1
|
Xu J, Xiao N, Zhou D, Xie L. Disease tolerance: a protective mechanism of lung infections. Front Cell Infect Microbiol 2023; 13:1037850. [PMID: 37207185 PMCID: PMC10189053 DOI: 10.3389/fcimb.2023.1037850] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 03/30/2023] [Indexed: 05/21/2023] Open
Abstract
Resistance and tolerance are two important strategies employed by the host immune response to defend against pathogens. Multidrug-resistant bacteria affect the resistance mechanisms involved in pathogen clearance. Disease tolerance, defined as the ability to reduce the negative impact of infection on the host, might be a new research direction for the treatment of infections. The lungs are highly susceptible to infections and thus are important for understanding host tolerance and its precise mechanisms. This review focuses on the factors that induce lung disease tolerance, cell and molecular mechanisms involved in tissue damage control, and the relationship between disease tolerance and sepsis immunoparalysis. Understanding the exact mechanism of lung disease tolerance could allow better assessment of the immune status of patients and provide new ideas for the treatment of infections.
Collapse
Affiliation(s)
- Jianqiao Xu
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Nan Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- *Correspondence: Dongsheng Zhou, ; Lixin Xie,
| | - Lixin Xie
- College of Pulmonary & Critical Care Medicine, 8th Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
- *Correspondence: Dongsheng Zhou, ; Lixin Xie,
| |
Collapse
|
2
|
Gu Q, Ke H, Liu Z, Lv X, Sun Z, Zhang M, Chen L, Yang J, Zhang Y, Wu L, Li Z, Wu J, Wang G, Meng C, Zhang G, Wang X, Ma Z. A high-density genetic map and multiple environmental tests reveal novel quantitative trait loci and candidate genes for fibre quality and yield in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3395-3408. [PMID: 32894321 DOI: 10.1007/s00122-020-03676-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/21/2020] [Indexed: 05/18/2023]
Abstract
A high-density linkage map of an intraspecific RIL population was constructed using 6187 bins to identify QTLs for fibre quality- and yield-related traits in upland cotton by whole-genome resequencing. Good fibre quality and high yield are important production goals in cotton (Gossypium hirsutum L.), which is a leading natural fibre crop worldwide. However, a greater understanding of the genetic variants underlying fibre quality- and yield-related traits is still required. In this study, a large-scale population including 588 F7 recombinant inbred lines, derived from an intraspecific cross between the upland cotton cv. Nongdamian13, which exhibits high quality, and Nongda601, which exhibits a high yield, was genotyped by using 232,946 polymorphic single-nucleotide polymorphisms obtained via a whole-genome resequencing strategy with 4.3-fold genome coverage. We constructed a high-density bin linkage map containing 6187 bin markers spanning 4478.98 cM with an average distance of 0.72 cM. We identified 58 individual quantitative trait loci (QTLs) and 25 QTL clusters harbouring 94 QTLs, and 119 previously undescribed QTLs controlling 13 fibre quality and yield traits across eight environments. Importantly, the QTL counts for fibre quality in the Dt subgenome were more than two times that in the At subgenome, and chromosome D02 harboured the greatest number of QTLs and clusters. Furthermore, we discovered 24 stable QTLs for fibre quality and 12 stable QTLs for yield traits. Four novel major stable QTLs related to fibre length, fibre strength and lint percentage, and seven previously unreported candidate genes with significantly differential expression between the two parents were identified and validated by RNA-seq. Our research provides valuable information for improving the fibre quality and yield in cotton breeding.
Collapse
Affiliation(s)
- Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Xing Lv
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Man Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Liting Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Jinhua Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China.
