1
|
Calcium Ionophore, Calcimycin, Kills Leishmania Promastigotes by Activating Parasite Nitric Oxide Synthase. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1309485. [PMID: 29181385 PMCID: PMC5664200 DOI: 10.1155/2017/1309485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/08/2017] [Accepted: 09/19/2017] [Indexed: 01/13/2023]
Abstract
Leishmaniasis is an infectious disease caused by protozoan parasites of the genus Leishmania. There is no vaccine against human leishmaniasis and the treatment of the disease would benefit from a broader spectrum and a higher efficacy of leishmanicidal compounds. We analyzed the leishmanicidal activity and the mechanism of action of the calcium ionophore, calcimycin. L. major promastigotes were coincubated with calcimycin and the viability of the cells was assessed using resazurin assay. Calcimycin displayed dose-dependent effect with IC50 = 0.16 μM. Analysis of propidium iodide/LDS-751 stained promastigotes revealed that lower concentrations of calcimycin had cytostatic effect and higher concentrations had cytotoxic effect. To establish the mechanism of action of calcimycin, which is known to stimulate activity of mammalian constitutive nitric oxide synthase (NOS), we coincubated L. major promastigotes with calcimycin and selective NOS inhibitors ARL-17477 or L-NNA. Addition of these inhibitors substantially decreased the toxicity of calcimycin to Leishmania promastigotes. In doing so, we demonstrated for the first time that calcimycin has a direct leishmanicidal effect on L. major promastigotes. Also, we showed that Leishmania constitutive Ca2+/calmodulin-dependent nitric oxide synthase is involved in the parasite cell death. These data suggest activation of Leishmania nitric oxide synthase as a new therapeutic approach.
Collapse
|
2
|
Abstract
BACKGROUND People with hyperglycaemia concomitant with an acute stroke have greater mortality, stroke severity, and functional impairment when compared with those with normoglycaemia at stroke presentation. This is an update of a Cochrane Review first published in 2011. OBJECTIVES To determine whether intensively monitoring insulin therapy aimed at maintaining serum glucose within a specific normal range (4 to 7.5 mmol/L) in the first 24 hours of acute ischaemic stroke influences outcome. SEARCH METHODS We searched the Cochrane Stroke Group Trials Register (September 2013), CENTRAL (The Cochrane Library 2013, Issue 8), MEDLINE (1950 to September 2013), EMBASE (1980 to September 2013), CINAHL (1982 to September 2013), Science Citation Index (1900 to September 2013), and Web of Science (ISI Web of Knowledge) (1993 to September 2013). We also searched ongoing trials registers and SCOPUS. SELECTION CRITERIA Randomised controlled trials (RCTs) comparing intensively monitored insulin therapy versus usual care in adults with acute ischaemic stroke. DATA COLLECTION AND ANALYSIS We obtained a total of 1565 titles through the literature search. Two review authors independently selected the included articles and extracted the study characteristics, study quality, and data to estimate the odds ratio (OR) and 95% confidence interval (CI), mean difference (MD) and standardised mean difference (SMD) of outcome measures. We resolved disagreements by discussion. MAIN RESULTS We included 11 RCTs involving 1583 participants (791 participants in the intervention group and 792 in the control group). We found that there was no difference between the treatment and control groups in the outcomes of death or dependency (OR 0.99, 95% CI 0.79 to 1.23) or final neurological deficit (SMD -0.09, 95% CI -0.19 to 0.01). The rate of symptomatic hypoglycaemia was higher in the intervention group (OR 14.6, 95% CI 6.6 to 32.2). In the subgroup analyses of diabetes mellitus (DM) versus non-DM, we found no difference for the outcomes of death and disability or neurological deficit. The number needed to treat was not significant for the outcomes of death and final neurological deficit. The number needed to harm was nine for symptomatic hypoglycaemia. AUTHORS' CONCLUSIONS After updating the results of our previous review, we found that the administration of intravenous insulin with the objective of maintaining serum glucose within a specific range in the first hours of acute ischaemic stroke does not provide benefit in terms of functional outcome, death, or improvement in final neurological deficit and significantly increased the number of hypoglycaemic episodes. Specifically, those people whose glucose levels were maintained within a tighter range with intravenous insulin experienced a greater risk of symptomatic and asymptomatic hypoglycaemia than those people in the control group.
