1
|
Dong LG, An MQ, Gu HY, Zhang LG, Zhang JB, Li CJ, Mao CJ, Wang F, Liu CF. PACAP/PAC1-R activation contributes to hyperalgesia in 6-OHDA-induced Parkinson's disease model rats via promoting excitatory synaptic transmission of spinal dorsal horn neurons. Acta Pharmacol Sin 2023; 44:2418-2431. [PMID: 37563446 PMCID: PMC10692161 DOI: 10.1038/s41401-023-01141-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 08/12/2023] Open
Abstract
Pain is a common annoying non-motor symptom in Parkinson's disease (PD) that causes distress to patients. Treatment for PD pain remains a big challenge, as its underlying mechanisms are elusive. Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptor PAC1-R play important roles in regulating a variety of pathophysiological processes. In this study, we investigated whether PACAP/PAC1-R signaling was involved in the mechanisms of PD pain. 6-hydroxydopamine (6-OHDA)-induced PD model was established in rats. Behavioral tests, electrophysiological and Western blotting analysis were conducted 3 weeks later. We found that 6-OHDA rats had significantly lower mechanical paw withdrawal 50% threshold in von Frey filament test and shorter tail flick latency, while mRNA levels of Pacap and Adcyap1r1 (gene encoding PAC1-R) in the spinal dorsal horn were significantly upregulated. Whole-cell recordings from coronal spinal cord slices at L4-L6 revealed that the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in dorsal horn neurons was significantly increased, which was reversed by application of a PAC1-R antagonist PACAP 6-38 (250 nM). Furthermore, we demonstrated that intrathecal microinjection of PACAP 6-38 (0.125, 0.5, 2 μg) dose-dependently ameliorated the mechanical and thermal hyperalgesia in 6-OHDA rats. Inhibition of PACAP/PAC1-R signaling significantly suppressed the activation of Ca2+/calmodulin-dependent protein kinase II and extracellular signal-regulated kinase (ERK) in spinal dorsal horn of 6-OHDA rats. Microinjection of pAAV-Adcyap1r1 into L4-L6 spinal dorsal horn alleviated hyperalgesia in 6-OHDA rats. Intrathecal microinjection of ERK antagonist PD98059 (10 μg) significantly alleviated hyperalgesia in 6-OHDA rats associated with the inhibition of sEPSCs in dorsal horn neurons. In addition, we found that serum PACAP-38 concentration was significantly increased in PD patients with pain, and positively correlated with numerical rating scale score. In conclusion, activation of PACAP/PAC1-R induces the development of PD pain and targeting PACAP/PAC1-R is an alternative strategy for treating PD pain.
Collapse
Affiliation(s)
- Li-Guo Dong
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Meng-Qi An
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Han-Ying Gu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Li-Ge Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Cheng-Jie Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China.
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, 830063, China.
| |
Collapse
|
2
|
Broome ST, Mandwie M, Gorrie CA, Musumeci G, Marzagalli R, Castorina A. Early Alterations of PACAP and VIP Expression in the Female Rat Brain Following Spinal Cord Injury. J Mol Neurosci 2023; 73:724-737. [PMID: 37646964 PMCID: PMC10694121 DOI: 10.1007/s12031-023-02151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Previous evidence shows that rapid changes occur in the brain following spinal cord injury (SCI). Here, we interrogated the expression of the neuropeptides pituitary adenylyl cyclase-activating peptide (PACAP), vasoactive intestinal peptides (VIP), and their binding receptors in the rat brain 24 h following SCI. Female Sprague-Dawley rats underwent thoracic laminectomy; half of the rats received a mild contusion injury at the level of the T10 vertebrate (SCI group); the other half underwent sham surgery (sham group). Twenty-four hours post-surgery, the hypothalamus, thalamus, amygdala, hippocampus (dorsal and ventral), prefrontal cortex, and periaqueductal gray were collected. PACAP, VIP, PAC1, VPAC1, and VPAC2 mRNA and protein levels were measured by real-time quantitative polymerase chain reaction and Western blot. In SCI rats, PACAP expression was increased in the hypothalamus (104-141% vs sham) and amygdala (138-350%), but downregulated in the thalamus (35-95%) and periaqueductal gray (58-68%). VIP expression was increased only in the thalamus (175-385%), with a reduction in the amygdala (51-68%), hippocampus (40-75%), and periaqueductal gray (74-76%). The expression of the PAC1 receptor was the least disturbed by SCI, with decrease expression in the ventral hippocampus (63-68%) only. The expression levels of VPAC1 and VPAC2 receptors were globally reduced, with more prominent reductions of VPAC1 vs VPAC2 in the amygdala (21-70%) and ventral hippocampus (72-75%). In addition, VPAC1 downregulation also extended to the dorsal hippocampus (69-70%). These findings demonstrate that as early as 24 h post-SCI, there are region-specific disruptions of PACAP, VIP, and related receptor transcript and protein levels in supraspinal regions controlling higher cognitive functions.
Collapse
MESH Headings
- Female
- Rats
- Animals
- Pituitary Adenylate Cyclase-Activating Polypeptide/genetics
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Rats, Sprague-Dawley
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Vasoactive Intestinal Peptide/genetics
- Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Spinal Cord Injuries/metabolism
- Brain/metabolism
Collapse
Affiliation(s)
- Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Mawj Mandwie
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Catherine A Gorrie
- Neural Injury Research Unit, School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
3
|
Lund AM, Hannibal J. Localization of the neuropeptides pituitary adenylate cyclase-activating polypeptide, vasoactive intestinal peptide, and their receptors in the basal brain blood vessels and trigeminal ganglion of the mouse CNS; an immunohistochemical study. Front Neuroanat 2022; 16:991403. [PMID: 36387999 PMCID: PMC9643199 DOI: 10.3389/fnana.2022.991403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are structurally related neuropeptides that are widely expressed in vertebrate tissues. The two neuropeptides are pleiotropic and have been associated with migraine pathology. Three PACAP and VIP receptors have been described: PAC1, VPAC1, and VPAC2. The localization of these receptors in relation to VIP and PACAP in migraine-relevant structures has not previously been shown in mice. In the present study, we used fluorescence immunohistochemistry, well-characterized antibodies, confocal microscopy, and three-dimensional reconstruction to visualize the distribution of PACAP, VIP, and their receptors in the basal blood vessels (circle of Willis), trigeminal ganglion, and brain stem spinal trigeminal nucleus (SP5) of the mouse CNS. We demonstrated a dense network of circularly oriented VIP fibers on the basal blood vessels. PACAP nerve fibers were fewer in numbers compared to VIP fibers and ran along the long axis of the blood vessels, colocalized with calcitonin gene-related peptide (CGRP). The nerve fibers expressing CGRP are believed to be sensorial, with neuronal somas localized in the trigeminal ganglion and PACAP was found in a subpopulation of these CGRP-neurons. Immunostaining of the receptors revealed that only the VPAC1 receptor was present in the basal blood vessels, localized on the surface cell membrane of vascular smooth muscle cells and innervated by VIP fibers. No staining was seen for the PAC1, VPAC1, or VPAC2 receptor in the trigeminal ganglion. However, distinct PAC1 immunoreactivity was found in neurons innervated by PACAP nerve terminals located in the spinal trigeminal nucleus. These findings indicate that the effect of VIP is mediated via the VPAC1 receptor in the basal arteries. The role of PACAP in cerebral arteries is less clear. The localization of PACAP in a subpopulation of CGRP-expressing neurons in the trigeminal ganglion points toward a primary sensory function although a dendritic release cannot be excluded which could stimulate the VPAC1 receptor or the PAC1 and VPAC2 receptors on immune cells in the meninges, initiating neurogenic inflammation relevant for migraine pathology.
