1
|
Janowicz PW, Boele T, Maschmeyer RT, Gholami YH, Kempe EG, Stringer BW, Stoner SP, Zhang M, du Toit-Thompson T, Williams F, Touffu A, Munoz L, Kuncic Z, Brighi C, Waddington DEJ. Enhanced detection of glioblastoma vasculature with superparamagnetic iron oxide nanoparticles and MRI. Sci Rep 2025; 15:14283. [PMID: 40274951 PMCID: PMC12022243 DOI: 10.1038/s41598-025-97943-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Detecting glioblastoma infiltration in the brain is challenging due to limited MRI contrast beyond the enhancing tumour core. This study aims to investigate the potential of superparamagnetic iron oxide nanoparticles (SPIONs) as contrast agents for improved detection of diffuse brain cancer. We examine the distribution and pharmacokinetics of SPIONs in glioblastoma models with intact and disrupted blood-brain barriers. Using MRI, we imaged RN1-luc and U87MG mice injected with Gadovist and SPIONs, observing differences in blood-brain barrier permeability. Peripheral imaging showed strong uptake of nanoparticles in the liver and spleen, while vascular and renal signals were transient. Susceptibility gradient mapping enabled positive nanoparticle contrast within tumours and provided additional information on tumour angiogenesis. This approach offers a novel method for detecting diffuse brain cancer. Our findings demonstrate that SPIONs enhance glioblastoma detection beyond conventional MRI, providing insights into tumour angiogenesis and opening new avenues for early diagnosis and targeted treatment strategies.
Collapse
Affiliation(s)
- Phillip W Janowicz
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| | - Thomas Boele
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Richard T Maschmeyer
- School of Physics, Faculty of Science, The University of Sydney, Sydney, Australia
| | - Yaser H Gholami
- School of Physics, Faculty of Science, The University of Sydney, Sydney, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, Australia
| | - Emma G Kempe
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Brett W Stringer
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, Australia
| | - Shihani P Stoner
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, Sydney, Australia
| | - Marie Zhang
- Imagion Biosystems Ltd, Melbourne, Australia
| | - Taymin du Toit-Thompson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, Sydney, Australia
| | - Fern Williams
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, Sydney, Australia
| | - Aude Touffu
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, The University of Sydney, Royal North Shore Hospital, Sydney, Australia
| | - Lenka Munoz
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| | - Zdenka Kuncic
- School of Physics, Faculty of Science, The University of Sydney, Sydney, Australia
- The Sydney Nano Institute, The University of Sydney, Sydney, Australia
| | - Caterina Brighi
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - David E J Waddington
- Image X Institute, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
2
|
Wallimann RH, Mehta A, Mapanao AK, Köster U, Kneuer R, Schindler P, van der Meulen NP, Schibli R, Müller C. Preclinical comparison of (radio)lanthanides using mass spectrometry and nuclear imaging techniques: biodistribution of lanthanide-based tumor-targeting agents and lanthanides in ionic form. Eur J Nucl Med Mol Imaging 2025; 52:1370-1382. [PMID: 39680064 PMCID: PMC11839852 DOI: 10.1007/s00259-024-07018-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
PURPOSE With the growing interest in exploring radiolanthanides for nuclear medicine applications, the question arises as to whether they are generally interchangeable without affecting a biomolecule's pharmacokinetic properties. The goal of this study was to investigate similarities and differences of four (radio)lanthanides simultaneously applied as complexes of biomolecules or in ionic form. METHODS Inductively coupled plasma mass spectrometry (ICP-MS) was employed for the simultaneous detection of four lanthanides (Ln = lutetium, terbium, gadolinium and europium) in biological samples. In vitro tumor cell uptake and in vivo biodistribution studies were performed with Ln-DOTATATE, Ln-DOTA-LM3, Ln-PSMA-617 and Ln-OxFol-1. AR42J cells, PC-3 PIP cells and KB cells expressing the somatostatin receptor, the prostate-specific membrane antigen and the folate receptor, respectively, were used in vitro as well as to obtain the respective tumor mouse models for in vivo studies. The distribution of lanthanides in ionic form was investigated in immunocompetent mice. Dual-isotope SPECT/CT imaging studies were performed with mice administered with the radiolabeled biomolecules or chloride salts of lutetium-177 and terbium-161. RESULTS Similar in vitro cell uptake was observed for all four lanthanide complexes of each biomolecule into the respective tumor cell lines. AR42J tumor uptake of Ln-DOTATATE and Ln-DOTA-LM3 in mice showed similar values for all lanthanide complexes (3.8‒5.1% ID/g and 4.5‒5.0% ID/g; 1 h p.i., respectively). Accumulation of Ln-PSMA-617 in PC-3 PIP tumors (24-25% ID/g; 1 h p.i.) and of Ln-OxFol-1 in KB tumors (28-31% ID/g; 24 h p.i.) were also equal for the four lanthanide complexes of each biomolecule. After injection of lanthanide chloride salts (LnCl3; Ln = natLu, natTb, natGd, natEu), the liver uptake was different for each metal (~ 12% ID/g, ~ 22% ID/g, ~ 31% ID/g and ~ 37% ID/g; 24 h p.i., respectively) which could be ascribed to the radii of the respective lanthanide ions. In the bones, accumulation was considerably higher for lutetium than for other lanthanides (25 ± 5% ID/g vs. 14‒15% ID/g; 24 h p.i.). These data were confirmed visually by 177Lu/161Tb-based dual-isotope SPECT/CT images. CONCLUSIONS The presented study confirmed similar properties of Ln-complexes, suggesting that lutetium-177 can be replaced by other radiolanthanides, most probably without affecting the tissue distribution profile of the resultant radiopharmaceuticals. On the other hand, the different radii of the lanthanide ions affected their uptake and resorption mechanisms in liver and bones when injected in uncomplexed form.
Collapse
Affiliation(s)
- Rahel H Wallimann
- Biomedical Research, Novartis, Basel, 4056, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Avni Mehta
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
| | - Ana Katrina Mapanao
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
| | - Ulli Köster
- Institut Laue-Langevin, Grenoble, 38042, France
| | - Rainer Kneuer
- Biomedical Research, Novartis, Basel, 4056, Switzerland
| | | | - Nicholas P van der Meulen
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
- Laboratory of Radiochemistry, PSI Center for Nuclear Engineering and Sciences, Villigen-PSI, 5232, Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland
| | - Cristina Müller
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland.
- Center for Radiopharmaceutical Sciences, PSI Center for Life Sciences, Villigen-PSI, 5232, Switzerland.
| |
Collapse
|
3
|
Ouyang M, Bao L. Gadolinium Contrast Agent Deposition in Children. J Magn Reson Imaging 2025; 61:70-82. [PMID: 38597340 PMCID: PMC11645493 DOI: 10.1002/jmri.29389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Over the past few years, a large number of studies have evidenced increased signal intensity in the deep brain nuclei on unenhanced T1-MRI images achieved by the application of gadolinium-based contrast agents (GBCAs). The deposition of gadolinium in the brain, bone, and other tissues following administration of GBCAs has also been confirmed in histological studies in rodents and in necropsy studies in adults and children. Given the distinct physiological characteristics of children, this review focuses on examining the current research on gadolinium deposition in children, particularly studies utilizing novel methods and technologies. Furthermore, the article compares safety research findings of linear GBCAs and macrocyclic GBCAs in children, with the aim of offering clinicians practical guidance based on the most recent research outcomes. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Minglei Ouyang
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Li Bao
- Department of Radiology, Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of EducationWest China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
4
|
Ramalho J, Ramalho M, Semelka RC. Gadolinium Elimination in a Gadolinium Deposition Disease Population After a Single Exposure to Gadolinium-Based Contrast Agents. Invest Radiol 2024:00004424-990000000-00276. [PMID: 39637356 DOI: 10.1097/rli.0000000000001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
PURPOSE This study documents the gadolinium (Gd) content in urine over time after the administration of a single dose of Gd-based contrast agent (GBCA) in patients diagnosed with Gd deposition disease. MATERIALS AND METHODS In this retrospective observational study, 45 subjects with normal renal function who had performed 1 contrast-enhanced magnetic resonance imaging and had a nonprovoked (native) 24-hour urine test for Gd quantification after the examination were evaluated. The GBCA brand and the time interval in days between the GBCA administration and 24-hour urine Gd measurements were recorded. Log-log plot visualization of time points for urine Gd content was obtained. RESULTS Time points collected for urine Gd content showed that Gd was above the reference levels for 3 months postinjection. The urinary concentration of Gd was similar for all agents, including linear and macrocyclic. The urinary content decreased in a dog-leg fashion. Gd urine content was substantially elevated at 1 month and decreased to remain above the accepted normal range by 3 months. CONCLUSIONS Gd is retained in the body and shows demonstrable continued spontaneous elimination in urine for at least several months after administration, including the most stable macrocyclic agents. The Gd elimination pattern shows a logarithmic decrease pattern between 1 and 3 months for all agents, regardless of their structure.
Collapse
Affiliation(s)
- Joana Ramalho
- From the Department of Neuroradiology, Centro Hospitalar Universitário de Lisboa Central, Lisbon, Portugal (J.R.); Department of Radiology, Hospital da Luz, Lisbon, Portugal (M.R.); and Richard Semelka Consulting, PLLC, Chapel Hill, NC (R.C.S.)
| | | | | |
Collapse
|
5
|
Prybylski JP, Jastrzemski O, Jay M. The effect of iron status on gadolinium deposition in the rat brain: mechanistic implications. FRONTIERS IN TOXICOLOGY 2024; 6:1403031. [PMID: 39253330 PMCID: PMC11381947 DOI: 10.3389/ftox.2024.1403031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/17/2024] [Indexed: 09/11/2024] Open
Abstract
Introduction: Sites associated with gadolinium (Gd) deposition in the brain (e.g., the globus pallidus) are known to contain high concentrations of ferric iron. There is considerable debate over the mechanism of Gd deposition in the brain. The role of iron transport mechanisms in Gd deposition has not been determined. Thus, we seek to identify if Gd deposition can be controlled by modifying iron exposure. Methods: Female Sprague-Dawley rats were given diets with controlled iron levels at 2-6 ppm, 6 ppt (20 g/kg Fe carbonyl) or 48 ppm for 3 weeks to induce iron deficiency, overload or normalcy. They were kept on those diets while receiving a cumulative 10 mmol/kg dose of gadodiamide intravenously over 2 weeks, then left to washout gadodiamide for 3 days or 3 weeks before tissues were harvested. Gd concentrations in tissues were analyzed by ICP-MS. Results: There were no significant effect of dietary iron and total Gd concentrations in the organs, but there was a significant effect of iron status on Gd distribution in the brain. For the 3-week washout cohort, there was a non-significant trend of increasing total brain deposition and decreasing dietary iron, and about 4-fold more Gd in the olfactory bulbs of the low iron group compared to the other groups. Significant brain accumulation was observed in the low iron group total brain Gd in the 3-week washout group relative to the 3-day washout group and no accumulation was observed in other tissues. There was a strong negative correlation between femur Gd concentrations and concentrations in other organs when stratifying by dietary iron. Discussion: Gd brain deposition from linear Gd-based contrast agents (GBCAs) are dependent upon iron status, likely through variable transferrin saturation. This iron dependence appears to be associated with redistribution of peripheral deposited Gd (e.g., in the bone) into the brain.
