1
|
Kachaev ZM, Ivashchenko SD, Kozlov EN, Lebedeva LA, Shidlovskii YV. Localization and Functional Roles of Components of the Translation Apparatus in the Eukaryotic Cell Nucleus. Cells 2021; 10:3239. [PMID: 34831461 PMCID: PMC8623629 DOI: 10.3390/cells10113239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/15/2022] Open
Abstract
Components of the translation apparatus, including ribosomal proteins, have been found in cell nuclei in various organisms. Components of the translation apparatus are involved in various nuclear processes, particularly those associated with genome integrity control and the nuclear stages of gene expression, such as transcription, mRNA processing, and mRNA export. Components of the translation apparatus control intranuclear trafficking; the nuclear import and export of RNA and proteins; and regulate the activity, stability, and functional recruitment of nuclear proteins. The nuclear translocation of these components is often involved in the cell response to stimulation and stress, in addition to playing critical roles in oncogenesis and viral infection. Many components of the translation apparatus are moonlighting proteins, involved in integral cell stress response and coupling of gene expression subprocesses. Thus, this phenomenon represents a significant interest for both basic and applied molecular biology. Here, we provide an overview of the current data regarding the molecular functions of translation factors and ribosomal proteins in the cell nucleus.
Collapse
Affiliation(s)
- Zaur M. Kachaev
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Sergey D. Ivashchenko
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Eugene N. Kozlov
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Lyubov A. Lebedeva
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
| | - Yulii V. Shidlovskii
- Department of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia; (Z.M.K.); (S.D.I.); (E.N.K.); (L.A.L.)
- Center for Genetics and Life Science, Sirius University of Science and Technology, 354340 Sochi, Russia
- Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), 119992 Moscow, Russia
| |
Collapse
|
2
|
DeGracia DJ. Regulation of mRNA following brain ischemia and reperfusion. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 8. [PMID: 28097803 DOI: 10.1002/wrna.1415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/11/2016] [Accepted: 12/20/2016] [Indexed: 12/31/2022]
Abstract
There is growing appreciation that mRNA regulation plays important roles in disease and injury. mRNA regulation and ribonomics occur in brain ischemia and reperfusion (I/R) following stroke and cardiac arrest and resuscitation. It was recognized over 40 years ago that translation arrest (TA) accompanies brain I/R and is now recognized as part of the intrinsic stress responses triggered in neurons. However, neuron death correlates to a prolonged TA in cells fated to undergo delayed neuronal death (DND). Dysfunction of mRNA regulatory processes in cells fated to DND prevents them from translating stress-induced mRNAs such as heat shock proteins. The morphological and biochemical studies of mRNA regulation in postischemic neurons are discussed in the context of the large variety of molecular damage induced by ischemic injury. Open issues and areas of future investigation are highlighted. A sober look at the molecular complexity of ischemia-induced neuronal injury suggests that a network framework will assist in making sense of this complexity. The ribonomic network sits between the gene network and the various protein and metabolic networks. Thus, targeting the ribonomic network may prove more effective at neuroprotection than targeting specific molecular pathways, for which all efforts have failed to the present time to stop DND in stroke and after cardiac arrest. WIREs RNA 2017, 8:e1415. doi: 10.1002/wrna.1415 For further resources related to this article, please visit the WIREs website.
Collapse
|
3
|
Feng N, Hao G, Yang F, Qu F, Zheng H, Liang S, Jin Y. Transplantation of mesenchymal stem cells promotes the functional recovery of the central nervous system following cerebral ischemia by inhibiting myelin-associated inhibitor expression and neural apoptosis. Exp Ther Med 2016; 11:1595-1600. [PMID: 27168778 PMCID: PMC4840788 DOI: 10.3892/etm.2016.3089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/14/2016] [Indexed: 11/30/2022] Open
Abstract
Cerebral ischemia, which may lead to cerebral hypoxia and damage of the brain tissue, is a leading cause of human mortality and adult disability. Mesenchymal stem cells (MSCs) are a class of adult progenitor cells with the ability to differentiate into multiple cell types. The transplantation of bone marrow-derived MSCs is a potential therapeutic strategy for cerebral ischemia. However, the underlying mechanism has yet to be elucidated. In the present study, primary MSCs were isolated from healthy rats, labeled and transplanted into the brains of middle cerebral artery occlusion rat models. The location of the labeled MSCs in the rat brains were determined by fluorescent microscopy, and the neurological functions of the rats were scored. Immunohistochemical analyses demonstrated that the protein expression levels of myelin-associated inhibitors of regeneration, including Nogo-A, oligodendrocyte myelin glycoprotein and myelin-associated glycoprotein, were decreased following transplantation of the bone marrow-derived MSCs. Furthermore, the mRNA expression levels of Capase-3 and B-cell lymphoma 2, as determined by reverse transcription-quantitative polymerase chain reactions, were downregulated and upregulated, respectively, in the MSC-transplanted rats; thus suggesting that neural apoptosis was inhibited. The results of the present study suggested that the transplantation of bone marrow-derived MSCs was able to promote the functional recovery of the central nervous system following cerebral ischemia. Accordingly, inhibitors targeting myelin-associated inhibitors and apoptosis may be of clinical significance for cerebral ischemia in the future.
