1
|
Auvity S, Vodovar D, Goutal S, Cisternino S, Chevillard L, Soyer A, Bottlaender M, Caillé F, Mégarbane B, Tournier N. Brain PET imaging using 11C-flumazenil and 11C-buprenorphine does not support the hypothesis of a mutual interaction between buprenorphine and benzodiazepines at the neuroreceptor level. J Cereb Blood Flow Metab 2024; 44:449-458. [PMID: 38097513 PMCID: PMC10870960 DOI: 10.1177/0271678x231221040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 02/16/2024]
Abstract
Among opioids, buprenorphine presents a favorable safety profile with a limited risk of respiratory depression. However, fatalities have been reported when buprenorphine is combined to a benzodiazepine. Potentiation of buprenorphine interaction with opioid receptors (ORs) with benzodiazepines, and/or vice versa, is hypothesized to explain this drug-drug interaction (DDI). The mutual DDI between buprenorphine and benzodiazepines was investigated at the neuroreceptor level in nonhuman primates (n = 4 individuals) using brain PET imaging and kinetic modelling. The binding potential (BPND) of benzodiazepine receptor (BzR) was assessed using 11C-flumazenil PET imaging before and after administration of buprenorphine (0.2 mg, i.v.). Moreover, the brain kinetics and receptor binding of buprenorphine were investigated in the same individuals using 11C-buprenorphine PET imaging before and after administration of diazepam (10 mg, i.v.). Outcome parameters were compared using a two-way ANOVA. Buprenorphine did not impact the plasma nor brain kinetics of 11C-flumazenil. 11C-flumazenil BPND was unchanged following buprenorphine exposure, in any brain region (p > 0.05). Similarly, diazepam did not impact the plasma or brain kinetics of 11C-buprenorphine. 11C-buprenorphine volume of distribution (VT) was unchanged following diazepam exposure, in any brain region (p > 0.05). To conclude, our PET imaging findings do not support a neuropharmacokinetic or neuroreceptor-related mechanism of the buprenorphine/benzodiazepine interaction.
Collapse
Affiliation(s)
- Sylvain Auvity
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Dominique Vodovar
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
- Réanimation Médicale et Toxicologique, Hôpital Lariboisière, Fédération de Toxicologie (APHP), 75010, Paris
| | - Sébastien Goutal
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Salvatore Cisternino
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Lucie Chevillard
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Amélie Soyer
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Michel Bottlaender
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Bruno Mégarbane
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
- Réanimation Médicale et Toxicologique, Hôpital Lariboisière, Fédération de Toxicologie (APHP), 75010, Paris
| | - Nicolas Tournier
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| |
Collapse
|
2
|
Kujala J, Ciumas C, Jung J, Bouvard S, Lecaignard F, Lothe A, Bouet R, Ryvlin P, Jerbi K. GABAergic inhibition shapes behavior and neural dynamics in human visual working memory. Cereb Cortex 2024; 34:bhad522. [PMID: 38186005 PMCID: PMC10839845 DOI: 10.1093/cercor/bhad522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Neuronal inhibition, primarily mediated by GABAergic neurotransmission, is crucial for brain development and healthy cognition. Gamma-aminobutyric acid concentration levels in sensory areas have been shown to correlate with hemodynamic and oscillatory neuronal responses. How these measures relate to one another during working memory, a higher-order cognitive process, is still poorly understood. We address this gap by collecting magnetoencephalography, functional magnetic resonance imaging, and Flumazenil positron emission tomography data within the same subject cohort using an n-back working-memory paradigm. By probing the relationship between GABAA receptor distribution, neural oscillations, and Blood Oxygen Level Dependent (BOLD) modulations, we found that GABAA receptor density in higher-order cortical areas predicted the reaction times on the working-memory task and correlated positively with the peak frequency of gamma power modulations and negatively with BOLD amplitude. These findings support and extend theories linking gamma oscillations and hemodynamic responses to gamma-aminobutyric acid neurotransmission and to the excitation-inhibition balance and cognitive performance in humans. Considering the small sample size of the study, future studies should test whether these findings also hold for other, larger cohorts as well as to examine in detail how the GABAergic system and neural fluctuations jointly support working-memory task performance.
