoreactivities was observed in the ipsilateral superficial dorsal horn neuropil. In conclusion, injury of a mixed visceral/non-visceral nerve leads to considerable neurochemical alterations in DRGs matched, to some extent, in the spinal cord. Changes in these and potentially other nociception-related molecules could contribute to pain due to injury of nerves in the abdominopelvic cavity.
Collapse
Affiliation(s)
- Carly J McCarthy
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - Eugenia Tomasella
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mariana Malet
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Kim B Seroogy
- Department of Neurology, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Marcelo J Villar
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina
| | - G F Gebhart
- Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Pablo R Brumovsky
- Faculty of Biomedical Sciences, School of Biomedical Sciences, Austral University, Av. Juan D. Perón 1500, Pilar, B1629AHJ, Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Department of Anesthesiology, Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
10
|
Oh MH, Oh SY, Lu J, Lou H, Myers AC, Zhu Z, Zheng T. TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:5371-82. [PMID: 24140646 DOI: 10.4049/jimmunol.1300300] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chronic debilitating pruritus is a cardinal feature of atopic dermatitis (AD). Little is known about the underlying mechanisms. Antihistamines lack efficacy in treating itch in AD, suggesting the existence of histamine-independent itch pathways in AD. Transient receptor potential ankyrin 1 (TRPA1) is essential in the signaling pathways that promote histamine-independent itch. In this study, we tested the hypothesis that TRPA1-dependent neural pathways play a key role in chronic itch in AD using an IL-13-transgenic mouse model of AD. In these mice, IL-13 causes chronic AD characterized by intensive chronic itch associated with markedly enhanced growth of dermal neuropeptide-secreting afferent nerve fibers and enhanced expression of TRPA1 in dermal sensory nerve fibers, their dorsal root ganglia, and mast cells. Inhibition of TRPA1 with a specific antagonist in these mice selectively attenuated itch-evoked scratching. Genetic deletion of mast cells in these mice led to significantly diminished itch-scratching behaviors and reduced TRPA1 expression in dermal neuropeptide containing afferents in the AD skin. Interestingly, IL-13 strongly stimulates TRPA1 expression, which is functional in calcium mobilization in mast cells. In accordance with these observations in the AD mice, TRPA1 expression was highly enhanced in the dermal afferent nerves, mast cells, and the epidermis in the lesional skin biopsies from patients with AD, but not in the skin from healthy subjects. These studies demonstrate a novel neural mechanism underlying chronic itch in AD and highlight the complex interactions among TRPA1(+) dermal afferent nerves and TRPA1(+) mast cells in a Th2-dominated inflammatory environment.
Collapse
Affiliation(s)
- Min-Hee Oh
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | | | | | | | | | | | | |
Collapse
|
11
|
McCoy ES, Taylor-Blake B, Zylka MJ. CGRPα-expressing sensory neurons respond to stimuli that evoke sensations of pain and itch. PLoS One 2012; 7:e36355. [PMID: 22563493 PMCID: PMC3341357 DOI: 10.1371/journal.pone.0036355] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 04/02/2012] [Indexed: 01/09/2023] Open
Abstract
Calcitonin gene-related peptide (CGRPα, encoded by Calca) is a classic marker of nociceptive dorsal root ganglia (DRG) neurons. Despite years of research, it is unclear what stimuli these neurons detect in vitro or in vivo. To facilitate functional studies of these neurons, we genetically targeted an axonal tracer (farnesylated enhanced green fluorescent protein; GFP) and a LoxP-stopped cell ablation construct (human diphtheria toxin receptor; DTR) to the Calca locus. In culture, 10–50% (depending on ligand) of all CGRPα-GFP-positive (+) neurons responded to capsaicin, mustard oil, menthol, acidic pH, ATP, and pruritogens (histamine and chloroquine), suggesting a role for peptidergic neurons in detecting noxious stimuli and itch. In contrast, few (2.2±1.3%) CGRPα-GFP+ neurons responded to the TRPM8-selective cooling agent icilin. In adult mice, CGRPα-GFP+ cell bodies were located in the DRG, spinal cord (motor neurons and dorsal horn neurons), brain and thyroid—reproducibly marking all cell types known to express Calca. Half of all CGRPα-GFP+ DRG neurons expressed TRPV1, ∼25% expressed neurofilament-200, <10% contained nonpeptidergic markers (IB4 and Prostatic acid phosphatase) and almost none (<1%) expressed TRPM8. CGRPα-GFP+ neurons innervated the dorsal spinal cord and innervated cutaneous and visceral tissues. This included nerve endings in the epidermis and on guard hairs. Our study provides direct evidence that CGRPα+ DRG neurons respond to agonists that evoke pain and itch and constitute a sensory circuit that is largely distinct from nonpeptidergic circuits and TRPM8+/cool temperature circuits. In future studies, it should be possible to conditionally ablate CGRPα-expressing neurons to evaluate sensory and non-sensory functions for these neurons.