Collapse
Affiliation(s)
- Nianping Feng
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Guang Hao
- Department of Neurology, First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Fenggang Yang
- Department of Neurology, Central Hospital of Taian, Taian, Shandong 271000, P.R. China
| | - Fujun Qu
- Department of Pharmacy, Second Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Haihong Zheng
- Animal Experiment Center, Second Clinical Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Songlan Liang
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yonghua Jin
- Department of Neurology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
4
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
5
|
Neuber C, Uebeler J, Schulze T, Sotoud H, El-Armouche A, Eschenhagen T. Guanabenz interferes with ER stress and exerts protective effects in cardiac myocytes. PLoS One 2014; 9:e98893. [PMID: 24892553 PMCID: PMC4044035 DOI: 10.1371/journal.pone.0098893] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022] Open
Abstract
Endoplasmic reticulum (ER) stress has been implicated in a variety of cardiovascular diseases. During ER stress, disruption of the complex of protein phosphatase 1 regulatory subunit 15A and catalytic subunit of protein phosphatase 1 by the small molecule guanabenz (antihypertensive, α2-adrenoceptor agonist) and subsequent inhibition of stress-induced dephosphorylation of eukaryotic translation initiation factor 2α (eIF2α) results in prolonged eIF2α phosphorylation, inhibition of protein synthesis and protection from ER stress. In this study we assessed whether guanabenz protects against ER stress in cardiac myocytes and affects the function of 3 dimensional engineered heart tissue (EHT). We utilized neonatal rat cardiac myocytes for the assessment of cell viability and activation of ER stress-signalling pathways and EHT for functional analysis. (i) Tunicamycin induced ER stress as measured by increased mRNA and protein levels of glucose-regulated protein 78 kDa, P-eIF2α, activating transcription factor 4, C/EBP homologous protein, and cell death. (ii) Guanabenz had no measurable effect alone, but antagonized the effects of tunicamycin on ER stress markers. (iii) Tunicamycin and other known inducers of ER stress (hydrogen peroxide, doxorubicin, thapsigargin) induced cardiac myocyte death, and this was antagonized by guanabenz in a concentration- and time-dependent manner. (iv) ER stressors also induced acute or delayed contractile dysfunction in spontaneously beating EHTs and this was, with the notable exception of relaxation deficits under thapsigargin, not significantly affected by guanabenz. The data confirm that guanabenz interferes with ER stress-signalling and has protective effects on cell survival. Data show for the first time that this concept extends to cardiac myocytes. The modest protection in EHTs points to more complex mechanisms of force regulation in intact functional heart muscle.
Collapse
Affiliation(s)
- Christiane Neuber
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
| | - June Uebeler
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
| | - Thomas Schulze
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
| | - Hannieh Sotoud
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
| | - Ali El-Armouche
- Department of Pharmacology, University Medical Center Goettingen, Goettingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Goettingen, Germany
- Department of Pharmacology, University of Technology Dresden, Dresden, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- DZHK (German Center for Cardiovascular Research), partner site, Hamburg/Kiel/Luebeck, Germany
- * E-mail:
| |
Collapse
|
6
|
DuRose JB, Scheuner D, Kaufman RJ, Rothblum LI, Niwa M. Phosphorylation of eukaryotic translation initiation factor 2alpha coordinates rRNA transcription and translation inhibition during endoplasmic reticulum stress. Mol Cell Biol 2009; 29:4295-307. [PMID: 19470760 PMCID: PMC2715810 DOI: 10.1128/mcb.00260-09] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 04/01/2009] [Accepted: 05/14/2009] [Indexed: 01/05/2023] Open
Abstract
The endoplasmic reticulum (ER) is the major cellular compartment where folding and maturation of secretory and membrane proteins take place. When protein folding needs exceed the capacity of the ER, the unfolded protein response (UPR) pathway modulates gene expression and downregulates protein translation to restore homeostasis. Here, we report that the UPR downregulates the synthesis of rRNA by inactivation of the RNA polymerase I basal transcription factor RRN3/TIF-IA. Inhibition of rRNA synthesis does not appear to involve the well-characterized mTOR (mammalian target of rapamycin) pathway; instead, PERK-dependent phosphorylation of eIF2alpha plays a critical role in the inactivation of RRN3/TIF-IA. Downregulation of rRNA transcription occurs simultaneously or slightly prior to eIF2alpha phosphorylation-induced translation repression. Since rRNA is the most abundant RNA species, constituting approximately 90% of total cellular RNA, its downregulation exerts a significant impact on cell physiology. Our study demonstrates the first link between regulation of translation and rRNA synthesis with phosphorylation of eIF2alpha, suggesting that this pathway may be broadly utilized by stresses that activate eIF2alpha kinases in order to coordinately regulate translation and ribosome biogenesis during cellular stress.
Collapse
Affiliation(s)
- Jenny B DuRose
- Division of Biological Sciences, University of California-San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
7
|
Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N. Translational control of long-lasting synaptic plasticity and memory. Neuron 2009; 61:10-26. [PMID: 19146809 PMCID: PMC5154738 DOI: 10.1016/j.neuron.2008.10.055] [Citation(s) in RCA: 744] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/10/2008] [Accepted: 10/17/2008] [Indexed: 01/07/2023]
Abstract
Long-lasting forms of synaptic plasticity and memory are dependent on new protein synthesis. Recent advances obtained from genetic, physiological, pharmacological, and biochemical studies provide strong evidence that translational control plays a key role in regulating long-term changes in neural circuits and thus long-term modifications in behavior. Translational control is important for regulating both general protein synthesis and synthesis of specific proteins in response to neuronal activity. In this review, we summarize and discuss recent progress in the field and highlight the prospects for better understanding of long-lasting changes in synaptic strength, learning, and memory and implications for neurological diseases.