Collapse
Affiliation(s)
- Jan Kujala
- Department of Psychology, University of Jyväskylä, PO Box 35, Jyvaskyla FI-40014, Finland
- Lyon Neuroscience Research Center, INSERM U1028 - CNRS UMR5292, Lyon F-69000, France
| | - Carolina Ciumas
- Lyon Neuroscience Research Center, INSERM U1028 - CNRS UMR5292, Lyon F-69000, France
- Institute for Child and Adolescent with Epilepsy (IDEE), Lyon F-69000, France
| | - Julien Jung
- Lyon Neuroscience Research Center, INSERM U1028 - CNRS UMR5292, Lyon F-69000, France
- Department of Epileptology and Functional Neurology, Lyon Neurological Hospital, Lyon F-69000, France
| | - Sandrine Bouvard
- Institute for Child and Adolescent with Epilepsy (IDEE), Lyon F-69000, France
- CERMEP Imaging Center, Bron F-69003, France
| | - Françoise Lecaignard
- Lyon Neuroscience Research Center, INSERM U1028 - CNRS UMR5292, Lyon F-69000, France
- CERMEP Imaging Center, Bron F-69003, France
| | - Amélie Lothe
- Lyon Neuroscience Research Center, INSERM U1028 - CNRS UMR5292, Lyon F-69000, France
| | - Romain Bouet
- Lyon Neuroscience Research Center, INSERM U1028 - CNRS UMR5292, Lyon F-69000, France
| | - Philippe Ryvlin
- Lyon Neuroscience Research Center, INSERM U1028 - CNRS UMR5292, Lyon F-69000, France
- Institute for Child and Adolescent with Epilepsy (IDEE), Lyon F-69000, France
- Department of Clinical Neurosciences, CHUV, Lausanne 1011, Switzerland
| | - Karim Jerbi
- Lyon Neuroscience Research Center, INSERM U1028 - CNRS UMR5292, Lyon F-69000, France
- Department of Psychology, University of Montreal, Montreal, Québec H3C 3J7, Canada
| |
Collapse
|
3
|
Tsartsalis S, Tournier BB, Millet P. In vivo absolute quantification of striatal and extrastriatal D 2/3 receptors with [ 123I]epidepride SPECT. EJNMMI Res 2020; 10:66. [PMID: 32548681 PMCID: PMC7297889 DOI: 10.1186/s13550-020-00650-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023] Open
Abstract
Background [123I]epidepride is a high-affinity radiotracer used in single-photon emission computed tomography (SPECT) imaging of the D2/3 receptors. It binds with high affinity to striatal and extrastriatal receptors. Nevertheless, its slow kinetics in the striatum impedes quantification in this region. Thus, an approach that would allow a simultaneous quantification of both striatal and extrastriatal D2/3 receptors would be of interest for preclinical and clinical SPECT neuroimaging. We describe a partial saturation protocol that allows us to produce an in vivo Scatchard plot and thus estimate Bavail and appKd separately in both striatal and extrastriatal regions, through a single dynamic SPECT session. To validate this approach, a multi-injection protocol is used for the full kinetic modeling of [123I]epidepride using a two-tissue compartment, 5-parameter model (2T-5k). Methods Eighteen male rats were used. Binding parameters were estimated using the multi-injection protocol. Various simulations were performed to estimate the optimal conditions for the partial saturation protocol, which was applied at the region and voxel level. The results of the partial saturation study were compared to those obtained with the 2T-5k model. To illustrate the interest of the partial saturation approach, we performed a preliminary study of the effect of a chronic, subcutaneous administration of haloperidol (1 mg/kg/day), a D2 receptor antagonist, on the Bavail of [123I]epidepride in the rat striatum. Results A series of simulations demonstrated that a mass of 3 ug/kg of unlabeled epidepride allows the formation of an in vivo Scatchard plot. The partial saturation study led to robust estimations of Bavail in all brain regions that highly correlated (r = 0.99) with the corresponding values from the multi-injection study. A chronic haloperidol treatment resulted in a 17.9% increase in the Bavail values in the left Caudate Putamen nucleus (CP) (p = 0.07) and a 13.8% increase in the right CP (p = 0.12). Conclusion A partial saturation method allowed the robust quantification of D2/3 receptors in striatal and extrastriatal D2/3 receptors with a single-scan approach. This approach may be applied in the mapping of the D2/3 receptor in translational biological studies and potentially, in clinical SPECT imaging.