Collapse
Affiliation(s)
- M Fernanda Bellolio
- Mayo ClinicDepartment of Emergency MedicineGenerose Building‐G410200 First Street SWRochesterMinnesotaUSA55905
| | - Rachel M Gilmore
- Mayo ClinicDepartment of Emergency MedicineGenerose Building‐G410200 First Street SWRochesterMinnesotaUSA55905
| | - Latha Ganti
- NFSG Veterans Affairs Medical Center1601 Archer RoadGainesvilleFloridaUSA32610
| | | |
Collapse
|
3
|
Soluble guanylate cyclase generation of cGMP regulates migration of MGE neurons. J Neurosci 2013; 33:16897-914. [PMID: 24155296 DOI: 10.1523/jneurosci.1871-13.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Here we have provided evidence that nitric oxide-cyclic GMP (NO-cGMP) signaling regulates neurite length and migration of immature neurons derived from the medial ganglionic eminence (MGE). Dlx1/2(-/-) and Lhx6(-/-) mouse mutants, which exhibit MGE interneuron migration defects, have reduced expression of the gene encoding the α subunit of a soluble guanylate cyclase (Gucy1A3). Furthermore, Dlx1/2(-/-) mouse mutants have reduced expression of NO synthase 1 (NOS1). Gucy1A3(-/-) mice have a transient reduction in cortical interneuron number. Pharmacological inhibition of soluble guanylate cyclase and NOS activity rapidly induces neurite retraction of MGE cells in vitro and in slice culture and robustly inhibits cell migration from the MGE and caudal ganglionic eminence. We provide evidence that these cellular phenotypes are mediated by activation of the Rho signaling pathway and inhibition of myosin light chain phosphatase activity.
Collapse
|
4
|
Pravdic D, Vladic N, Cavar I, Bosnjak ZJ. Effect of nitric oxide donors S-nitroso-N-acetyl-DL-penicillamine, spermine NONOate and propylamine propylamine NONOate on intracellular pH in cardiomyocytes. Clin Exp Pharmacol Physiol 2013; 39:772-8. [PMID: 22703333 DOI: 10.1111/j.1440-1681.2012.05734.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. Previous studies suggest that exogenous nitric oxide (NO) and NO-dependent signalling pathways modulate intracellular pH (pH(i)) in different cell types, but the role of NO in pH(i) regulation in the heart is poorly understood. Therefore, in the present study we investigated the effect of the NO donors S-nitroso-N-acetyl-DL-penicillamine, spermine NONOate and propylamine propylamine NONOate on pH(i) in rat isolated ventricular myocytes. 2. Cells were isolated from the hearts of adult Wistar rats and pH(i) was monitored using the pH-sensitive fluorescent indicator 5-(and-6)-carboxy seminaphtharhodafluor (SNARF)-1 (10 μmol/L) and a confocal microscope. To test the effect of NO donors on the Na⁺/H⁺ exchanger (NHE), basal pH(i) in Na⁺-free buffer and pH(i) recovery from intracellular acidosis after an ammonium chloride (10 mmol/L) prepulse were monitored. The role of carbonic anhydrase was tested using acetazolamide (50 μmol/L). 4,4-Diisothiocyanatostilbene-2,2'-disulphonic acid (0.5 mmol/L; DIDS) was used to inhibit the Cl⁻/OH⁻ and Cl⁻/HCO₃-exchangers. Acetazolamide and DIDS were applied via the superfusion system 1 and 5 min before the NO donors. 3. All three NO donors acutely decreased pH(i) and this effect persisted until the NO donor was removed. In Na⁺-free buffer, the decrease in basal pH(i) was increased, whereas inhibition of carbonic anhydrase and Cl⁻/OH⁻ and Cl⁻/HCO₃⁻ exchangers did not alter the effects of the NO donors on pH(i). After an ammonium preload, pH(i) recovery was accelerated in the presence of the NO donors. 4. In conclusion, exogenous NO decreases basal pH(i), leading to increased NHE activity. Carbonic anhydrase and chloride-dependent sarcolemmal HCO₃⁻ and OH⁻ transporters are not involved in the NO-induced decrease in pH(i) in rat isolated ventricular myocytes.
Collapse
Affiliation(s)
- Danijel Pravdic
- Department of Anaesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | | | | | | |
Collapse
|
5
|
Abstract
BACKGROUND Patients with hyperglycaemia concomitant with an acute stroke have greater stroke severity and greater functional impairment when compared to those with normoglycaemia at stroke presentation. OBJECTIVES To determine whether maintaining serum glucose within a specific normal range (4 to 7.5 mmol/L) in the first 24 hours of acute ischaemic stroke influences outcome. SEARCH STRATEGY We searched the Cochrane Stroke Group Trials Register (June 2010), CENTRAL (The Cochrane Library 2010, Issue 2), MEDLINE (1950 to June 2010), EMBASE (1980 to June 2010), CINAHL (1982 to June 2010), Science Citation Index (1900 to June 2010), and Web of Science (ISI Web of Knowledge) (1993 to June 2010). In an effort to identify further published, unpublished and ongoing trials we searched ongoing trials registers and SCOPUS. SELECTION CRITERIA Eligible studies were randomised controlled trials comparing intensively monitored insulin therapy versus usual care in adult patients with acute ischaemic stroke. DATA COLLECTION AND ANALYSIS Two review authors independently extracted the study characteristics, study quality, and data to estimate the odds ratio (OR) and 95% confidence interval (CI), mean difference (MD) and standardised mean difference (SMD) of outcome measures. MAIN RESULTS We included seven trials involving 1296 participants (639 participants in the intervention group and 657 in the control group). We found that there was no difference between treatment and control groups in the outcome of death or disability and dependence (OR 1.00, 95% CI 0.78 to 1.28) or final neurological deficit (SMD -0.12, 95% CI -0.23 to 0.00). The rate of symptomatic hypoglycaemia was higher in the intervention group (OR 25.9, 95% CI 9.2 to 72.7). In the subgroup analyses of diabetes mellitus (DM) versus non-DM, we found no difference for the outcomes of death and dependency or neurological deficit. AUTHORS' CONCLUSIONS With the current evidence, we found that the administration of intravenous insulin with the objective of maintaining serum glucose within a specific range in the first hours of acute ischaemic stroke does not provide benefit in terms of functional outcome, death, or improvement in final neurological deficit and significantly increased the number of hypoglycaemic episodes. Specifically, those who were maintained within a more tight range of glycaemia with intravenous insulin experienced a greater risk of symptomatic and asymptomatic hypoglycaemia than those individuals in the control group.