Collapse
Affiliation(s)
- Mauro Costa-Mattioli
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Wayne S. Sossin
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, BT 110, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Nahum Sonenberg
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
8
|
Hakki M, Geballe AP. Cellular serine/threonine phosphatase activity during human cytomegalovirus infection. Virology 2008; 380:255-63. [PMID: 18757073 PMCID: PMC2654193 DOI: 10.1016/j.virol.2008.07.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/05/2008] [Accepted: 07/24/2008] [Indexed: 11/16/2022]
Abstract
While the importance of cellular and viral kinases in HCMV replication has been demonstrated, relatively little is known about the activity of cellular phosphatases. We conducted a series of experiments designed to investigate the effect of HCMV infection on cellular serine/threonine phosphatase activity. We found that the abundance of two major cellular serine/threonine phosphatases, PP1 and PP2A, increases during HCMV infection. This was associated with an increase in threonine phosphatase activity in HCMV-infected cells. HCMV infection conferred resistance to the effects of the phosphatase inhibitors calyculin A (CA) and okadaic acid with regards to global protein hyperphosphorylation and the shutoff of protein synthesis. The protective effect of HCMV infection could be overcome at a high concentration of CA, suggesting that cellular phosphatase activity is required for critical cellular processes during HCMV infection. Specifically, phosphatase activity was required to limit the accumulation of phospho-eIF2alpha, but not phospho-PKR, during HCMV infection.
Collapse
Affiliation(s)
- Morgan Hakki
- Divisions of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | |
Collapse
|
9
|
Jamison JT, Kayali F, Rudolph J, Marshall M, Kimball SR, DeGracia DJ. Persistent redistribution of poly-adenylated mRNAs correlates with translation arrest and cell death following global brain ischemia and reperfusion. Neuroscience 2008; 154:504-20. [PMID: 18456413 PMCID: PMC2494580 DOI: 10.1016/j.neuroscience.2008.03.057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 03/14/2008] [Accepted: 03/15/2008] [Indexed: 12/13/2022]
Abstract
Although persistent translation arrest correlates with the selective vulnerability of post-ischemic hippocampal cornu ammonis 1 (Ammon's horn) (CA1) neurons, the mechanism of persistent translation arrest is not fully understood. Using fluorescent in situ hybridization and immunofluorescence histochemistry, we studied colocalization of polyadenylated mRNAs [poly(A)] with the following mRNA binding factors: eukaryotic initiation factor (eIF) 4G (translation initiation factor), HuR (ARE-containing mRNA stabilizing protein), poly-adenylated mRNA binding protein (PABP), S6 (small ribosomal subunit marker), T cell internal antigen (TIA-1) (stress granule marker), and tristetraprolin (TTP) (processing body marker). We compared staining in vulnerable CA1 and resistant CA3 from 1 to 48 h reperfusion, following 10 min global ischemia in the rat. In both CA1 and CA3 neurons, cytoplasmic poly(A) mRNAs redistributed from a homogenous staining pattern seen in controls to granular structures we term mRNA granules. The mRNA granules abated after 16 h reperfusion in CA3, but persisted in CA1 neurons to 48 h reperfusion. Protein synthesis inhibition correlated precisely with the presence of the mRNA granules. In both CA1 and CA3, the mRNA granules colocalized with eIF4G and PABP, but not S6, TIA-1 or TTP, indicating that they were neither stress granules nor processing bodies. Colocalization of HuR in the mRNA granules correlated with translation of 70 kDa inducible heat shock protein, which occurred early in CA3 (8 h) and was delayed in CA1 (36 h). Thus, differential compartmentalization of mRNA away from the 40S subunit correlated with translation arrest in post-ischemic neurons, providing a concise mechanism of persistent translation arrest in post-ischemic CA1.
Collapse
Affiliation(s)
- J T Jamison
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
10
|
Raaben M, Groot Koerkamp MJA, Rottier PJM, de Haan CAM. Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies. Cell Microbiol 2007; 9:2218-29. [PMID: 17490409 PMCID: PMC7162177 DOI: 10.1111/j.1462-5822.2007.00951.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many viruses, including coronaviruses, induce host translational shutoff, while maintaining synthesis of their own gene products. In this study we performed genome‐wide microarray analyses of the expression patterns of mouse hepatitis coronavirus (MHV)‐infected cells. At the time of MHV‐induced host translational shutoff, downregulation of numerous mRNAs, many of which encode protein translation‐related factors, was observed. This downregulation, which is reminiscent of a cellular stress response, was dependent on viral replication and caused by mRNA decay. Concomitantly, phosphorylation of the eukaryotic translation initiation factor 2α was increased in MHV‐infected cells. In addition, stress granules and processing bodies appeared, which are sites for mRNA stalling and degradation respectively. We propose that MHV replication induces host translational shutoff by triggering an integrated stress response. However, MHV replication per se does not appear to benefit from the inhibition of host protein synthesis, at least in vitro, since viral replication was not negatively affected but rather enhanced in cells with impaired translational shutoff.