Collapse
Affiliation(s)
- Eric S McCoy
- Department of Cell and Molecular Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | | |
Collapse
|
12
|
Mesnage B, Gaillard S, Godin AG, Rodeau JL, Hammer M, Von Engelhardt J, Wiseman PW, De Koninck Y, Schlichter R, Cordero-Erausquin M. Morphological and functional characterization of cholinergic interneurons in the dorsal horn of the mouse spinal cord. J Comp Neurol 2012; 519:3139-58. [PMID: 21618225 DOI: 10.1002/cne.22668] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Endogenous acetylcholine is an important modulator of sensory processing, especially at the spinal level, where nociceptive (pain-related) stimuli enter the central nervous system and are integrated before being relayed to the brain. To decipher the organization of the local cholinergic circuitry in the spinal dorsal horn, we used transgenic mice expressing enchanced green fluorescent protein specifically in cholinergic neurons (ChAT::EGFP) and characterized the morphology, neurochemistry, and firing properties of the sparse population of cholinergic interneurons in this area. Three-dimensional reconstruction of lamina III ChAT::EGFP neurons based either on their intrinsic fluorescence or on intracellular labeling in live tissue demonstrated that these neurons have long and thin processes that grow preferentially in the dorsal direction. Their dendrites and axon are highly elongated in the rostrocaudal direction, beyond the limits of a single spinal segment. These unique morphological features suggest that dorsal horn cholinergic interneurons are the main contributors to the plexus of cholinergic processes located in lamina IIi, just dorsal to their cell bodies. In addition, immunostainings demonstrated that dorsal horn cholinergic interneurons in the mouse are γ-aminobutyric acidergic and express nitric oxide synthase, as in rats. Finally, electrophysiological recordings from these neurons in spinal cord slices demonstrate that two-thirds of them have a repetitive spiking pattern with frequent rebound spikes following hyperpolarization. Altogether our results indicate that, although they are rare, the morphological and functional features of cholinergic neurons enable them to collect segmental information in superficial layers of the dorsal horn and to modulate it over several segments.
Collapse
Affiliation(s)
- Bruce Mesnage
- Institut des Neurosciences Cellulaires et Intégratives, UPR3212 CNRS, Dept. Nociception et Douleur, 67084 Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Acupuncture as treatment of hot flashes and the possible role of calcitonin gene-related Peptide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:579321. [PMID: 22110545 PMCID: PMC3205728 DOI: 10.1155/2012/579321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 08/29/2011] [Indexed: 11/18/2022]
Abstract
The mechanisms behind hot flashes in menopausal women are not fully understood. The flashes in women are probably preceded by and actually initiated by a sudden downward shift in the set point for the core body temperature in the thermoregulatory center that is affected by sex steroids, β-endorphins, and other central neurotransmitters. Treatments that influence these factors may be expected to reduce hot flashes. Since therapy with sex steroids for hot flashes has appeared to cause a number of side effects and risks and women with hot flashes and breast cancer as well as men with prostate cancer and hot flashes are prevented from sex steroid therapy there is a great need for alternative therapies. Acupuncture affecting the opioid system has been suggested as an alternative treatment option for hot flashes in menopausal women and castrated men. The heat loss during hot flashes may be mediated by the potent vasodilator and sweat gland activator calcitonin gene-related peptide (CGRP) the concentration of which increases in plasma during flashes in menopausal women and, according to one study, in castrated men with flushes. There is also evidence for connections between the opioid system and the release of CGRP. In this paper we discuss acupuncture as a treatment alternative for hot flashes and the role of CGRP in this context.