Collapse
Affiliation(s)
- John P Prybylski
- Pharmacometrics, Pfizer, Groton, CT, United States
- Molecular Pharmaceutics and Pharmacoengineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Olivia Jastrzemski
- University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Michael Jay
- Molecular Pharmaceutics and Pharmacoengineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
6
|
Huang Z, Gu R, Huang S, Chen Q, Yan J, Cui X, Jiang H, Yao D, Shen C, Su J, Liu T, Wu J, Luo Z, Hu Y, Yuan A. Chiral coordination polymer nanowires boost radiation-induced in situ tumor vaccination. Nat Commun 2024; 15:3902. [PMID: 38724527 PMCID: PMC11082158 DOI: 10.1038/s41467-024-48423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Radiation-induced in situ tumor vaccination alone is very weak and insufficient to elicit robust antitumor immune responses. In this work, we address this issue by developing chiral vidarabine monophosphate-gadolinium nanowires (aAGd-NWs) through coordination-driven self-assembly. We elucidate the mechanism of aAGd-NW assembly and characterize their distinct features, which include a negative surface charge, ultrafine topography, and right-handed chirality. Additionally, aAGd-NWs not only enhance X-ray deposition but also inhibit DNA repair, thereby enhancing radiation-induced in situ vaccination. Consequently, the in situ vaccination induced by aAGd-NWs sensitizes radiation enhances CD8+ T-cell-dependent antitumor immunity and synergistically potentiates the efficacy immune checkpoint blockade therapies against both primary and metastatic tumors. The well-established aAGd-NWs exhibit exceptional therapeutic capacity and biocompatibility, offering a promising avenue for the development of radioimmunotherapy approaches.
Collapse
Affiliation(s)
- Zhusheng Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, SAR 999078, China
| | - Rong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Shiqian Huang
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Qian Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Jing Yan
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210023, China
| | - Xiaoya Cui
- Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100083, China
| | - Haojie Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Dan Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Chuang Shen
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jiayue Su
- Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100083, China
| | - Tao Liu
- Beijing Frontier Research Center for Biological Structures, School of Life Sciences, Tsinghua University, Beijing, 100083, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China
| | - Zhimin Luo
- State Key Laboratory for Organic Electronics and Information Displays (SKLOEID), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China.
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
7
|
Richter H, Verlemann C, Jeibmann A, Martin LF, Luebke AM, Karol A, Sperling M, Radbruch A, Karst U. Elemental Bioimaging of Sheep Bone and Articular Cartilage After Single Application of Gadolinium-Based Contrast Agents. Invest Radiol 2024; 59:287-292. [PMID: 37747456 PMCID: PMC11882188 DOI: 10.1097/rli.0000000000001020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/26/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Gadolinium-based contrast agents (GBCAs) are applied to enhance magnetic resonance imaging. Gadolinium (Gd), a rare earth metal, is used in a chelated form when administered as GBCA to patients. There is an ongoing scientific debate about the clinical significance of Gd retention in tissues after administration of GBCAs. It is known that bone serves as Gd reservoir, but only sparse information on localization of Gd in bone is available. PURPOSE The aim of this study was to compare Gd tissue concentration and spatial distribution in femoral epiphysis and diaphysis 10 weeks after single-dose injection of linear and macrocyclic GBCAs in a large animal model. MATERIALS AND METHODS In this prospective animal study, Swiss-Alpine sheep (n = 36; age range, 4-10 years) received a single injection (0.1 mmol/kg) of macrocyclic (gadobutrol, gadoteridol, and gadoterate meglumine), linear (gadodiamide and gadobenate dimeglumine) GBCAs, or saline. Ten weeks after injection, sheep were killed, and femur heads and shafts were harvested. Gadolinium spatial distribution was determined in 1 sample of each treatment group by laser ablation-inductively coupled plasma-mass spectrometry. All bone specimens were analyzed histopathologically. RESULTS Injection of GBCAs in female Swiss-Alpine sheep (n = 36) resulted in Gd localization at the endosteal and periosteal surface and in a subset of GBCAs additionally at the cement lines and the bone cartilage junction. No histopathological alterations were observed in the investigated tissue specimens. CONCLUSIONS Ten weeks after single injection of a clinically relevant dose in adult sheep, both linear species of GBCA resulted in considerably higher accumulation than macrocyclic GBCAs. Gadolinium deposits were restricted to distinct bone and cartilage compartments, such as in bone linings, cement lines, and bone cartilage junctions. Tissue histology remained unaffected.
Collapse
|
8
|
Stojanović M, Čolović MB, Lalatović J, Milosavljević A, Savić ND, Declerck K, Radosavljević B, Ćetković M, Kravić-Stevović T, Parac-Vogt TN, Krstić D. Monolacunary Wells-Dawson Polyoxometalate as a Novel Contrast Agent for Computed Tomography: A Comprehensive Study on In Vivo Toxicity and Biodistribution. Int J Mol Sci 2024; 25:2569. [PMID: 38473818 DOI: 10.3390/ijms25052569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Polyoxotungstate nanoclusters have recently emerged as promising contrast agents for computed tomography (CT). In order to evaluate their clinical potential, in this study, we evaluated the in vitro CT imaging properties, potential toxic effects in vivo, and tissue distribution of monolacunary Wells-Dawson polyoxometalate, α2-K10P2W17O61.20H2O (mono-WD POM). Mono-WD POM showed superior X-ray attenuation compared to other tungsten-containing nanoclusters (its parent WD-POM and Keggin POM) and the standard iodine-based contrast agent (iohexol). The calculated X-ray attenuation linear slope for mono-WD POM was significantly higher compared to parent WD-POM, Keggin POM, and iohexol (5.97 ± 0.14 vs. 4.84 ± 0.05, 4.55 ± 0.16, and 4.30 ± 0.09, respectively). Acute oral (maximum-administered dose (MAD) = 960 mg/kg) and intravenous administration (1/10, 1/5, and 1/3 MAD) of mono-WD POM did not induce unexpected changes in rats' general habits or mortality. Results of blood gas analysis, CO-oximetry status, and the levels of electrolytes, glucose, lactate, creatinine, and BUN demonstrated a dose-dependent tendency 14 days after intravenous administration of mono-WD POM. The most significant differences compared to the control were observed for 1/3 MAD, being approximately seventy times higher than the typically used dose (0.015 mmol W/kg) of tungsten-based contrast agents. The highest tungsten deposition was found in the kidney (1/3 MAD-0.67 ± 0.12; 1/5 MAD-0.59 ± 0.07; 1/10 MAD-0.54 ± 0.05), which corresponded to detected morphological irregularities, electrolyte imbalance, and increased BUN levels.
Collapse
Affiliation(s)
- Marko Stojanović
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Mirjana B Čolović
- "Vinča" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia
| | - Jovana Lalatović
- Department of Radiology, University Hospital Medical Center Bežanijska Kosa, 11080 Belgrade, Serbia
| | - Aleksandra Milosavljević
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nada D Savić
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Kilian Declerck
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Branimir Radosavljević
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Mila Ćetković
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Tamara Kravić-Stevović
- Institute of Histology and Embryology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | | | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
9
|
Le Fur M, Moon BF, Zhou IY, Zygmont S, Boice A, Rotile NJ, Ay I, Pantazopoulos P, Feldman AS, Rosales IA, How IDAL, Izquierdo-Garcia D, Hariri LP, Astashkin AV, Jackson BP, Caravan P. Gadolinium-based Contrast Agent Biodistribution and Speciation in Rats. Radiology 2023; 309:e230984. [PMID: 37874235 PMCID: PMC10623187 DOI: 10.1148/radiol.230984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 10/25/2023]
Abstract
Background Gadolinium retention has been observed in organs of patients with normal renal function; however, the biodistribution and speciation of residual gadolinium is not well understood. Purpose To compare the pharmacokinetics, distribution, and speciation of four gadolinium-based contrast agents (GBCAs) in healthy rats using MRI, mass spectrometry, elemental imaging, and electron paramagnetic resonance (EPR) spectroscopy. Materials and Methods In this prospective animal study performed between November 2021 and September 2022, 32 rats received a dose of gadoterate, gadoteridol, gadobutrol, or gadobenate (2.0 mmol/kg) for 10 consecutive days. GBCA-naive rats were used as controls. Three-dimensional T1-weighted ultrashort echo time images and R2* maps of the kidneys were acquired at 3, 17, 34, and 52 days after injection. At 17 and 52 days after injection, gadolinium concentrations in 23 organ, tissue, and fluid specimens were measured with mass spectrometry; gadolinium distribution in the kidneys was evaluated using elemental imaging; and gadolinium speciation in the kidney cortex was assessed using EPR spectroscopy. Data were assessed with analysis of variance, Kruskal-Wallis test, analysis of response profiles, and Pearson correlation analysis. Results For all GBCAs, the kidney cortex exhibited higher gadolinium retention at 17 days after injection than all other specimens tested (mean range, 350-1720 nmol/g vs 0.40-401 nmol/g; P value range, .001-.70), with gadoteridol showing the lowest level of retention. Renal cortex R2* values correlated with gadolinium concentrations measured ex vivo (r = 0.95; P < .001), whereas no associations were found between T1-weighted signal intensity and ex vivo gadolinium concentration (r = 0.38; P = .10). EPR spectroscopy analysis of rat kidney cortex samples showed that all GBCAs were primarily intact at 52 days after injection. Conclusion Compared with other macrocyclic GBCAs, gadoteridol administration led to the lowest level of retention. The highest concentration of gadolinium was retained in the kidney cortex, but T1-weighted MRI was not sensitive for detecting residual gadolinium in this tissue. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tweedle in this issue.
Collapse
Affiliation(s)
- Mariane Le Fur
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Brianna F. Moon
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Iris Y. Zhou
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Samantha Zygmont
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Avery Boice
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Nicholas J. Rotile
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Ilknur Ay
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Pamela Pantazopoulos
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Adam S. Feldman
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Ivy A. Rosales
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Ira Doressa Anne L. How
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - David Izquierdo-Garcia
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Lida P. Hariri
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Andrei V. Astashkin
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Brian P. Jackson
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| | - Peter Caravan
- From the Athinoula A. Martinos Center for Biomedical Imaging,
Department of Radiology (M.L.F., B.F.M., I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P.,
D.I.G., P.C.), Department of Urology (A.S.F.), and Department of Pathology
(I.A.R., I.D.A.L.H., L.P.H.), Massachusetts General Hospital and Harvard Medical
School, 149 13th St, Charlestown, MA 02129; Institute for Innovation in
Imaging, Massachusetts General Hospital, Charlestown, Mass (M.L.F., B.F.M.,
I.Y.Z., S.Z., A.B., N.J.R., I.A., P.P., P.C.); Harvard-MIT Health Sciences and
Technology, Cambridge, Mass (D.I.G.); Bioengineering Department, Universidad
Carlos III de Madrid, Madrid, Spain (D.I.G.); Department of Chemistry and
Biochemistry, University of Arizona, Tucson, Ariz (A.V.A.); and Trace Element
Analysis Laboratory, Dartmouth College, Hanover, NH (B.P.J.)
| |
Collapse
|
10
|
Coyte RM, Darrah T, Olesik J, Barrett E, O’Connor T, Brunner J, Love T, Perez-D’Gregorio R, Wang HZ, Aleksunes LM, Buckley B, Doherty C, Miller RK. Gadolinium during human pregnancy following administration of gadolinium chelate before pregnancy. Birth Defects Res 2023; 115:1264-1273. [PMID: 37334869 PMCID: PMC11784526 DOI: 10.1002/bdr2.2209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/18/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
Gadolinium (Gd), a toxic rare earth element, has been shown to dissociate from chelating agents and bioaccumulate within tissues, raising concerns about the possibility of their remobilization during pregnancy with subsequent free Gd exposures to developing fetuses. Gd chelates are among the most commonly used magnetic resonance imaging (MRI) contrast agents. This investigation was undertaken after the detection of elevated Gd (800-1000× higher than the usual rare earth element levels) in preliminary unpublished studies from the placentae of subjects in the NIH ECHO/UPSIDE Rochester Cohort Study and unpublished studies from placentae analyzed in formalin-fixed placental specimens from Surgical Pathology at the University of Rochester. Fifteen pregnancies with elevated Gd were studied (12 first pregnancies and 3 second pregnancies). Maternal bloods were collected from all three trimesters, maternal, and cord (fetal) bloods at delivery as well as placental tissue. Breastmilk was also collected from selected mothers. It was determined that Gd was present in maternal bloods from all three trimesters, and in cord bloods and breastmilk in both first and second pregnancies. These results emphasize the need to fully appreciate the implications of pre-pregnancy exposure to Gd chelates and its potential effects on maternal and fetal health.