Collapse
Affiliation(s)
- Stergios Tsartsalis
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Chemin du Petit-Bel-Air 2, CH1226, Thônex, Switzerland.,Division of Psychiatric Specialties, Department of Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Benjamin B Tournier
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Chemin du Petit-Bel-Air 2, CH1226, Thônex, Switzerland
| | - Philippe Millet
- Division of Adult Psychiatry, Department of Psychiatry, University Hospitals of Geneva, Chemin du Petit-Bel-Air 2, CH1226, Thônex, Switzerland. .,Department of Psychiatry, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
A single-scan protocol for absolute D2/3 receptor quantification with [123I]IBZM SPECT. Neuroimage 2017; 147:461-472. [DOI: 10.1016/j.neuroimage.2016.12.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/24/2016] [Accepted: 12/18/2016] [Indexed: 11/19/2022] Open
|
5
|
Pike VW. Considerations in the Development of Reversibly Binding PET Radioligands for Brain Imaging. Curr Med Chem 2016; 23:1818-69. [PMID: 27087244 PMCID: PMC5579844 DOI: 10.2174/0929867323666160418114826] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 12/17/2022]
Abstract
The development of reversibly binding radioligands for imaging brain proteins in vivo, such as enzymes, neurotransmitter transporters, receptors and ion channels, with positron emission tomography (PET) is keenly sought for biomedical studies of neuropsychiatric disorders and for drug discovery and development, but is recognized as being highly challenging at the medicinal chemistry level. This article aims to compile and discuss the main considerations to be taken into account by chemists embarking on programs of radioligand development for PET imaging of brain protein targets.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Rm. B3C346A, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
6
|
Kujala J, Jung J, Bouvard S, Lecaignard F, Lothe A, Bouet R, Ciumas C, Ryvlin P, Jerbi K. Gamma oscillations in V1 are correlated with GABA(A) receptor density: A multi-modal MEG and Flumazenil-PET study. Sci Rep 2015; 5:16347. [PMID: 26572733 PMCID: PMC4647220 DOI: 10.1038/srep16347] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/12/2015] [Indexed: 12/02/2022] Open
Abstract
High-frequency oscillations in the gamma-band reflect rhythmic synchronization of spike timing in active neural networks. The modulation of gamma oscillations is a widely established mechanism in a variety of neurobiological processes, yet its neurochemical basis is not fully understood. Modeling, in-vitro and in-vivo animal studies suggest that gamma oscillation properties depend on GABAergic inhibition. In humans, search for evidence linking total GABA concentration to gamma oscillations has led to promising -but also to partly diverging- observations. Here, we provide the first evidence of a direct relationship between the density of GABAA receptors and gamma oscillatory gamma responses in human primary visual cortex (V1). By combining Flumazenil-PET (to measure resting-levels of GABAA receptor density) and MEG (to measure visually-induced gamma oscillations), we found that GABAA receptor densities correlated positively with the frequency and negatively with amplitude of visually-induced gamma oscillations in V1. Our findings demonstrate that gamma-band response profiles of primary visual cortex across healthy individuals are shaped by GABAA-receptor-mediated inhibitory neurotransmission. These results bridge the gap with in-vitro and animal studies and may have future clinical implications given that altered GABAergic function, including dysregulation of GABAA receptors, has been related to psychiatric disorders including schizophrenia and depression.
Collapse
Affiliation(s)
- Jan Kujala
- Department of Neuroscience and Biomedical Engineering, Aalto University, 02150 Espoo, Finland.,Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France
| | - Julien Jung
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France.,Department of Epileptology and Functional Neurology, Lyon Neurological Hospital, F-69000, Lyon, France
| | - Sandrine Bouvard
- CERMEP imaging center, F-69003, Bron, France.,Institute for Child and Adolescent with Epilepsy (IDEE), F-69000, Lyon, France
| | - Françoise Lecaignard
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France.,CERMEP imaging center, F-69003, Bron, France
| | - Amélie Lothe
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France
| | - Romain Bouet
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France
| | - Carolina Ciumas
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France.,Institute for Child and Adolescent with Epilepsy (IDEE), F-69000, Lyon, France
| | - Philippe Ryvlin
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France.,Institute for Child and Adolescent with Epilepsy (IDEE), F-69000, Lyon, France.,Department of Clinical Neurosciences, CHUV, 1011, Lausanne, Switzerland