Collapse
Affiliation(s)
- Anne Marie Lund
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens Hannibal
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Jens Hannibal,
| |
Collapse
|
4
|
Sokolov AY, Osipchuk AV, Skiba IB, Amelin AV. The Role of Pituitary Adenylate Cyclase-Activating Polypeptide and Vasoactive Intestinal Peptide in Migraine Pathogenesis. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Vollesen ALH, Snoer A, Chaudhry B, Petersen AS, Hagedorn A, Hoffmann J, Jensen RH, Ashina M. The effect of pituitary adenylate cyclase-activating peptide-38 and vasoactive intestinal peptide in cluster headache. Cephalalgia 2020; 40:1474-1488. [PMID: 32962406 DOI: 10.1177/0333102420940689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Previously reported increases in serum levels of vasodilating neuropeptides pituitary adenylate cyclase-activating peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) during attacks of cluster headache could indicate their involvement in cluster headache attack initiation. We investigated the attack-inducing effects of PACAP38 and vasoactive intestinal peptide in cluster headache, hypothesising that PACAP38, but not vasoactive intestinal peptide, would induce cluster-like attacks in episodic active phase and chronic cluster headache patients. METHODS In a double-blind crossover study, 14 episodic cluster headache patients in active phase, 15 episodic cluster headache patients in remission phase and 15 chronic cluster headache patients were randomly allocated to receive intravenous infusion of PACAP38 (10 pmol/kg/min) or vasoactive intestinal peptide (8 pmol/kg/min) over 20 min on two study days separated by at least 7 days. We recorded headache intensity, incidence of cluster-like attacks, cranial autonomic symptoms and vital signs using a questionnaire (0-90 min). RESULTS In episodic cluster headache active phase, PACAP38 induced cluster-like attacks in 6/14 patients and vasoactive intestinal peptide induced cluster-like attacks in 5/14 patients (p = 1.000). In chronic cluster headache, PACAP38 and vasoactive intestinal peptide both induced cluster-like attacks in 7/15 patients (p = 0.765). In episodic cluster headache remission phase, neither PACAP38 nor vasoactive intestinal peptide induced cluster-like attacks. CONCLUSIONS Contrary to our hypothesis, attack induction was lower than expected and roughly equal by PACAP38 and vasoactive intestinal peptide in episodic active phase and chronic cluster headache patients, which contradicts the PAC1-receptor as being solely responsible for attack induction.Trial registration: clinicaltrials.gov (identifier NCT03814226).
Collapse
Affiliation(s)
- Anne Luise H Vollesen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agneta Snoer
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Basit Chaudhry
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Sofie Petersen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Hagedorn
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jan Hoffmann
- Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Rigmor H Jensen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Rustichelli C, Lo Castro F, Baraldi C, Ferrari A. Targeting pituitary adenylate cyclase-activating polypeptide (PACAP) with monoclonal antibodies in migraine prevention: a brief review. Expert Opin Investig Drugs 2020; 29:1269-1275. [DOI: 10.1080/13543784.2020.1811966] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cecilia Rustichelli
- Department of Life Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Flavia Lo Castro
- School of Pharmacology and Clinical Toxicology, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Baraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Ferrari
- Unit of Medical Toxicology, Headache Centre and Drug Abuse; Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
8
|
Abstract
BACKGROUND Cluster headache is the most severe primary headache disorder. A genetic basis has long been suggested by family and twin studies; however, little is understood about the genetic variants that contribute to cluster headache susceptibility. METHODS We conducted a literature search of the MEDLINE database using the PubMed search engine to identify all human genetic studies for cluster headache. In this article we provide a review of those genetic studies, along with an overview of the pathophysiology of cluster headache and a brief review of migraine genetics, which have both been significant drivers of cluster headache candidate gene selection. RESULTS The investigation of cluster headache genetic etiology has been dominated by candidate gene studies. Candidate selection has largely been driven by the pathophysiology, such as the striking rhythmic nature of the attacks, which spurred close examination of the circadian rhythm genes CLOCK and HCRTR2. More recently, unbiased genetic approaches such as genome-wide association studies (GWAS) have yielded new genetic avenues of interest including ADCYAP1R1 and MME. CONCLUSIONS The majority of candidate genes studied for cluster headache suffer from poor reproducibility. Broader genetic interrogation through larger unbiased GWAS, exome, and whole genome studies may provide more robust candidates, and in turn provide a clearer understanding of the causes of cluster headache.
Collapse
Affiliation(s)
| | | | - Nunu Lund
- 2 Danish Headache Center, Department of Neurology, University of Copenhagen, Denmark
| | - Rigmor Jensen
- 2 Danish Headache Center, Department of Neurology, University of Copenhagen, Denmark
| | | |
Collapse
|
9
|
Takasaki I, Nakamura K, Shimodaira A, Watanabe A, Du Nguyen H, Okada T, Toyooka N, Miyata A, Kurihara T. The novel small-molecule antagonist of PAC1 receptor attenuates formalin-induced inflammatory pain behaviors in mice. J Pharmacol Sci 2018; 139:129-132. [PMID: 30552012 DOI: 10.1016/j.jphs.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022] Open
Abstract
We recently developed PA-8, a novel small-molecule antagonist of PACAP type 1 (PAC1) receptor. In the present study, we examined whether PA-8 was effective against formalin-induced inflammatory pain in mice. Both intrathecal and oral administration of PA-8 resulted in the dose-dependent attenuation of the second phase of formalin-induced nociceptive responses. PA-8 also inhibited c-fos upregulation in the ipsilateral dorsal horn of the spinal cord. The results suggested that PACAP-PAC1 receptor signaling system in the spinal cord were primarily involved in the transmission of inflammatory pain, and PA-8 could be useful for the development of novel analgesics for treating inflammatory pain.
Collapse
Affiliation(s)
- Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan; Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan.
| | - Koji Nakamura
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Ayaka Shimodaira
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Ai Watanabe
- Department of Pharmacology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Huy Du Nguyen
- Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan; Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Takuya Okada
- Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan; Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Naoki Toyooka
- Graduate School of Innovative Life Sciences, University of Toyama, Toyama, Japan; Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
10
|
Abstract
Pituitary adenylate cyclase-activating peptide (PACAP) is a neuropeptide implicated in a wide range of functions, such as nociception and in primary headaches. Regarding its localization, PACAP has been observed in the sensory trigeminal ganglion (TG), in the parasympathetic sphenopalatine (SPG) and otic ganglia (OTG), and in the brainstem trigeminocervical complex. Immunohistochemistry has shown PACAP-38 in numerous cell bodies of SPG/OTG, co-stored with vasoactive intestinal peptide (VIP), nitric oxide synthase (NOS) and, to a minor degree, with choline acetyltransferase. PACAP has in addition been found in a subpopulation of calcitonin gene-related peptide (CGRP)-immunoreactive cells in the trigeminal system. The PACAP/VIP receptors (PAC1, VPAC1, and VPAC2) are present in sensory neurons and in vascular smooth muscle related to the trigeminovascular system. It is postulated that PACAP is involved in nociception. In support, abolishment of PACAP synthesis or reception leads to diminished pain responses, whereas systemic PACAP-38 infusion triggers pain behavior in animals and delayed migraine-like attacks in migraine patients without marked vasodilatory effects. In addition, increased plasma levels have been documented in acute migraine attacks and in cluster headache, in accordance with findings in experimental models of trigeminal activation. This suggest that the activation of the trigeminal system may result in elevated venous levels of PACAP, a change that can be reduced when headache is treated. The data presented in this review indicate that PACAP and its receptors may be promising targets for migraine therapeutics.
Collapse
|
11
|
Takasaki I, Watanabe A, Yokai M, Watanabe Y, Hayakawa D, Nagashima R, Fukuchi M, Okada T, Toyooka N, Miyata A, Gouda H, Kurihara T. In Silico Screening Identified Novel Small-molecule Antagonists of PAC1 Receptor. J Pharmacol Exp Ther 2018; 365:1-8. [PMID: 29363578 DOI: 10.1124/jpet.117.245415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/18/2018] [Indexed: 01/07/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors are present in the spinal dorsal horn and dorsal root ganglia, suggesting an important role of PACAP signaling systems in the modulation of spinal nociceptive transmission. Previously, we found that intrathecal injection of PACAP or maxadilan, a selective PACAP type I (PAC1) receptor agonist, induced transient aversive responses followed by a long-lasting mechanical allodynia in mice, suggesting that PACAP-PAC1 receptor systems are involved in chronic pain and that selective PAC1 antagonists may become a new class of analgesics. Although several PAC1 antagonists, such as PACAP 6-38, have been reported, all of them are peptide compounds. In the present study, we identified new small-molecule antagonists of the PAC1 receptor using in silico screening and in vitro/vivo pharmacological assays. The identified small-molecule compounds, named PA-8 and PA-9, dose dependently inhibited the phosphorylation of CREB induced by PACAP in PAC1-, but not VPAC1- or VPAC2-receptor-expressing CHO cells. PA-8 and PA-9 also dose dependently inhibited PACAP-induced cAMP elevation with an IC50 of 2.0 and 5.6 nM, respectively. In vivo pharmacological assays showed that intrathecal injection of these compounds blocked the induction of PACAP-induced aversive responses and mechanical allodynia in mice. In contrast, the compounds when administered alone exerted neither agonistic nor algesic actions in the in vitro/vivo assays. The compounds identified in the present study are new and the first small-molecule antagonists of the PAC1 receptor; they may become seed compounds for developing novel analgesics.