Collapse
|
14
|
Chew DJ, Carlstedt T, Shortland PJ. A comparative histological analysis of two models of nerve root avulsion injury in the adult rat. Neuropathol Appl Neurobiol 2011; 37:613-32. [DOI: 10.1111/j.1365-2990.2011.01176.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Resveratrol improves cognitive function in mice by increasing production of insulin-like growth factor-I in the hippocampus. J Nutr Biochem 2011; 22:1150-9. [PMID: 21295960 DOI: 10.1016/j.jnutbio.2010.09.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 09/16/2010] [Accepted: 09/27/2010] [Indexed: 11/21/2022]
Abstract
We examined whether resveratrol increases insulin-like growth factor-I (IGF-I) production in the hippocampus by stimulating sensory neurons in the gastrointestinal tract, thereby improving cognitive function in mice. Resveratrol increased calcitonin gene-related peptide (CGRP) release from dorsal root ganglion (DRG) neurons isolated from wild-type (WT) mice. Increases in tissue levels of CGRP, IGF-I, and IGF-I mRNA and immunohistochemical expression of IGF-I were observed in the hippocampus at 3 weeks after oral administration of resveratrol in WT mice. Significant enhancement of angiogenesis and neurogenesis was observed in the dentate gyrus of the hippocampus in these animals (P<.01). Improvement of spatial learning in the Morris water maze was observed in WT mice after administration of resveratrol. None of the effects of resveratrol observed in WT mice were seen after resveratrol administration in CGRP-knockout (CGRP(-/-)) mice. Although red wine containing 20 mg/L of resveratrol produced effects similar to those of resveratrol administrationl in WT mice, neither red wine containing 3.1 mg/L of resveratrol nor white wine exhibited such effects in WT mice. Resveratrol was undetectable in the hippocampus of WT mice administered resveratrol and red wine containing 20 mg/L of resveratrol. These observations strongly suggest that resveratrol increases hippocampal IGF-I production via sensory neuron stimulation in the gastrointestinal tract, thereby improving cognitive function in mice.
Collapse
|
16
|
Zhao J, Harada N, Kurihara H, Nakagata N, Okajima K. Cilostazol improves cognitive function in mice by increasing the production of insulin-like growth factor-I in the hippocampus. Neuropharmacology 2009; 58:774-83. [PMID: 20035772 DOI: 10.1016/j.neuropharm.2009.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 11/19/2009] [Accepted: 12/13/2009] [Indexed: 10/20/2022]
Abstract
Insulin-like growth factor I (IGF-I) exerts beneficial effects on cognitive function by inducing angiogenesis and neurogenesis in the hippocampus. We demonstrated that stimulation of sensory neurons in the gastrointestinal tract increased IGF-I production in the hippocampus, and thereby improved cognitive function in mice. Since cAMP plays a critical role in stimulation of sensory neurons, the type III phosphodiesterase (PDE3) inhibitor cilostazol might increase IGF-I production in the hippocampus by stimulating sensory neurons and thus improve cognitive function in mice. We tested this hypothesis in the present study. Cilostazol increased the release of calcitonin gene-related peptide (CGRP) and levels of cAMP in dorsal root ganglion (DRG) neurons isolated from wild-type (WT) mice. Tissue levels of cAMP in the DRG and hippocampus and those of CGRP, IGF-I, and IGF-I mRNA in the hippocampus were increased after 4-week oral administration of cilostazol to WT mice. Levels of expression of c-fos in the spinal dorsal horns, parabrachial nuclei, the solitary tract nucleus, and the hippocampus were also increased in these animals. Significant enhancement of angiogenesis and neurogenesis was observed in the dentate gyrus of the hippocampus after cilostazol administration in WT mice. Significant improvement of spatial learning was also observed in WT mice administered cilostazol. However, none of these effects in WT mice were observed in CGRP-knockout mice. These observations suggest that cilostazol may improve cognitive function in mice by increasing the hippocampal production of IGF-I through stimulation of sensory neurons.
Collapse
Affiliation(s)
- Juan Zhao
- Departments of Translational Medical Science Research, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | |
Collapse
|
17
|
Harada N, Narimatsu N, Kurihara H, Nakagata N, Okajima K. Stimulation of sensory neurons improves cognitive function by promoting the hippocampal production of insulin-like growth factor-I in mice. Transl Res 2009; 154:90-102. [PMID: 19595440 DOI: 10.1016/j.trsl.2009.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 04/19/2009] [Accepted: 05/03/2009] [Indexed: 12/16/2022]
Abstract
Calcitonin gene-related peptide (CGRP) increases the production of insulin-like growth factor-I (IGF-I) in the mouse brain. IGF-I exerts beneficial effects on the cognitive function by increasing synaptic transmission and by inducing angiogenesis and neurogenesis in the hippocampus. In the current study, we examined whether stimulation of sensory neurons by capsaicin improved the cognitive function by increasing the production of IGF-I in the hippocampus using wild-type (WT) and CGRP-knockout (CGRP-/-) mice. Significant increases of the hippocampal tissue levels of CGRP, IGF-I, and IGF-I messenger RNA (mRNA) were observed after capsaicin administration in WT mice (P < 0.01) but not in CGRP-/- mice. Increase in the expression of c-fos was also observed in the spinal dorsal horn, the parabrachial nuclei, and the hippocampus after capsaicin administration in WT mice but not in CGRP-/- mice. Significant enhancement of angiogenesis and neurogenesis was observed in the dentate gyrus of the hippocampus after capsaicin administration in WT mice (P < 0.01) but not in CGRP-/- mice. Although capsaicin administration improved spatial learning in WT mice, no such effect was observed in CGRP-/- mice. Capsaicin-induced improvement of the spatial learning was reversed by administration of an anti-IGF-I antibody and by that of a CGRP receptor antagonist CGRP (8-37) in WT mice. The administration of IGF-I improved the spatial learning in both WT and CGRP-/- mice. These observations strongly suggest that the stimulation of sensory neurons by capsaicin might increase IGF-I production via increasing the hippocampal tissue CGRP levels, and it may thereby promote angiogenesis and neurogenesis to produce improvement of the cognitive function in mice.