Collapse
Affiliation(s)
- Rachel M Coyte
- School of Earth Sciences, The Ohio State University, Columbus, OH 43210 USA
| | - Thomas Darrah
- School of Earth Sciences, The Ohio State University, Columbus, OH 43210 USA
- Global Water Institute, The Ohio State University, Columbus, OH 43210 USA
| | - John Olesik
- School of Earth Sciences, The Ohio State University, Columbus, OH 43210 USA
| | - Emily Barrett
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health; Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Thomas O’Connor
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 USA
- Departments of Psychiatry and Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642 USA
| | - Jessica Brunner
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 USA
| | - Tanzy Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Rogelio Perez-D’Gregorio
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 USA
| | - Henry Z. Wang
- Departments of Imaging Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Lauren M. Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Cathleen Doherty
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642 USA
- Departments of Pediatrics, Pathology and Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
11
|
Kromrey ML, Oswald S, Becher D, Bartel J, Schulze J, Paland H, Ittermann T, Hadlich S, Kühn JP, Mouchantat S. Intracerebral gadolinium deposition following blood-brain barrier disturbance in two different mouse models. Sci Rep 2023; 13:10164. [PMID: 37349374 PMCID: PMC10287697 DOI: 10.1038/s41598-023-36991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 06/14/2023] [Indexed: 06/24/2023] Open
Abstract
To evaluate the influence of the blood-brain barrier on neuronal gadolinium deposition in a mouse model after multiple intravenous applications of the linear contrast agent gadodiamide. The prospective study held 54 mice divided into three groups: healthy mice (A), mice with iatrogenic induced disturbance of the blood-brain barrier by glioblastoma (B) or cerebral infarction (C). In each group 9 animals received 10 iv-injections of gadodiamide (1.2 mmol/kg) every 48 h followed by plain T1-weighted brain MRI. A final MRI was performed 5 days after the last contrast injection. Remaining mice underwent MRI in the same time intervals without contrast application (control group). Signal intensities of thalamus, pallidum, pons, dentate nucleus, and globus pallidus-to-thalamus and dentate nucleus-to-pons ratios, were determined. Gadodiamide complex and total gadolinium amount were quantified after the last MR examination via LC-MS/MS and ICP-MS. Dentate nucleus-to-pons and globus pallidus-to-thalamus SI ratios showed no significant increase over time within all mice groups receiving gadodiamide, as well as compared to the control groups at last MR examination. Comparing healthy mice with group B and C after repetitive contrast administration, a significant SI increase could only be detected for glioblastoma mice in globus pallidus-to-thalamus ratio (p = 0.033), infarction mice showed no significant SI alteration. Tissue analysis revealed significantly higher gadolinium levels in glioblastoma group compared to healthy (p = 0.013) and infarction mice (p = 0.029). Multiple application of the linear contrast agent gadodiamide leads to cerebral gadolinium deposition without imaging correlate in MRI.
Collapse
Affiliation(s)
- M L Kromrey
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany.
| | - S Oswald
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany
| | - D Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - J Bartel
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - J Schulze
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany
| | - H Paland
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - T Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - S Hadlich
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| | - J P Kühn
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
- Institute and Policlinic of Diagnostic and Interventional Radiology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - S Mouchantat
- Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany
| |
Collapse
|
12
|
Tranos J, Das A, Zhang J, Hafeez S, Arvanitakis GN, Thomson SAJ, Khan S, Pandya N, Kim SG, Wadghiri YZ. Rapid In Vitro Quantification of a Sensitized Gadolinium Chelate via Photoinduced Triplet Harvesting. ACS OMEGA 2023; 8:2907-2914. [PMID: 36713694 PMCID: PMC9878670 DOI: 10.1021/acsomega.2c05040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/18/2022] [Indexed: 06/18/2023]
Abstract
Gadolinium (Gd) based contrast agents (GBCAs) are widely used in magnetic resonance imaging (MRI) and are paramount to cancer diagnostics and tumor pharmacokinetic analysis. Accurate quantification of gadolinium concentration is essential to monitoring the biodistribution, clearance, and pharmacodynamics of GBCAs. However, current methods of quantifying gadolinium in blood or plasma (biological media) are both low throughput and clinically unavailable. Here, we have demonstrated the use of a sensitized gadolinium chelate, Gd[DTPA-cs124], as an MRI contrast agent that can be used to measure the concentration of gadolinium via luminescence quantification in biological media following transmetalation with a terbium salt. Gd[DTPA-cs124] was synthesized by conjugating carbostyril-124 (cs124) to diethylenetriaminepentaacetic acid (DTPA) and chelating to gadolinium. We report increases in both stability and relaxivity compared to the clinically approved analog Gd[DTPA] (gadopentetic acid or Magnevist). In vivo MRI experiments were conducted using C57BL6 mice in order to further illustrate the performance of Gd[DTPA-cs124] as an MRI contrast agent in comparison to Magnevist. Our results indicate that similar chemical modification to existing clinically approved GBCA may likewise provide favorable property changes, with the ability to be used in a gadolinium quantification assay. Furthermore, our assay provides a straightforward and high-throughput method of measuring gadolinium in biological media using a standard laboratory plate reader.
Collapse
Affiliation(s)
- James
A. Tranos
- Center
for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation
and Research (CAI2R), Department of Radiology, NYU Grossman School of Medicine, New York, New York 10016, United States
| | - Ayesha Das
- Department
of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Jin Zhang
- Department
of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Sonia Hafeez
- Center
for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation
and Research (CAI2R), Department of Radiology, NYU Grossman School of Medicine, New York, New York 10016, United States
| | | | | | - Suleiman Khan
- Center
for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation
and Research (CAI2R), Department of Radiology, NYU Grossman School of Medicine, New York, New York 10016, United States
| | - Neelam Pandya
- Center
for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation
and Research (CAI2R), Department of Radiology, NYU Grossman School of Medicine, New York, New York 10016, United States
| | - Sungheon Gene Kim
- Department
of Radiology, Weill Cornell Medical College, New York, New York 10065, United States
| | - Youssef Z. Wadghiri
- Center
for Biomedical Imaging (CBI), Center for Advanced Imaging Innovation
and Research (CAI2R), Department of Radiology, NYU Grossman School of Medicine, New York, New York 10016, United States
| |
Collapse
|
13
|
Lu ZR, Laney V, Li Y. Targeted Contrast Agents for Magnetic Resonance Molecular Imaging of Cancer. Acc Chem Res 2022; 55:2833-2847. [PMID: 36121350 DOI: 10.1021/acs.accounts.2c00346] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Magnetic resonance imaging (MRI) is a clinical imaging modality that provides high-resolution images of soft tissues, including cancerous lesions. Stable gadolinium(III) chelates have been used as contrast agents (CA) in MRI to enhance the contrast between the tissues of interest and surrounding tissues for accurate diagnostic imaging. Magnetic resonance molecular imaging (MRMI) of cancer requires targeted CA to specifically elucidate cancer-associated molecular processes and can provide high-resolution delineation and characterization of cancer for precision medicine. The main challenge for MRMI is the lack of sufficient sensitivity to detect the low concentration of the cellular oncogenic markers. In addition, targeted CA must satisfy regulatory safety requirements prior to clinical development. Up to now, there is no FDA-approved targeted CA for MRMI of cancer.In this Account, we discuss the latest developments in the design and development of clinically translatable targeted CA for MRMI of cancer, with an emphasis on our own research. The primary limitation of MRMI can be overcome by designing small molecular targeted CA to target abundant cancer-specific targets found in the tumor microenvironment (TME). For example, aggressive tumors have a unique extracellular matrix (ECM) composed of oncoproteins, which can be used as targetable markers for MRMI. We have designed and prepared small peptide conjugates of clinical contrast agents, including Gd-DTPA and Gd-DOTA, to target fibrin-fibronectin clots in tumors. These small molecular CA have been effective in enhancing MRMI detection of solid tumors and have demonstrated the ability to detect submillimeter cancer micrometastases in mouse tumor models, exceeding the detection limit of current clinical imaging modalities. We have also identified extradomain B fibronectin (EDB-FN), an oncofetal subtype of fibronectin, as a promising TME target to leverage in the design and development of small peptide targeted CA for clinical translation. The expression level of EDB-FN is correlated with invasiveness of cancer cells and poor patient survival of multiple cancer types. ZD2 peptide with a sequence of seven amino acids (TVRTSAD) was identified to specifically bind to the EDB protein fragment. Several ZD2 conjugates of macrocyclic GBCA, including Gd-DOTA and Gd(HP-DO3A), have been synthesized and tested in mouse tumor models. ZD2-N3-Gd(HP-DO3A) (MT218) with a high r1 relaxivity was selected as the lead agent for clinical translation. The physicochemical properties and preclinical assessments of MT218 are summarized in this Account. MRMI of EDB-FN with MT218 can effectively detect invasive tumors of multiple cancers with risk-stratification and monitor tumor response to anticancer therapies in mouse models. Currently, MT218 is in clinical trials for precision cancer MRMI. Herein, we will show that using targeted MRI contrast agents specific to abundant TME biomarkers is a pragmatic solution for effective precision cancer imaging in high spatial resolution. And thus, we illustrate a replicable approach for CA development that is vital for cancer MRMI.
Collapse
Affiliation(s)
- Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Wickenden Building, Cleveland, Ohio 44106, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106, United States
| | - Victoria Laney
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave, Wickenden Building, Cleveland, Ohio 44106, United States
| | - Yajuan Li
- Molecular Theranostics, 7100 Euclid Ave, Suite 152, Cleveland, Ohio 44114, United States
| |
Collapse
|
14
|
Oluwasola IE, Ahmad AL, Shoparwe NF, Ismail S. Gadolinium based contrast agents (GBCAs): Uniqueness, aquatic toxicity concerns, and prospective remediation. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 250:104057. [PMID: 36130428 DOI: 10.1016/j.jconhyd.2022.104057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/25/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
The current toxicity concerns of gadolinium-based contrast agents (GBCAs) have birthed the need to regulate and, sometimes restrict its clinical administration. However, tolerable concentration levels of Gd in the water sector have not been set. Therefore, the detection and speedy increase of the anthropogenic Gd-GBCAs in the various water bodies, including those serving as the primary source of drinking water for adults and children, is perturbing. Nevertheless, the strongly canvassed risk-benefit considerations and superior uniqueness of GBCAs compared to the other ferromagnetic metals guarantees its continuous administration for Magnetic resonance imaging (MRI) investigations regardless of the toxicity concerns. Unfortunately, findings have shown that both the advanced and conventional wastewater treatment processes do not satisfactorily remove GBCAs but rather risk transforming the chelated GBCAs to their free ionic metal (Gd 3+) through inadvertent degradation processes. This unintentional water processing-induced GBCA dechelation leads to the intricate pathway for unintentional human intake of Gd ion. Hence exposure to its probable ecotoxicity and several reported inimical effects on human health such as; digestive symptoms, twitching or weakness, cognitive flu, persistent skin diseases, body pains, acute renal and non-renal adverse reactions, chronic skin, and eyes changes. This work proposed an economical and manageable remediation technique for the potential remediation of Gd-GBCAs in wastewater, while a precautionary limit for Gd in public water and commercial drinks is advocated.
Collapse
Affiliation(s)
- Idowu Ebenezer Oluwasola
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia; School of Science and Computer Studies, Food Technology Department, The Federal Polytechnic, Ado Ekiti, Ekiti State 360231, Nigeria.