Collapse
Affiliation(s)
- Ichiro Takasaki
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Ai Watanabe
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Masafumi Yokai
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Yurie Watanabe
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Daichi Hayakawa
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Ryota Nagashima
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Mamoru Fukuchi
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Takuya Okada
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Naoki Toyooka
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Hiroaki Gouda
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Science and Engineering (I.T., A.W., R.N.), Graduate School of Innovative Life Sciences (I.T., T.O., N.T.), Department of Molecular Neurobiology, Graduate School of Medical and Pharmaceutical Sciences (M.F.), and Department of Bio-functional Molecular Engineering, Graduate School of Science and Engineering (T.O., N.T.), University of Toyama, Toyama, Japan; Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan (M.Y., A.M., T.K.); and Department of Analytical and Physical Chemistry, School of Pharmacy, Showa University, Tokyo, Japan (Y.W., D.H., H.G.)
| |
Collapse
|
12
|
Sundrum T, Walker CS. Pituitary adenylate cyclase-activating polypeptide receptors in the trigeminovascular system: implications for migraine. Br J Pharmacol 2017; 175:4109-4120. [PMID: 28977676 DOI: 10.1111/bph.14053] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 12/13/2022] Open
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in a wide range of functions including vasodilatation, neuroprotection, nociception and neurogenic inflammation. PACAP activates three distinct receptors, the PAC1 receptor, which responds to PACAP, and the VPAC1 and VPAC2 receptors, which respond to both PACAP and vasoactive intestinal polypeptide. The trigeminovascular system plays a key role in migraine and contains the trigeminal nerve, which is the major conduit of craniofacial pain. PACAP is expressed throughout the trigeminovascular system and in higher brain regions involved in processing pain. Evidence from human clinical studies suggests that PACAP may act outside the blood-brain barrier in the pathogenesis of migraine. However, the precise mechanisms involved remain unclear. PACAP potentially induces migraine attacks by activating different receptors in different cell types and tissues. This complexity prompted this review of PACAP receptor pharmacology, expression and function in the trigeminovascular system. Current evidence suggests that the PAC1 receptor is the likely pathophysiological target of PACAP in migraine. However, multiple PACAP receptors are expressed in key parts of the trigeminovascular system and further work is required to determine their contribution to PACAP physiology and the pathology of migraine. LINKED ARTICLES This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.
Collapse
Affiliation(s)
- Tahlia Sundrum
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher S Walker
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Bilateral tactile hypersensitivity and neuroimmune responses after spared nerve injury in mice lacking vasoactive intestinal peptide. Exp Neurol 2017; 293:62-73. [DOI: 10.1016/j.expneurol.2017.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 12/30/2022]
|
14
|
Missig G, Mei L, Vizzard MA, Braas KM, Waschek JA, Ressler KJ, Hammack SE, May V. Parabrachial Pituitary Adenylate Cyclase-Activating Polypeptide Activation of Amygdala Endosomal Extracellular Signal-Regulated Kinase Signaling Regulates the Emotional Component of Pain. Biol Psychiatry 2017; 81:671-682. [PMID: 28057459 PMCID: PMC5332340 DOI: 10.1016/j.biopsych.2016.08.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/15/2016] [Accepted: 08/16/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Chronic pain and stress-related psychopathologies, such as depression and anxiety-associated abnormalities, are mutually reinforcing; however, the neuronal circuits and mechanisms that underlie this reinforcement are still not well understood. Pituitary adenylate cyclase-activating polypeptide (PACAP; Adcyap1) and its cognate PAC1 receptor (Adcyap1r1) are expressed in peripheral nociceptive pathways, participate in anxiety-related responses and have been have been linked to posttraumatic stress disorder and other mental health afflictions. METHODS Using immunocytochemistry, pharmacological treatments and behavioral testing techniques, we have used a rodent partial sciatic nerve chronic constriction injury model (n = 5-8 per group per experiment) to evaluate PACAP plasticity and signaling in nociceptive and stress-related behaviors. RESULTS We show that chronic neuropathic pain increases PACAP expression at multiple tiers along the spinoparabrachioamygdaloid tract. Furthermore, chronic constriction injury bilaterally augments nociceptive amygdala (in the central nucleus of the amygdala [CeA]) PACAP immunoreactivity, extracellular signal-regulated kinase phosphorylation, and c-Fos activation, in parallel with heightened anxiety-like behavior and nociceptive hypersensitivity. Acute CeA infusions with the PACAP receptor antagonist PACAP(6-38) blocked chronic constriction injury-induced behavioral responses. Additionally, pretreatments with inhibitors of mitogen-activated protein kinase enzymes or endocytosis to block endosomal PACAP receptor extracellular signal-regulated kinase signaling attenuated PACAP-induced CeA neuronal activation and nociceptive responses. CONCLUSIONS Our data suggest that chronic pain-induced PACAP neuroplasticity and signaling in spinoparabrachioamygdaloid projections have an impact on CeA stress- and nociception-associated maladaptive responses, which can be ameliorated upon receptor antagonism even during injury progression. Thus, the PACAP pathway provides for an important mechanism underlying the intersection of stress and chronic pain pathways via the amygdala.
Collapse
Affiliation(s)
- Galen Missig
- Department of Neurological Sciences, Burlington, Vermont
| | - Linda Mei
- Department of Neurological Sciences, Burlington, Vermont
| | | | - Karen M Braas
- Department of Neurological Sciences, Burlington, Vermont
| | - James A Waschek
- Department of Psychiatry and Behavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital-Harvard Medical School, Belmont, Massachusetts
| | - Sayamwong E Hammack
- Department of Psychological Science, University of Vermont College of Medicine, Burlington, Vermont
| | - Victor May
- Department of Neurological Sciences, Burlington, Vermont.
| |
Collapse
|
15
|
May V, Parsons RL. G Protein-Coupled Receptor Endosomal Signaling and Regulation of Neuronal Excitability and Stress Responses: Signaling Options and Lessons From the PAC1 Receptor. J Cell Physiol 2016; 232:698-706. [DOI: 10.1002/jcp.25615] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/22/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Victor May
- Department of Neurological Sciences; University of Vermont College of Medicine; Burlington Vermont
| | - Rodney L. Parsons
- Department of Neurological Sciences; University of Vermont College of Medicine; Burlington Vermont
| |
Collapse
|
16
|
Yu R, Zheng L, Cui Y, Zhang H, Ye H. Doxycycline exerted neuroprotective activity by enhancing the activation of neuropeptide GPCR PAC1. Neuropharmacology 2016; 103:1-15. [DOI: 10.1016/j.neuropharm.2015.11.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/14/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
|
17
|
Ohnou T, Yokai M, Kurihara T, Hasegawa-Moriyama M, Shimizu T, Inoue K, Kambe Y, Kanmura Y, Miyata A. Pituitary adenylate cyclase-activating polypeptide type 1 receptor signaling evokes long-lasting nociceptive behaviors through the activation of spinal astrocytes in mice. J Pharmacol Sci 2016; 130:194-203. [PMID: 26948958 DOI: 10.1016/j.jphs.2016.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 12/14/2022] Open
Abstract
Intrathecal (i.t.) administration of pituitary adenylate cyclase-activating polypeptide (PACAP) induces long-lasting nociceptive behaviors for more than 60 min in mice, while the involvement of PACAP type1 receptor (PAC1-R) has not been clarified yet. The present study investigated signaling mechanisms of the PACAP-induced prolonged nociceptive behaviors. Single i.t. injection of a selective PAC1-R agonist, maxadilan (Max), mimicked nociceptive behaviors in a dose-dependent manner similar to PACAP. Pre- or post-treatment of a selective PAC1-R antagonist, max.d.4, significantly inhibited the nociceptive behaviors by PACAP or Max. Coadministration of a protein kinase A inhibitor, Rp-8-Br-cAMPS, a mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase inhibitor, PD98059 or a c-Jun N-terminal kinase (JNK) inhibitor, SP600125, significantly inhibited the nociceptive behaviors by Max. Immunohistochemistry and immunoblotting analysis revealed that spinal administration of Max-induced ERK phosphorylation and JNK phosphorylation, and also augmented an astrocyte marker, glial fibrillary acidic protein in mouse spinal cord. Furthermore, an astroglial toxin, l-α-aminoadipate, significantly attenuated the development of the nociceptive behaviors and ERK phosphorylation by Max. These results suggest that the activation of spinal PAC1-R induces long-lasting nociception through the interaction of neurons and astrocytes.
Collapse
Affiliation(s)
- Tetsuya Ohnou
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan; Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Masafumi Yokai
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Maiko Hasegawa-Moriyama
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Takao Shimizu
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Kazuhiko Inoue
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Yuichi Kanmura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima City, Kagoshima 890-8544, Japan.
| |
Collapse
|
18
|
Hammack SE, May V. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry 2015; 78:167-77. [PMID: 25636177 PMCID: PMC4461555 DOI: 10.1016/j.biopsych.2014.12.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
The maladaptive expression and function of several stress-associated hormones have been implicated in pathological stress and anxiety-related disorders. Among these, recent evidence has suggested that pituitary adenylate cyclase activating polypeptide (PACAP) has critical roles in central neurocircuits mediating stress-related emotional behaviors. We describe the PACAPergic systems, the data implicating PACAP in stress biology, and how altered PACAP expression and signaling may result in psychopathologies. We include our work implicating PACAP signaling within the bed nucleus of the stria terminalis in mediating the consequences of stressor exposure and relatedly, describe more recent studies suggesting that PACAP in the central nucleus of the amygdala may impact the emotional aspects of chronic pain states. In aggregate, these results are consistent with data suggesting that PACAP dysregulation is associated with posttraumatic stress disorder in humans.