Collapse
Affiliation(s)
- Matthijs Raaben
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
11
|
Abstract
Irreversible translation arrest occurs in reperfused neurons that will die by delayed neuronal death. It is now recognized that suppression of protein synthesis is a general response of eukaryotic cells to exogenous stressors. Indeed, stress-induced translation arrest can be viewed as a component of cell stress responses, and consists of initiation, maintenance, and termination phases that work in concert with stress-induced transcriptional mechanisms. Within this framework, we review translation arrest in reperfused neurons. This framework provides a basis to recognize that phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is the initiator of translation arrest, and a key marker indicating activation of neuronal stress responses. However, eIF2 alpha phosphorylation is reversible. Other phases of stress-induced translation arrest appear to contribute to irreversible translation arrest specifically in ischemic vulnerable neuron populations. We detail two lines of evidence supporting this view. First, ischemia, as a stress stimulus, induces irreversible co-translational protein misfolding and aggregation after 4 to 6 h of reperfusion, trapping protein synthesis machinery into functionally inactive protein aggregates. Second, ischemia and reperfusion leads to modifications of stress granules (SGs) that sequester functionally inactive 48S preinitiation complexes to maintain translation arrest. At later reperfusion durations, these mechanisms may converge such that SGs become sequestered in protein aggregates. These mechanisms result in elimination of functionally active ribosomes and preclude recovery of protein synthesis in selectively vulnerable neurons. Thus, recognizing translation arrest as a component of endogenous cellular stress response pathways will aid in making sense of the complexities of postischemic translation arrest.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology and the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
12
|
Owen C, Lipinski C, Page A, White B, Sullivan J, Rafols J, Krause G. Characterization of the eIF2-associated protein p67 during brain ischemia and reperfusion. Neurol Res 2007; 28:818-21. [PMID: 17288737 DOI: 10.1179/016164106x110418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Within the first few minutes of reperfusion after global brain ischemia, there is a severe depression of protein translation owing to phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2). There is a 67 kDa peptide (p67) that, in its glycosylated form, binds to eIF2 and protects eIF2alpha from phosphorylation. Moreover, cells with high p67 content exhibit enhanced resistance to eIF2alpha phosphorylation. To examine the possibilities that deglycosylation of brain p67 occurs during ischemia and/or early reperfusion or that p67 deglycosylation may be more extensive in the vulnerable neurons, these experiments were undertaken to characterize the localization and activation state of p67 during early brain reperfusion METHODS Western blots using antibodies that recognize total p67, glycosylated p67 and phosphorylated eIF2alpha were used to characterize total p67 and glycosylated p67 during reperfusion-induced phosphorylation of eIF2alpha. We also characterized the immunohistochemical distribution of glycosylated p67 before and after brain ischemia and reperfusion. RESULTS There was a large increase in phosphorylated eIF2alpha, but there was no decrease in the levels of total or glycosylated p67 from those observed in controls following 10 minutes complete brain ischemia and 10 or 60 minutes subsequent reperfusion. Furthermore, there was no reduction in localized immunostaining for glycosylated p67 in vulnerable neurons during ischemia and reperfusion. DISCUSSION It does not appear that p67 plays a significant role in regulating the phosphorylation of eIF2alpha following transient brain ischemia.
Collapse
Affiliation(s)
- Cheri Owen
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The mammalian innate immune system provides a first line of defense against microbial pathogens and also serves to activate an antigen specific acquired immune program. Key components of innate immunity are the interferons (IFNs), a family of related cytokines with potent antimicrobial and immuno-modulatory activities. The IFNs exert their effects through the induction of numerous genes, one of which is the double-stranded RNA-dependent protein kinase (PKR), a pivotal antiviral protein found in most human cells. Following activation by double stranded (ds) RNAs produced during viral replication, PKR phosphorylates the alpha-subunit of eukaryotic translation initiation factor (eIF) 2, causing a severe inhibititon of cellular and viral protein synthesis. Phosphorylation of eIF2alpha and consequent inhibition of protein synthesis is a major cell growth checkpoint utilized by at least three other kinases, in addition to PKR, following exposure to such cellular stresses as amino acid deprivation and the presence of misfolded proteins in the endoplasmic reticulum. Indeed, it has been demonstrated that disruption of the eIF2alpha checkpoint can lead to the transformation of immortalized rodent and human cells, plausibly by increasing the protein synthesis rates of proto-oncogenes. Further, it has been shown that disregulation of the eIF2alpha checkpoint and consequent permissiveness to virus infection may be a common occurrence in tumorigenic mammalian cell lines. These findings have been exploited to develop potent oncolytic RNA viruses that can selectively replicate in and destroy a variety of neoplasias in vitro and in vivo. In this chapter, we describe some of the techniques commonly used in our laboratory to examine PKR activity and eIF2 regulation. Protocols for the generation and use of recombinant vesicular stomatitis virus variants are also described.