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, 071001, China.
| |
Collapse
|
3
|
Chaplin AK, Chernukhin I, Bechtold U. Profiling of advanced glycation end products uncovers abiotic stress-specific target proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:653-670. [PMID: 30395279 PMCID: PMC6322573 DOI: 10.1093/jxb/ery389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/12/2018] [Indexed: 05/03/2023]
Abstract
Non-enzymatic post-translational modifications of proteins can occur when the nucleophilic amino acid side chains of lysine and arginine encounter a reactive metabolite to form advanced glycation end products (AGEs). Glycation arises predominantly from the degradation of reducing sugars, and glycation has been observed during metabolic stress from glucose metabolism in both animals and plants. The implications of glycating proteins on plant proteins and biology has received little attention, and here we describe a robust assessment of global glycation profiles. We identified 112 glycated proteins that were common under a range of growth conditions and abiotic stress treatments, but also showed rosette age, diurnal, and drought stress-specific targets. Among 18 drought stress-specific glycation targets included several thioredoxin and thioredoxin-like proteins. In vitro glycation of two carbohydrate metabolism enzymes led either to a reduction or to a complete inhibition of activity, demonstrating the impact of glycation on protein function. Taken together, our results suggest that stress-specific glycation patterns of a small number of regulatory proteins may have a much broader impact on downstream target proteins that are, for example, associated with primary metabolism.
Collapse
Affiliation(s)
- Amanda K Chaplin
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Igor Chernukhin
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Ulrike Bechtold
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
4
|
Transient Receptor Potential Canonical Channels 4 and 5 Mediate Escherichia coli-Derived Thioredoxin Effects in Lipopolysaccharide-Injected Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4904696. [PMID: 29983857 PMCID: PMC6015690 DOI: 10.1155/2018/4904696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/18/2018] [Accepted: 05/07/2018] [Indexed: 12/21/2022]
Abstract
Thioredoxin plays an essential role in bacterial antioxidant machinery and virulence; however, its regulatory actions in the host are less well understood. Reduced human Trx activates transient receptor potential canonical 5 (TRPC5) in inflammation, but there is no evidence of whether these receptors mediate bacterial thioredoxin effects in the host. Importantly, TRPC5 can form functional complexes with other subunits such as TRPC4. Herein, E. coli-derived thioredoxin induced mortality in lipopolysaccharide- (LPS-) injected mice, accompanied by reduction of leukocyte accumulation, regulation of cytokine release into the peritoneum, and impairment of peritoneal macrophage-mediated phagocytosis. Dual TRPC4/TRPC5 blockade by ML204 increased mortality and hypothermia in thioredoxin-treated LPS mice but preserved macrophage's ability to phagocytose. TRPC5 deletion did not alter body temperature but promoted additional accumulation of peritoneal leukocytes and inflammatory mediator release in thioredoxin-administered LPS mice. Thioredoxin diminished macrophage-mediated phagocytosis in wild-type but not TRPC5 knockout animals. TRPC5 ablation did not affect LPS-induced responses. However, ML204 caused mortality associated with exacerbated hypothermia and decreased peritoneal leukocyte numbers and cytokines in LPS-injected mice. These results suggest that bacterial thioredoxin effects under LPS stimuli are mediated by TRPC4 and TRPC5, shedding light on the additional mechanisms of bacterial virulence and on the pathophysiological roles of these receptors.
Collapse
|
5
|
99MTc-Hexamethylpropyleneamine Oxime Imaging for Early Detection of Acute Lung Injury in Rats Exposed to Hyperoxia or Lipopolysaccharide Treatment. Shock 2018; 46:420-30. [PMID: 26974426 DOI: 10.1097/shk.0000000000000605] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tc-Hexamethylpropyleneamine oxime (HMPAO) is a clinical single-photon emission computed tomography biomarker of tissue oxidoreductive state. Our objective was to investigate whether HMPAO lung uptake can serve as a preclinical marker of lung injury in two well-established rat models of human acute lung injury (ALI).Rats were exposed to >95% O2 (hyperoxia) or treated with intratracheal lipopolysaccharide (LPS), with first endpoints obtained 24 h later. HMPAO was administered intravenously before and after treatment with the glutathione-depleting agent diethyl maleate (DEM), scintigraphy images were acquired, and HMPAO lung uptake was quantified from the images. We also measured breathing rates, heart rates, oxygen saturation, bronchoalveolar lavage (BAL) cell counts and protein, lung homogenate glutathione (GSH) content, and pulmonary vascular endothelial filtration coefficient (Kf).For hyperoxia rats, HMPAO lung uptake increased after 24 h (134%) and 48 h (172%) of exposure. For LPS-treated rats, HMPAO lung uptake increased (188%) 24 h after injury and fell with resolution of injury. DEM reduced HMPAO uptake in hyperoxia and LPS rats by a greater fraction than in normoxia rats. Both hyperoxia exposure (18%) and LPS treatment (26%) increased lung homogenate GSH content, which correlated strongly with HMPAO uptake. Neither of the treatments had an effect on Kf at 24 h. LPS-treated rats appeared healthy but exhibited mild tachypnea, BAL, and histological evidence of inflammation, and increased wet and dry lung weights. These results suggest the potential utility of HMPAO as a tool for detecting ALI at a phase likely to exhibit minimal clinical evidence of injury.