| | - Karim Jerbi
- Lyon Neuroscience Research Center, INSERM U1028-CNRS UMR5292, F-69000, Lyon, France.,Department of Psychology, University of Montreal, H3C 3J7 Montreal, Québec, Canada
| |
Collapse
|
7
|
Frankle WG, Cho RY, Prasad KM, Mason NS, Paris J, Himes ML, Walker C, Lewis DA, Narendran R. In vivo measurement of GABA transmission in healthy subjects and schizophrenia patients. Am J Psychiatry 2015; 172:1148-59. [PMID: 26133962 PMCID: PMC5070491 DOI: 10.1176/appi.ajp.2015.14081031] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Postmortem studies in schizophrenia reveal alterations in gene products that regulate the release and extracellular persistence of GABA. However, results of in vivo studies of schizophrenia measuring total tissue GABA with magnetic resonance spectroscopy (MRS) have been inconsistent. Neither the postmortem nor the MRS studies directly address the physiological properties of GABA neurotransmission. The present study addresses this question through an innovative positron emission tomography (PET) paradigm. METHOD The binding of [(11)C]flumazenil, a benzodiazepine-specific PET radiotracer, was measured before and after administration of tiagabine (0.2 mg/kg of body weight), a GABA membrane transporter (GAT1) blocker, in 17 off-medication patients with schizophrenia and 22 healthy comparison subjects. Increased extracellular GABA, through GAT1 blockade, enhances the affinity of GABAA receptors for benzodiazepine ligands, detected as an increase in [(11)C]flumazenil tissue distribution volume (VT). RESULTS [(11)C]Flumazenil VT was significantly increased across all cortical brain regions in the healthy comparison group but not in the schizophrenia group. This lack of effect was most prominent in the antipsychotic-naive schizophrenia group. In this subgroup, [(11)C]flumazenil ΔVT in the medial temporal lobe was correlated with positive symptoms, and baseline [(11)C]flumazenil VT in the medial temporal lobe was negatively correlated with visual learning. In the healthy comparison group but not the schizophrenia group, [(11)C]flumazenil ΔVT was positively associated with gamma-band oscillation power. CONCLUSIONS This study demonstrates, for the first time, an in vivo impairment in GABA transmission in schizophrenia, most prominent in antipsychotic-naive individuals. The impairment in GABA transmission appears to be linked to clinical symptoms, disturbances in cortical oscillations, and cognition.
Collapse
|
8
|
Freeman L, Garcia-Lorenzo D, Bottin L, Leroy C, Louapre C, Bodini B, Papeix C, Assouad R, Granger B, Tourbah A, Dollé F, Lubetzki C, Bottlaender M, Stankoff B. The neuronal component of gray matter damage in multiple sclerosis: A [(11) C]flumazenil positron emission tomography study. Ann Neurol 2015; 78:554-67. [PMID: 26292991 DOI: 10.1002/ana.24468] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 06/27/2015] [Accepted: 06/29/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Using positron emission tomography (PET) with [(11) C]flumazenil ([(11) C]FMZ), an antagonist of the central benzodiazepine site located within the GABAA receptor, we quantified and mapped neuronal damage in the gray matter (GM) of patients with multiple sclerosis (MS) at distinct disease stages. We investigated the relationship between neuronal damage and white matter (WM) lesions and evaluated the clinical relevance of this neuronal PET metric. METHODS A cohort of 18 MS patients (9 progressive and 9 relapsing-remitting) was compared to healthy controls and underwent neurological and cognitive evaluations, high-resolution dynamic [(11) C]FMZ PET imaging and brain magnetic resonance imaging. [(11) C]FMZ binding was estimated using the partial saturation protocol providing voxel-wise absolute quantification of GABAA receptor concentration. PET data were evaluated using a region of interest (ROI) approach as well as on a vertex-by-vertex basis. RESULTS [(11) C]FMZ binding was significantly decreased in the cortical GM of MS patients, compared to controls (-10%). Cortical mapping of benzodiazepine receptor concentration ([(11) C]FMZ Bmax) revealed significant intergroup differences in the bilateral parietal cortices and right frontal areas. ROI analyses taking into account GM volume changes showed extensive decrease in [(11) C]FMZ binding in bilateral parietal, cingulate, and insular cortices as well as in the thalami, amygdalae, and hippocampi. These changes were significant in both progressive and relapsing-remitting forms of the disease and correlated with WM T2-weighted lesion load. [(11) C]FMZ cortical binding correlated with cognitive performance. INTERPRETATION This pilot study showed that PET with [(11) C]FMZ could be a promising and sensitive quantitative marker to assess and map the neuronal substrate of GM pathology in MS.