Collapse
Affiliation(s)
- M Fernanda Bellolio
- Department of Emergency Medicine, Mayo Clinic, Genrose Building-G410, 200 First Street SW, Rochester, Minnesota, USA, 55905
| | | | | |
Collapse
|
6
|
Bellolio MF, Gilmore RM, Stead LG. Insulin for glycaemic control in acute ischaemic stroke. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2008. [DOI: 10.1002/14651858.cd005346.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Stead LG, Gilmore RM, Anand N, Weaver AL. Interventions for controlling hyperglycaemia in acute ischaemic stroke. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2005. [DOI: 10.1002/14651858.cd005346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Shima H, Fujisawa H, Suehiro E, Uetsuka S, Maekawa T, Suzuki M. Mild Hypothermia Inhibits Exogenous Glutamate-Induced Increases in Nitric Oxide Synthesis. J Neurotrauma 2003; 20:1179-87. [PMID: 14651805 DOI: 10.1089/089771503770802862] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to investigate changes in nitric oxide (NO) synthesis induced by exogenous glutamate perfusion into the cerebral cortex, and the effects of mild hypothermia on this glutamate-induced NO synthesis. Glutamate-induced cortical lesions were produced by perfusion of 0.5 M glutamate solution via a microdialysis probe, and the extracellular concentrations of NO end-products (nitrite and nitrate) were measured by microdialysis in normothermic (37 degrees C) and hypothermic (32 degrees C) rats. The levels of NO end-products in the normothermia group were elevated markedly by glutamate perfusion, and this change was completely attenuated by the induction of hypothermia. The glutamate-induced increases were also attenuated markedly by both Nomega-nitro-L-arginine methyl ester (L-NAME) and 7-nitroindazole (7-NI). These results suggest that the perfusion of exogenous glutamate into the cortex induces NO synthesis, that is derived primarily from the activity of neuronal NO synthase. These results also demonstrate that hypothermia prevents this glutamate-induced increase in NO, suggesting that the protection afforded by the hypothermic condition is most likely linked to its inhibition of the glutamate-induced NO synthesis.
Collapse
Affiliation(s)
- Hidehiro Shima
- Department of Neurosurgery, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
Gene transfer involves the use of an engineered biologic vehicle known as a vector to introduce a gene encoding a protein of interest into a particular tissue. In diseases with known defects at a genetic level, gene transfer offers a potential means of restoring a normal molecular environment via vector-mediated entry (transduction) and expression of genes encoding potentially therapeutic proteins selectively in diseased tissues. The technology of gene transfer therefore underlies the concept of gene therapy and falls under the umbrella of the current genomics revolution. Particularly since 1995, numerous attempts have been made to introduce genes into intracranial blood vessels to demonstrate and characterize viable transduction. More recently, in attempting to translate cerebrovascular gene transfer technology closer to the clinical arena, successful transductions of normal human cerebral arteries ex vivo and diseased animal cerebral arteries in vivo have been reported using vasomodulatory vectors. Considering the emerging importance of gene-based strategies for the treatment of the spectrum of human disease, the goals of the present report are to overview the fundamentals of gene transfer and review experimental studies germane to the clinical translation of a technology that can facilitate genetic modification of cerebral blood vessels.
Collapse
Affiliation(s)
- Vini G Khurana
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | |
Collapse
|
10
|
Coert BA, Anderson RE, Meyer FB. Is neuroprotective efficacy of nNOS inhibitor 7-NI dependent on ischemic intracellular pH? Am J Physiol Heart Circ Physiol 2003; 284:H151-9. [PMID: 12388221 DOI: 10.1152/ajpheart.00580.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to test the hypothesis that the efficacy of 7-nitroindazole (7-NI), a selective neuronal nitric oxide (NO) synthase (NOS) inhibitor, is pH dependent in vivo during focal cerebral ischemia. Wistar rats underwent 2 h of focal cerebral ischemia under 1% halothane anesthesia. 7-NI, 10 and 100 mg/kg in 0.1 ml/kg DMSO, was administered 30 min before occlusion. Ischemic brain acidosis was manipulated by altering serum glucose concentrations. Confirmation of the effects of these serum glucose manipulations on brain intracellular pH (pH(i)) was confirmed in a group of acute experiments utilizing umbelliferone fluorescence. The animals were euthanized at 72 h for histology. 7-NI significantly (P < 0.05) reduced infarction volume in both the normoglycemic by 93.3% and hyperglycemic animals by 27.5%. In the moderate hypoglycemic animals, the reduction in infarction volume did not reach significance because moderate hypoglycemia in itself dramatically reduced infarction volume. We hypothesize that a mechanism to explain the published discrepancies on the effects of neuronal NOS inhibitors in vivo may be due to the effects by differences in ischemic brain acidosis on the production of NO.