Collapse
|
6
|
Yuan Y, Jiao X, Lau WB, Wang Y, Christopher TA, Lopez BL, RamachandraRao SP, Tao L, Ma XL. Thioredoxin glycation: A novel posttranslational modification that inhibits its antioxidant and organ protective actions. Free Radic Biol Med 2010; 49:332-8. [PMID: 20416371 PMCID: PMC2900508 DOI: 10.1016/j.freeradbiomed.2010.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/05/2010] [Accepted: 04/14/2010] [Indexed: 11/19/2022]
Abstract
Thioredoxin (Trx) is an antioxidant and antiapoptotic molecule, and its activity is regulated by posttranslational modifications. Trx-1 has recently been reported to exert potent protective action against endotoxic liver injury. However, whether Trx-1 activity is affected by endotoxin has never been previously investigated. The aim of the present study was to determine endotoxic regulation of Trx-1, and the potential mechanism involved. In vitro coincubation of Trx-1 with lipopolysaccharide (LPS) inhibited Trx-1 activity in a dose- and time-dependent fashion. The core (polysaccharide containing) region of LPS had a greater inhibitory effect on Trx-1 activity than its Lipid A fragment, suggesting the involvement of sugar groups. Periodic acid-Schiff staining and fructosamine assay demonstrated that Trx-1 was rapidly glycated by LPS. Aminoguanidine, a competitive glycation-inhibitor, completely blocked the inhibitory effect of LPS on Trx-1. Moreover, Trx-1 activity was also significantly inhibited by in vitro ribose incubation. Finally, in vivo administration of Trx-1, but not glycated Trx-1, reduced LPS-induced hepatic injury. Taken together, these results demonstrated for the first time that Trx-1 is susceptible to glycative inactivation. This novel posttranslational Trx-1 modification contributes to LPS cytotoxicity, suggesting that blockading protein glycation might be a new therapeutic strategy against endotoxic organ injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xin-Liang Ma
- Address proofs to: Xin L Ma, M.D., Ph.D., Department of Emergency Medicine, 1020 Sansom Street, Thompson Building, Room 239, Philadelphia, PA 19107, Tel: (215)955-4994, Fax: (215)923-6225,
| |
Collapse
|
7
|
Curbo S, Gaudin R, Carlsten M, Malmberg KJ, Troye-Blomberg M, Ahlborg N, Karlsson A, Johansson M, Lundberg M. Regulation of interleukin-4 signaling by extracellular reduction of intramolecular disulfides. Biochem Biophys Res Commun 2009; 390:1272-7. [DOI: 10.1016/j.bbrc.2009.10.134] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Accepted: 10/25/2009] [Indexed: 10/20/2022]
|
8
|
Zhang PH, Li LL, Zeng JZ, Yang LR, Ren LC, Liang PF, Huang XY. Preliminary proteomic analysis of circulating polymorphonuclear neutrophils from rabbits experiencing scald injury and Staphylococcus aureus sepsis. Inflamm Res 2009; 59:307-14. [PMID: 19876717 DOI: 10.1007/s00011-009-0106-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 08/19/2009] [Accepted: 10/03/2009] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The aim of this study is to identify the differentially expressed proteins in circulating polymorphonuclear neutrophils (PMN) from scalded bacteremia rabbits infected with Staphylococcus aureus to provide a basis to reveal the pathogenesis of burns and sepsis. METHODS Rabbits were subjected to sham burn (A), A + bacterial challenge (B), 30% scald injury (C), or C + bacterial challenge (D). Bacterial challenge was inflicted as an injection of 2.0 x 10(8) cfu S. aureus 18 h after burn procedure. Animals were sacrificed 24 h after burn. PMN were isolated, and the differential proteins in the PMN from these animals were identified by two-dimensional electrophoresis coupled with MALDI-TOF-MS; two proteins were confirmed by Western blotting. RESULTS Twenty-one differential protein spots were found, and seven differential proteins were identified. Among the identified proteins, the expression levels of protein disulfide-isomerase and thiol-specific antioxidant protein were down-regulated in groups C and D, and two protein spots of annexin I were identified, one of which was down-regulated and another up-regulated in groups C and D. CONCLUSIONS Preliminary proteome changes in PMN from rabbits experiencing scald injury and S. aureus sepsis were revealed, which possibly play an important role in the inflammation and pathogenesis of sepsis after scald injury.