Collapse
Affiliation(s)
- Léorah Freeman
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France.,Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX
| | - Daniel Garcia-Lorenzo
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,Institut des Neurosciences translationnelles de Paris (IHU-A-ICM), Paris, France
| | - Laure Bottin
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| | - Claire Leroy
- Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| | - Céline Louapre
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France
| | - Benedetta Bodini
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| | - Caroline Papeix
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France
| | - Rana Assouad
- AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France
| | - Benjamin Granger
- AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France
| | - Ayman Tourbah
- Centre Hospitalo-Universitaire de Reims, Université Champagne Ardennes, Reims, France
| | - Frédéric Dollé
- Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| | - Catherine Lubetzki
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France.,Institut des Neurosciences translationnelles de Paris (IHU-A-ICM), Paris, France
| | | | - Bruno Stankoff
- Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, and CNRS UMR 7225, and ICM, Paris, France.,AP-HP, Hopital Saint-Antoine and Hopital Pitié Salpêtrière, Paris, France.,Service Hospitalier Frederic Joliot, DSV, CEA, Orsay, France
| |
Collapse
|
9
|
|
10
|
In vivo quantification of monoamine oxidase A in baboon brain: a PET study using [(11)C]befloxatone and the multi-injection approach. J Cereb Blood Flow Metab 2010; 30:792-800. [PMID: 19920845 PMCID: PMC2949159 DOI: 10.1038/jcbfm.2009.242] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
[(11)C]befloxatone is a high-affinity, reversible, and selective radioligand for the in vivo visualization of the monoamine oxidase A (MAO-A) binding sites using positron emission tomography (PET). The multi-injection approach was used to study in baboons the interactions between the MAO-A binding sites and [(11)C]befloxatone. The model included four compartments and seven parameters. The arterial plasma concentration, corrected for metabolites, was used as input function. The experimental protocol-three injections of labeled and/or unlabeled befloxatone-allowed the evaluation of all the model parameters from a single PET experiment. In particular, the brain regional concentrations of the MAO-A binding sites (B'(max)) and the apparent in vivo befloxatone affinity (K(d)) were estimated in vivo for the first time. A high binding site density was found in almost all the brain structures (170+/-39 and 194+/-26 pmol/mL in the frontal cortex and striata, respectively, n=5). The cerebellum presented the lowest binding site density (66+/-13 pmol/mL). Apparent affinity was found to be similar in all structures (K(d)V(R)=6.4+/-1.5 nmol/L). This study is the first PET-based estimation of the B(max) of an enzyme.
Collapse
|
11
|
Identification et quantification d’une neurodégénérescence précoce au cours de la sclérose en plaques avec la tomographie à émission de positons au [11C]-Flumazenil. Rev Neurol (Paris) 2010. [DOI: 10.1016/s0035-3787(10)70015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Hammers A, Panagoda P, Heckemann RA, Kelsch W, Turkheimer FE, Brooks DJ, Duncan JS, Koepp MJ. [11C]Flumazenil PET in temporal lobe epilepsy: do we need an arterial input function or kinetic modeling? J Cereb Blood Flow Metab 2008; 28:207-16. [PMID: 17579659 DOI: 10.1038/sj.jcbfm.9600515] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reduced signal on [(11)C]]flumazenil (FMZ) positron emission tomography (PET) is associated with epileptogenic foci. Linear correlations within individuals between parametric and nonparametric images of FMZ binding have been shown, and various methods have been used, without comparison of diagnostic usefulness. Using hippocampal sclerosis (HS) as a test case, we formally compare the diagnostic yield of parametric images obtained either with a parent tracer arterial plasma input function and spectral analysis (yielding volume-of-distribution (VD) images), or with an image-based input function and the simplified reference tissue model (binding potential images, BP-SRTM) with the diagnostic yield of semiquantitative-integrated (ADD) images from 10 to 20 or 20 to 40 mins (ADD1020 and ADD2040). Dynamic 90-min [(11)C]FMZ PET datasets and arterial plasma input functions were available for 15 patients with medically refractory medial temporal lobe epilepsy (TLE) and histologically verified unilateral HS and for 13 control subjects. SPM2 was used for analysis. ADD1020 and ADD2040 images showed decreased FMZ uptake ipsilateral to the epileptogenic hippocampus in 13/15 cases; 6/13 had bilateral decreases in the ADD1020 analysis and 5/13 in the ADD2040 analysis. BP-SRTM images detected ipsilateral decreases in 12/15 cases, with bilateral decreases in three. In contrast, VD images showed ipsilateral hippocampal decreases in all 15 patients, with bilateral decreases in three patients. Bilateral decreases in the ADD images tended to be more symmetrical and in one case were more marked contralaterally. Full quantification with an image-independent input should ideally be used in the evaluation of FMZ PET; at least in TLE, intrasubject correlations do not predict equivalent clinical usefulness.