Collapse
Affiliation(s)
- Bernard A Coert
- Thoralf M. Sundt Jr. Neurosurgery Research Laboratory, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
11
|
dos Reis EA, de Oliveira LS, Lamers ML, Netto CA, Wyse ATDS. Arginine administration inhibits hippocampal Na+,K+-ATPase activity and impairs retention of an inhibitory avoidance task in rats. Brain Res 2002; 951:151-7. [PMID: 12270492 DOI: 10.1016/s0006-8993(02)03077-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study we investigated the effect of acute administration of L-arginine (Arg) on hippocampal Na(+),K(+)-ATPase activity and on retrieval of step-down inhibitory avoidance in adult rats. The action of L-NAME on the effects produced by Arg was also tested. Sixty-day-old rats were treated with a single intraperitoneal injection of saline (group I, control), arginine (0.8 g/kg) (group II), L-NAME (2 mg/kg) (group III) or arginine (0.8 g/kg) plus L-NAME (2 mg/kg) (group IV). Na(+),K(+)-ATPase activity was significantly reduced in arginine-treated rats; this effect was prevented by L-NAME. Retrieval of the avoidance task was also significantly impaired by arginine, whereas the simultaneous injection of L-NAME prevented this effect. Present data strongly indicate that in vivo Arg administration reduces both Na(+),K(+)-ATPase activity and memory modulation in rats probably through NO formation.
Collapse
Affiliation(s)
- Eleonora Araújo dos Reis
- Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP 90035-003, RS, Porto Alegre, Brazil
| | | | | | | | | |
Collapse
|
12
|
Coert BA, Anderson RE, Meyer FB. Effects of the nitric oxide donor 3-morpholinosydnonimine (SIN-1) in focal cerebral ischemia dependent on intracellular brain pH. J Neurosurg 2002; 97:914-21. [PMID: 12405381 DOI: 10.3171/jns.2002.97.4.0914] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT A nitric oxide (NO) donor that has been successfully used in the treatment of myocardial infarction, 3-morpholinosydnonimine (SIN-1), may be a potential neuroprotective agent. Production of NO in brain microsomes is dependent on the pH. The purpose of this study was to determine the efficacy of SIN-1 and its dependence on pH in vivo during periods of focal cerebral ischemia. METHODS At 0.1 or 1 mg/kg, SIN-1 was administered to 54 Wistar rats 30 minutes before a 2-hour period of focal cerebral ischemia under moderate hypo-, normo-, and hyperglycemic conditions. Measurements of brain intracellular pH (pHi); regional cortical blood flow, and the redox state of nicotinamide adenine dinucleotide were obtained in three additional animals to confirm the effects of the serum glucose manipulations. The animals were killed at 72 hours after the ischemic period to obtain infarction volumes. Administration of SIN-1 significantly reduced infarction in normoglycemic animals and, to a lesser extent, in hyperglycemic animals, indicating that SIN-1 was less effective under hyperglycemic conditions. At either dose SIN-1 had no significant effect on infarction volume in moderately hypoglycemic animals because moderate hypoglycemia in itself significantly (p < 0.005) reduced infarction volume. CONCLUSIONS The NO donor SIN-1 may be a useful intraoperative cerebral protective agent. Furthermore, it is hypothesized that a mechanism that could explain the published discrepancies regarding the effects of NO donors in vivo may be affected by differences in ischemic brain acidosis.
Collapse
Affiliation(s)
- Bernard A Coert
- Thoralf M. Sundt, Jr., Neurosurgery Research Laboratory, Mayo Clinic, and Mayo Graduate School of Medicine, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
13
|
Uetsuka S, Fujisawa H, Yasuda H, Shima H, Suzuki M. Severe cerebral blood flow reduction inhibits nitric oxide synthesis. J Neurotrauma 2002; 19:1105-16. [PMID: 12482122 DOI: 10.1089/089771502760342009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to investigate the relationship between cerebral blood flow (CBF) and nitric oxide (NO) synthesis using a rat model of transient forebrain ischemia of varying severity. Forebrain ischemia was induced for 30 min by occlusion of the bilateral common carotid arteries without hemorrhagic hypotension. The production of NO end-products (nitrite and nitrate) was measured by in vivo microdialysis, and CBF by the hydrogen clearance technique. Ischemia induced NO synthesis, although the increase in the quantity of NO end-products was not remarkable during the ischemic period but became prominent after reperfusion. Such increases were abolished by Nomega-nitro-L-arginine methyl ester (L-NAME), although 7-nitroindazole (7-NI) appeared to have only slight effects. The production of NO end-products during ischemia increased when the CBF during ischemia was less than 60 mL/100 g/min. In animals in which the CBF during ischemia was higher than 22.7 mL/100 g/min, the production of NO end-products increased gradually after the induction of ischemia and reached a peak during the reperfusion period, whereas in other animals in which the CBF during ischemia fell below 22.7 mL/100 g/min, the NO end-products decreased during ischemia and increased transiently after reperfusion. These results suggest that the increase in NO end-products is NO synthase (NOS)-dependent and that most of the increase is derived from endothelial NOS. It is also suggested that NO synthesis during ischemia is closely related to CBF, and that severe CBF reduction may inhibit NO synthesis.