Collapse
Affiliation(s)
- Pi-hong Zhang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Omata Y, Saito Y, Fujita K, Ogawa Y, Nishio K, Yoshida Y, Niki E. Induction of adaptive response and enhancement of PC12 cell tolerance by lipopolysaccharide primarily through the upregulation of glutathione S-transferase A3 via Nrf2 activation. Free Radic Biol Med 2008; 45:1437-45. [PMID: 18793714 DOI: 10.1016/j.freeradbiomed.2008.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 08/01/2008] [Accepted: 08/18/2008] [Indexed: 02/05/2023]
Abstract
Increasing evidence indicates that reactive oxygen species and other physiologically existing oxidative stimuli upregulate the antioxidant system, thereby triggering the adaptive response. In this study, we focused on adaptive cytoprotection induced by lipopolysaccharide (LPS), which induces oxidative stress and inflammatory cytokines, in PC12 cells, a model of the neuronal cell. After treating PC12 cells with LPS at sublethal concentrations, we found that they developed resistance to subsequent oxidative stress induced by 13S-hydroperoxy-9Z,11E-octadecadienoic acid and 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium. To determine the underlying molecular mechanisms responsible for an adaptive response induced by LPS, we studied the changes in the antioxidant system. LPS treatment resulted in an increase in the gene expression of glutathione S-transferase A3 (GST-A3) by up to 60-fold as well as in GST enzyme activity. A GST inhibitor and GST A3 small interfering RNA effectively attenuated the adaptive response. The nuclear factor erythroid 2 p45-related factor 2 (Nrf2) was transcriptionally activated by LPS. Nrf2 small interfering RNA effectively attenuated the increase in GST A3 mRNA level as well as the adaptive response induced by LPS. In addition, peripheral injection of LPS at sublethal concentrations increased GST enzyme activity in mouse brain. These findings, taken together, indicate that stimulation with LPS at sublethal concentrations induces an adaptive response and enhances PC12 cell tolerance, primarily through the induction of GST A3 via the transcriptional activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yo Omata
- Human Stress Signal Research Center, National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Lee EJ, In KH, Kim JH, Lee SY, Shin C, Shim JJ, Kang KH, Yoo SH, Kim CH, Kim HK, Lee SH, Uhm CS. Proteomic analysis in lung tissue of smokers and COPD patients. Chest 2008; 135:344-352. [PMID: 18753468 DOI: 10.1378/chest.08-1583] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
RATIONALE Although cigarette smoking is the most important risk factor for COPD, COPD develops in only a minority of smokers, suggesting a significant genetic role. To solve the underlying pathophysiologic mechanism, it is critical to understand genes and their final product, ie, proteins. We investigated the exclusive proteins from the lung tissues obtained from COPD patients using proteomics. METHODS Nontumorous lung tissue specimens were obtained from patients who underwent surgery for lung cancer. We included 22 subjects: nonsmokers (n = 8), smokers without COPD (healthy smokers, n = 7), and smokers with COPD (n = 7). Proteins were separated from their spots with two-dimensional polyacrylamide gel electrophoresis and examined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). To validate the proteins from the above procedures, Western blotting and immunohistochemistry were conducted. RESULTS Twelve protein spots from COPD group significantly increased or decreased compared with the other two groups were chosen for MALDI-TOF-MS analysis. Eight proteins were up-regulated in the COPD group as compared with the nonsmokers. Meanwhile, five proteins from the COPD group were up-regulated and five were down-regulated when compared with healthy smokers. Of these, matrix metalloproteinase (MMP)-13 and thioredoxin-like 2 were significantly increased in the COPD patients by Western blot and immunohistochemistry. MMP-13 was mainly expressed in the alveolar macrophages and type II pneumocytes; however, thioredoxin-like 2 was primarily seen in the bronchial epithelium. CONCLUSIONS MMP-13 and thioredoxin-like 2 in lungs increased in patients with COPD. MMP-13 was mainly expressed in the alveolar macrophages and type II pneumocytes. In contrast, thioredoxin-like 2 was primarily seen in the bronchial epithelium.