Collapse
Affiliation(s)
- Alexander Hammers
- MRC Clinical Sciences Centre and Division of Neuroscience, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bouvard S, Costes N, Bonnefoi F, Lavenne F, Mauguière F, Delforge J, Ryvlin P. Seizure-related short-term plasticity of benzodiazepine receptors in partial epilepsy: a [11C]flumazenil-PET study. Brain 2005; 128:1330-43. [PMID: 15758035 DOI: 10.1093/brain/awh470] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have undertaken a test-re-test [11C]flumazenil (FMZ) PET study in 10 drug-resistant epileptic patients, including six with a mesiotemporal epilepsy (MTE), and 10 normal controls, in order to investigate seizure-related short-term plasticity of benzodiazepine (BZD) receptors. All subjects underwent two FMZ-PET scans at a 1 week interval. Patients benefited from a concurrent video-EEG monitoring which allowed determination of the duration of the interictal period (IP) preceding each PET. Test-re-test whole brain B'(max) variations, evaluated with a partial-saturation injection protocol, were similarly observed in patients and controls, suggesting a physiological modulation of BZD receptors. Five patients (50%), but no controls, also demonstrated clinically significant test-re-test FMZ-PET variations in the mesial temporal region. This was observed in all three patients with MTE and no hippocampal atrophy in whom only the PET study associated with the shortest IP correctly identified the epileptogenic zone. Statistical analysis revealed a significant effect of IP duration on BZD receptor B'(max) in MTE patients, suggesting that the shorter the IP, the lower the B'(max) in the epileptogenic hippocampus. FMZ-PET appears to be an interesting tool for investigating both normal and abnormal short-term modulations of the BZD receptor system, and should ideally be performed within a few days following a seizure in patients with MTE and a normal MRI.
Collapse
Affiliation(s)
- Sandrine Bouvard
- EA1880, Federal Institute of Neurosciences, Neurological Hospital, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Zhou Y, Endres CJ, Brasić JR, Huang SC, Wong DF. Linear regression with spatial constraint to generate parametric images of ligand-receptor dynamic PET studies with a simplified reference tissue model. Neuroimage 2003; 18:975-89. [PMID: 12725772 DOI: 10.1016/s1053-8119(03)00017-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
For the quantitative analysis of ligand-receptor dynamic positron emission tomography (PET) studies, it is often desirable to apply reference tissue methods that eliminate the need for arterial blood sampling. A common technique is to apply a simplified reference tissue model (SRTM). Applications of this method are generally based on an analytical solution of the SRTM equation with parameters estimated by nonlinear regression. In this study, we derive, based on the same assumptions used to derive the SRTM, a new set of operational equations of integral form with parameters directly estimated by conventional weighted linear regression (WLR). In addition, a linear regression with spatial constraint (LRSC) algorithm is developed for parametric imaging to reduce the effects of high noise levels in pixel time activity curves that are typical of PET dynamic data. For comparison, conventional weighted nonlinear regression with the Marquardt algorithm (WNLRM) and nonlinear ridge regression with spatial constraint (NLRRSC) were also implemented using the nonlinear analytical solution of the SRTM equation. In contrast to the other three methods, LRSC reduces the percent root mean square error of the estimated parameters, especially at higher noise levels. For estimation of binding potential (BP), WLR and LRSC show similar variance even at high noise levels, but LRSC yields a smaller bias. Results from human studies demonstrate that LRSC produces high-quality parametric images. The variance of R(1) and k(2) images generated by WLR, WNLRM, and NLRRSC can be decreased 30%-60% by using LRSC. The quality of the BP images generated by WLR and LRSC is visually comparable, and the variance of BP images generated by WNLRM can be reduced 10%-40% by WLR or LRSC. The BP estimates obtained using WLR are 3%-5% lower than those estimated by LRSC. We conclude that the new linear equations yield a reliable, computationally efficient, and robust LRSC algorithm to generate parametric images of ligand-receptor dynamic PET studies.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | |
Collapse
|
15
|
Delforge J, Bottlaender M, Pappata S, Loc'h C, Syrota A. Absolute quantification by positron emission tomography of the endogenous ligand. J Cereb Blood Flow Metab 2001; 21:613-30. [PMID: 11333372 DOI: 10.1097/00004647-200105000-00016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The results of several recent papers have shown a significant influence of the endogenous neurotransmitters on the exogenous ligand kinetics measured by positron emission tomography. For example, several groups found that the percentage of D2 receptor sites occupied by the endogenous dopamine ranged from 25% to 40% at basal level. An obvious consequence of this significant occupancy is that the ligand-receptor model parameters, usually estimated by a model that does not take into account the endogenous ligand (EL) kinetics, can be significantly biased. In the current work, the authors studied the biases obtained by using the multiinjection approach. The results showed that in the classical ligand-receptor model, the receptor concentration is correctly estimated and that only the apparent affinity is biased by not taking the EL into account. At present, all absolute quantifications of the EL have been obtained through pharmacologic manipulation of the endogenous transmitter concentration, which is often too invasive a method to be used in patients. A theoretical reasoning showed that a noninvasive approach is necessarily based on both the apparent affinity measurement and on a multiregion approach. The correlation between the receptor concentration and the apparent affinity, previously observed with some ligands, verifies these two conditions; thus, the authors suggest that this correlation could be the result of the EL effect. To test this assumption experimentally, the effect of reserpine-induced dopamine depletion on the interactions between the D2 receptor sites and the FLB 457 is studied. With untreated baboons, the apparent FLB 457 affinity was smaller in the receptor-rich regions (striatum) than in the receptor-poor regions. This discrepancy disappeared after dopamine depletion, strongly suggesting that this affinity difference was related to the EL effect. Therefore, the purpose of the current study was to test the ability to quantify the EL based on the observed correlation between the receptor concentration and the apparent affinity. This approach offers a method for estimating the percentage of receptor sites occupied by the EL and, if its affinity is known, the free EL concentration. From the data obtained using FLB 457 with baboons, the authors found that approximately 53% of the D2 receptor sites are occupied by dopamine in the striatum and that the free dopamine concentration is approximately 120 nmol/L at basal level. This approach is transferable to patients, because the experimental data are obtained without pharmacologically induced modification of the EL.
Collapse
Affiliation(s)
- J Delforge
- Service Hospitalier Frédéric Joliot, Commissariat à l'Energie Atomique, Orsay, France
| | | | | | | | | |
Collapse
|
16
|
Levêque P, de Hoffmann E, Labar D, Gallez B. Assessment of [18F]fluoroethylflumazenil metabolites using high-performance liquid chromatography and tandem mass spectrometry. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 754:35-44. [PMID: 11318425 DOI: 10.1016/s0378-4347(00)00578-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A simple procedure using HPLC and tandem mass spectrometry has been developed for the determination of fluoroethylflumazenil metabolites. Samples were precipitated with acetonitrile, evaporated to dryness followed by reconstitution with methanol. As mobile phase, 50 mM ammonium formate-methanol (58:42, v/v) was used. The method is valid both for cold and radiolabelled metabolites. Various cold metabolites (hydroxylated and/or dealkylated) were identified in rat and human microsome preparations. Radiolabelled metabolites arise from two or more transformations including hydroxylation. The methodology developed can be applied for further characterisation of metabolites, and for the determination of non metabolised [18F]fluoroethylflumazenil in routine clinical analysis.