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia.
| | - Noor Fazliani Shoparwe
- Gold, Rare Earth, and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, 17600 Jeli, Kelantan, Malaysia.
| | - Suzylawati Ismail
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia.
| |
Collapse
|
15
|
Anderhalten L, Silva RV, Morr A, Wang S, Smorodchenko A, Saatz J, Traub H, Mueller S, Boehm-Sturm P, Rodriguez-Sillke Y, Kunkel D, Hahndorf J, Paul F, Taupitz M, Sack I, Infante-Duarte C. Different Impact of Gadopentetate and Gadobutrol on Inflammation-Promoted Retention and Toxicity of Gadolinium Within the Mouse Brain. Invest Radiol 2022; 57:677-688. [PMID: 35467573 PMCID: PMC9444290 DOI: 10.1097/rli.0000000000000884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Using a murine model of multiple sclerosis, we previously showed that repeated administration of gadopentetate dimeglumine led to retention of gadolinium (Gd) within cerebellar structures and that this process was enhanced with inflammation. This study aimed to compare the kinetics and retention profiles of Gd in inflamed and healthy brains after application of the macrocyclic Gd-based contrast agent (GBCA) gadobutrol or the linear GBCA gadopentetate. Moreover, potential Gd-induced neurotoxicity was investigated in living hippocampal slices ex vivo. MATERIALS AND METHODS Mice at peak of experimental autoimmune encephalomyelitis (EAE; n = 29) and healthy control mice (HC; n = 24) were exposed to a cumulative dose of 20 mmol/kg bodyweight of either gadopentetate dimeglumine or gadobutrol (8 injections of 2.5 mmol/kg over 10 days). Magnetic resonance imaging (7 T) was performed at baseline as well as at day 1, 10, and 40 post final injection (pfi) of GBCAs. Mice were sacrificed after magnetic resonance imaging and brain and blood Gd content was assessed by laser ablation-inductively coupled plasma (ICP)-mass spectrometry (MS) and ICP-MS, respectively. In addition, using chronic organotypic hippocampal slice cultures, Gd-induced neurotoxicity was addressed in living brain tissue ex vivo, both under control or inflammatory (tumor necrosis factor α [TNF-α] at 50 ng/μL) conditions. RESULTS Neuroinflammation promoted a significant decrease in T1 relaxation times after multiple injections of both GBCAs as shown by quantitative T1 mapping of EAE brains compared with HC. This corresponded to higher Gd retention within the EAE brains at 1, 10, and 40 days pfi as determined by laser ablation-ICP-MS. In inflamed cerebellum, in particular in the deep cerebellar nuclei (CN), elevated Gd retention was observed until day 40 after last gadopentetate application (CN: EAE vs HC, 55.06 ± 0.16 μM vs 30.44 ± 4.43 μM). In contrast, gadobutrol application led to a rather diffuse Gd content in the inflamed brains, which strongly diminished until day 40 (CN: EAE vs HC, 0.38 ± 0.08 μM vs 0.17 ± 0.03 μM). The analysis of cytotoxic effects of both GBCAs using living brain tissue revealed an elevated cell death rate after incubation with gadopentetate but not gadobutrol at 50 mM. The cytotoxic effect due to gadopentetate increased in the presence of the inflammatory mediator TNF-α (with vs without TNF-α, 3.15% ± 1.18% vs 2.17% ± 1.14%; P = 0.0345). CONCLUSIONS In the EAE model, neuroinflammation promoted increased Gd retention in the brain for both GBCAs. Whereas in the inflamed brains, efficient clearance of macrocyclic gadobutrol during the investigated time period was observed, the Gd retention after application of linear gadopentetate persisted over the entire observational period. Gadopentetate but not gadubutrol appeared to be neurotoxic in an ex vivo paradigm of neuronal inflammation.
Collapse
Affiliation(s)
- Lina Anderhalten
- From the Experimental and Clinical Research Center (ECRC), A Cooperation Between the Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin
| | - Rafaela V. Silva
- From the Experimental and Clinical Research Center (ECRC), A Cooperation Between the Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin
- Einstein Center for Neurosciences
| | - Anna Morr
- Department of Radiology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Berlin
| | - Shuangqing Wang
- From the Experimental and Clinical Research Center (ECRC), A Cooperation Between the Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin
| | - Alina Smorodchenko
- Institute for Translational Medicine and Faculty of Human Medicine, MSH Medical School Hamburg, Hamburg
| | - Jessica Saatz
- Bundesanstalt für Materialforschung und -prüfung, Berlin
| | - Heike Traub
- Bundesanstalt für Materialforschung und -prüfung, Berlin
| | - Susanne Mueller
- Department of Experimental Neurology and Center for Stroke Research
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité–Universitätsmedizin Berlin, Berlin
| | - Philipp Boehm-Sturm
- Department of Experimental Neurology and Center for Stroke Research
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité–Universitätsmedizin Berlin, Berlin
| | - Yasmina Rodriguez-Sillke
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Désirée Kunkel
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Flow & Mass Cytometry Core Facility, Berlin, Germany
| | - Julia Hahndorf
- Department of Radiology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Berlin
| | - Friedemann Paul
- From the Experimental and Clinical Research Center (ECRC), A Cooperation Between the Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin
| | - Matthias Taupitz
- Department of Radiology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Berlin
| | - Ingolf Sack
- Department of Radiology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt–Universität zu Berlin, Berlin
| | - Carmen Infante-Duarte
- From the Experimental and Clinical Research Center (ECRC), A Cooperation Between the Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, and Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin
| |
Collapse
|
16
|
Li Y, Gao S, Jiang H, Ayat N, Laney V, Nicolescu C, Sun W, Tweedle MF, Lu ZR. Evaluation of Physicochemical Properties, Pharmacokinetics, Biodistribution, Toxicity, and Contrast-Enhanced Cancer MRI of a Cancer-Targeting Contrast Agent, MT218. Invest Radiol 2022; 57:639-654. [PMID: 35703463 PMCID: PMC9444296 DOI: 10.1097/rli.0000000000000881] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/12/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Preclinical assessments were performed according to the US Food and Drug Administration guidelines to determine the physicochemical properties, pharmacokinetics, clearance, safety, and tumor-specific magnetic resonance (MR) imaging of MT218, a peptidic gadolinium-based MR imaging agent targeting to extradomain B fibronectin for MR molecular imaging of aggressive tumors. MATERIALS AND METHODS Relaxivity, chelation stability, binding affinity, safety-related target profiling, and effects on CYP450 enzymes and transporters were evaluated in vitro. Magnetic resonance imaging was performed with rats bearing prostate cancer xenografts, immunocompetent mice bearing murine pancreatic cancer allografts, and mice bearing lung cancer xenografts at different doses of MT218. Pharmacological effects on cardiovascular, respiratory, and central nervous systems were determined in rats and conscious beagle dogs. Pharmacokinetics were tested in rats and dogs. Biodistribution and excretion were studied in rats. Single and repeated dosing toxicity was evaluated in rats and dogs. In vitro and in vivo genotoxicity, in vitro hemolysis, and anaphylactic reactivity were also performed. RESULTS At 1.4 T, the r1 and r2 relaxivities of MT218 were 5.43 and 7.40 mM -1 s -1 in pure water, 6.58 and 8.87 mM -1 s -1 in phosphate-buffered saline, and 6.54 and 8.70 mM -1 s -1 in aqueous solution of human serum albumin, respectively. The binding affinity of MT218 to extradomain B fragment is 3.45 μM. MT218 exhibited no dissociation of the Gd(III) chelates under physiological conditions. The peptide degradation half-life ( t1/2 ) of MT218 was 1.63, 5.85, and 2.63 hours in rat, dog, and human plasma, respectively. It had little effect on CYP450 enzymes and transporters. MT218 produced up to 7-fold increase of contrast-to-noise ratios in the extradomain B fibronectin-rich tumors with a dose of 0.04 mmol/kg for at least 30 minutes. MT218 had little pharmacological effect on central nervous, cardiovascular, or respiratory systems. MT218 had a mean plasma elimination half-life ( t1/2 ) of 0.31 and 0.89 hours in rats and dogs at 0.1 mmol/kg, respectively. No detectable Gd deposition was observed in the brain at 6 hours postinjection of MT218 at 0.1 mmol/kg in rats. MT218 was not mutagenic and had no mortality or morbidity in the rats or dogs up to 1.39 and 0.70 mmol/kg/d, respectively. The no observed adverse effect level of MT218 in Sprague-Dawley rats was 1.39 mmol/kg for single dosing and 0.46 mmol/kg/d for repeated dosing. The no observed adverse effect level in dogs was 0.07 mmol/kg/d. MT218 exhibited no genotoxicity, hemolysis, and anaphylactic reactivity. CONCLUSION The preclinical assessments showed that the targeted contrast agent MT218 has high r1 and r2 relaxivities, satisfactory physicochemical properties, pharmacokinetic, and safety profiles and produces effective tumor enhancement in multiple cancer types in rats and mice at reduced doses.
Collapse
Affiliation(s)
- Yajuan Li
- From the Molecular Theranostics, LLC, Cleveland
| | - Songqi Gao
- From the Molecular Theranostics, LLC, Cleveland
| | | | - Nadia Ayat
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Victoria Laney
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Calin Nicolescu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Wenyu Sun
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
| | - Michael F. Tweedle
- Wright Center of Innovation, Department of Radiology, the Ohio State University, Columbus
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
17
|
Beyazal Çeliker F, Tümkaya L, Suzan ZT, Topcu A, Mercantepe T, Çinar S, Yazici ZA, Yılmaz A. Effects of gadodiamide and gadoteric acid on lung tissue: A comparative study. J Biochem Mol Toxicol 2022; 36:e23133. [PMID: 35686328 DOI: 10.1002/jbt.23133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/16/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022]
Abstract
We set out to investigate the effects of gadodiamide and gadoteric acid, used for magnetic resonance imaging, on the lungs. In this study, 32 male Sprague Dawley rats were used. These were allocated into four groups; The first group (control) was untreated. The second group received isotonic saline on the first and fourth days of the week for 5 weeks. Following the same schedule, the third and fourth groups received a total of 2 mg/kg gadodiamide and gadoteric acid, respectively, in place of saline. The alveolar Wall thickness was evaluated. Gadodiamide and gadoteric acid significantly increased the numbers of collagen-3 and caspase-3 positive cells in the lung tissue (p < 0.05). In addition, these two substances increased the alveolar Wall thickness (p < 0.05). Furthermore, they increased the levels of malondialdehyde and glutathione (p < 0.05). This study demonstrates that both linear and macrocyclic contrast agents are toxic for the lungs in rats.
Collapse
Affiliation(s)
- Fatma Beyazal Çeliker
- Departments of Radiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tümkaya
- Departments of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Zehra T Suzan
- Departments of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Atilla Topcu
- Departments of Pharmacology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Departments of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Seda Çinar
- Departments of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Zihni A Yazici
- Departments of Microbiology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yılmaz
- Departments of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
18
|
Fingerhut S, Buchholz R, Bücker P, Clasen W, Sperling M, Müller KM, Rehkämper J, Radbruch A, Richter H, Jeibmann A, Karst U. Gadolinium retention in the tunica media of arterial walls - a complementary study using elemental bioimaging and immunogold staining. Metallomics 2022; 14:6575571. [PMID: 35482657 DOI: 10.1093/mtomcs/mfac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/08/2022] [Indexed: 11/14/2022]
Abstract
Gadolinium (Gd) deposition has been found in both animal and human tissues after serial injections of gadolinium-based contrast agents (GBCAs). Without the knowledge of which tissues are most affected, it is difficult to determine whether Gd accumulation could lead to any pathological changes. The current study aims at investigating histological sections of three patients who were exposed to GBCAs during their lifetime, and identify areas of Gd accumulation. Tissue sections of three autopsy cases were investigated by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to assess the distribution of Gd, and the deposition within tissue sections was quantified. Additional application of laser ablation-inductively coupled plasma-optical emission spectroscopy (LA-ICP-OES) enabled a sensitive detection of calcium (Ca) in the vessel walls, which is usually impeded in LA-ICP-MS due to the isobaric interference with argon. Complementary LA-ICP-MS and LA-ICP-OES analysis revealed that Gd was co-localized with zinc and calcium, in the area where smooth muscle actin was present. Notably, high levels of Gd were found in the tunica media of arterial walls, which requires further research into potential Gd-related toxicity in this specific location.