Collapse
|
14
|
Yung HW, Korolchuk S, Tolkovsky AM, Charnock-Jones DS, Burton GJ. Endoplasmic reticulum stress exacerbates ischemia-reperfusion-induced apoptosis through attenuation of Akt protein synthesis in human choriocarcinoma cells. FASEB J 2006; 21:872-84. [PMID: 17167073 PMCID: PMC1885550 DOI: 10.1096/fj.06-6054com] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxidative stress is central to ischemia-reperfusion injury. The role of the endoplasmic reticulum (ER) in this process is uncertain. In ER signaling, PERK-Nrf2 and Ire-CHOP are two pathways that determine cell fate under stress. PERK-Nrf2 up-regulates antioxidant enzyme expression whereas Ire-CHOP promotes apoptosis. We have identified a novel pathway in ER stress-induced apoptosis after ischemia-reperfusion in vitro involving translational suppression of the survival kinase PKB/Akt (Akt), and elucidated an alternative protective role of antioxidants in the regulation of Akt activity. Using human choriocarcinoma JEG-3 cells, we found that sustained activation of ER stress by tunicamycin or thapsigargin exacerbated apoptosis in oxygen-glucose-deprived cells during reoxygenation. This was mediated via a reduction in phosphorylated Akt secondary to down-regulation of protein translation rather than suppression of phosphorylation. Transient overexpression of wild-type Akt, but not kinase-dead Akt, in JEG-3 cells diminished tunicamycin-OGD reoxygenation-induced apoptosis. The antioxidants Trolox and Edaravone reduced apoptosis, but the protective effect of Trolox was abrogated by the PI3K inhibitor, LY294002. We speculate that sustained ER stress may contribute to the placental dysfunction seen in human pregnancy complications.
Collapse
Affiliation(s)
- Hong-wa Yung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Svitlana Korolchuk
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | - Graham J. Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Correspondence: Department of Physiology, Development and Neuroscience, Physiological Laboratory, Downing St., Cambridge CB2 3EG, UK. E-mail:
| |
Collapse
|
15
|
Montie HL, Kayali F, Haezebrouck AJ, Rossi NF, Degracia DJ. Renal ischemia and reperfusion activates the eIF 2 alpha kinase PERK. Biochim Biophys Acta Mol Basis Dis 2006; 1741:314-24. [PMID: 15936177 DOI: 10.1016/j.bbadis.2005.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2005] [Revised: 04/14/2005] [Accepted: 04/18/2005] [Indexed: 02/08/2023]
Abstract
Inhibition of protein synthesis occurs in the post-ischemic reperfused kidney but the molecular mechanism of renal translation arrest is unknown. Several pathways have been identified whereby cell stress inhibits translation initiation via phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF 2 alpha, phospho-form eIF 2 alpha(P)]. Here, we report a 20-fold increase in eIF 2 alpha(P) in kidney homogenates following 10 min of cardiac arrest-induced ischemia and 10 min reperfusion. Using immunohistochemistry, we observed eIF 2 alpha(P) in tubular epithelial cells in both cortex and medulla, where the greatest eIF 2 alpha(P) staining was found in epithelial cells of the so-called watershed area at the corticomedullary junction. We further show that increased eIF 2 alpha(P) is accompanied by activation of the PKR-like endoplasmic reticulum eIF 2 alpha kinase (PERK). These observations indicate that renal ischemia and reperfusion induce stress to the endoplasmic reticulum and activate the unfolded protein response in renal epithelial cells. As the unfolded protein response can result alternatively in a pro-survival or pro-apoptotic outcome, the present study demonstrates an new additional mechanism involved in cell damage and/or repair in ischemic and reperfused kidney.
Collapse
Affiliation(s)
- Heather L Montie
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
16
|
DeGracia DJ, Rafols JA, Morley SJ, Kayali F. Immunohistochemical mapping of total and phosphorylated eukaryotic initiation factor 4G in rat hippocampus following global brain ischemia and reperfusion. Neuroscience 2006; 139:1235-48. [PMID: 16530975 DOI: 10.1016/j.neuroscience.2006.01.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 01/24/2006] [Accepted: 01/26/2006] [Indexed: 02/07/2023]
Abstract
Partial proteolysis and phosphorylation of the translation initiation factor eukaryotic initiation factor 4G (eIF4G) occur in reperfused brain, but the contribution of eIF4G alterations to brain injury has not been established. A component of the complex delivering mRNA to the small ribosomal subunit, eIF4G is also found in stress granules. Stress granules sequester inactive 48S preinitiation complexes during stress-induced translation arrest. We performed double-labeling immunofluorescence histochemistry for total or ser 1108 phosphorylated eIF4G and the stress granule component T-cell internal antigen following normothermic, 10 min cardiac arrest-induced global brain ischemia and up to 4 h reperfusion in the rat. In cornu ammonis (Ammon's horn; CA) 1 at 90 min and 4 h reperfusion, eIF4G staining transformed from a homogeneous to an aggregated distribution. The number of eIF4G-containing stress granules differed between CA1 and CA3 during reperfusion. In hippocampal pyramidal neurons, phosphorylated eIF4G appeared exclusively in stress granules. Supragranular interneurons of the dentate gyrus showed a large increase in cytoplasmic eIF4G(P) following reperfusion. Immunoblot analysis with antisera against different portions of eIF4G showed a large increase in phosphorylated C-terminal eIF4G fragments, suggesting these accumulate in the cytoplasm of dentate gyrus interneurons. Thus, altered eIF4G subcellular compartmentalization may contribute to prolonged translation arrest in CA1 pyramidal neurons. Accumulation of phosphorylated eIF4G fragments may contribute to the vulnerability of dentate interneurons. Ischemia and reperfusion invoke different translational control responses in distinct hippocampal neuron populations, which may contribute to the differential ischemic vulnerabilities of these cells.