Collapse
Affiliation(s)
- Eun Joo Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul
| | - Kwang Ho In
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul.
| | - Je Hyeong Kim
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Ansan
| | - Sang Yeub Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul
| | - Chol Shin
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Ansan
| | - Jae Jeong Shim
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul
| | - Kyung Ho Kang
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul
| | - Se Hwa Yoo
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Korea University College of Medicine, Seoul
| | - Chul Hwan Kim
- Department of Pathology, Korea University College of Medicine, Seoul
| | - Han-Kyeom Kim
- Department of Pathology, Korea University College of Medicine, Seoul
| | - Sang Hoon Lee
- Department of Anatomy, Korea University College of Medicine, Korea University College of Medicine, Seoul, Korea
| | - Chang Sub Uhm
- Department of Anatomy, Korea University College of Medicine, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Wang X, Svedin P, Nie C, Lapatto R, Zhu C, Gustavsson M, Sandberg M, Karlsson JO, Romero R, Hagberg H, Mallard C. N-acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol 2007; 61:263-71. [PMID: 17253623 DOI: 10.1002/ana.21066] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Maternal inflammation/infection alone or in combination with birth asphyxia increases the risk for perinatal brain injury. Free radicals are implicated as major mediators of inflammation and hypoxia-ischemia (HI)-induced perinatal brain injury. This study evaluated the neuroprotective efficacy of a scavenging agent, N-acetylcysteine (NAC), in a clinically relevant model. METHODS Lipopolysaccharide (LPS)-sensitized HI brain injury was induced in 8-day-old neonatal rats. NAC was administered in multiple doses, and brain injury was evaluated at 7 days after HI. RESULTS NAC (200mg/kg) provided marked neuroprotection with up to 78% reduction of brain injury in the pre+post-HI treatment group and 41% in the early (0 hour) post-HI treatment group, which was much more pronounced protection than another free radical scavenger, melatonin. Protection by NAC was associated with the following factors: (1) reduced isoprostane activation and nitrotyrosine formation; (2) increased levels of the antioxidants glutathione, thioredoxin-2, and (3) inhibition of caspase-3, calpain, and caspase-1 activation. INTERPRETATION NAC provides substantial neuroprotection against brain injury in a model that combines infection/inflammation and HI. Protection by NAC was associated with improvement of the redox state and inhibition of apoptosis, suggesting that these events play critical roles in the development of lipopolysaccharide-sensitized HI brain injury.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Perinatal Center, Department of Physiology, Göteborg University, Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW To review the reason for and clinical effects of selenium supplementation in critically ill patients. RECENT FINDINGS Selenium-dependent enzymes and selenoprotein P regulate immune and endothelial cell function. Obviously not the anorganic compounds of selenium but the activity of selenium-dependent enzymes is the most important factor modulating the immune system and the clinical outcome of patients. Despite low selenium levels in severely ill patients and low glutathione peroxidase activity associated with the extent of multiorgan dysfunction, only a few trials have investigated the effect of selenium supplementation on clinical outcome. A metaanalysis did not reveal a statistically significant survival rate with selenium supplementation, but suggested a dose-dependent trend. The recently completed multicentre trial on high-dose selenium supplementation in septic patients also did not reveal a significant overall reduction in mortality. SUMMARY The available evidence suggests that selenoproteins play an important role in the immunomodulation of critically ill patients and a sodium selenite supplementation upregulates these selenoenzymes. The intervention trials with sodium selenite performed to date are small and therefore only a tendency in reduction of morbidity and mortality could be demonstrated. Larger trials are necessary to show the supposed benefits and risks of selenite supplementation in critically ill patients.