Collapse
Affiliation(s)
- Stefanie Fingerhut
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Rebecca Buchholz
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Patrick Bücker
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Wolfgang Clasen
- Clinic for Internal Medicine, Herz-Jesu-Krankenhaus Hiltrup GmbH, Westfalenstraße 109, 48165 Münster-Hiltrup, Germany
| | - Michael Sperling
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| | - Klaus-Michael Müller
- Gerhard-Domagk-Institute for Pathology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Jan Rehkämper
- Gerhard-Domagk-Institute for Pathology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany.,Department of Pathology, University Hospital Köln, Kerpener Straße 62, 50937 Köln, Germany
| | - Alexander Radbruch
- Clinic for Neuroradiology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.,Clinical Neuroimaging, German Center for Neurodegenerative Diseases, Venusberg Campus 1, 53127 Bonn, Germany
| | - Henning Richter
- Clinical Neuroimaging, German Center for Neurodegenerative Diseases, Venusberg Campus 1, 53127 Bonn, Germany.,Diagnostic Imaging Research Unit (DIRU), Clinic for Diagnostic Imaging, Department of Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 258c, 8057 Zurich, Switzerland
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster Germany
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 28/30, 48149 Münster, Germany
| |
Collapse
|
19
|
Nanotheranostics for Image-Guided Cancer Treatment. Pharmaceutics 2022; 14:pharmaceutics14050917. [PMID: 35631503 PMCID: PMC9144228 DOI: 10.3390/pharmaceutics14050917] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022] Open
Abstract
Image-guided nanotheranostics have the potential to represent a new paradigm in the treatment of cancer. Recent developments in modern imaging and nanoparticle design offer an answer to many of the issues associated with conventional chemotherapy, including their indiscriminate side effects and susceptibility to drug resistance. Imaging is one of the tools best poised to enable tailoring of cancer therapies. The field of image-guided nanotheranostics has the potential to harness the precision of modern imaging techniques and use this to direct, dictate, and follow site-specific drug delivery, all of which can be used to further tailor cancer therapies on both the individual and population level. The use of image-guided drug delivery has exploded in preclinical and clinical trials although the clinical translation is incipient. This review will focus on traditional mechanisms of targeted drug delivery in cancer, including the use of molecular targeting, as well as the foundations of designing nanotheranostics, with a focus on current clinical applications of nanotheranostics in cancer. A variety of specially engineered and targeted drug carriers, along with strategies of labeling nanoparticles to endow detectability in different imaging modalities will be reviewed. It will also introduce newer concepts of image-guided drug delivery, which may circumvent many of the issues seen with other techniques. Finally, we will review the current barriers to clinical translation of image-guided nanotheranostics and how these may be overcome.
Collapse
|
20
|
Davies J, Siebenhandl-Wolff P, Tranquart F, Jones P, Evans P. Gadolinium: pharmacokinetics and toxicity in humans and laboratory animals following contrast agent administration. Arch Toxicol 2022; 96:403-429. [PMID: 34997254 PMCID: PMC8837552 DOI: 10.1007/s00204-021-03189-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
Gadolinium-based contrast agents (GBCAs) have transformed magnetic resonance imaging (MRI) by facilitating the use of contrast-enhanced MRI to allow vital clinical diagnosis in a plethora of disease that would otherwise remain undetected. Although over 500 million doses have been administered worldwide, scientific research has documented the retention of gadolinium in tissues, long after exposure, and the discovery of a GBCA-associated disease termed nephrogenic systemic fibrosis, found in patients with impaired renal function. An understanding of the pharmacokinetics in humans and animals alike are pivotal to the understanding of the distribution and excretion of gadolinium and GBCAs, and ultimately their potential retention. This has been well studied in humans and more so in animals, and recently there has been a particular focus on potential toxicities associated with multiple GBCA administration. The purpose of this review is to highlight what is currently known in the literature regarding the pharmacokinetics of gadolinium in humans and animals, and any toxicity associated with GBCA use.
Collapse
Affiliation(s)
- Julie Davies
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, UK.
| | | | | | - Paul Jones
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, UK
| | - Paul Evans
- GE Healthcare, Pollards Wood, Nightingales Lane, Chalfont St. Giles, UK
| |
Collapse
|
21
|
Do QN, Lenkinski RE, Tircso G, Kovacs Z. How the Chemical Properties of GBCAs Influence Their Safety Profiles In Vivo. Molecules 2021; 27:58. [PMID: 35011290 PMCID: PMC8746842 DOI: 10.3390/molecules27010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/18/2021] [Accepted: 12/22/2021] [Indexed: 01/21/2023] Open
Abstract
The extracellular class of gadolinium-based contrast agents (GBCAs) is an essential tool for clinical diagnosis and disease management. In order to better understand the issues associated with GBCA administration and gadolinium retention and deposition in the human brain, the chemical properties of GBCAs such as relative thermodynamic and kinetic stabilities and their likelihood of forming gadolinium deposits in vivo will be reviewed. The chemical form of gadolinium causing the hyperintensity is an open question. On the basis of estimates of total gadolinium concentration present, it is highly unlikely that the intact chelate is causing the T1 hyperintensities observed in the human brain. Although it is possible that there is a water-soluble form of gadolinium that has high relaxitvity present, our experience indicates that the insoluble gadolinium-based agents/salts could have high relaxivities on the surface of the solid due to higher water access. This review assesses the safety of GBCAs from a chemical point of view based on their thermodynamic and kinetic properties, discusses how these properties influence in vivo behavior, and highlights some clinical implications regarding the development of future imaging agents.
Collapse
Affiliation(s)
- Quyen N. Do
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; (Q.N.D.); (R.E.L.)
| | - Robert E. Lenkinski
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; (Q.N.D.); (R.E.L.)
| | - Gyula Tircso
- Department of Physical Chemistry Debrecen, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Zoltan Kovacs
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
22
|
Ayers-Ringler J, McDonald JS, Connors MA, Fisher CR, Han S, Jakaitis DR, Scherer B, Tutor G, Wininger KM, Dai D, Choi DS, Salisbury JL, Jannetto PJ, Bornhorst JA, Kadirvel R, Kallmes DF, McDonald RJ. Neurologic Effects of Gadolinium Retention in the Brain after Gadolinium-based Contrast Agent Administration. Radiology 2021; 302:676-683. [PMID: 34931861 PMCID: PMC8893178 DOI: 10.1148/radiol.210559] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Concerns over the neurotoxic potential of retained gadolinium in brain tissues after intravenous gadolinium-based contrast agent (GBCA) administration have led to pronounced worldwide use changes, yet the clinical sequelae of gadolinium retention remain undefined. Purpose To assess clinical and neurologic effects and potential neurotoxicity of gadolinium retention in rats after administration of various GBCAs. Materials and Methods From March 2017 through July 2018, 183 male Wistar rats received 20 intravenous injections of 2.5 mmol per kilogram of body weight (80 human equivalent doses) of various GBCAs (gadodiamide, gadobenate, gadopentetate, gadoxetate, gadobutrol, gadoterate, and gadoteridol) or saline over 4 weeks. Rats were evaluated 6 and 34 weeks after injection with five behavioral tests, and inductively coupled plasma mass spectrometry, transmission electron microscopy, and histopathology were performed on urine, serum, cerebrospinal fluid (CSF), basal ganglia, dentate nucleus, and kidney samples. Dunnett post hoc test and Wilcoxon rank sum test were used to compare differences between treatment groups. Results No evidence of differences in any behavioral test was observed between GBCA-exposed rats and control animals at either 6 or 34 weeks (P = .08 to P = .99). Gadolinium concentrations in both neuroanatomic locations were higher in linear GBCA-exposed rats than macrocyclic GBCA-exposed rats at 6 and 34 weeks (P < .001). Gadolinium clearance over time varied among GBCAs, with gadobutrol having the largest clearance (median: 62% for basal ganglia, 70% for dentate) and gadodiamide having no substantial clearance. At 34 weeks, gadolinium was largely cleared from the CSF and serum of gadodiamide-, gadobenate-, gadoterate-, and gadobutrol-exposed rats, especially for the macrocyclic agents (range: 70%-98% removal for CSF, 34%-94% removal for serum), and was nearly completely removed from urine (range: 96%-99% removal). Transmission electron microscopy was used to detect gadolinium foci in linear GBCA-exposed brain tissue, but no histopathologic differences were observed for any GBCA. Conclusion In this rat model, no clinical evidence of neurotoxicity was observed after exposure to linear and macrocyclic gadolinium-based contrast agents at supradiagnostic doses. © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Jennifer Ayers-Ringler
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Jennifer S. McDonald
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Margaret A. Connors
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Cody R. Fisher
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Susie Han
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Daniel R. Jakaitis
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Bradley Scherer
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Gabriel Tutor
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Katheryn M. Wininger
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Daying Dai
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Doo-Sup Choi
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Jeffrey L. Salisbury
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Paul J. Jannetto
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Joshua A. Bornhorst
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Ram Kadirvel
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - David F. Kallmes
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Robert J. McDonald
- From the Departments of Radiology (J.A., J.S.M., M.A.C., C.R.F., S.H., D.R.J., B.S., G.T., D.D., R.K., D.F.K., R.J.M.), Molecular Pharmacology and Experimental Therapeutics (K.M.W., D.S.C.), Biochemistry and Molecular Biology (J.L.S.), Laboratory Medicine and Pathology (P.J.J., J.A.B.), and Neurosurgery, College of Medicine (D.F.K.), Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| |
Collapse
|
23
|
Jacobi A, Ariza de Schellenberger A, Uca YO, Herbig M, Guck J, Sack I. Real-Time Deformability Cytometry Detects Leukocyte Stiffening After Gadolinium-Based Contrast Agent Exposure. Invest Radiol 2021; 56:837-844. [PMID: 34038063 DOI: 10.1097/rli.0000000000000794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Reports on gadolinium (Gd) retention in soft tissues after administration of Gd-based contrast agents (GBCAs) raise concerns about Gd-induced changes in the biophysical properties of cells and tissues. Here, we investigate if clinical GBCAs of both classes of linear and macrocyclic structure cause changes in the mechanical properties of leukocytes in human blood samples. MATERIAL AND METHODS Real-time deformability cytometry was applied to human blood samples from 6 donors. The samples were treated with 1 mM gadoteric acid (Dotarem), gadopentetic acid (Magnevist), gadobutrol (Gadovist), or Gd trichloride at 37°C for 1 hour to mimic clinical doses of GBCAs and exposure times. Leukocyte subtypes-lymphocytes, monocytes, and neutrophils-were identified based on their size and brightness and analyzed for deformability, which is inversely correlated with cellular stiffness. RESULTS We observed significant stiffening (3%-13%, P < 0.01) of all investigated leukocyte subtypes, which was most pronounced for lymphocytes, followed by neutrophils and monocytes, and the effects were independent of the charge and steric structure of the GBCA applied. In contrast, no changes in cell size and brightness were observed, suggesting that deformability and cell stiffness measured by real-time deformability cytometry are sensitive to changes in the physical phenotypes of leukocytes after GBCA exposure. CONCLUSIONS Real-time deformability cytometry might provide a quantitative blood marker for critical changes in the physical properties of blood cells in patients undergoing GBCA-enhanced magnetic resonance imaging.
Collapse
Affiliation(s)
| | - Angela Ariza de Schellenberger
- Department of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin
| | - Yavuz Oguz Uca
- Department of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin
| | | | - Jochen Guck
- From the Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin
| |
Collapse
|
24
|
McDonald RJ, Weinreb JC, Davenport MS. Symptoms Associated with Gadolinium Exposure (SAGE): A Suggested Term. Radiology 2021; 302:270-273. [PMID: 34783590 DOI: 10.1148/radiol.2021211349] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this article, members of the American College of Radiology Committee on Drugs and Contrast Media propose a new term for symptoms reported after intravascular exposure to gadolinium-based contrast agents-Symptoms Associated with Gadolinium Exposure, or SAGE. This term is advocated in lieu of other proposed nomenclature that presumes a causal relationship that has not yet been scientifically verified. The purpose of this new term, SAGE, is to assist researchers and clinical providers in describing such symptoms without prematurely causally attributing them to a disease and to standardize reporting of these symptoms to allow for coherent interpretation of related studies.