Collapse
Affiliation(s)
- D J DeGracia
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
17
|
Owen CR, Kumar R, Zhang P, McGrath BC, Cavener DR, Krause GS. PERK is responsible for the increased phosphorylation of eIF2alpha and the severe inhibition of protein synthesis after transient global brain ischemia. J Neurochem 2005; 94:1235-42. [PMID: 16000157 DOI: 10.1111/j.1471-4159.2005.03276.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reperfusion after global brain ischemia results initially in a widespread suppression of protein synthesis in neurons that is due to inhibition of translation initiation as a result of the phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 (eIF2). To address the role of the eIF2alpha kinase RNA-dependent protein kinase-like endoplasmic reticulum kinase (PERK) in the reperfused brain, transgenic mice with a targeted disruption of the Perk gene were subjected to 20 min of forebrain ischemia followed by 10 min of reperfusion. In wild-type mice, phosphorylated eIF2alpha was detected in the non-ischemic brain and its levels were elevated threefold after 10 min of reperfusion. Conversely, there was no phosphorylated eIF2alpha detected in the non-ischemic transgenic mice and there was no sizeable rise in phosphorylated eIF2alpha levels in the forebrain after ischemia and reperfusion. Moreover, there was a substantial rescue of protein translation in the reperfused transgenic mice. Neither group showed any change in total eIF2alpha, phosphorylated eukaryotic elongation factor 2 or total eukaryotic elongation factor 2 levels. These data demonstrate that PERK is responsible for the large increase in phosphorylated eIF2alpha and the suppression of translation early in reperfusion after transient global brain ischemia.
Collapse
Affiliation(s)
- Cheri R Owen
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | |
Collapse
|
18
|
Chakrabarty A, Fleming KK, Marquis JG, LeVine SM. Quantifying immunohistochemical staining of phospho-eIF2alpha, heme oxygenase-2 and NADPH cytochrome P450 reductase in oligodendrocytes during experimental autoimmune encephalomyelitis. J Neurosci Methods 2005; 144:227-34. [PMID: 15910982 DOI: 10.1016/j.jneumeth.2004.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 11/08/2004] [Accepted: 11/10/2004] [Indexed: 11/23/2022]
Abstract
As a consequence of inflammation associated with multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), stress responses are induced in many cells within the CNS, however, those that occur within the primary pathological target, the oligodendrocyte, are not fully established. Recently, we found that phosphorylated eukaryotic initiation factor-2alpha (eIF2alpha), an inhibitor of protein translation associated with the stress response, is expressed in a greater number of oligodendrocytes in EAE animals compared to controls. However, since numerous oligodendrocytes in control animals also expressed phospho-eIF2alpha, a method was developed to detect expression levels within oligodendrocytes that did not rely on the number of oligodendrocytes that were stained. This method utilized a high dilution of the primary antibody so that the staining density was kept below a maximum plateau which could eliminate expression differences. Furthermore, the staining density within oligodendrocytes, as determined by image analysis, was corrected by the background density or that within neurons. In either case, the density of staining was greater in oligodendrocytes from EAE animals versus controls. The expression of heme oxygenase-2 and NADPH cytochrome P450 reductase also were examined, but unlike phospho-eIF2alpha, neither was increased in oligodendrocytes from EAE animals compared to controls. In summary, a protocol involving a high dilution of primary antibody and image analysis revealed that the expression of phospho-eIF2alpha within oligodendrocytes was increased in EAE animals compared to control animals.
Collapse
Affiliation(s)
- Anuradha Chakrabarty
- Department of Molecular and Integrative Physiology, Mail Stop 3043, Ralph L. Smith Mental Retardation Research Center, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
19
|
Kayali F, Montie HL, Rafols JA, DeGracia DJ. Prolonged translation arrest in reperfused hippocampal cornu Ammonis 1 is mediated by stress granules. Neuroscience 2005; 134:1223-45. [PMID: 16055272 DOI: 10.1016/j.neuroscience.2005.05.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 03/22/2005] [Accepted: 05/25/2005] [Indexed: 11/29/2022]
Abstract
Global brain ischemia and reperfusion cause phosphorylation of the alpha subunit of eukaryotic initiation factor 2alpha, a reversible event associated with neuronal translation inhibition. However, the selective vulnerability of cornu Ammonis (CA) 1 pyramidal neurons correlates with irreversible translation inhibition. Phosphorylation of eukaryotic initiation factor 2alpha also leads to the formation of stress granules, cytoplasmic foci containing, in part, components of the 48S pre-initiation complex and the RNA binding protein T cell internal antigen-1 (TIA-1). Stress granules are sites of translationally inactive protein synthesis machinery. Here we evaluated stress granules in rat hippocampal formation neurons after 10 min global brain ischemia and 10 min, 90 min or 4 h of reperfusion by double-labeling immunofluorescence for two stress granule components: small ribosomal subunit protein 6 and TIA-1. Stress granules in CA3, hilus and dentate gyrus, but not CA1, increased at 10 min reperfusion and returned to control levels by 90 min reperfusion. Dynamic changes in the nuclear distribution of TIA-1 occurred in resistant neurons. At 4 h reperfusion, small ribosomal subunit protein 6 was solely localized within stress granules only in CA1 pyramidal neurons. Both TIA-1 and small ribosomal subunit protein 6 levels decreased approximately 50% in hippocampus homogenates. Electron microscopy showed stress granules to be composed of electron dense bodies 100-200 nm in diameter, that were not membrane bound, but were associated with endoplasmic reticulum. Alterations in stress granule behavior in CA1 pyramidal neurons provide a definitive mechanism for the continued inhibition of protein synthesis in reperfused CA1 pyramidal neurons following dephosphorylation of eukaryotic initiation factor 2alpha.