Collapse
Affiliation(s)
- Naoaki Harada
- Department of Translational Medical Science Research, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | |
Collapse
|
18
|
Narimatsu N, Harada N, Kurihara H, Nakagata N, Sobue K, Okajima K. Donepezil improves cognitive function in mice by increasing the production of insulin-like growth factor-I in the hippocampus. J Pharmacol Exp Ther 2009; 330:2-12. [PMID: 19318594 DOI: 10.1124/jpet.108.147280] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Insulin-like growth factor-I (IGF-I) exerts beneficial effects on cognitive function. The selective acetylcholinesterase inhibitor donepezil increases serum IGF-I levels in elderly subjects. Because stimulation of sensory neurons induces IGF-I production by releasing calcitonin gene-related peptide (CGRP) in the mouse brain, we hypothesized that donepezil increases IGF-I production by sensory neuron stimulation to improve the cognitive function in mice. Donepezil, but not tacrine, increased the CGRP release from dorsal root ganglion neurons isolated from wild-type (WT) mice. Pretreatment with the protein kinase A inhibitor KT5720 [(9S,10S,12R)-2,3,9,10,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg: 3',2',1'-kl]pyrrolo[3,4-i][1,6]-benzo-diazocine-10-carboxylic acid hexyl ester] reversed the effects induced by donepezil. Increase in tissue levels of CGRP, IGF-I, and IGF-I mRNA in the hippocampus was observed at 4 weeks after oral administration of donepezil in WT mice. In these animals, c-fos expression in spinal dorsal horns, parabrachial nuclei, the solitary tract nucleus, and the hippocampus was increased. Enhancement in angiogenesis and neurogenesis was observed in the dentate gyrus of the hippocampus of WT mice after donepezil administration. Improvement of spatial learning was observed in WT mice after donepezil administration. Oral administration of tacrine for 4 weeks produced none of the aforementioned effects induced by donepezil in WT mice. However, none of the effects observed in WT mice was seen after donepezil administration in CGRP-knockout mice and WT mice subjected to functional denervation. These observations suggest that donepezil may improve cognitive function in mice by increasing the hippocampal production of IGF-I through sensory neuron stimulation. These effects of donepezil may not be dependent on its acetylcholinesterase inhibitory activity.
Collapse
Affiliation(s)
- Noriko Narimatsu
- Department of Anesthesiology and Medical Crisis Management, Nagoya City University Graduate School of Medical Sciences, Kawasumi 1, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | | | | | | | | | | |
Collapse
|
19
|
dsAAV type 2-mediated gene transfer of MORS196A-EGFP into spinal cord as a pain management paradigm. Proc Natl Acad Sci U S A 2007; 104:20096-101. [PMID: 18056815 DOI: 10.1073/pnas.0703409104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We previously reported that mutations in the mu-opioid receptor (MOR), S196L or S196A, rendered MOR responsive to the opioid antagonist naloxone without altering the agonist phenotype. Subsequently, a mouse strain carrying the S196A mutation exhibited in vivo naloxone antinociceptive activity without the development of tolerance. In this study we investigated the possibility of combining the in vivo site-directed delivery of MORS196A and systemic naloxone administration as a paradigm for pain management. Double-stranded adenoassociated virus type 2 (dsAAV2) was used to deliver MORS196A-EGFP by injecting the virus into the spinal cord (S2/S3) dorsal horn region of ICR mice. MORS196A-EGFP fluorescence colocalized with some calcitonin gene-related peptide and neuron-specific protein immunoreactivity in the superficial layers of the dorsal horn 1 week after injection and lasted for at least 6 months. In mice injected with the mutant receptor, morphine induced similar antinociceptive responses and tolerance development or precipitated withdrawal symptoms and reward effects, similar to those in the control mice (saline injected into the spinal cord). Conversely, in the dsAAV2-injected mice, naloxone produced antinociceptive effects at the spinal level but not at the supraspinal level, whereas naloxone had no measurable effect on the control mice. Furthermore, the chronic administration of naloxone to mice injected with dsAAV2-MORS196A-EGFP did not induce tolerance, dependence, or reward responses. Thus, our current approach to activate a mutant receptor, but not the endogenous receptor, with an opioid antagonist represents an alternative to the use of traditional opioid agonists for pain management.