Collapse
|
13
|
Kuo SM, Tan CH, Dragan M, Wilson JX. Endotoxin increases ascorbate recycling and concentration in mouse liver. J Nutr 2005; 135:2411-6. [PMID: 16177205 PMCID: PMC1343533 DOI: 10.1093/jn/135.10.2411] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sublethal exposure to Escherichia coli endotoxin [lipopolysaccharide (LPS)] attenuates the lethal effects of subsequent insults associated with oxidative stress, such as higher LPS dose, septic peritonitis, and ischemia. Because administration of the antioxidant ascorbate protects against these same insults and injection of dehydroascorbic acid (DHAA) protects against ischemia, the hypothesis that sublethal LPS increases endogenous ascorbate concentration and recycling (i.e., synthesis from DHAA) was tested. Injection of LPS [5 x 10(6) endotoxin units/kg body weight, i.p.] in mice caused a temporary inhibition of food intake, which was significant by 20 h and recovered within 3 d. LPS increased ascorbate concentration in adrenal gland, heart, kidney, and liver. LPS had similar effects in wild-type and Slc23a2+/- mice despite the latter's deficiency in the ascorbate transporter SVCT2. In liver, the ascorbate response to LPS was not accompanied by change in glutathione concentration. LPS decreased gulonolactone oxidase activity, which is rate-limiting for de novo synthesis of ascorbate from glucose, but increased the rate of DHAA reduction to ascorbate. In conclusion, sublethal endotoxin increases ascorbate recycling in liver and ascorbate concentration in liver, adrenal gland, heart, and kidney. The enhanced rate of ascorbate production from DHAA may protect these organs against the reactive oxygen species produced by subsequent, potentially lethal challenges.
Collapse
Affiliation(s)
| | | | | | - John X. Wilson
- Correspondence: Dr. John X. Wilson, Department of Exercise and Nutrition Sciences, University at Buffalo, Kimball Tower, Room 410, Buffalo, NY 14214-8028, USA. Tel: (716) 829-2941 extension 408. Fax: (716) 829-2428. E-mail:
| |
Collapse
|
14
|
Shih HC, Wei YH, Lee CH. MAGNOLOL ALTERS THE COURSE OF ENDOTOXIN TOLERANCE AND PROVIDES EARLY PROTECTION AGAINST ENDOTOXIN CHALLENGE FOLLOWING SUBLETHAL HEMORRHAGE IN RATS. Shock 2004; 22:358-63. [PMID: 15377892 DOI: 10.1097/01.shk.0000142251.92887.94] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The endotoxin tolerance induced by sublethal hemorrhage (SLH) is associated with an initial surge of proinflammatory cytokines such as TNF-alpha. Magnolol, a potent antioxidative herb, is hypothesized to suppress TNF-alpha production after SLH and to alter or attenuate subsequent endotoxin tolerance. A prospective, randomized experimental study was performed. Male Sprague-Dawley rats were randomly segregated into one of four groups. Rats in the Sham/Veh and Sham/Mag groups received a sham operation for SLH and treatment with vehicle or magnolol, respectively. Rats in the SLH/Veh and SLH/Mag groups received SLH and treatment with vehicle or magnolol, respectively. Animals were subjected to endotoxin challenge (EC) at 12, 24, or 36 h after these procedures. Cytokines (TNF-alpha and IL-10), lipid peroxidation, and superoxide dismutase (SOD) activity were measured in lung tissue following SLH. Plasma cytokines were assessed after SLH or EC at different time points, and survival analyses were performed after EC. Plasma and tissue TNF-alpha increased after SLH; this increase was significantly suppressed by magnolol. Additionally, a significant increase in plasma and tissue IL-10 after SLH was observed in the SLH/Mag group. Lipid peroxidation and SOD activity increased after SLH; magnolol suppressed the lipid peroxidation but not the SOD activity. If EC was performed 12 or 24 h after SLH, greater survival with decreased TNF-alpha and increased IL-10 in plasma was observed in the SLH/Mag group. If EC was performed 24 or 36 h after SLH, greater survival with decreased plasma TNF-alpha was observed in the SLH/Veh group. In conclusion, magnolol induces an antiinflammatory response and provides early protection against EC following SLH; however, magnolol attenuates the protraction of endotoxin tolerance and inhibits late protection against EC following SLH.