Collapse
Affiliation(s)
- Sayamwong E. Hammack
- Department of Psychological Science, University of Vermont, John Dewey Hall, 2 Colchester Avenue, Burlington, Vermont 05405-0134, Phone: 802.656.1041, Fax: 802.656.8783
| | - Victor May
- Department of Neurological Sciences, University of Vermont College of Medicine, 149 Beaumont Avenue, HSRF 428, Burlington, VT 05405, Phone: 802.656.4579
| |
Collapse
|
19
|
Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology 2014; 86:38-48. [PMID: 24998751 DOI: 10.1016/j.neuropharm.2014.06.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 11/22/2022]
Abstract
The intricate relationships that associate pain, stress responses and emotional behavior have been well established. Acute stressful situations can decrease nociceptive sensations and conversely, chronic pain can enhance other pain experiences and heighten the emotional and behavioral consequences of stress. Accordingly, chronic pain is comorbid with a number of behavioral disorders including depression, anxiety abnormalities and associated stress-related disorders including post traumatic stress disorder (PTSD). The central nucleus of the amygdala (CeA) represents a convergence of pathways for pain, stress and emotion, and we have identified pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in fiber elements in the lateral capsular division of the CeA (CeLC). The PACAP staining patterns colocalized in part with those for calcitonin gene related peptide (CGRP); anterograde fiber tracing and excitotoxic lesion studies demonstrated that the CeLC PACAP/CGRP immunoreactivities represented sensory fiber projections from the lateral parabrachial nucleus (LPBn) along the spino-parabrachioamygdaloid tract. The same PBn PACAP/CGRP fiber system also projected to the BNST. As in the BNST, CeA PACAP signaling increased anxiety-like behaviors accompanied by weight loss and decreased feeding. But in addition to heightened anxiety-like responses, CeA PACAP signaling also altered nociception as reflected by decreased latency and threshold responses in thermal and mechanical sensitivity tests, respectively. From PACAP expression in major pain pathways, the current observations are novel and suggest that CeA PACAP nociceptive signaling and resulting neuroplasticity via the spino-parabrachioamygdaloid tract may represent mechanisms that associate chronic pain with sensory hypersensitivity, fear memory consolidation and severe behavioral disorders.
Collapse
|
20
|
Pettersson LME, Geremia NM, Ying Z, Verge VMK. Injury-associated PACAP expression in rat sensory and motor neurons is induced by endogenous BDNF. PLoS One 2014; 9:e100730. [PMID: 24968020 PMCID: PMC4072603 DOI: 10.1371/journal.pone.0100730] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 05/28/2014] [Indexed: 11/19/2022] Open
Abstract
Peripheral nerve injury results in dramatic upregulation in pituitary adenylate cyclase activating polypeptide (PACAP) expression in adult rat dorsal root ganglia and spinal motor neurons mirroring that described for the neurotrophin brain derived neurotrophic factor (BDNF). Thus, we posited that injury-associated alterations in BDNF expression regulate the changes in PACAP expression observed in the injured neurons. The role of endogenous BDNF in induction and/or maintenance of PACAP mRNA expression in injured adult rat motor and sensory neurons was examined by intrathecally infusing or intraperitoneally injecting BDNF-specific antibodies or control IgGs immediately at the time of L4-L6 spinal nerve injury, or in a delayed fashion one week later for 3 days followed by analysis of impact on PACAP expression. PACAP mRNA in injured lumbar sensory and motor neurons was detected using in situ hybridization, allowing quantification of relative changes between experimental groups, with ATF-3 immunofluorescence serving to identify the injured subpopulation of motor neurons. Both the incidence and level of PACAP mRNA expression were dramatically reduced in injured sensory and motor neurons in response to immediate intrathecal anti-BDNF treatment. In contrast, neither intraperitoneal injections nor delayed intrathecal infusions of anti-BDNF had any discernible impact on PACAP expression. This impact on PACAP expression in response to BDNF immunoneutralization in DRG was confirmed using qRT-PCR or by using BDNF selective siRNAs to reduce neuronal BDNF expression. Collectively, our findings support that endogenous injury-associated BDNF expression is critically involved in induction, but not maintenance, of injury-associated PACAP expression in sensory and motor neurons.
Collapse
Affiliation(s)
- Lina M. E. Pettersson
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
- * E-mail:
| | - Nicole M. Geremia
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zhengxin Ying
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Valerie M. K. Verge
- CMSNRC & Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
Gonzalez EJ, Merrill L, Vizzard MA. Bladder sensory physiology: neuroactive compounds and receptors, sensory transducers, and target-derived growth factors as targets to improve function. Am J Physiol Regul Integr Comp Physiol 2014; 306:R869-78. [PMID: 24760999 PMCID: PMC4159737 DOI: 10.1152/ajpregu.00030.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/19/2014] [Indexed: 01/19/2023]
Abstract
Urinary bladder dysfunction presents a major problem in the clinical management of patients suffering from pathological conditions and neurological injuries or disorders. Currently, the etiology underlying altered visceral sensations from the urinary bladder that accompany the chronic pain syndrome, bladder pain syndrome (BPS)/interstitial cystitis (IC), is not known. Bladder irritation and inflammation are histopathological features that may underlie BPS/IC that can change the properties of lower urinary tract sensory pathways (e.g., peripheral and central sensitization, neurochemical plasticity) and contribute to exaggerated responses of peripheral bladder sensory pathways. Among the potential mediators of peripheral nociceptor sensitization and urinary bladder dysfunction are neuroactive compounds (e.g., purinergic and neuropeptide and receptor pathways), sensory transducers (e.g., transient receptor potential channels) and target-derived growth factors (e.g., nerve growth factor). We review studies related to the organization of the afferent limb of the micturition reflex and discuss neuroplasticity in an animal model of urinary bladder inflammation to increase the understanding of functional bladder disorders and to identify potential novel targets for development of therapeutic interventions. Given the heterogeneity of BPS/IC and the lack of consistent treatment benefits, it is unlikely that a single treatment directed at a single target in micturition reflex pathways will have a mass benefit. Thus, the identification of multiple targets is a prudent approach, and use of cocktail treatments directed at multiple targets should be considered.
Collapse
Affiliation(s)
- Eric J Gonzalez
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Liana Merrill
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Margaret A Vizzard
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
22
|
Amin FM, Hougaard A, Schytz HW, Asghar MS, Lundholm E, Parvaiz AI, de Koning PJH, Andersen MR, Larsson HBW, Fahrenkrug J, Olesen J, Ashina M. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain 2014; 137:779-94. [DOI: 10.1093/brain/awt369] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
23
|
Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, Vaudry D, Vaudry H, Waschek JA, Said SI. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 2012; 166:4-17. [PMID: 22289055 DOI: 10.1111/j.1476-5381.2012.01871.x] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are members of a superfamily of structurally related peptide hormones that includes glucagon, glucagon-like peptides, secretin, gastric inhibitory peptide (GIP) and growth hormone-releasing hormone (GHRH). VIP and PACAP exert their actions through three GPCRs - PAC(1) , VPAC(1) and VPAC(2) - belonging to class B (also referred to as class II, or secretin receptor-like GPCRs). This family comprises receptors for all peptides structurally related to VIP and PACAP, and also receptors for parathyroid hormone, corticotropin-releasing factor, calcitonin and related peptides. PAC(1) receptors are selective for PACAP, whereas VPAC(1) and VPAC(2) respond to both VIP and PACAP with high affinity. VIP and PACAP play diverse and important roles in the CNS, with functions in the control of circadian rhythms, learning and memory, anxiety and responses to stress and brain injury. Recent genetic studies also implicate the VPAC(2) receptor in susceptibility to schizophrenia and the PAC(1) receptor in post-traumatic stress disorder. In the periphery, VIP and PACAP play important roles in the control of immunity and inflammation, the control of pancreatic insulin secretion, the release of catecholamines from the adrenal medulla and as co-transmitters in autonomic and sensory neurons. This article, written by members of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) subcommittee on receptors for VIP and PACAP, confirms the existing nomenclature for these receptors and reviews our current understanding of their structure, pharmacology and functions and their likely physiological roles in health and disease. More detailed information has been incorporated into newly revised pages in the IUPHAR database (http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=67).