Collapse
Affiliation(s)
- Shinpei Uetsuka
- Department of Neurosurgery, Clinical Neuroscience, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | |
Collapse
|
14
|
Benz S, Obermaier R, Wiessner R, Breitenbuch PV, Burska D, Weber H, Schnabel R, Mayer J, Pfeffer F, Nizze H, Hopt UT. Effect of nitric oxide in ischemia/reperfusion of the pancreas. J Surg Res 2002; 106:46-53. [PMID: 12127807 DOI: 10.1006/jsre.2002.6457] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Ischemia/reperfusion injury, and thus graft pancreatitis, remains a major problem in pancreas transplantation. Contradictory results about the role of nitric oxide (NO) in pancreatic ischemia/reperfusion have been reported; however, in none of the reports has a detailed comparison between inhibition of NO synthase and NO supplementation been carried out. METHODS Vascular isolation of the pancreatic tail was performed in landrace pigs. After splenectomy catheters placed in the distal part of the splenic vessels allowed collection of the venous effluent and perfusion of the pancreatic tail. Three hours of complete warm ischemia was followed by 6 h of reperfusion. The effect of the NO donor sodium nitroprusside (SNP) and L-arginine was compared to a control group and NO synthase inhibition with L-NAME. RESULTS Lipase in the venous effluent of the pancreas was significantly decreased in the SNP and the L-arginine groups. Vascular resistance was markedly elevated in the L-NAME group and reduced in the NO donor groups. Tissue pO2 after reperfusion was only significantly elevated in the SNP group. Granulocyte infiltration and also overall histological tissue injury were most severe in the control group followed by the L-NAME group, the SNP group, and the L-ARG group. CONCLUSION The data show that supplementation of nitric oxide is clearly protective in pancreatic ischemia/reperfusion. However, inhibition of NO synthesis does not lead to an equally clear aggravation of tissue injury.
Collapse
Affiliation(s)
- S Benz
- Department of Surgery, University of Freiburg, 79111 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Anderson MF, Sims NR. The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions. J Neurochem 2002; 81:541-9. [PMID: 12065662 DOI: 10.1046/j.1471-4159.2002.00836.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutathione is a key cellular antioxidant that is contained in both cytoplasmic and mitochondrial compartments. Previous investigations indicate that depletion of the mitochondrial pool of glutathione can greatly reduce cell viability. In the present investigation, the effect of focal cerebral ischemia on total (reduced plus oxidized) glutathione in mitochondria was assessed using a rat model of middle cerebral artery occlusion. Total glutathione was substantially decreased in mitochondria prepared from severely ischemic focal tissue in both the cerebral cortex and striatum at 2 h of vessel occlusion and persisted for at least the first 3 h of reperfusion. The loss of mitochondrial glutathione was not associated with decreases of the total tissue glutathione content and was not due to the formation of mixed disulfides with mitochondrial proteins. Thus, an imbalance between uptake and release from the mitochondria in the ischemic tissue provides the most likely explanation for the loss. Decreases in glutathione also developed in mitochondria from the moderately ischemic perifocal tissue when the period of arterial occlusion was extended to 3 h. The presence of mitochondrial glutathione depletion during ischemia showed an apparent close association with the subsequent development of tissue infarction. These findings are consistent with a role for the glutathione depletion in determining the susceptibility of brain tissue to focal ischemia.
Collapse
Affiliation(s)
- Michelle F Anderson
- Centre for Neuroscience, Flinders Medical Research Institute and Department of Medical Biochemistry, School of Medicine, Flinders University, Adelaide, South Australia
| | | |
Collapse
|
16
|
Anderson RE, Meyer FB. Is intracellular brain pH a dependent factor in NOS inhibition during focal cerebral ischemia? Brain Res 2000; 856:220-6. [PMID: 10677629 DOI: 10.1016/s0006-8993(99)02435-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interaction between nitric oxide (NO.) and focal cerebral ischemia is multifaceted. Experiments have shown that inhibition of nitric oxide synthase (NOS) either ameliorates or exacerbates focal cerebral ischemia. Recent in vitro experiments have shown that NOS activity is pH-dependent. Previous work from this laboratory has demonstrated that N(G)-nitro-L-arginine-methyl-ester (L-NAME) mitigated cerebral ischemia independent from regional cerebral blood flow (rCBF) changes during moderate focal cerebral ischemia. This study examined the effects of L-NAME inhibition on brain pH(i), rCBF, and NADH redox state during 3 h of severe focal cerebral ischemia. Fifteen fasted rabbits under 1.5% halothane were equally divided into three groups: ischemic controls and two drug groups receiving either 1.0 or 10 mg/kg L-NAME intravenously 30 min prior to ischemia. In the ischemic controls, brain pH(i) declined from 6.95+/-0.04 to 6.60+/-0.05, rCBF declined from 48+/-7 to 10+/-3 ml/100 g/min, and NADH fluorescence increased by 149+/-15% 3 h after onset of ischemia (p<0.01 for all three parameters). L-NAME at either dose did not significantly alter these values. Infarct volume was not significantly different between both the L-NAME treated groups and the ischemic control group. This data suggests that during severe focal cerebral ischemia, NO. mechanisms of injury have a less important punitive role. One possible explanation is that the severity of acidosis secondary to anaerobic metabolism during severe focal cerebral ischemia attenuates NOS activity.