Collapse
Affiliation(s)
- Hsin-Chin Shih
- Institute of Clinical Medicine, National Yang-Ming University, Peitou, Taipei, Taiwan.
| | | | | |
Collapse
|
15
|
Rahman I, Marwick J, Kirkham P. Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem Pharmacol 2004; 68:1255-67. [PMID: 15313424 DOI: 10.1016/j.bcp.2004.05.042] [Citation(s) in RCA: 354] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 05/17/2004] [Indexed: 12/12/2022]
Abstract
Reactive oxygen species (ROS), either directly or via the formation of lipid peroxidation products, such as 4-hydroxy-2-nonenal, acrolein and F2-isoprostanes, may play a role in enhancing inflammation through the activation and phosphorylation of stress kinases (JNK, ERK, p38) and redox-sensitive transcription factors such as NF-kappaB and AP-1. This increases the expression of genes regulating a battery of distinct pro-inflammatory mediators. Acetylation by histone acetyltransferase (HAT) of specific lysine residues on the N-terminal tail of core histones, results in uncoiling of the DNA and increased accessibility to transcription factor binding. In contrast, histone deacetylation by histone deacetylase (HDAC) represses gene transcription by promoting DNA winding thereby limiting access to transcription factors. Oxidative stress activates NF-kappaB resulting in expression of pro-inflammatory mediators through the activation of intrinsic HAT activity on co-activator molecules. In addition, oxidative stress also inhibits HDAC activity and in doing so enhances inflammatory gene expression which leads to a chronic inflammatory response. Oxidative stress can also increase complex formation between the co-activator CBP/p300 and the p65 subunit of NF-kappaB suggesting a further role of oxidative stress in chromatin remodeling. The antioxidant and/or anti-inflammatory effects of thiol molecules (glutathione, N-acetyl-L-cysteine and N-acystelyn), dietary polyphenols (curcumin-diferuloylmethane and resveratrol), the bronchodilator theophylline and glucocorticoids have all been shown to play a role in either controlling NF-kappaB activation or chromatin remodeling through modulation of HDAC activity and subsequently inflammatory gene expression in lung epithelial cells. Thus, oxidative stress regulates both signal transduction and chromatin remodeling which in turn impacts on pro-inflammatory responses in the lungs.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Division of Lung Biology and Disease, University of Rochester Medical Center, NY, USA.
| | | | | |
Collapse
|
16
|
Rahman I. Smoking-Induced Inflammation, Injury and Disease. OXYGEN/NITROGEN RADICALS 2004. [DOI: 10.1201/b14147-12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Abstract
Thioredoxins are a class of small redox-regulating proteins that appear to play a crucial role in many oxidative stress-inducible degenerative diseases. A recent study demonstrated a reduction of thioredoxin-1 (Trx1) protein in the ischemic reperfused myocardium. When the same heart was adapted to ischemic stress by preconditioning with repeated cyclic episodes of small duration of ischemia and reperfusion, there was an increased induction of Trx1 expression. Inhibition of Trx1 expression resulted in reduced postischemic ventricular recovery and increased myocardial infarct size in the preconditioned heart. Corroborating these findings, transgenic mouse hearts overexpressing Trx1 were resistant to ischemic reperfusion injury as compared with the hearts from wild-type mice. Thus, it appears that thioredoxin plays a crucial role in cardioprotection induced by preconditioning.
Collapse
Affiliation(s)
- Dipak K Das
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT, USA.
| |
Collapse
|