Collapse
Affiliation(s)
- Robert J McDonald
- From the American College of Radiology, Reston, Va (R.J.M., J.C.W., M.S.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (J.C.W.); Departments of Radiology and Urology, Michigan Medicine, 1500 E Medical Center Dr, B2-A209A, Ann Arbor, MI 48109 (M.S.D.); and Michigan Radiology Quality Collaborative, Ann Arbor, Mich (M.S.D.)
| | - Jeffrey C Weinreb
- From the American College of Radiology, Reston, Va (R.J.M., J.C.W., M.S.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (J.C.W.); Departments of Radiology and Urology, Michigan Medicine, 1500 E Medical Center Dr, B2-A209A, Ann Arbor, MI 48109 (M.S.D.); and Michigan Radiology Quality Collaborative, Ann Arbor, Mich (M.S.D.)
| | - Matthew S Davenport
- From the American College of Radiology, Reston, Va (R.J.M., J.C.W., M.S.D.); Department of Radiology, Mayo Clinic, Rochester, Minn (R.J.M.); Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (J.C.W.); Departments of Radiology and Urology, Michigan Medicine, 1500 E Medical Center Dr, B2-A209A, Ann Arbor, MI 48109 (M.S.D.); and Michigan Radiology Quality Collaborative, Ann Arbor, Mich (M.S.D.)
| |
Collapse
|
25
|
Affiliation(s)
- Olivier Clément
- From the Department of Radiology, Université de Paris, AP-HP, Hôpital Européen Georges Pompidou, DMU Imagina, 20 rue Leblanc, 75015 Paris, France
| |
Collapse
|
26
|
Chen JW. Does Brain Gadolinium Deposition Have Clinical Consequence? Lessons from Animal Studies. Radiology 2021; 301:417-419. [PMID: 34463556 DOI: 10.1148/radiol.2021211833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- John W Chen
- From the Institute for Innovation in Imaging and Division of Neuroradiology, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 13th St, CNY-149, Charlestown, MA 02129
| |
Collapse
|
27
|
Akai H, Miyagawa K, Takahashi K, Mochida-Saito A, Kurokawa K, Takeda H, Tsuji M, Sugawara H, Yasaka K, Kunimatsu A, Inoue Y, Abe O, Ohtomo K, Kiryu S. Effects of Gadolinium Deposition in the Brain on Motor or Behavioral Function: A Mouse Model. Radiology 2021; 301:409-416. [PMID: 34463554 DOI: 10.1148/radiol.2021210892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background Recent studies showing gadolinium deposition in multiple organs have raised concerns about the safety of gadolinium-based contrast agents (GBCAs). Purpose To explore whether gadolinium deposition in brain structures will cause any motor or behavioral alterations. Materials and Methods This study was performed from July 2019 to December 2020. Groups of 17 female BALB/c mice were each repeatedly injected with phosphate-buffered saline (control group, group A), a macrocyclic GBCA (group B), or a linear GBCA (group C) for 8 weeks (5 mmol per kilogram of bodyweight per week for GBCAs). Brain MRI studies were performed every other week to observe the signal intensity change caused by the gadolinium deposition. After the injection period, rotarod performance test, open field test, elevated plus-maze test, light-dark anxiety test, locomotor activity assessment test, passive avoidance memory test, Y-maze test, and forced swimming test were performed to assess the locomotor abilities, anxiety level, and memory. Among-group differences were compared by using one-way or two-way factorial analysis of variance with Tukey post hoc testing or Dunnett post hoc testing. Results Gadolinium deposition in the bilateral deep cerebellar nuclei was confirmed with MRI only in mice injected with a linear GBCA. At 8 weeks, contrast ratio of group C (0.11; 95% CI: 0.10, 0.12) was higher than that of group A (-2.1 × 10-3; 95% CI: -0.011, 7.5 × 10-3; P < .001) and group B (2.7 × 10-4; 95% CI: -8.2 × 10-3, 8.7 × 10-3; P < .001). Behavioral analyses showed that locomotor abilities, anxiety level, and long-term or short-term memory were not different in mice injected with linear or macrocyclic GBCAs. Conclusion No motor or behavioral alterations were observed in mice with brain gadolinium deposition. Also, the findings support the safety of macrocyclic gadolinium-based contrast agents. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Chen in this issue.
Collapse
Affiliation(s)
- Hiroyuki Akai
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| | - Kazuya Miyagawa
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| | - Kohei Takahashi
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| | - Atsumi Mochida-Saito
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| | - Kazuhiro Kurokawa
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| | - Hiroshi Takeda
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| | - Minoru Tsuji
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| | - Haruto Sugawara
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| | - Koichiro Yasaka
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| | - Akira Kunimatsu
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| | - Yusuke Inoue
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| | - Osamu Abe
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| | - Kuni Ohtomo
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| | - Shigeru Kiryu
- From the Department of Radiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan (H.A., H.S., K.Y., A.K.); Department of Pharmacology, and School of Pharmacy (K.M., K.T., A.M.S., K.K., M.T.), and International University of Health and Welfare (K.O.), Ohtawara, Tochigi, Japan; Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan (H.T.); Department of Diagnostic Radiology, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan (Y.I.); Department of Radiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan (O.A.); and Department of Radiology, International University of Health and Welfare, Narita, Chiba, Japan (S.K.)
| |
Collapse
|
28
|
MR Imaging Safety Considerations of Gadolinium-Based Contrast Agents: Gadolinium Retention and Nephrogenic Systemic Fibrosis. Magn Reson Imaging Clin N Am 2021; 28:497-507. [PMID: 33040991 DOI: 10.1016/j.mric.2020.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Gadolinium (Gd)-based contrast agents (GBCAs) have revolutionized of MR imaging, enabling physicians to obtain life-saving medical information that often cannot be obtained with unenhanced MR imaging or other imaging modalities. Since regulatory approval in 1988, more than 450 million intravenous GBCA doses have been administered worldwide, with an extremely favorable pharmacologic safety profile. Recent evidence has demonstrated, however, that a small fraction of Gd is retained in human tissues. No direct correlation between Gd retention and clinical effects has been confirmed; however, a subset of patients have attributed various symptoms to GBCA exposure. This review details current knowledge regarding GBCA safety.
Collapse
|
29
|
Wang J, Salzillo T, Jiang Y, Mackeyev Y, David Fuller C, Chung C, Choi S, Hughes N, Ding Y, Yang J, Vedam S, Krishnan S. Stability of MRI contrast agents in high-energy radiation of a 1.5T MR-Linac. Radiother Oncol 2021; 161:55-64. [PMID: 34089753 PMCID: PMC8324543 DOI: 10.1016/j.radonc.2021.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Gadolinium-based contrast is often used when acquiring MR images for radiation therapy planning for better target delineation. In some situations, patients may still have residual MRI contrast agents in their tissue while being treated with high-energy radiation. This is especially true when MRI contrast agents are administered during adaptive treatment replanning for patients treated on MR-Linac systems. PURPOSE The purpose of this study was to analyze the molecular stability of MRI contrast agents when exposed to high energy photons and the associated secondary electrons in a 1.5T MR-Linac system. This was the first step in assessing the safety of administering MRI contrast agents throughout the course of treatment. MATERIALS AND METHODS Two common MRI contrast agents were irradiated with 7 MV photons to clinical dose levels. The irradiated samples were analyzed using liquid chromatography-high resolution mass spectrometry to detect degradation products or conformational alterations created by irradiation with high energy photons and associated secondary electrons. RESULTS No significant change in chemical composition or displacement of gadolinium ions from their chelates was discovered in samples irradiated with 7 MV photons at relevant clinical doses in a 1.5T MR-Linac. Additionally, no significant correlation between concentrations of irradiated MRI contrast agents and radiation dose was observed. CONCLUSION The chemical composition stability of the irradiated contrast agents is promising for future use throughout the course of patient treatment. However, in vivo studies are needed to confirm that unexpected metabolites are not created in biological milieus.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, United States.
| | - Travis Salzillo
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, United States
| | - Yongying Jiang
- The Institute for Applied Cancer Science, MD Anderson Cancer Center, Houston, United States
| | - Yuri Mackeyev
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, United States
| | - Clifton David Fuller
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, United States
| | - Caroline Chung
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, United States
| | - Seungtaek Choi
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, United States
| | - Neil Hughes
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, United States
| | - Yao Ding
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, United States
| | - Jinzhong Yang
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, United States
| | - Sastry Vedam
- Department of Radiation Oncology, University of Maryland, Baltimore, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, United States
| |
Collapse
|
30
|
Davies J, Marino M, Smith APL, Crowder JM, Larsen M, Lowery L, Castle J, Hibberd MG, Evans PM. Repeat and single dose administration of gadodiamide to rats to investigate concentration and location of gadolinium and the cell ultrastructure. Sci Rep 2021; 11:13950. [PMID: 34230532 PMCID: PMC8260729 DOI: 10.1038/s41598-021-93147-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/21/2021] [Indexed: 01/20/2023] Open
Abstract
Gadolinium based contrast agents (GBCA) are used to image patients using magnetic resonance (MR) imaging. In recent years, there has been controversy around gadolinium retention after GBCA administration. We sought to evaluate the potential toxicity of gadolinium in the rat brain up to 1-year after repeated gadodiamide dosing and tissue retention kinetics after a single administration. Histopathological and ultrastructural transmission electron microscopy (TEM) analysis revealed no findings in rats administered a cumulative dose of 12 mmol/kg. TEM-energy dispersive X-ray spectroscopy (TEM-EDS) localization of gadolinium in the deep cerebellar nuclei showed ~ 100 nm electron-dense foci in the basal lamina of the vasculature. Laser ablation-ICP-MS (LA-ICP-MS) showed diffuse gadolinium throughout the brain but concentrated in perivascular foci of the DCN and globus pallidus with no observable tissue injury or ultrastructural changes. A single dose of gadodiamide (0.6 mmol/kg) resulted in rapid cerebrospinal fluid (CSF) and blood clearance. Twenty-weeks post administration gadolinium concentrations in brain regions was reduced by 16-72-fold and in the kidney (210-fold), testes (194-fold) skin (44-fold), liver (42-fold), femur (6-fold) and lung (64-fold). Our findings suggest that gadolinium does not lead to histopathological or ultrastructural changes in the brain and demonstrate in detail the kinetics of a human equivalent dose over time in a pre-clinical model.
Collapse
Affiliation(s)
- Julie Davies
- GE Healthcare, Pollards Wood, Nightingales lane, Chalfont St. Giles, UK.
| | - Michael Marino
- GE Global Research Centre, 1 Research Circle, Niskayuna, NY, USA
| | - Adrian P L Smith
- GE Healthcare, Pollards Wood, Nightingales lane, Chalfont St. Giles, UK
| | - Janell M Crowder
- GE Global Research Centre, 1 Research Circle, Niskayuna, NY, USA
| | - Michael Larsen
- GE Global Research Centre, 1 Research Circle, Niskayuna, NY, USA
| | - Lisa Lowery
- GE Global Research Centre, 1 Research Circle, Niskayuna, NY, USA
| | - Jason Castle
- GE Global Research Centre, 1 Research Circle, Niskayuna, NY, USA
| | | | - Paul M Evans
- GE Healthcare, Pollards Wood, Nightingales lane, Chalfont St. Giles, UK
| |
Collapse
|
31
|
Chen K, Li P, Zhu C, Xia Z, Xia Q, Zhong L, Xiao B, Cheng T, Wu C, Shen C, Zhang X, Zhu J. Mn(II) Complex of Lipophilic Group-Modified Ethylenediaminetetraacetic Acid (EDTA) as a New Hepatobiliary MRI Contrast Agent. J Med Chem 2021; 64:9182-9192. [PMID: 34152137 DOI: 10.1021/acs.jmedchem.1c00393] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Liver-specific contrast agents (CAs) can improve the Magnetic resonance imaging (MRI) detection of focal and diffuse liver lesions by increasing the lesion-to-liver contrast. A novel Mn(II) complex, Mn-BnO-TyrEDTA, with a lipophilic group-modified ethylenediaminetetraacetic acid (EDTA) structure as a ligand to regulate its behavior in vivo, is superior to Gd-EOB-DTPA in terms of a liver-specific MRI contrast agent. An MRI study on mice demonstrated that Mn-BnO-TyrEDTA can be rapidly taken up by hepatocytes with a combination of hepatobiliary and renal clearance pathways. Bromosulfophthalein (BSP) inhibition imaging, biodistribution, and cellular uptake studies confirmed that the mechanism of hepatic targeting of Mn-BnO-TyrEDTA is the hepatic uptake of the amphiphilic anion contrast agent mediated by organic anion transporting polypeptides (OATPs) expressed by functional hepatocytes.