Collapse
Affiliation(s)
- R E Anderson
- Thoralf M. Sundt Jr., M.D. Neurosurgical Research Laboratory, Mayo Clinic and Mayo Graduate School of Medicine, Rochester, MN, USA.
| | | |
Collapse
|
17
|
Panahian N, Huang T, Maines MD. Enhanced neuronal expression of the oxidoreductase--biliverdin reductase--after permanent focal cerebral ischemia. Brain Res 1999; 850:1-13. [PMID: 10629743 DOI: 10.1016/s0006-8993(99)01726-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This is the first report on increased neuronal levels of biliverdin reductase (BVR) in response to ischemic brain injury. BVR is an oxidoreductase, and is unique among all enzymes characterized to date in having dual pH/dual cofactor requirements--NADH and NADPH at 6.7 and 8.7, respectively. BVR catalyses the final step in the heme metabolic pathway and reduces the heme degradation product, biliverdin, to bilirubin. Bilirubin can be both a neurotoxicant and an antioxidant depending on its ratio to protein and concentration. Bilirubin also has immunomodulatory activity. Other biologically active heme degradation products are iron and CO. This study assessed time-dependent changes in the level of BVR, following permanent middle cerebral artery occlusion (MCAo). It also examined correlation of the change in BVR expression with display of indices of ischemic tissue injury. Under halothane anesthesia and normothermic conditions, 72 DNX inbred mice were subjected to MCAo. A time-dependent enlargement of an ischemic lesion over the course of 24 h was observed and measured 55 +/- 5 mm3 at 6 h, 63 +/- 6.7 mm3 at 12 h, and 73 +/- 5 mm3 at 24 h. Six hours after MCAo, increased immunoreactivity for BVR was noted in neurons in the peri-ischemic areas, intraischemic cortical layers 3 and 5, as well as in neurons in regions distant from the borders of vascular distribution of the MCA, such as those in substantia nigra, in the Purkinje layer of the cerebellum and in the central nucleus of inferior colliculus. Twenty-four hours after MCAo, immunoreactivity for BVR remained increased in the peri-ischemia areas. At all time points staining for BVR was decreased in the ischemic core. At the 24 h time point there was an increase in Fe staining in the perimeter of the lesion and an increase in Schiff's staining for lipid peroxidation at the rim of the lesion. In situ hybridization analysis demonstrated a time dependent increase in BVR mRNA labeling in neurons of the peri-ischemic area. In the ischemic hemisphere, when compared with the contralateral hemisphere, neither measurable decreases in BVR mRNA or total protein levels nor a decrease in NADH-dependent BVR activity at pH 6.7 were observed. As judged by Northern and Western blots and activity analysis, despite the apparent loss of BVR from the ischemic core, and its increase in the peri-ischemic region, when compared with the contralateral hemisphere, the overall capacity of the ischemic hemisphere to catalyze the reduction of biliverdin was unchanged throughout the experiment. Should, in the case of ischemia, the conditions favor the antioxidant activity of bilirubin, then we suggest that increase in BVR expression in ischemic penumbra may present a cellular defense mechanism against free radical-mediated neuronal damage. Furthermore, we interpret the apparent tightly regulated expression of BVR in the ischemic hemisphere as an important factor in protection against bilirubin neurotoxicity. Data suggest that pharmacological modulation of BVR expression is a possible new direction for protecting neurons against ischemic injury and oxidative stress.