Collapse
Affiliation(s)
- F Kayali
- Department of Physiology, Wayne State University, 4116 Scott Hall, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
20
|
DeGracia DJ. Acute and persistent protein synthesis inhibition following cerebral reperfusion. J Neurosci Res 2004; 77:771-6. [PMID: 15334596 DOI: 10.1002/jnr.20225] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lack of recovery from protein synthesis inhibition (PSI) closely correlates with neuronal death following brain ischemia and reperfusion. It has therefore been suggested that understanding the mechanisms of PSI will shed light on the mechanisms of selective neuronal death following ischemia and reperfusion. It is now known that the PKR-like ER kinase (PERK)-mediated phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha) causes translation inhibition at initial reperfusion. Activation of PERK, in turn, indicates endoplasmic reticulum stress and activation of the unfolded protein response. However, phosphorylation of eIF2alpha is a transient event and can account for PSI only in the initial hours of reperfusion. Although a number of other regulators of protein synthesis, such as eIF4F, 4EBP-1, eEF-2, and S6 kinase, have been assessed following cerebral ischemia and reperfusion, the causes of prolonged PSI have yet to be fully elucidated. The purpose of the present article is to bring together the evidence indicating that, at minimum, postischemic PSI should be conceptualized as consisting of two components: an acute, transient component mediated by unfolded protein response-induced eIF2alpha phosphorylation and a longer term component that correlates with neuronal death. Ischemic tolerance appears to separate the acute and persistent components of reperfusion-induced translation inhibition. Specific models of the relationship among acute PSI, persistent PSI, and neuronal death are presented to clarify issues that have emerged from ongoing work in this area.
Collapse
Affiliation(s)
- Donald J DeGracia
- Department of Physiology, and the Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA.
| |
Collapse
|
21
|
Chakrabarty A, Danley MM, LeVine SM. Immunohistochemical localization of phosphorylated protein kinase R and phosphorylated eukaryotic initiation factor-2 alpha in the central nervous system of SJL mice with experimental allergic encephalomyelitis. J Neurosci Res 2004; 76:822-33. [PMID: 15160394 DOI: 10.1002/jnr.20125] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inflammatory cells enter the CNS and target myelin in multiple sclerosis (MS) and experimental allergic encephalomyelitis (EAE), a model of MS, and inflammation is thought to induce stress responses in the CNS. Protein kinase R (PKR) and eukaryotic initiation factor-2 alpha (eIF2 alpha) undergo phosphorylation in response to stress, and the phosphorylated forms of these proteins play a key role in regulating protein synthesis. The objective of this study was to investigate the expression profile of phospho-PKR and phospho-eIF2 alpha during the course of EAE in order to advance the understanding of the stress response in this disease. In control animals (no encephalitogen with no emulsion; no encephalitogen with emulsion) and in preclinical EAE animals, phospho-PKR immunoreactivity was present in oligodendrocytes and some neurons, whereas, in EAE animals with active disease there was widespread labeling of inflammatory cells, and these cells were present during the recovery period of EAE, albeit to a lesser extent. Double-labeling studies revealed that T cells and a few macrophages were phospho-PKR(+). Phospho-eIF2 alpha immunoreactivity was detected in some oligodendrocytes in hindbrain sections of control animals. In EAE animals with active disease, the number of labeled oligodendrocytes increased, and inflammatory T cells also were labeled. Insofar as phospho-PKR activates nuclear factor-kappa B, it may facilitate cytokines expression by T cells. Alternatively, phospho-PKR and phospho-eIF2 alpha may promote apoptosis as a way to regulate T-cell number in the CNS. The expression of phospho-eIF2 alpha in oligodendrocytes during EAE likely is involved with inhibition of protein translation, which is a protective mechanism used to promote cell survival in response to inflammation.
Collapse
Affiliation(s)
- Anuradha Chakrabarty
- Department of Molecular and Integrative Physiology, Mental Retardation and Human Development Center, University of Kansas Medical Center, Kansas City, 66160, USA
| | | | | |
Collapse
|
22
|
White F, McCaig D, Brown SM, Graham DI, Harland J, Macrae IM. Up-regulation of a growth arrest and DNA damage protein (GADD34) in the ischaemic human brain: implications for protein synthesis regulation and DNA repair. Neuropathol Appl Neurobiol 2004; 30:683-91. [PMID: 15541008 DOI: 10.1111/j.1365-2990.2004.00584.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
GADD34 is a growth arrest and DNA damage inducible gene up-regulated in response to DNA damage, cell cycle arrest and apoptosis. It is thought that GADD34 may play a crucial role in cell survival in ischaemia. GADD34 expression was assessed immunohistochemically in post-mortem human hippocampal tissue obtained from patients surviving for defined periods (0-24 h; 24 h-7 days) after a cardiac arrest and in age-matched control subjects. In control brain, cytoplasm staining in GADD34 immunopositive cells was faint but present throughout the hippocampus and cortex. There was minimal change in GADD34 expression in the group surviving 0-24 h after cardiac arrest. However GADD34 immunostaining was markedly increased in selectively vulnerable regions in the 24 h-7 day survival group. Increased GADD34 staining was present in ischaemic neurones and in some morphologically normal neurones after cardiac arrest. Extensive ischaemic damage was found to correlate with elevated GADD34 immunostaining in the CA1 layer of the hippocampus (**P < 0.0016). In addition, GADD34 was found to colocalize with proliferating cell nuclear antigen in some neurones. The up-regulation of GADD34 in response to global ischaemia in the human brain plus its influence on protein synthesis and DNA repair suggests that this protein may have the potential to influence cell survival.