Collapse
|
24
|
Tuka B, Helyes Z, Markovics A, Bagoly T, Németh J, Márk L, Brubel R, Reglődi D, Párdutz A, Szolcsányi J, Vécsei L, Tajti J. Peripheral and central alterations of pituitary adenylate cyclase activating polypeptide-like immunoreactivity in the rat in response to activation of the trigeminovascular system. Peptides 2012; 33:307-16. [PMID: 22245521 DOI: 10.1016/j.peptides.2011.12.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/27/2011] [Accepted: 12/29/2011] [Indexed: 11/28/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is present in the cranial arteries and trigeminal sensory neurons. We therefore examined the alterations in PACAP-like immunoreactivity (PACAP-LI) in a time-dependent manner in two rat models of trigeminovascular system (TS) activation. In one group chemical stimulation (CS) was performed with i.p. nitroglycerol (NTG), and in the other one the trigeminal ganglia (TRG) were subjected to electrical stimulation (ES). The two biologically active forms, PACAP-38 and PACAP-27, were determined by means of radioimmunoassay (RIA) and mass spectrometry (MS) in the plasma, the cerebrospinal fluid (CSF), the trigeminal nucleus caudalis (TNC), the spinal cord (SC) and the TRG. The tissue concentrations of PACAP-27 were 10 times lower than those of PACAP-38 in the TNC and SC, but about half in the TRG. PACAP-38, but not PACAP-27, was present in the plasma. Neither form could be identified in the CSF. PACAP-38-LI in the plasma, SC and TRG remained unchanged after CS, but it was increased significantly in the TNC 90 and 180 min after NTG injection. In response to ES of the TRG, the level of PACAP-38 in the plasma and the TNC was significantly elevated 90 and 180 min later, but not in the SC or the TRG. The alterations in the levels of PACAP-27 in the tissue homogenates in response to both forms of stimulation were identical to those of PACAP-38. The selective increases in both forms of PACAP in the TNC suggest its important role in the central sensitization involved in migraine-like headache.
Collapse
Affiliation(s)
- Bernadett Tuka
- Department of Neurology, Faculty of Medicine, University of Szeged, H-6725 Szeged, Semmelweis u 6, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pituitary adenylate cyclase-activating polypeptide plays a key role in nitroglycerol-induced trigeminovascular activation in mice. Neurobiol Dis 2012; 45:633-44. [DOI: 10.1016/j.nbd.2011.10.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/30/2011] [Accepted: 10/10/2011] [Indexed: 11/16/2022] Open
|
26
|
Dong YX, Fukuchi M, Inoue M, Takasaki I, Tabuchi A, Wu CF, Tsuda M. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an upstream regulator of prodynorphin mRNA expression in neurons. Neurosci Lett 2010; 484:174-7. [DOI: 10.1016/j.neulet.2010.08.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 10/19/2022]
|
27
|
Sándor K, Kormos V, Botz B, Imreh A, Bölcskei K, Gaszner B, Markovics A, Szolcsányi J, Shintani N, Hashimoto H, Baba A, Reglodi D, Helyes Z. Impaired nocifensive behaviours and mechanical hyperalgesia, but enhanced thermal allodynia in pituitary adenylate cyclase-activating polypeptide deficient mice. Neuropeptides 2010; 44:363-71. [PMID: 20621353 DOI: 10.1016/j.npep.2010.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/10/2010] [Accepted: 06/12/2010] [Indexed: 01/31/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) and its receptors (PAC1 and VPAC) have been shown in the spinal dorsal horn, dorsal root ganglia and sensory nerve terminals. Data concerning the role of PACAP in central pain transmission are controversial and we have recently published its divergent peripheral effects on nociceptive processes. The aim of the present study was to investigate acute somatic and visceral nocifensive behaviours, partial sciatic nerve ligation-evoked chronic neuropathic, as well as resiniferatoxin-induced inflammatory thermal and mechanical hyperalgesia in PACAP deficient (PACAP(-/-)) mice to elucidate its overall function in pain transmission. Neuronal activation was investigated with c-Fos immunohistochemistry. Paw lickings in the early (0-5 min) and late (20-45 min) phases of the formalin test were markedly reduced in PACAP(-/-) mice. Acetic acid-evoked abdominal contractions referring to acute visceral chemonociception was also significantly attenuated in PACAP knockout animals. In both models, the excitatory role of PACAP was supported by markedly greater c-Fos expression in the periaqueductal grey and the somatosensory cortex. In PACAP-deficient animals neuropathic mechanical hyperalgesia was absent, while c-Fos immunopositivity 20 days after the operation was significantly higher. In this chronic model, these neurons are likely to indicate the activation of secondary inhibitory pathways. Intraplantarly injected resiniferatoxin-evoked mechanical hyperalgesia involving both peripheral and central processes was decreased, but thermal allodynia mediated by only peripheral mechanisms was increased in PACAP(-/-) mice. These data clearly demonstrate an overall excitatory role of PACAP in pain transmission originating from both exteroceptive and interoceptive areas, it is also involved in central sensitization. This can be explained by the signal transduction mechanisms of its identified receptors, both PAC1 and VPAC activation leads to neuronal excitation. In contrast, it is an inhibitory mediator at the level of the peripheral sensory nerve endings and decreases their sensitization to heat with presently unknown mechanisms.
Collapse
Affiliation(s)
- K Sándor
- Department of Pharmacology and Pharmacotherapy, University of Pécs, Pécs, Hungary
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kim DH, Schwartz CE. The genetics of pain: implications for evaluation and treatment of spinal disease. Spine J 2010; 10:827-40. [PMID: 20615760 DOI: 10.1016/j.spinee.2010.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/07/2010] [Accepted: 05/22/2010] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Variability in human pain experience appears to be at least partially determined by genetic inheritance. To the extent that awareness of individual pain sensitivity and the tendency to develop chronic pain after injury or surgery would be informative for clinical decision making, development and use of genetic testing for specific pain markers could contribute to improved outcomes in management of spinal disease. PURPOSE To review important and illustrative results from both classical and modern pain genetics studies and to introduce readers to critical definitions and concepts necessary to interpret the growing body of genetics literature relevant to spinal disease. STUDY DESIGN/SETTING Literature review and commentary. METHODS A review was performed of published English language studies in which genetic techniques were used to analyze the molecular basis of nociceptive signaling or processing with a particular emphasis on studies addressing genetic determinants of interindividual variability in pain sensitivity or predisposition to chronic pain. RESULTS There is compelling evidence indicating that interindividual differences in pain sensitivity and the risk of developing chronic pain syndromes are genetically determined. Despite a growing list of putative "pain genes," genetic association studies remain plagued with difficulty replicating initial findings in different cohorts. CONCLUSIONS Genome-wide association studies are potentially powerful means of identifying clinically relevant genetic markers predicting disease susceptibility, severity, and treatment response. However, accurate results require rigorous study design with use of large homogeneous populations and precise phenotypes.
Collapse
Affiliation(s)
- David H Kim
- Department of Orthopaedic Surgery, Tufts University Medical School, New England Baptist Hospital, Boston, MA 02120, USA.
| | | |
Collapse
|
29
|
The role of PACAP in central cardiorespiratory regulation. Respir Physiol Neurobiol 2010; 174:65-75. [PMID: 20470908 DOI: 10.1016/j.resp.2010.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/03/2010] [Accepted: 05/03/2010] [Indexed: 11/22/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) plays a role in almost every biological process from reproduction to hippocampal function. One area where a role for PACAP is not clearly delineated is central cardiorespiratory regulation. PACAP and its receptors (PAC1, VPAC1 and VPAC2) are present in cardiovascular areas of the ventral medulla and spinal cord and in the periphery. Central administration of PACAP generally increases arterial pressure. Knowledge about the role of PACAP in central cardiovascular regulation is growing, but even less is known about PACAP in central respiratory regulation. No specific data is currently available regarding the presence of PACAP or receptors in key respiratory centers, although it is known that neonatal PACAP knock-out mice die suddenly in a manner similar to sudden infant death syndrome (SIDS). Future studies in mature preparations investigating the role of PACAP in the physiology and integration of central cardiorespiratory reflexes are clearly essential for a full understanding of this important neuropeptide in breathing.
Collapse
|
30
|
Schytz HW, Olesen J, Ashina M. The PACAP receptor: a novel target for migraine treatment. Neurotherapeutics 2010; 7:191-6. [PMID: 20430318 PMCID: PMC5084100 DOI: 10.1016/j.nurt.2010.02.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/10/2010] [Indexed: 11/25/2022] Open
Abstract
The origin of migraine pain has not yet been clarified, but accumulating data point to neuropeptides present in the perivascular space of cranial vessels as important mediators of nociceptive input during migraine attacks. Pituitary adenylate cyclase-activating polypeptide (PACAP) is present in sensory trigeminal neurons and may modulate nociception at different levels of the nervous system. Human experimental studies have shown that PACAP-38 infusion induces marked dilatation of extracerebral vessels and delayed migraine-like attacks in migraine patients. PACAP selectively activates the PAC(1) receptor, which suggests a possible signaling pathway implicated in migraine pain. This review summarizes the current evidence supporting the involvement of PACAP in migraine pathophysiology and the PAC(1) receptor as a possible novel target for migraine treatment.