Collapse
Affiliation(s)
| | - Pan Li
- Department of Radiotherapy, Sichuan Cancer Hospital & Institute, Chengdu 610041, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Frenzel T, Ulbrich HF, Pietsch H. The Macrocyclic Gadolinium-Based Contrast Agents Gadobutrol and Gadoteridol Show Similar Elimination Kinetics From the Brain After Repeated Intravenous Injections in Rabbits. Invest Radiol 2021; 56:341-347. [PMID: 33259443 DOI: 10.1097/rli.0000000000000749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
MATERIALS AND METHODS Male white New Zealand rabbits (2.4-3.1 kg) in 2 study groups (n = 21 each) received 3 injections of either gadobutrol or gadoteridol at 0.9 mmol Gd/kg within 5 days (total dose, 2.7 mmol Gd/kg). Animals in one control group (n = 9) received 3 injections of saline (1.8 mL/kg). After 2, 6, and 12 weeks, 7 animals from each study group and 3 from the control group were killed and the Gd concentrations in the cerebellum, cerebrum, in blood and in urine were determined by inductively coupled plasma mass spectrometry. The chemical species of excreted Gd in urine were determined by high pressure liquid chromatography. RESULTS No significant (P > 0.05) differences in the Gd concentrations in the brain of rabbits were observed between the 2 macrocyclic GBCAs gadoteridol and gadobutrol at all time points. In the gadobutrol group, the mean Gd concentrations in the cerebellum and cerebrum decreased from 0.26 and 0.21 nmol Gd/g after 2 weeks, to 0.040 and 0.027 nmol Gd/g after 12 weeks, respectively, and in the gadoteridol group, from 0.25 and 0.21, to 0.037 and 0.023 nmol Gd/g, respectively. The plasma levels decreased from 0.11 and 0.13 nmol Gd/mL at 2 weeks for gadobutrol and gadoteridol to below the limit of quantification (<0.005 nmol Gd/mL) at 12 weeks. The urine concentration dropped in a biphasic course from 2 to 6 and from 6 to 12 weeks for both agents. The Gd excreted after 12 weeks was still present in the urine in the chemical form of the intact Gd complex for both agents. CONCLUSIONS Contrary to what had been reported in rats, no significant differences in the elimination kinetics from brain tissue in rabbits were observed after intravenous injection of multiple doses of the macrocyclic GBCAs gadobutrol and gadoteridol.
Collapse
|
33
|
Gray Matter Nucleus Hyperintensity After Monthly Triple-Dose Gadopentetate Dimeglumine With Long-term Magnetic Resonance Imaging. Invest Radiol 2021; 55:629-635. [PMID: 32898355 DOI: 10.1097/rli.0000000000000663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Gadolinium deposition is widely believed to occur, but questions regarding accumulation pattern and permanence remain. We conducted a retrospective study of intracranial signal changes on monthly triple-dose contrast-enhanced magnetic resonance imaging (MRI) examinations from the previously published Betaseron vs. Copaxone in Multiple Sclerosis With Triple-Dose Gadolinium and 3-Tesla MRI Endpoints Trial (N = 67) to characterize the dynamics of gadolinium deposition in several deep brain nuclei and track persistence versus washout of gadolinium deposition on long-term follow-up (LTFU) examinations (N = 28) obtained approximately 10 years after enrollment in the Betaseron vs. Copaxone in Multiple Sclerosis With Triple-Dose Gadolinium and 3-Tesla MRI Endpoints Trial. MATERIALS AND METHODS Using T2 and proton density images and using image analysis software (ITK-SNAP), manual regions of interest were created ascribing boundaries of the caudate nucleus, dentate nucleus, globus pallidus, pulvinar, putamen, white matter, and air. Intensity analysis was conducted on T1-weighted fat-saturated (fat-sat) images using the FSL package. A linear rigid-body transform was calculated from the fat-sat image at each target time point to the region of interest segmentation reference time point fat-sat image. Serial MRI signal was analyzed using linear mixed regression modeling with random intercept. Annual MRI signal changes including LTFU scans were assessed with t test. RESULTS During monthly scanning, all gray matter structures demonstrated a significant (P < 0.0001) increase in contrast-to-noise ratio. Yearly changes in deposition showed distinctive patterns for the specific nucleus: globus pallidus showed complete retention, pulvinar showed partial washout, while dentate, caudate, and putamen returned to baseline (ie, complete washout). CONCLUSIONS Monthly increased contrast-to-noise ratio in gray matter nuclei is consistent with gadolinium deposition over time. The study also suggests that some deep gray matter nuclei permanently retain gadolinium, whereas others demonstrate washout of soluble gadolinium.
Collapse
|
34
|
Abstract
Yttrium-86 is a non-standard positron emitter that can provide dosimetry information prior to therapy with yttrium-90 radiopharmaceuticals and be used to follow biochemical processes. In this chapter, we discuss the production, purification and applications of 86Y for PET imaging. More specifically, 86Y radiolabeling is highlighted and protocols to determine the radiochemical purity of 86Y-DOTA and 86Y-DTPA are presented.
Collapse
Affiliation(s)
- Mariane Le Fur
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| |
Collapse
|
35
|
Abstract
Gadolinium-based contrast agents have been used in hundreds of millions of patients in the past 30 years, with an exemplary safety record. However, assumptions made at their inception have been recently challenged, rekindling innovation efforts. This critical review outlines the motivations, technical obstacles, problems, and the most recent published progress toward the creation of alternatives to the existing gadolinium-based contrast agent.
Collapse
Affiliation(s)
- Michael F Tweedle
- From the Radiology Department, Wright Center of Innovation in Biomedical Imaging, College of Medicine, The Ohio State University, Columbus
| |
Collapse
|
36
|
Lattanzio SM. Toxicity associated with gadolinium-based contrast-enhanced examinations. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
37
|
Magnetic Resonance Imaging Agents. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
38
|
Bäuerle T, Saake M, Uder M. Gadolinium-based contrast agents: What we learned from acute adverse events, nephrogenic systemic fibrosis and brain retention. ROFO-FORTSCHR RONTG 2020; 193:1010-1018. [PMID: 33348385 DOI: 10.1055/a-1328-3177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Radiologists have been administering gadolinium-based contrast agents (GBCA) in magnetic resonance imaging for several decades, so that there is abundant experience with these agents regarding allergic-like reactions, nephrogenic systemic fibrosis (NSF) and gadolinium retention in the brain. METHODS This review is based on a selective literature search and reflects the current state of research on acute adverse effects of GBCA, NSF and brain retention of gadolinium. RESULTS Due to the frequent use of GBCA, data on adverse effects of these compounds are available in large collectives. Allergic-like reactions occurred rarely, whereas severe acute reactions were very rarely observed. Systemic changes in NSF also occur very rarely, although measures to avoid NSF resulted in a significantly reduced incidence of NSF. Due to gadolinium retention in the body after administration of linear MR contrast agents, only macrocyclic preparations are currently used with few exceptions. Clear clinical correlates of gadolinium retention in the brain could not be identified so far. Although the clinical added value of GBCA is undisputed, individual risks associated with the injection of GBCA should be identified and the use of non-contrast enhanced MR techniques should be considered. Alternative contrast agents such as iron oxide nanoparticles are not clinically approved, but are currently undergoing clinical trials. CONCLUSION GBCA have a very good risk profile with a low rate of adverse effects or systemic manifestations such as NSF. Gadolinium retention in the brain can be minimized by the use of macrocyclic GBCA, although clear clinical correlates due to gadolinium retention in the brain following administration of linear GBCA could not be identified yet. KEY POINTS · Acute adverse effects are predominantly mild/moderate, rarely severe reactions occur.. · International guidelines resulted in significant reduction of nephrogenic systemic fibrosis.. · Application of macrocyclic contrast agents minimizes gadolinium retention in the brain.. CITATION FORMAT · Bäuerle T, Saake M, Uder M. Gadolinium-based contrast agents: What we learned from acute adverse events, nephrogenic systemic fibrosis and brain retention. Fortschr Röntgenstr 2021; 193: 1010 - 1018.
Collapse
Affiliation(s)
- Tobias Bäuerle
- Institute of Radiology, University Medical Center, Erlangen, Germany
| | - Marc Saake
- Institute of Radiology, University Medical Center, Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Medical Center, Erlangen, Germany
| |
Collapse
|
39
|
Long-Term Evaluation of Gadolinium Retention in Rat Brain After Single Injection of a Clinically Relevant Dose of Gadolinium-Based Contrast Agents. Invest Radiol 2020; 55:138-143. [PMID: 31917763 PMCID: PMC7015191 DOI: 10.1097/rli.0000000000000623] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE The aim of this study was to investigate the presence and chemical forms of residual gadolinium (Gd) in rat brain after a single dose of Gd-based contrast agent. METHODS Four groups of healthy rats (2 sacrifice time-points, n = 10/group, 80 rats in total) were randomized to receive a single intravenous injection of 1 of the 3 Gd-based contrast agents (GBCAs) (gadoterate meglumine, gadobenate dimeglumine, or gadodiamide) or the same volume of 0.9% saline solution. The injected concentration was 0.6 mmol/kg, corresponding to a concentration of 0.1 mmol/kg in humans after body surface normalization between rats and humans (according to the US Food and Drug Administration recommendations). Animals were sacrificed at 2 washout times: 1 (M1) and 5 (M5) months after the injection. Total Gd concentrations were determined in cerebellum by inductively coupled plasma mass spectrometry. Gadolinium speciation was analyzed by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry after extraction from cerebellum. RESULTS A single injection of a clinically relevant dose of GBCA resulted in the detectable presence of Gd in the cerebellum 1 and 5 months after injection. The cerebellar total Gd concentrations after administration of the least stable GBCA (gadodiamide) were significantly higher at both time-points (M1: 0.280 ± 0.060 nmol/g; M5: 0.193 ± 0.023 nmol/g) than those observed for macrocyclic gadoterate (M1: 0.019 ± 0.004 nmol/g, M5: 0.004 ± 0.002 nmol/g; P < 0.0001). Gadolinium concentrations after injection of gadobenate were significantly lower at both time-points (M1: 0.093 ± 0.020 nmol/g; M5: 0.067 ± 0.013 nmol/g; P < 0.05) than the Gd concentration measured after injection of gadodiamide. At the 5-month time-point, the Gd concentration in the gadoterate group was also significantly lower than the Gd concentration in the gadobenate group (P < 0.05). Gadolinium speciation analysis of the water-soluble fraction showed that, after injection of the macrocyclic gadoterate, Gd was still detected only in its intact, chelated form 5 months after injection. In contrast, after a single dose of linear GBCAs (gadobenate and gadodiamide), 2 different forms were detected: intact GBCA and Gd bound to soluble macromolecules (above 80 kDa). Elimination of the intact GBCA form was also observed between the first and fifth month, whereas the amount of Gd present in the macromolecular fraction remained constant 5 months after injection. CONCLUSIONS A single injection of a clinically relevant dose of GBCA is sufficient to investigate long-term Gd retention in the cerebellar parenchyma. Administration of linear GBCAs (gadodiamide and gadobenate) resulted in higher residual Gd concentrations than administration of the macrocyclic gadoterate. Speciation analysis of the water-soluble fraction of cerebellum confirmed washout of intact GBCA over time. The quantity of Gd bound to macromolecules, observed only with linear GBCAs, remained constant 5 months after injection and is likely to represent a permanent deposition.