Collapse
Affiliation(s)
- N Panahian
- Department of Biochemistry, University of Rochester School of Medicine, NY 14642, USA
| | | | | |
Collapse
|
18
|
Abstract
This review is directed at understanding how neuronal death occurs in two distinct insults, global ischemia and focal ischemia. These are the two principal rodent models for human disease. Cell death occurs by a necrotic pathway characterized by either ischemic/homogenizing cell change or edematous cell change. Death also occurs via an apoptotic-like pathway that is characterized, minimally, by DNA laddering and a dependence on caspase activity and, optimally, by those properties, additional characteristic protein and phospholipid changes, and morphological attributes of apoptosis. Death may also occur by autophagocytosis. The cell death process has four major stages. The first, the induction stage, includes several changes initiated by ischemia and reperfusion that are very likely to play major roles in cell death. These include inhibition (and subsequent reactivation) of electron transport, decreased ATP, decreased pH, increased cell Ca(2+), release of glutamate, increased arachidonic acid, and also gene activation leading to cytokine synthesis, synthesis of enzymes involved in free radical production, and accumulation of leukocytes. These changes lead to the activation of five damaging events, termed perpetrators. These are the damaging actions of free radicals and their product peroxynitrite, the actions of the Ca(2+)-dependent protease calpain, the activity of phospholipases, the activity of poly-ADPribose polymerase (PARP), and the activation of the apoptotic pathway. The second stage of cell death involves the long-term changes in macromolecules or key metabolites that are caused by the perpetrators. The third stage of cell death involves long-term damaging effects of these macromolecular and metabolite changes, and of some of the induction processes, on critical cell functions and structures that lead to the defined end stages of cell damage. These targeted functions and structures include the plasmalemma, the mitochondria, the cytoskeleton, protein synthesis, and kinase activities. The fourth stage is the progression to the morphological and biochemical end stages of cell death. Of these four stages, the last two are the least well understood. Quite little is known of how the perpetrators affect the structures and functions and whether and how each of these changes contribute to cell death. According to this description, the key step in ischemic cell death is adequate activation of the perpetrators, and thus a major unifying thread of the review is a consideration of how the changes occurring during and after ischemia, including gene activation and synthesis of new proteins, conspire to produce damaging levels of free radicals and peroxynitrite, to activate calpain and other Ca(2+)-driven processes that are damaging, and to initiate the apoptotic process. Although it is not fully established for all cases, the major driving force for the necrotic cell death process, and very possibly the other processes, appears to be the generation of free radicals and peroxynitrite. Effects of a large number of damaging changes can be explained on the basis of their ability to generate free radicals in early or late stages of damage. Several important issues are defined for future study. These include determining the triggers for apoptosis and autophagocytosis and establishing greater confidence in most of the cellular changes that are hypothesized to be involved in cell death. A very important outstanding issue is identifying the critical functional and structural changes caused by the perpetrators of cell death. These changes are responsible for cell death, and their identity and mechanisms of action are almost completely unknown.
Collapse
Affiliation(s)
- P Lipton
- Department of Physiology, University of Wisconsin School of Medicine, Madison, Wisconsin, USA
| |
Collapse
|
19
|
Bolaños JP, Almeida A. Roles of nitric oxide in brain hypoxia-ischemia. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:415-36. [PMID: 10320673 DOI: 10.1016/s0005-2728(99)00030-4] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A large body of evidence has appeared over the last 6 years suggesting that nitric oxide biosynthesis is a key factor in the pathophysiological response of the brain to hypoxia-ischemia. Whilst studies on the influence of nitric oxide in this phenomenon initially offered conflicting conclusions, the use of better biochemical tools, such as selective inhibition of nitric oxide synthase (NOS) isoforms or transgenic animals, is progressively clarifying the precise role of nitric oxide in brain ischemia. Brain ischemia triggers a cascade of events, possibly mediated by excitatory amino acids, yielding the activation of the Ca2+-dependent NOS isoforms, i.e. neuronal NOS (nNOS) and endothelial NOS (eNOS). However, whereas the selective inhibition of nNOS is neuroprotective, selective inhibition of eNOS is neurotoxic. Furthermore, mainly in glial cells, delayed ischemia or reperfusion after an ischemic episode induces the expression of Ca2+-independent inducible NOS (iNOS), and its selective inhibition is neuroprotective. In conclusion, it appears that activation of nNOS or induction of iNOS mediates ischemic brain damage, possibly by mitochondrial dysfunction and energy depletion. However, there is a simultaneous compensatory response through eNOS activation within the endothelium of blood vessels, which mediates vasodilation and hence increases blood flow to the damaged brain area.
Collapse
Affiliation(s)
- J P Bolaños
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Edificio Departamental, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | | |
Collapse
|
20
|
Anderson RE, Tan WK, Martin HS, Meyer FB. Effects of glucose and PaO2 modulation on cortical intracellular acidosis, NADH redox state, and infarction in the ischemic penumbra. Stroke 1999; 30:160-70. [PMID: 9880405 DOI: 10.1161/01.str.30.1.160] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE During focal cerebral ischemia, the ischemic penumbra or border-zone regions of moderate cortical blood flow reductions have a heterogeneous development of intracellular cortical acidosis. This experiment tested the hypotheses that (1) this acidosis is secondary to glucose utilization and (2) this intracellular acidosis leads to recruitment of potentially salvageable tissue into infarction. METHODS Brain pHi, regional cortical blood flow, and NADH redox state were measured by in vivo fluorescent imaging, and infarct volume was assessed by triphenyltetrazolium chloride histology. Thirty fasted rabbits divided into 6 groups of 5 each were subjected to 4 hours of permanent focal ischemia in the presence of hypoglycemia ( approximately 2.8 mmol/L), moderate hyperglycemia ( approximately 11 mmol/L), and severe hyperglycemia (>28 mmol/L) under either normoxia or moderate hypoxia (PaO2 approximately 50 mm Hg). RESULTS Preischemic hyperglycemia led to a more pronounced intracellular acidosis and retardation of NADH regeneration than in the hypoglycemia groups under both normoxia and moderate hypoxia in the ischemic penumbra. For example, 4 hours after ischemia, brain pHi in the severe hyperglycemia/normoxia group measured 6.46, compared with 6.84 in the hypoglycemia/normoxia group (P<0.01), and NADH fluorescence measured 173% compared with 114%. Infarct volume in the severe hyperglycemia/normoxia group measured 35.1+/-6.9% of total hemispheric volume, compared with 13.5+/-4.2% in the hypoglycemia/normoxia group (P<0.01). CONCLUSIONS Hyperglycemia significantly worsened both cortical intracellular brain acidosis and mitochondrial function in the ischemic penumbra. This supports the hypothesis that the evolution of acidosis in the ischemic penumbra is related to glucose utilization. Furthermore, the observation that hypoglycemia significantly decreased infarct size supports the postulate that cortical acidosis leads to recruitment of ischemic penumbra into infarction.