Collapse
|
20
|
Nakayama T, Harada N, Asano M, Nomura N, Saito T, Mishima A, Okajima K. Atrial natriuretic peptide reduces ischemia/reperfusion-induced spinal cord injury in rats by enhancing sensory neuron activation. J Pharmacol Exp Ther 2007; 322:582-90. [PMID: 17522345 DOI: 10.1124/jpet.107.120725] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently demonstrated that calcitonin gene-related peptide (CGRP) released from sensory neurons reduces spinal cord injury (SCI) by inhibiting neutrophil activation through an increase in the endothelial production of prostacyclin (PGI(2)). Carperitide, a synthetic alpha-human atrial natriuretic peptide (ANP), reduces ischemia/reperfusion (I/R)-induced tissue injury. However, its precise therapeutic mechanism(s) remains to be elucidated. In the present study, we examined whether ANP reduces I/R-induced spinal cord injury by enhancing sensory neuron activation using rats. ANP increased CGRP release and cellular cAMP levels in dorsal root ganglion neurons isolated from rats in vitro. The increase in CGRP release induced by ANP was reversed by pretreatment with capsazepine, an inhibitor of vanilloid receptor-1 activation, or with (9S, 10S, 12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]-benzodiazocine-10-carboxylic acid hexyl ester (KT5720), an inhibitor of protein kinase A (PKA), suggesting that ANP might increase CGRP release from sensory neurons by activating PKA through an increase in the cellular cAMP level. Spinal cord ischemia was induced in rats using a balloon catheter placed in the aorta. ANP reduced mortality and motor disturbances by inhibiting reduction of the number of motor neurons in animals subjected to SCI. ANP significantly enhanced I/R-induced increases in spinal cord tissue levels of CGRP and 6-keto-prostaglandin F(1alpha). a stable metabolite of PGI(2). ANP inhibited I/R-induced increases in spinal cord tissue levels of tumor necrosis factor and myeloperoxidase. Pretreatment with 4'-chloro-3-methoxycinnamanilide (SB366791), a specific vanilloid receptor-1 antagonist, and indomethacin reversed the effects of ANP. These results strongly suggest that ANP might reduce I/R-induced SCI in rats by inhibiting neutrophil activation through enhancement of sensory neuron activation.
Collapse
Affiliation(s)
- Takuya Nakayama
- Departments of Cardiovascular Surgery, Nagoya City University Graduate School of Medical Sciences, Mizuho-cho, Mizuho-ku, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Ruscheweyh R, Forsthuber L, Schoffnegger D, Sandkühler J. Modification of classical neurochemical markers in identified primary afferent neurons with Aβ-, Aδ-, and C-fibers after chronic constriction injury in mice. J Comp Neurol 2007; 502:325-36. [PMID: 17348016 DOI: 10.1002/cne.21311] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
It is functionally important to differentiate between primary afferent neurons with A-fibers, which are nociceptive or nonnociceptive, and C-fibers, which are mainly nociceptive. Neurochemical markers such as neurofilament 200 (NF200), substance P (SP), and isolectin B4 (IB4) have been useful to distinguish between A- and C-fiber neurons. However, the expression patterns of these markers change after peripheral nerve injury, so that it is not clear whether they still distinguish between fiber types in models of neuropathic pain. We identified neurons with Abeta-, Adelta-, and C-fibers by their conduction velocity (corrected for utilization time) in dorsal root ganglia taken from mice after a chronic constriction injury (CCI) of the sciatic nerve and control mice, and later stained them for IB4, SP, calcitonin gene-related peptide (CGRP), NF200, and neuropeptide Y (NPY). NF200 remained a good marker for A-fiber neurons, and IB4 and SP remained good markers for C-fiber neurons after CCI. NPY was absent in controls but was expressed in A-fiber neurons after CCI. After CCI, a group of C-fiber neurons emerged that expressed none of the tested markers. The size distribution of the markers was investigated in larger samples of unidentified dorsal root ganglion neurons and, together with the results from the identified neurons, provided only limited evidence for the expression of SP in Abeta-fiber neurons after CCI. The extent of up-regulation of NPY showed a strong inverse correlation with the degree of heat hyperalgesia.