Collapse
Affiliation(s)
- Henrik W. Schytz
- Danish Headache Center and Department of Neurology, Glostrup Hospital, University of Copenhagen, Faculty of Health Sciences, Nordre Ringvej 57, 2600 Glostrup, Copenhagen Denmark
| | - Jes Olesen
- Danish Headache Center and Department of Neurology, Glostrup Hospital, University of Copenhagen, Faculty of Health Sciences, Nordre Ringvej 57, 2600 Glostrup, Copenhagen Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Glostrup Hospital, University of Copenhagen, Faculty of Health Sciences, Nordre Ringvej 57, 2600 Glostrup, Copenhagen Denmark
| |
Collapse
|
31
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacol Rev 2009; 61:283-357. [DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 829] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
32
|
Abstract
Of all clinically marketed drugs, greater than thirty percent are modulators of G protein-coupled receptors (GPCRs). Nearly 400 GPCRs (i.e., excluding odorant and light receptors) are encoded within the human genome, but only a small fraction of these seven-transmembrane proteins have been identified as drug targets. Chronic pain affects more than one-third of the population, representing a substantial societal burden in use of health care resources and lost productivity. Furthermore, currently available treatments are often inadequate, underscoring the significant need for better therapeutic strategies. The expansion of the identified human GPCR repertoire, coupled with recent insights into the function and structure of GPCRs, offers new opportunities for the development of novel analgesic therapeutics.
Collapse
Affiliation(s)
- Laura S Stone
- Faculty of Dentistry, Alan Edwards Centre for Research on Pain, Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
33
|
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that was first isolated from an ovine hypothalamus in 1989. Since its discovery, more than 2,000 papers have reported on the tissue and cellular distribution and functional significance of PACAP. A number of papers have reported that PACAP but not the vasoactive intestinal peptide suppressed neuronal cell death or decreased infarct volume after global and focal ischemia in rodents, even if PACAP was administered several hours after ischemia induction. In addition, recent studies using PACAP gene-deficient mice demonstrated that endogenous PACAP also contributes greatly to neuroprotection similarly to exogenously administered PACAP. The studies suggest that neuroprotection by PACAP might extend the therapeutic time window for treatment of ischemia-related conditions, such as stroke. This review summarizes the effects of PACAP on ischemic neuronal cell death, and the mechanism clarified in vivo ischemic studies. In addition, the prospective mechanism of PACAP on ischemic neuroprotection from in vitro neuronal and neuronal-like cell cultures with injured stress model is reviewed. Finally, the development of PACAP and/or receptor agonists for human therapy is discussed.
Collapse
|
34
|
Central Pituitary Adenylate Cyclase 1 Receptors Modulate Nociceptive Behaviors in Both Inflammatory and Neuropathic Pain States. THE JOURNAL OF PAIN 2008; 9:449-56. [DOI: 10.1016/j.jpain.2008.01.329] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 12/07/2007] [Accepted: 01/05/2008] [Indexed: 11/24/2022]
|
35
|
Michalski CW, Selvaggi F, Bartel M, Mitkus T, Gorbachevski A, Giese T, Sebastiano PD, Giese NA, Friess H. Altered anti-inflammatory response of mononuclear cells to neuropeptide PACAP is associated with deregulation of NF-{kappa}B in chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2008; 294:G50-7. [PMID: 17962362 DOI: 10.1152/ajpgi.00058.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Although it is recognized that neurogenic influences contribute to progression of chronic inflammatory diseases, the molecular basis of neuroimmune interactions in the pathogenesis of chronic pancreatitis (CP) is not well defined. Here we report that responsiveness of peripheral blood mononuclear cells (PBMC) to the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is altered in CP. Expression of PACAP and its receptors in human CP was analyzed with quantitative RT-PCR, laser-capture microdissection, and immunohistochemistry. Regulation of PACAP expression was studied in coculture systems using macrophages and acinar cells. Responsiveness of donor and CP PBMC to PACAP was determined based on cytokine profiles and NF-kappaB activation of LPS- or LPS+PACAP-exposed cells. Although donor and CP PBMC responded equally to LPS, PACAP-mediated counteraction of LPS-induced cytokine response was switched from inhibiting TNF-alpha to decreasing IL-1beta and increasing IL-10 secretion. The change of PACAP-mediated anti-inflammatory pattern was associated with altered activation of NF-kappaB: compared with LPS alone, a combination of LPS and PACAP had no effect on NF-kappaB p65 nuclear translocation in CP PBMC, whereas NF-kappaB was significantly decreased in donor PBMC. According to laser-capture microdissection and coculture experiments, PBMC also contributed to generation of a PACAP-rich intrapancreatic environment by upregulating PACAP expression in macrophages encountering apoptotic pancreatic acini. The nociceptive status of CP patients correlated with pancreatic PACAP levels and with IL-10 bias of PACAP-exposed CP PBMC. Thus the ability of PBMC to produce and to respond to PACAP might influence neuroimmune interactions that regulate pain and inflammation in CP.
Collapse
Affiliation(s)
- Christoph W Michalski
- Dept. of General Surgery, Technische Universität München, Ismaningerstrasse 22, D-86175 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal Control of Skin Function: The Skin as a Neuroimmunoendocrine Organ. Physiol Rev 2006; 86:1309-79. [PMID: 17015491 DOI: 10.1152/physrev.00026.2005] [Citation(s) in RCA: 416] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the role of the peripheral nervous system in cutaneous biology and disease. During the last few years, a modern concept of an interactive network between cutaneous nerves, the neuroendocrine axis, and the immune system has been established. We learned that neurocutaneous interactions influence a variety of physiological and pathophysiological functions, including cell growth, immunity, inflammation, pruritus, and wound healing. This interaction is mediated by primary afferent as well as autonomic nerves, which release neuromediators and activate specific receptors on many target cells in the skin. A dense network of sensory nerves releases neuropeptides, thereby modulating inflammation, cell growth, and the immune responses in the skin. Neurotrophic factors, in addition to regulating nerve growth, participate in many properties of skin function. The skin expresses a variety of neurohormone receptors coupled to heterotrimeric G proteins that are tightly involved in skin homeostasis and inflammation. This neurohormone-receptor interaction is modulated by endopeptidases, which are able to terminate neuropeptide-induced inflammatory or immune responses. Neuronal proteinase-activated receptors or transient receptor potential ion channels are recently described receptors that may have been important in regulating neurogenic inflammation, pain, and pruritus. Together, a close multidirectional interaction between neuromediators, high-affinity receptors, and regulatory proteases is critically involved to maintain tissue integrity and regulate inflammatory responses in the skin. A deeper understanding of cutaneous neuroimmunoendocrinology may help to develop new strategies for the treatment of several skin diseases.
Collapse
|
37
|
Teather LA, Afonso VM, Wurtman RJ. Inhibition of platelet-activating factor receptors in hippocampal plasma membranes attenuates the inflammatory nociceptive response in rats. Brain Res 2006; 1097:230-3. [PMID: 16774744 DOI: 10.1016/j.brainres.2006.03.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 03/09/2006] [Accepted: 03/13/2006] [Indexed: 01/01/2023]
Abstract
Evidence suggests that platelet-activating factor (PAF) is a mediator in inflammatory-based pain. Using the biphasic formalin model in rats, we recently demonstrated that PAF antagonists which were selective for either intracellular or plasma membrane PAF receptors decreased the late-phase of the nociceptive response. Inasmuch as both of the PAF antagonists previously used were administered systemically, and reportedly are able to cross the blood-brain barrier, the anatomic locations at which PAF affects pain processing remained to be elucidated. Since PAF is required for hippocampal-dependent memory consolidation, and since the hippocampus has been shown to mediate the late-phase of formalin-induced nociception, the present study investigated the effects on nociception of administration of PAF antagonists within the hippocampus, and of using agents specific for either plasma membrane (BN 52021) or intracellular (BN 50730) PAF binding sites. Intrahippocampal injections of BN 52021 decreased the late-phase of the nociceptive response in a concentration-dependent manner. In contrast, intrahippocampal administration of BN 50730 had no effect on inflammatory nociception. These findings suggest that hippocampal plasma membrane PAF receptors, but not intracellular PAF binding sites, mediate tonic inflammatory pain processing in rats.