Collapse
Affiliation(s)
- R E Anderson
- Thoralf M. Sundt, Jr, Neurosurgical Research Laboratory, Mayo Clinic and Mayo Graduate School of Medicine, Rochester, Minn 55905, USA.
| | | | | | | |
Collapse
|
21
|
Benz S, Schnabel R, Weber H, Pfeffer F, Wiesner R, von Breitenbuch P, Nizze H, Schareck W, Hopt UT. The nitric oxide donor sodium nitroprusside is protective in ischemia/reperfusion injury of the pancreas. Transplantation 1998; 66:994-9. [PMID: 9808481 DOI: 10.1097/00007890-199810270-00005] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND The role of nitric oxide in the ischemia/reperfusion injury of the pancreas is still unclear. In other organs, protective as well as aggravating effects have been described. We have, therefore, investigated the effect of the nitric oxide donor sodium nitroprusside on pancreatic ischemia/reperfusion injury. METHODS In Landrace pigs, after transsection of the pancreas, complete vascular isolation of the pancreatic tail was performed. The tail was subjected to 3 hr of warm ischemia and thereafter reperfusion (6 hr). The animals were divided into a control group (n=7) and a treatment group (n=7) that received 15 mg of sodium nitroprusside after reperfusion intra-arterially into the splenic artery. RESULTS The morphological tissue damage and lipase activity in the venous effluent of the pancreas were significantly lower in the treatment group. Partial oxygen tension in the tissue after reperfusion was markedly reduced in the control group, indicating an impairment of microcirculation. In the treatment group, however, partial oxygen tension in the tissue was significantly higher (43 vs. 20 mmHg; P<0.014). Furthermore, total blood flow through the pancreatic tail in the treatment group was found to be significantly higher in the late reperfusion period (14 vs. 9.5 ml/min at 5 hr after reperfusion; P<0.05). CONCLUSION There is a marked impairment of pancreatic microcirculation after reperfusion. Sodium nitroprusside counteracts this impairment and has a protective effect on ischemia/reperfusion injury of the pancreas.
Collapse
Affiliation(s)
- S Benz
- Department of Surgery, University of Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wei J, Quast MJ. Effect of nitric oxide synthase inhibitor on a hyperglycemic rat model of reversible focal ischemia: detection of excitatory amino acids release and hydroxyl radical formation. Brain Res 1998; 791:146-56. [PMID: 9593867 DOI: 10.1016/s0006-8993(98)00089-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to investigate the mechanisms by which a nitric oxide synthase (NOS) inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), is neuroprotective in the hyperglycemic rat model of 2 h of transient middle cerebral artery occlusion followed by 2 h of reperfusion (MCAO/R). The salicylate trapping method was used in conjunction with a microdialysis technique to continuously estimate hydroxyl radical (.OH) formation by measurement of the stable adducts 2,3- and 2,5-dihydroxybenzoic acid (DHBA). Extracellular excitatory amino acids (EAAs) were detected from the same microdialysis samples. Magnetic resonance imaging (MRI) techniques were used to measure neuronal and cerebrovascular injury. The magnitude of EAA release correlated with the levels of the .OH adducts. Treatment with L-NAME (3 mg/kg, i.p.) 1 min before MCAO, and again 1 min before reperfusion, reduced the levels of DHBA by 46. 4% and glutamate by 50.5% in the hyperglycemic rats compared to untreated hyperglycemic controls. MRI indicated that L-NAME reduced the no-reflow zone and the cytotoxic lesion volume to 22.5% and 21. 0%, respectively, that of hyperglycemic controls. Co-treatment with the nitric oxide (NO) donor L-arginine completely eliminated the protective effects of l-NAME with respect to .OH and EAA levels as well as MRI lesion volume. Our data suggest that hyperglycemic MCAO/R results in excessive glutamate excitotoxicity, leading to enhanced generation of .OH via a NO-mediated mechanism, in turn resulting in severe ischemia/reperfusion brain injury.
Collapse
Affiliation(s)
- J Wei
- Marine Biomedical Institute, University of Texas Medical Branch, Galveston, TX 77555-1143, USA
| | | |
Collapse
|