Collapse
MESH Headings
- Action Potentials
- Animals
- Behavior, Animal
- Biomarkers
- Cell Count/methods
- Constriction
- Disease Models, Animal
- Electric Stimulation/methods
- Ganglia, Spinal/pathology
- Male
- Mice
- Nerve Fibers, Myelinated/classification
- Nerve Fibers, Myelinated/pathology
- Nerve Fibers, Unmyelinated/pathology
- Nerve Tissue Proteins/metabolism
- Neural Conduction/physiology
- Neurons, Afferent/classification
- Neurons, Afferent/metabolism
- Neurons, Afferent/pathology
- Neurons, Afferent/physiology
- Reaction Time/radiation effects
- Sciatic Neuropathy/metabolism
- Sciatic Neuropathy/pathology
Collapse
Affiliation(s)
- Ruth Ruscheweyh
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
22
|
Kitamura T, Harada N, Goto E, Tanaka K, Arai M, Shimada S, Okajima K. Activation of sensory neurons contributes to reduce spinal cord injury in rats. Neuropharmacology 2006; 52:506-14. [PMID: 17046032 DOI: 10.1016/j.neuropharm.2006.08.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 07/21/2006] [Accepted: 08/04/2006] [Indexed: 12/26/2022]
Abstract
We previously demonstrated that activation of sensory neurons increases endothelial prostaglandin I(2) (PGI(2)) production by releasing calcitonin gene-related peptide (CGRP). Since PGI(2) reduces post-traumatic spinal cord injury (SCI) by inhibiting tumor necrosis factor (TNF) production, activation of sensory neurons in the spinal cord tissue may ameliorate spinal cord injury. This study examines these possibilities using rat models of compression trauma-induced SCI. Both SB366791, a specific vanilloid receptor antagonist, and CGRP (8-37), a CGRP receptor antagonist, significantly inhibited trauma-induced increases in spinal cord tissue 6-keto-PGF(1alpha) levels. SB366791, CGRP (8-37) and indomethacin (IM) enhanced increases in spinal cord tissue TNF levels at 2h after trauma and exacerbated motor disturbances. Administration of CGRP significantly reduced motor disturbances and inhibited increases in spinal cord tissue TNF levels through enhancement of increases in tissue levels of 6-keto-PGF(1alpha). These observations strongly suggest that activation of sensory neurons might ameliorate compression trauma-induced SCI, inhibiting TNF production through enhancement of endothelial PGI(2) production. Thus, although the spinal cord sensory neurons function as nociceptive neurons, they could also be critically involved in the cytoprotective system that attenuates SCI development and, thus, pharmacological stimulation of spinal cord sensory neurons might contribute to reduce spinal cord injury.
Collapse
Affiliation(s)
- Taisuke Kitamura
- Departments of Emergency and Critical Care Medicine, School of Medicine, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Trang T, Ma W, Chabot JG, Quirion R, Jhamandas K. Spinal modulation of calcitonin gene-related peptide by endocannabinoids in the development of opioid physical dependence. Pain 2006; 126:256-71. [PMID: 16935424 DOI: 10.1016/j.pain.2006.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/12/2006] [Accepted: 07/06/2006] [Indexed: 11/16/2022]
Abstract
Studies implicate endocannabinoids in the acute and chronic actions of opioid drugs, including the genesis of physical dependence. Previous evidence suggests that spinal release of calcitonin gene-related peptide (CGRP) and activation of its receptors contribute to opioid physical dependence. The release of CGRP at the spinal level is modulated by cannabinoid (CB1)-receptors. Thus, this study examined whether CB1-receptor activity mediates changes in CGRP underlying development of opioid physical dependence. Systemic morphine administration for 5-days elevated CGRP-immunoreactivity in the rat spinal dorsal horn. In situ hybridization of dorsal root ganglion (DRG) neurons revealed an increase in CGRP mRNA during initial (day 1-3) but not later phase (day 4-5) of morphine treatment. CGRP-immunoreactivity in DRG neurons, however, was increased in the later phase of morphine treatment. Naloxone challenge to morphine-treated animals precipitated an intense withdrawal syndrome that depleted CGRP-immunoreactivity and increased Fos expression in the dorsal horn. The Fos-response primarily occurred in neurons that expressed CGRP receptor component protein (RCP) suggesting CGRP activity contributes to neuronal activation during precipitated withdrawal. Spinal slices obtained from morphine-treated animals showed higher levels of CGRP release than from saline controls. Intrathecal co-administration of CB1-receptor antagonists, AM-251 or SR141716A, with daily morphine attenuated the behavioral manifestations of withdrawal. Treatment with AM-251 also reduced the depletion of CGRP, suppressed Fos-induction, and prevented the increase in capsaicin-evoked spinal CGRP release. Altogether, this study suggests that endocannabinoid activity, expressed via CB1-receptors, contributes to the induction of opioid physical dependence through spinal modulation of CGRP.