Collapse
|
40
|
Alkhunizi SM, Fakhoury M, Abou-Kheir W, Lawand N. Gadolinium Retention in the Central and Peripheral Nervous System: Implications for Pain, Cognition, and Neurogenesis. Radiology 2020; 297:407-416. [DOI: 10.1148/radiol.2020192645] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Safia M. Alkhunizi
- From the Department of Anatomy, Cell Biology and Physiological Sciences (S.M.A., M.F., W.A., N.L.) and Department of Neurology (N.L.), Faculty of Medicine, American University of Beirut, PO Box 11-0236, Riad El-Solh, Diana Tamari Sabbagh (DTS) Building, Bldg 130, John Kennedy St, Beirut 1107 2020, Lebanon
| | - Marc Fakhoury
- From the Department of Anatomy, Cell Biology and Physiological Sciences (S.M.A., M.F., W.A., N.L.) and Department of Neurology (N.L.), Faculty of Medicine, American University of Beirut, PO Box 11-0236, Riad El-Solh, Diana Tamari Sabbagh (DTS) Building, Bldg 130, John Kennedy St, Beirut 1107 2020, Lebanon
| | - Wassim Abou-Kheir
- From the Department of Anatomy, Cell Biology and Physiological Sciences (S.M.A., M.F., W.A., N.L.) and Department of Neurology (N.L.), Faculty of Medicine, American University of Beirut, PO Box 11-0236, Riad El-Solh, Diana Tamari Sabbagh (DTS) Building, Bldg 130, John Kennedy St, Beirut 1107 2020, Lebanon
| | - Nada Lawand
- From the Department of Anatomy, Cell Biology and Physiological Sciences (S.M.A., M.F., W.A., N.L.) and Department of Neurology (N.L.), Faculty of Medicine, American University of Beirut, PO Box 11-0236, Riad El-Solh, Diana Tamari Sabbagh (DTS) Building, Bldg 130, John Kennedy St, Beirut 1107 2020, Lebanon
| |
Collapse
|
41
|
Effect of Long-Term Retention of Gadolinium on Metabolism of Deep Cerebellar Nuclei After Repeated Injections of Gadodiamide in Rats. Invest Radiol 2020; 55:120-128. [PMID: 31876627 DOI: 10.1097/rli.0000000000000621] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The aim of this study was to determine potential metabolism and histological modifications due to gadolinium retention within deep cerebellar nuclei (DCN) after linear gadolinium-based contrast agent injection (gadodiamide) in rats at 1 year after the last injection. MATERIALS AND METHODS Twenty female rats received 20 doses of gadodiamide (0.6 mmol of gadolinium per kilogram each) over 5 weeks. They were followed at 1 week (M0), 6 weeks (M1), and 54 to 55 weeks (M13) postinjections to evaluate hypersignal on unenhanced T1-weighted magnetic resonance imaging and metabolic alterations by H magnetic resonance spectroscopy (H-MRS). At 1 year postinjections, brains were sampled to determine the localization of gadolinium within cerebellum by laser ablation inductively coupled mass spectroscopy and to evaluate morphological changes by semiquantitative immunofluorescence analysis. RESULTS There is a significant increase of the ratio DCN/brainstem for the gadodiamide group at M0 (+7.2% vs control group = 0.989 ± 0.01), M1 (+7.6% vs control group = 1.002 ± 0.018), and it lasted up to M13 (+4.7% vs control group = 0.9862 ± 0.008). No variation among metabolic markers (cellular homeostasis [creatine, choline, taurine], excitatory neurotransmitter [glutamate], and metabolites specific to a cellular compartment [N-acetyl aspartate for neurons and myo-inositol for glial cells]) were detected by H-MRS between gadodiamide and saline groups at M0, M1, and M13. At M13, laser ablation inductively coupled mass spectroscopy demonstrated that long-term gadolinium retention occurred preferentially in DCN. No histological abnormalities (including analysis of astrocytes, neurons, and microglial cells) were found in the rostral part of DCN. CONCLUSIONS Repeated administration of gadodiamide lead to a retention of gadolinium preferentially within DCN at 1 year postinjections. This retention did not lead to any detectable changes of the measured metabolic biomarkers nor histological alterations.
Collapse
|
42
|
Le Fur M, Rotile NJ, Correcher C, Clavijo Jordan V, Ross AW, Catana C, Caravan P. Yttrium‐86 Is a Positron Emitting Surrogate of Gadolinium for Noninvasive Quantification of Whole‐Body Distribution of Gadolinium‐Based Contrast Agents. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mariane Le Fur
- The Athinoula A. Martinos Center for Biomedical Imaging The Institute for Innovation in Imaging Massachusetts General Hospital and Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Nicholas J. Rotile
- The Athinoula A. Martinos Center for Biomedical Imaging The Institute for Innovation in Imaging Massachusetts General Hospital and Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Carlos Correcher
- Bruker BioSpin Preclinical Imaging Division Eduardo Primo Yúfera 3 46013 Valencia Spain
| | - Veronica Clavijo Jordan
- The Athinoula A. Martinos Center for Biomedical Imaging The Institute for Innovation in Imaging Massachusetts General Hospital and Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Alana W. Ross
- The Athinoula A. Martinos Center for Biomedical Imaging The Institute for Innovation in Imaging Massachusetts General Hospital and Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Ciprian Catana
- The Athinoula A. Martinos Center for Biomedical Imaging The Institute for Innovation in Imaging Massachusetts General Hospital and Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging The Institute for Innovation in Imaging Massachusetts General Hospital and Harvard Medical School 149 Thirteenth Street Charlestown MA 02129 USA
| |
Collapse
|
43
|
Gadolinium Retention in Erythrocytes and Leukocytes From Human and Murine Blood Upon Treatment With Gadolinium-Based Contrast Agents for Magnetic Resonance Imaging. Invest Radiol 2020; 55:30-37. [DOI: 10.1097/rli.0000000000000608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Radiolabeled PET/MRI Nanoparticles for Tumor Imaging. J Clin Med 2019; 9:jcm9010089. [PMID: 31905769 PMCID: PMC7019574 DOI: 10.3390/jcm9010089] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023] Open
Abstract
The development of integrated positron emission tomography (PET)/magnetic resonance imaging (MRI) scanners opened a new scenario for cancer diagnosis, treatment, and follow-up. Multimodal imaging combines functional and morphological information from different modalities, which, singularly, cannot provide a comprehensive pathophysiological overview. Molecular imaging exploits multimodal imaging in order to obtain information at a biological and cellular level; in this way, it is possible to track biological pathways and discover many typical tumoral features. In this context, nanoparticle-based contrast agents (CAs) can improve probe biocompatibility and biodistribution, prolonging blood half-life to achieve specific target accumulation and non-toxicity. In addition, CAs can be simultaneously delivered with drugs or, in general, therapeutic agents gathering a dual diagnostic and therapeutic effect in order to perform cancer diagnosis and treatment simultaneous. The way for personalized medicine is not so far. Herein, we report principles, characteristics, applications, and concerns of nanoparticle (NP)-based PET/MRI CAs.
Collapse
|
45
|
Le Fur M, Rotile NJ, Correcher C, Clavijo Jordan V, Ross AW, Catana C, Caravan P. Yttrium-86 Is a Positron Emitting Surrogate of Gadolinium for Noninvasive Quantification of Whole-Body Distribution of Gadolinium-Based Contrast Agents. Angew Chem Int Ed Engl 2019; 59:1474-1478. [PMID: 31750991 DOI: 10.1002/anie.201911858] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/08/2019] [Indexed: 01/20/2023]
Abstract
Gadolinium-based contrast agents (GBCAs) are used to provide diagnostic information in clinical magnetic resonance (MR) examinations. Gadolinium (Gd) has been detected in the brain, bone and skin of patients, months and years following GBCA administration, raising concerns about long term toxicity. Despite increased scrutiny, the concentration, chemical form and fate of the retained gadolinium species remain unknown. Importantly, the whole body biodistribution and organ clearance of GBCAs is poorly understood in humans. Gadolinium lacks suitable isotopes for nuclear imaging. We demonstrate that the yttrium-86 isotope can be used as a gadolinium surrogate. We show that Gd and their analogous Y complexes have similar properties both in solution and in vivo, and that yttrium-86 PET can be used to track the biodistribution of GBCAs over a two-day period.
Collapse
Affiliation(s)
- Mariane Le Fur
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Nicholas J Rotile
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Carlos Correcher
- Bruker BioSpin, Preclinical Imaging Division, Eduardo Primo Yúfera 3, 46013, Valencia, Spain
| | - Veronica Clavijo Jordan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Alana W Ross
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Ciprian Catana
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Peter Caravan
- The Athinoula A. Martinos Center for Biomedical Imaging, The Institute for Innovation in Imaging, Massachusetts General Hospital and Harvard Medical School, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| |
Collapse
|
46
|
|
47
|
Age, But Not Repeated Exposure to Gadoterate Meglumine, Is Associated With T1- and T2-Weighted Signal Intensity Changes in the Deep Brain Nuclei of Pediatric Patients. Invest Radiol 2019; 54:537-548. [DOI: 10.1097/rli.0000000000000564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Lenkinski RE. Gadolinium Deposition and Retention in the Brain: Should We Be Concerned? Radiol Cardiothorac Imaging 2019; 1:e190104. [PMID: 33778513 PMCID: PMC7977796 DOI: 10.1148/ryct.2019190104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 06/12/2023]
|
49
|
Han Y, Zhou X, Qian Y, Hu H, Zhou Z, Liu X, Tang J, Shen Y. Hypoxia-targeting dendritic MRI contrast agent based on internally hydroxy dendrimer for tumor imaging. Biomaterials 2019; 213:119195. [DOI: 10.1016/j.biomaterials.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 04/13/2019] [Accepted: 05/05/2019] [Indexed: 12/22/2022]
|
50
|
Dechelation (Transmetalation): Consequences and Safety Concerns With the Linear Gadolinium-Based Contrast Agents, In View of Recent Health Care Rulings by the EMA (Europe), FDA (United States), and PMDA (Japan). Invest Radiol 2019; 53:571-578. [PMID: 30130320 DOI: 10.1097/rli.0000000000000507] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The issue of dechelation (transmetallation) in vivo after administration of the linear gadolinium-based contrast agents, and potential safety concerns, is considered on the basis of an extensive, focused literature review. Early indications of potential problems included the high level of excess ligand used in the formulation of 2 agents (indeed the 2 least stable thermodynamically) and interference with laboratory tests when blood was drawn from patients relatively soon after administration of these same agents. The advent of nephrogenic systemic fibrosis in the late 2000s raised additional major concerns.The correlation in 2014 of dentate nucleus hyperintensity on precontrast T1-weighted scans with multiple prior injections of linear gadolinium chelates, in patients with normal renal function, has driven subsequent research concerning dechelation of these agents in vivo. Unexpectedly high levels of gadolinium in the bone, skin, and liver have been found long term after administration, in animal models and in humans, although the latter data are limited. Bone may serve as a long-term reservoir, with a residual excretion phase for gadolinium after intravenous injection of the linear agents due to a subsequent slow release from bone. Many different patient populations could be vulnerable and potentially later develop clinical symptoms, although at this stage there are only limited data and small retrospective uncontrolled studies. Possible vulnerable populations include children, menopausal women, patients with osteoporosis (who are predisposed to fractures and often slow to heal or heal poorly), those receiving multiple doses, those with proinflammatory conditions, moderate renal dysfunction, or an undefined genetic predisposition. Of particular concern would be nephrogenic systemic fibrosis-like symptoms-including particularly pain and skin/joint symptoms, or disease related to the incorporation of gadolinium in hydroxyapatite in bone, in small subgroups of patients with a not yet defined propensity and/or cofactor. These concerns have led to withdrawal of the linear agents from the largest clinical market, Europe, with the exception of the hepatobiliary agents for delayed liver imaging, an indication that cannot be fulfilled by the current macrocyclic gadolinium chelates (for which these concerns do not apply).
Collapse
|