Collapse
Affiliation(s)
- Lisa A Teather
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
38
|
Neurotransmitter and Immunomodulatory Actions of VIP and PACAP: Lessons from Knockout Mice. Int J Pept Res Ther 2006. [DOI: 10.1007/s10989-006-9032-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Papka RE, Workley M, Usip S, Mowa CN, Fahrenkrug J. Expression of pituitary adenylate cyclase activating peptide in the uterine cervix, lumbosacral dorsal root ganglia and spinal cord of rats during pregnancy. Peptides 2006; 27:743-52. [PMID: 16181705 DOI: 10.1016/j.peptides.2005.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/11/2005] [Accepted: 08/12/2005] [Indexed: 11/17/2022]
Abstract
The uterine cervix is highly innervated by the sensory nerves containing neuropeptides which change during pregnancy and are regulated, in part, by estrogen. These neuropeptides act as transmitters both in the spinal cord and cervix. The present study was undertaken to determine the expression pattern of the neuropeptide pituitary adenylate cyclase activating peptide (PACAP) in the cervix and its nerves during pregnancy and the influence of estrogen on this expression using immunohistochemistry, radioimmunoassay and RT-PCR. PACAP immunoreactivity was detected in nerves in the cervix, lumbosacral (L6-S1) dorsal root ganglia (DRG) and spinal cord. PACAP immunoreactivity was highest at day 15 of pregnancy in the cervix and dorsal spinal cord, but then decreased over the last trimester of pregnancy. However, levels of PACAP mRNA increased in the L6-S1 DRG at late pregnancy relative to early pregnancy. DRG of ovariectomized rats treated with estrogen showed increased PACAP mRNA synthesis in a dose-related manner, an effect partially blocked by the estrogen receptor (ER) antagonist ICI 182,780. We postulate that synthesis of PACAP in L6-S1 DRG and utilization in the cervix and spinal cord increase over pregnancy and this synthesis is the under influence of the estrogen-ER system. Since PACAP is expressed by sensory nerves and may have roles in nociception and vascular function, collectively, these data are consistent with the hypothesis that sensory nerve-derived neuronal factors innervate the cervix and play a role in cervical ripening.
Collapse
Affiliation(s)
- R E Papka
- Northeastern Ohio Universities College of Medicine, Department of Neurobiology, 4209 State Route 44, P.O. Box 95, Rootstown OH 44272, USA.
| | | | | | | | | |
Collapse
|
40
|
McIlvain HB, Baudy A, Sullivan K, Liu D, Pong K, Fennell M, Dunlop J. Pituitary adenylate cyclase-activating peptide (PACAP) induces differentiation in the neuronal F11 cell line through a PKA-dependent pathway. Brain Res 2006; 1077:16-23. [PMID: 16487495 DOI: 10.1016/j.brainres.2005.12.130] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 12/12/2005] [Accepted: 12/15/2005] [Indexed: 11/28/2022]
Abstract
PACAP is a peptide with neuroprotective activity, which induces adenylate cyclase and protein kinase A (PKA) activity. PACAP has also been shown to induce neurite outgrowth in PC12 cells and dorsal root ganglion (DRG) neurons. Here, we report that exogenous PACAP38 promotes neurite outgrowth in the F11 neuroblastoma/dorsal DRG hybrid cell line. Using an automated microscopy system, we show that PACAP38 induces a 170-fold increase in neurite length, with an EC50 of 3.1 nM, compared to 3.7 microM for forskolin and 143.4 microM for dibutyril cyclic AMP (dbcAMP). PACAP38 induced a 4-fold increase in the level of phosphorylation of cAMP-responsive element binding protein (CREB) in F11 cells with an EC50 of 130 pM. In contrast a peptide related to PACAP, vasoactive intestinal peptide (VIP) failed to induce CREB phosphorylation or neurite outgrowth in F11 cells. Addition of the nonselective phosphodiesterase inhibitor, isobutyl methylxanthine (IBMX) increased the potency of PACAP at inducing neurite outgrowth by ten-fold. The PKA inhibitor, H89, was a potent inhibitor of PACAP38-induced neurite outgrowth. The delta-opioid receptor agonist, SNC 80, did not inhibit PACAP-induced neurogenesis even though it did reduce CREB phosphorylation. In contrast to previous studies in PC12 cells, PACAP38 failed to show MEK1 activation in F11 cells. PACAP is upregulated in DRG neurons as a result of injury, and F11 cells provide an easily accessible in vitro model for understanding mechanisms underlying PACAP differentiation and neurogenesis.
Collapse
Affiliation(s)
- H Beal McIlvain
- Discovery Neuroscience, Wyeth Research, CN 8000 Princeton, NJ 08543, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Martin B, Lopez de Maturana R, Brenneman R, Walent T, Mattson MP, Maudsley S. Class II G protein-coupled receptors and their ligands in neuronal function and protection. Neuromolecular Med 2005; 7:3-36. [PMID: 16052036 PMCID: PMC2636744 DOI: 10.1385/nmm:7:1-2:003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Accepted: 01/26/2005] [Indexed: 12/20/2022]
Abstract
G protein-coupled receptors (GPCRs) play pivotal roles in regulating the function and plasticity of neuronal circuits in the nervous system. Among the myriad of GPCRs expressed in neural cells, class II GPCRs which couples predominantly to the Gs-adenylate cyclase-cAMP signaling pathway, have recently received considerable attention for their involvement in regulating neuronal survival. Neuropeptides that activate class II GPCRs include secretin, glucagon-like peptides (GLP-1 and GLP-2), growth hormone-releasing hormone (GHRH), pituitary adenylate cyclase activating peptide (PACAP), corticotropin-releasing hormone (CRH), vasoactive intestinal peptide (VIP), parathyroid hormone (PTH), and calcitonin-related peptides. Studies of patients and animal and cell culture models, have revealed possible roles for class II GPCRs signaling in the pathogenesis of several prominent neurodegenerative conditions including stroke, Alzheimer's, Parkinson's, and Huntington's diseases. Many of the peptides that activate class II GPCRs promote neuron survival by increasing the resistance of the cells to oxidative, metabolic, and excitotoxic injury. A better understanding of the cellular and molecular mechanisms by which class II GPCRs signaling modulates neuronal survival and plasticity will likely lead to novel therapeutic interventions for neurodegenerative disorders.
Collapse
Affiliation(s)
- Bronwen Martin
- Laboratory of Neurosciences, National Institute on Ageing Intramural Research Program, Gerontology Research Center, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
42
|
Zusev M, Gozes I. Differential regulation of activity-dependent neuroprotective protein in rat astrocytes by VIP and PACAP. ACTA ACUST UNITED AC 2004; 123:33-41. [PMID: 15518891 DOI: 10.1016/j.regpep.2004.05.021] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Activity-dependent neuroprotective protein (ADNP) was shown to be a vasoactive intestinal peptide (VIP) responsive gene in astrocytes derived from the cerebral cortex of newborn rats. The present study was set out to identify VIP receptors that are associated with increases in ADNP expression in developing astrocytes. Using VIP analogues specific for the VPAC1 and the VPAC2 receptors, it was discovered that VIP induced changes in ADNP expression in astrocytes via the VPAC2 receptor. The constitutive synthesis of ADNP and VPAC2 was shown to be age-dependent and increased as the astrocyte culture developed. Pituitary adenylate cyclase-activating polypeptide (PACAP) also induced changes in ADNP expression. The apparent changes induced by VIP and PACAP on ADNP expression were developmentally dependent, and while stimulating expression in young astrocytes, an inhibition was demonstrated in older cultures. In conclusion, VIP, PACAP and the VPAC2 receptor may all contribute to the regulation of ADNP gene expression in the developing astrocyte.
Collapse
MESH Headings
- Animals
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Base Sequence
- Cell Differentiation
- Cells, Cultured
- Cellular Senescence
- Gene Expression Regulation, Developmental/drug effects
- Homeodomain Proteins/biosynthesis
- Homeodomain Proteins/genetics
- Models, Biological
- Nerve Growth Factors/pharmacology
- Nerve Tissue Proteins/biosynthesis
- Nerve Tissue Proteins/genetics
- Neuropeptides/pharmacology
- Neurotransmitter Agents/pharmacology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Receptors, Cell Surface/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Vasoactive Intestinal Peptide/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Vasoactive Intestinal Peptide/pharmacology
Collapse
Affiliation(s)
- Margalit Zusev
- Department of Clinical Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
43
|
Pettersson LME, Dahlin LB, Danielsen N. Changes in expression of PACAP in rat sensory neurons in response to sciatic nerve compression. Eur J Neurosci 2004; 20:1838-48. [PMID: 15380005 DOI: 10.1111/j.1460-9568.2004.03644.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the present study, expression of pituitary adenylate cyclase-activating polypeptide (PACAP) in rat dorsal root ganglion (DRG) neurons and sciatic nerve following experimental sciatic nerve compression was studied with the use of quantitative immunohistochemistry and in situ hybridization. Previously, we have investigated changes in PACAP expression after nerve transection and, here, the far more frequently encountered condition of nerve compression injury is examined. Nerve compression was performed unilaterally on the rat sciatic nerve, at mid-thigh level, by application of a narrow silicone tube around the nerve for 3, 7, 14 or 28 days, respectively. We detect a statistically significant upregulation in the number and density of PACAP mRNA expression in both small and large DRG neurons in response to nerve compression. An increased number of PACAP-immunoreactive neurons is also found in the ipsilateral DRG. In addition, PACAP immunoreactivity is observed in the compressed sciatic nerve segment and adjacent nerve tissue after nerve compression. The present findings can be compared with previous studies where we have shown that PACAP expression is upregulated in DRG; in response to peripheral inflammation (primarily in small-medium neurons), and after axotomy (dramatic upregulation in medium-large neurons). In view of the recent findings of an increased PACAP expression in DRG after nerve compression, as well as the previous findings of a modulation of PACAP expression in response to axotomy and inflammation, it is likely that PACAP is also involved in the modulation of the response to peripheral nerve compression.