Collapse
Affiliation(s)
- Tuan Trang
- Department of Pharmacology and Toxicology and Anesthesiology, Queen's University Kingston, Ont., Canada K7L 3N6
| | | | | | | | | |
Collapse
|
24
|
Marker CL, Luján R, Loh HH, Wickman K. Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of mu- and delta- but not kappa-opioids. J Neurosci 2006; 25:3551-9. [PMID: 15814785 PMCID: PMC6725379 DOI: 10.1523/jneurosci.4899-04.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Opioids can evoke analgesia by inhibiting neuronal targets in either the brain or spinal cord, and multiple presynaptic and postsynaptic inhibitory mechanisms have been implicated. The relative significance of presynaptic and postsynaptic inhibition to opioid analgesia is essentially unknown, as are the identities and relevant locations of effectors mediating opioid actions. Here, we examined the distribution of G-protein-gated potassium (GIRK) channels in the mouse spinal cord and measured their contribution to the analgesia evoked by spinal administration of opioid receptor-selective agonists. We found that the GIRK channel subunits GIRK1 and GIRK2 were concentrated in the outer layer of the substantia gelatinosa of the dorsal horn. GIRK1 and GIRK2 were found almost exclusively in postsynaptic membranes of putative excitatory synapses, and a significant degree of overlap with the mu-opioid receptor was observed. Although most GIRK subunit labeling was perisynaptic or extrasynaptic, GIRK2 was found occasionally within the synaptic specialization. Genetic ablation or pharmacologic inhibition of spinal GIRK channels selectively blunted the analgesic effect of high but not lower doses of the mu-opioid receptor-selective agonist [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin. Dose-dependent contributions of GIRK channels to the analgesic effects of the -opioid receptor-selective agonists Tyr-D-Ala-Phe-Glu-Val-Val-Gly amide and [D-Pen(2,5)]-enkephalin were also observed. In contrast, the analgesic effect of the agonist (trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl] benzeneacetamide methanesulfonate hydrate was preserved despite the absence of GIRK channels. We conclude that the activation of postsynaptic GIRK1 and/or GIRK2-containing channels in the spinal cord dorsal horn represents a powerful, albeit relatively insensitive, means by which intrathecal mu- and -selective opioid agonists evoke analgesia.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal
- Calcitonin Gene-Related Peptide
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/deficiency
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/physiology
- Immunohistochemistry/methods
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Immunoelectron/methods
- Molecular Sequence Data
- Morphine/pharmacology
- Pain Measurement/methods
- Posterior Horn Cells/drug effects
- Posterior Horn Cells/metabolism
- Posterior Horn Cells/ultrastructure
- Protein Kinase C/metabolism
- Receptors, Opioid/physiology
- Receptors, Opioid, mu/physiology
- Spinal Cord/cytology
- Spinal Cord/metabolism
- Temperature
Collapse
Affiliation(s)
- Cheryl L Marker
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
25
|
Trang T, Sutak M, Quirion R, Jhamandas K. Spinal administration of lipoxygenase inhibitors suppresses behavioural and neurochemical manifestations of naloxone-precipitated opioid withdrawal. Br J Pharmacol 2003; 140:295-304. [PMID: 12970109 PMCID: PMC1574036 DOI: 10.1038/sj.bjp.0705440] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. This study investigated the role of spinal lipoxygenase (LOX) products in the induction and expression of opioid physical dependence using behavioural assessment of withdrawal and immunostaining for CGRP and Fos protein expression in the spinal cord. 2. Administration of escalating doses (5-50 mg kg-1; i.p.) of morphine for 5 days markedly elevated CGRP-like immunoreactivity in the dorsal horn of the rat spinal cord. Naloxone (2 mg kg-1; i.p.) challenge precipitated a robust withdrawal syndrome that depleted CGRP-like immunoreactivity and increased the number of Fos-like immunoreactive neurons in the dorsal horn. 3. Intrathecal administration of NDGA (10, 20 microg), a nonselective LOX inhibitor, AA-861 (1.5, 3 microg), a 5-LOX selective inhibitor, or baicalein (1.4, 2.8 microg), a 12-LOX selective inhibitor, concurrently with systemic morphine for 5 days or as a single injection immediately preceding naloxone challenge, blocked the depletion of CGRP-like immunoreactivity, prevented increase in the number of Fos-like immunoreactive neurons in the dorsal horn, and significantly attenuated the morphine withdrawal syndrome. 4. The results of this study suggest that activity of LOX products, at the spinal level, contributes to the expression of opioid physical dependence, and that this activity may be expressed through increased sensory neuropeptide release.