Collapse
Affiliation(s)
- P Levêque
- Unité de Chimie Pharmaceutique et de Radiopharmacie, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
17
|
Chugani DC, Muzik O, Juhász C, Janisse JJ, Ager J, Chugani HT. Postnatal maturation of human GABAAreceptors measured with positron emission tomography. Ann Neurol 2001. [DOI: 10.1002/ana.1003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
K�nig G, Leenders KL, Sanchez-Pernaute R, Antonini A, Vontobel P, Verhagen A, G�nther I. Benzodiazepine receptor binding in Huntington's disease: [11C]Flumazenil uptake measured using positron emission tomography. Ann Neurol 2001. [DOI: 10.1002/1531-8249(200005)47:5<644::aid-ana13>3.0.co;2-c] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Millet P, Ibáñez V, Delforge J, Pappata S, Guimón J. Wavelet analysis of dynamic PET data: application to the parametric imaging of benzodiazepine receptor concentration. Neuroimage 2000; 11:458-72. [PMID: 10806032 DOI: 10.1006/nimg.2000.0563] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Receptor density and ligand affinity can be assessed using positron emission tomography (PET). Biological parameters (B(max)('), k(1), k(2), k(on)/V(R), k(off)) are estimated using a compartmental model and a multi-injection protocol. Parametric imaging of the ligand-receptor model has been shown to be of special interest to study certain brain disorders. However, the low signal-to-noise ratio in kinetic curves at the pixel level hampers an adequate estimation of model parameters during the optimization procedure. For this reason, mapping requires a spatial filter, resulting in a loss of resolution. Filtering the kinetic curves in the frequency domain using the Fourier transform is not appropriate, because of difficulties in choosing a correct and efficient cutoff frequency. A wavelet-based filter is more appropriate to such tracer kinetics. The purpose of this study is to build up parametric images at the pixel level while conserving the original spatial resolution, using wavelet-based filtering. Data from [(11)C]flumazenil studies, mapping the benzodiazepine receptor density, were used. An invertible discrete wavelet transform was used to calculate the time-frequency signals of the time-concentration PET curves on a pixel-by-pixel basis. Kinetic curves observed from large regions of interest in high and low receptor-density regions were used to calibrate the threshold of wavelet coefficients. The shrunken wavelet coefficients were then transformed back to the original domain in order to obtain the filtered PET signal. Maps of all binding parameters were obtained at the pixel level with acceptable coefficients of variation of less than 30% for the B(max)(') parameter in most of the gray matter. A strong correlation between model parameter estimates using the usual regions of interest and parametric imaging was observed for all model parameters (r = 0.949 for the parameter B(max)(')). We conclude that wavelet-based filters are useful for building binding parameter maps without loss of the original spatial resolution of the PET scanner. The use of the wavelet-based filtering method can be extended far beyond the multi-injection protocol. It is likely to be also effective for other dynamic PET studies.
Collapse
Affiliation(s)
- P Millet
- Unité de Neuroimagerie Psychiatrique, Clinique de Psychiatrie, 2, Chemin du Petit-Bel-Air, Chêne-Bourg, Geneva, CH-1225, Switzerland.
| | | | | | | | | |
Collapse
|
20
|
Abbott NJ, Chugani DC, Zaharchuk G, Rosen BR, Lo EH. Delivery of imaging agents into brain. Adv Drug Deliv Rev 1999; 37:253-77. [PMID: 10837739 DOI: 10.1016/s0169-409x(98)00097-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Delivery of diagnostic agents to the central nervous system (CNS) poses several challenges as a result of the special features of CNS blood vessels and tissue fluids. Diffusion barriers exist between blood and neural tissue, in the endothelium of parenchymal vessels (blood-brain barrier, BBB), and in the epithelia of the choroid plexuses and arachnoid membrane (blood-CSF barriers), which severely restrict penetration of several diagnostic imaging agents. The anatomy of large vessels can be imaged using bolus injection of X-ray contrast agents to identify sites of malformation or occlusion, and blood flow measured using MRI and CT, while new techniques permit analysis of capillary perfusion and blood volume. Absolute quantities can be derived, although relative measures in different CNS regions may be as useful in diagnosis. Local blood flow, blood volume, and their ratio (mean transit time) can be measured with high speed tomographic imaging using MRI and CT. Intravascular contrast agents for MRI are based on high magnetic susceptibility agents such as gadolinium, dysprosium and iron. Steady-state imaging using agents that cross the BBB including (123)I- and (99m)Tc-labelled lipophilic agents with SPECT, gives a 'snapshot' of perfusion at the time of injection. Cerebral perfusion can also be measured with PET, using H(2)(15)O, (11)C- or (15)O-butanol, and (18)F-fluoromethane, and cerebral blood volume measured with C(15)O. Recent advances in MRI permit the non-invasive 'labelling' of endogenous water protons in flowing blood, with subsequent detection as a measure of blood flow. Imaging the BBB most commonly involves detecting disruptions of the barrier, allowing contrast agents to leak out of the vascular system. Gd-DTPA is useful in imaging leaky vessels as in some cerebral tumors, while the shortening of T(1) by MR contrast agents can be used to detect more subtle changes in BBB permeability to water as in cerebral ischemia. Techniques for imaging the dynamic activity of the brain parenchyma mainly involve PET, using a variety of radiopharmaceuticals to image glucose transport and metabolism, neurotransmitter binding and uptake, protein synthesis and DNA dynamics. PET methods permit detailed analysis of regional function by comparing resting and task-related images, important in improving understanding of both normal and pathological brain function.
Collapse
Affiliation(s)
- N J Abbott
- Physiology, Biomedical Division, King's College, Strand, London WC2R 2LS, UK.
| | | | | | | | | |
Collapse
|