Collapse
Affiliation(s)
- L M E Pettersson
- Department of Physiological Sciences, Section for Neuroendocrine Cell Biology, BMC F10, Lund University, SE-221 84 Lund, Sweden
| | | | | |
Collapse
|
44
|
Pettersson LME, Heine T, Verge VMK, Sundler F, Danielsen N. PACAP mRNA is expressed in rat spinal cord neurons. J Comp Neurol 2004; 471:85-96. [PMID: 14983478 DOI: 10.1002/cne.20015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study examines the expression of pituitary adenylate cyclase activating polypeptide (PACAP) mRNA in the rat spinal cord during normal conditions and in response to sciatic nerve transection. Previously, PACAP immunoreactivity has been found in fibers in the spinal cord dorsal horn and around the central canal and in neurons in the intermediolateral column (IML). Furthermore, in the dorsal root ganglia, PACAP immunoreactivity and PACAP mRNA expression have been observed preferentially in nerve cell bodies of smaller diameter terminating in the superficial laminae of the dorsal horn. However, neuronal expression of PACAP mRNA in adult rat spinal cord appeared limited to neurons of the IML. By using a refined in situ hybridization protocol, we now detect PACAP mRNA expression in neurons primarily in laminae I and II, but also in deeper laminae of the spinal cord dorsal horn and around the central canal. In addition, PACAP mRNA expression is observed in a few neurons in the ventral horn. PACAP expression in the ventral horn is increased in a population of large neurons, most likely motor neurons, both after distal and proximal sciatic nerve transection. The proposed role of PACAP in nociception is strengthened by our findings of PACAP mRNA-expressing neurons in the superficial laminae of the dorsal horn. Furthermore, increased expression of PACAP in ventral horn neurons, in response to nerve transection, suggests a role for PACAP in repair/regeneration of motor neurons.
Collapse
Affiliation(s)
- Lina M E Pettersson
- Department of Physiological Sciences, Section for Neuroendocrine Cell Biology, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
45
|
Hashimoto H, Shintani N. [In vivo functional analysis of the neuropeptide PACAP using gene-targeted mice]. Nihon Yakurigaku Zasshi 2003; 122:427-35. [PMID: 14569162 DOI: 10.1254/fpj.122.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mutant strains of mice with precise genetic mutations generated by gene-targeting technology have proved to be useful tools for linking specific genes with biological processes in vivo and serve as models for human diseases. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a highly conserved neuropeptide that is widely expressed in the mammalian brain, and it has been implicated in a broad variety of physiological and pathophysiological processes. To assess the function of PACAP in vivo, recently, we have generated PAC1 receptor- and PACAP-targeted mice and transgenic mice overexpressing PACAP in the pancreatic beta-cells. The phenotypes of these mutant mice revealed both expected and unexpected roles of PACAP in the brain and pancreatic functions. A significant contribution of genetic background as well as environmental factors to the knockout phenotypes was also observed. In this article, we briefly describe the technique of gene targeting and discuss how this method was used to generate PACAP and its receptor deficient mice. We also analyze how these mutants can contribute to our understanding of the molecular mechanism underlying higher nervous functions.
Collapse
Affiliation(s)
- Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Japan.
| | | |
Collapse
|
46
|
Jongsma Wallin H, Pettersson LME, Verge VMK, Danielsen N. Effect of anti-nerve growth factor treatment on pituitary adenylate cyclase activating polypeptide expression in adult sensory neurons exposed to adjuvant induced inflammation. Neuroscience 2003; 120:325-31. [PMID: 12890505 DOI: 10.1016/s0306-4522(03)00118-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Expression of pituitary adenylate cyclase activating polypeptide (PACAP) is increased in sensory neurons exposed to adjuvant induced peripheral inflammation. Local elevation in expression of the neurotrophin nerve growth factor (NGF) is a main factor contributing to the neuronal response to inflammation. This study examines the role of endogenous NGF in inflammation-associated increases in PACAP expression using the adjuvant-induced peripheral inflammation model with or without systemic administration of antibodies against NGF. Quantitative in situ hybridization was used to detect changes in neuronal PACAP mRNA expression and to correlate this expression with neuronal mRNA expression of the NGF receptor tyrosine kinase (trk) A. The results from this study show that inflammation triggered increases in PACAP expression occurs in small- to medium-sized dorsal root ganglion (DRG) neurons that also express trkA, and that this elevation in PACAP expression is prevented by systemic injection of anti-NGF. This supports a role for NGF as a positive regulator of PACAP expression during inflammation.
Collapse
Affiliation(s)
- H Jongsma Wallin
- Department of Physiological Sciences, BMC F10, Lund University, SE-221 84 Lund, Sweden.
| | | | | | | |
Collapse
|
47
|
Martin M, Otto C, Santamarta MT, Torrecilla M, Pineda J, Schütz G, Maldonado R. Morphine withdrawal is modified in pituitary adenylate cyclase-activating polypeptide type I-receptor-deficient mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2003; 110:109-18. [PMID: 12573539 DOI: 10.1016/s0169-328x(02)00646-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The pituitary adenylate cyclase-activating polypeptide type I-receptor (PAC1) is a G-protein-coupled receptor that is widely expressed in neurons of the central and peripheral nervous system. The strong expression of PAC1 in the second sensory neuron as well as in brainstem regions such as the locus coeruleus prompted us to elucidate the potential in vivo role of PAC1-mediated signalling in pain perception and opioid addiction using a PAC1-deficient mouse line. We observed a selective involvement of PAC1 in the mediation of visceral pain. While there was no impairment in acute somatic pain perception, PAC1-mutants exhibited a dramatically decreased response in the abdominal writhing test. These data in concert with data from the literature implicate PAC1 in the mediation of visceral and chronic pain. In addition, we observed that PAC1 did not influence the motivational aspects of opioid addictive properties, since morphine-induced rewarding effects and sensitization to locomotor responses were completely maintained in PAC1-deficient mice. However, there was a dramatic increase in physical withdrawal signs after naloxone-precipitated morphine withdrawal in PAC1 mutants. At the cellular level, electrophysiological examinations in locus coeruleus neurons from morphine-dependent wild-type and PAC1-deficient mice did not reveal any differences in firing rates. These data therefore suggested that most likely disruption of PAC1-mediated signalling in afferents towards the locus coeruleus but not within the intrinsic locus coeruleus system led to the enhancement of somatic withdrawal signs.
Collapse
Affiliation(s)
- Miquel Martin
- Laboratory of Neuropharmacology, Faculty of Medicine, University Pompeu Fabra, c/ Doctor Aiguader 80, 08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
The Biological Significance of PACAP and PACAP Receptors in Human Tumors: From Cell Lines to Cancers. PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE 2003. [DOI: 10.1007/978-1-4615-0243-2_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
49
|
Abstract
SUMMARY All G-protein-coupled receptors (GPCRs) share a common molecular architecture (with seven putative transmembrane segments) and a common signaling mechanism, in that they interact with G proteins (heterotrimeric GTPases) to regulate the synthesis of intracellular second messengers such as cyclic AMP, inositol phosphates, diacylglycerol and calcium ions. Historically, GPCRs have been classified into six families, which were thought to be unrelated; three of these are found in vertebrates. Recent work has identified several new GCPR families and suggested the possibility of a common evolutionary origin for all of them. Family B (the secretin-receptor family or 'family 2') of the GPCRs is a small but structurally and functionally diverse group of proteins that includes receptors for polypeptide hormones, molecules thought to mediate intercellular interactions at the plasma membrane and a group of Drosophila proteins that regulate stress responses and longevity. Family-B GPCRs have been found in all animal species investigated, including mammals, Caenorhabditis elegans and Drosophila melanogaster, but not in plants, fungi or prokaryotes. In this article, I describe the structures and functions of family-B GPCRs and propose a simplified nomenclature for these proteins.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Evolution, Molecular
- Heterotrimeric GTP-Binding Proteins/metabolism
- Humans
- Molecular Sequence Data
- Mutation
- Phylogeny
- Protein Structure, Tertiary
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/classification
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, G-Protein-Coupled
- Receptors, Gastrointestinal Hormone/chemistry
- Receptors, Gastrointestinal Hormone/classification
- Receptors, Gastrointestinal Hormone/genetics
- Sequence Alignment
- Terminology as Topic
Collapse
Affiliation(s)
- A J Harmar
- Department of Neuroscience, University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, UK.
| |
Collapse
|