Collapse
Affiliation(s)
- Tuan Trang
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, 523 Botterell Hall, Kingston, Ont., Canada K7L 3N6
| | - Maaja Sutak
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, 523 Botterell Hall, Kingston, Ont., Canada K7L 3N6
| | - Remi Quirion
- Douglas Hospital Research Centre and Department of Psychiatry, McGill University, Montreal, Que., Canada H9 H 1R3
| | - Khem Jhamandas
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, 523 Botterell Hall, Kingston, Ont., Canada K7L 3N6
- Author for correspondence:
| |
Collapse
|
26
|
Yoon YS, Hwang IK, Lee IS, Suh JG, Shin JW, Kang TC, Oh YS, Won MH. Galanin-immunoreactive cells and their relation to calcitonin gene-related peptide-, substance P- and somatostatin-immunoreactive cells in rat lumbar dorsal root ganglia. Anat Histol Embryol 2003; 32:110-5. [PMID: 12797533 DOI: 10.1046/j.1439-0264.2003.00425.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report upon the distribution of galanin-immunoreactive (GAL-IR) cells in the lumbar dorsal root ganglia (DRG) of the rat, and upon the distribution of GAL-IR cells, which also contain calcitonin gene-related peptide (CGRP)-, substance P (SP)- and somatostatin (SOM)-immunoreactivity. Neuropeptide-immunoreactive lumbar DRG cells were 55.8% for CGRP, 12.7% for SP, and 6.5% for GAL in lumbar DRG cells. There was no significant difference between the right and left DRGs (L1-L6) for any neuropeptide-immunoreactive cell (P < 0.01). In terms of size distribution, CGRP-immunoreactive cells were identified below 1500 microm2, and SP-, and GAL-IR cells below 600 microm2. Neuropeptide immunoreactive cells showed various immunoreactivities in the cytoplasm according to each neuropeptide. CGRP and SP immunoreactive cells were colocalized with GAL immunoreactive cells in the serial sections about 83.3 and 60% respectively, but SOM colocalizing with GAL-IR cells were not in evidence. The current results confirm and extend previous results, and show that neuropeptides can coexist in single sensory neurones of the rat DRG. In addition, our results demonstrate that the normal distribution of some neurotransmitters modulating sensory action in Wistar Kyoto rat, make this model more prone to develop neuropathic pain than Sprague-Dawley rat.
Collapse
Affiliation(s)
- Y S Yoon
- Department of Anatomy, College of Medicine, Hallym University, Chunchon 200-702, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Trang T, Sutak M, Quirion R, Jhamandas K. The role of spinal neuropeptides and prostaglandins in opioid physical dependence. Br J Pharmacol 2002; 136:37-48. [PMID: 11976266 PMCID: PMC1762111 DOI: 10.1038/sj.bjp.0704681] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This study examined the role of spinal calcitonin gene-related peptide (CGRP), substance P, and prostaglandins in the development and expression of opioid physical dependence. Administration of escalating doses (5 - 100 mg kg-1, i.p.) of morphine for 7 days markedly elevated CGRP and substance P- immunoreactivity in the dorsal horn of the rat spinal cord. Naloxone (2 mg kg-1, i.p.) challenge decreased both CGRP and substance P immunoreactivity and precipitated a robust withdrawal syndrome. Acute intrathecal pre-treatment with a CGRP receptor antagonist, CGRP(8 - 37) (4, 8 microg), a substance P receptor antagonist, SR 140333 (1.4, 2.8 microg), a cyclo-oxygenase (COX) inhibitor, ketorolac (30, 45 microg), and COX-2 selective inhibitors, DuP 697 (10, 30 microg) and nimesulide (30 microg), 30 min before naloxone challenge, partially attenuated the symptoms of morphine withdrawal. CGRP(8 - 37) (8 microg), but no other agents, inhibited the decrease in CGRP immunoreactivity. Chronic intrathecal treatment with CGRP(8 - 37) (4, 8 microg), SR 140333 (1.4 microg), ketorolac (15, 30 microg), DuP 697 (10, 30micro g), and nimesulide (30 microg), delivered with daily morphine injection significantly attenuated both the symptoms of withdrawal and the decrease in CGRP but not substance P immunoreactivity. The results of this study suggest that activation of CGRP and substance P receptors, at the spinal level, contributes to the induction and expression of opioid physical dependence and that this activity may be partially expressed through the intermediary actions of prostaglandins.
Collapse
Affiliation(s)
- Tuan Trang
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Maaja Sutak
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Remi Quirion
- Douglas Hospital Research Centre and Department of Psychiatry, McGill University, Montreal, Quebec, Canada, H9H 1R3
| | - Khem Jhamandas
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada, K7L 3N6
- Author for correspondence:
| |
Collapse
|