Collapse
Affiliation(s)
- F White
- Division of Clinical Neuroscience, University of Glasgow, UK.
| | | | | | | | | | | |
Collapse
|
23
|
Langland JO, Jacobs BL. Inhibition of PKR by vaccinia virus: role of the N- and C-terminal domains of E3L. Virology 2004; 324:419-29. [PMID: 15207627 DOI: 10.1016/j.virol.2004.03.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 01/12/2004] [Accepted: 03/17/2004] [Indexed: 01/27/2023]
Abstract
The process of eukaryotic translation initiation can be regulated by a highly conserved mechanism involving the phosphorylation of the translation initiation factor eIF2 on the alpha subunit. This mechanism is recognized as an efficient step in the host antiviral response. Vaccinia virus (VV), like many other viruses, encodes proteins to overcome this inhibitory process. The C-terminus of the vaccinia virus E3L is known to bind to double-stranded RNA (dsRNA) thereby sequestering the activator of this antiviral response. In this report, the N-terminus of E3L was found to be required for the additional regulation of eIF2alpha phosphorylation. This phosphorylation event did not lead to a global shutdown in protein synthesis. Because the N-terminus of E3L is required for full viral pathogenesis in mice, these results suggest an alternative role of eIF2alpha phosphorylation in regulating viral replication.
Collapse
Affiliation(s)
- Jeffrey O Langland
- Graduate Program in Microbiology, School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| | | |
Collapse
|
24
|
Wu S, Tan M, Hu Y, Wang JL, Scheuner D, Kaufman RJ. Ultraviolet light activates NFkappaB through translational inhibition of IkappaBalpha synthesis. J Biol Chem 2004; 279:34898-902. [PMID: 15184376 DOI: 10.1074/jbc.m405616200] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UV light induces a delayed and prolonged (3-20 h) activation of NFkappaB when compared with the immediate and acute (10-90 min) activation of NFkappaB in response to tumor necrosis factor alpha treatment. In the early phase (3-12 h) of NFkappaB activation, UV light reduces inhibitor of NFkappaB (IkappaB) through an IkappaB kinase-independent, but polyubiquitin-dependent, pathway. However, the mechanism for the UV light-induced reduction of IkappaB and activation of NFkappaB is not known. In this report, we show that UV light down-regulates the total amount of IkappaB through decreasing IkappaB mRNA translation. Our data show that UV light inhibits translation of IkappaB in wild-type mouse embryo fibroblasts (MEF(S/S)) and that this inhibition is prevented in MEF(A/A) cells in which the phosphorylation site, Ser-51 in the eukaryotic translation initiation factor 2 alpha-subunit, is replaced with a non-phosphorylatable Ala (S51A). Our data also show that UV light-induced NFkappaB activation is delayed in MEF(A/A) cells and in an MCF-7 cell line that is stably transfected with a trans-dominant negative mutant protein kinase-like endoplasmic reticulum kinase (PERK). These results suggest that UV light-induced eukaryotic translation initiation factor 2 alpha-subunit phosphorylation translationally inhibits new IkappaB synthesis. Without a continuous supply of newly synthesized IkappaB, the existing IkappaB is degraded through a polyubiquitin-dependent proteasomal pathway leading to NFkappaB activation. Based upon our results, we propose a novel mechanism by which UV light regulates early phase NFkappaB activation by means of an ER-stress-induced translational inhibition pathway.
Collapse
Affiliation(s)
- Shiyong Wu
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
25
|
Schaller B, Graf R. Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab 2004; 24:351-71. [PMID: 15087705 DOI: 10.1097/00004647-200404000-00001] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The ischemic penumbra has been documented in the laboratory animal as severely hypoperfused, nonfunctional, but still viable brain tissue surrounding the irreversibly damaged ischemic core. Saving the penumbra is the main target of acute stroke therapy, and is the theoretical basis behind the reperfusion concept. In experimental focal ischemia, early reperfusion has been reported to both prevent infarct growth and aggravate edema formation and hemorrhage, depending on the severity and duration of prior ischemia and the efficiency of reperfusion, whereas neuronal damage with or without enlarged infarction also may result from reperfusion (so-called reperfusion injury). Activated neutrophils contribute to vascular reperfusion damage, yet posthypoxic cellular injury occurs in the absence of inflammatory species. Protein synthesis inhibition occurs in neurons during reperfusion after ischemia, underlying the role that these pathways play in prosurvival and proapoptotic processes that may be differentially expressed in vulnerable and resistant regions of the reperfused brain tissue. Ischemia-induced decreases in the mitochondrial capacity for respiratory activity probably contribute to the ongoing impairment of energy metabolism during reperfusion and possibly also the magnitude of changes seen during ischemia. From these experimental data, the concept of single-drug intervention cannot be effective. Further experimental research is needed, especially of the study of biochemical markers of the injury process to establish the role of several drugs.
Collapse
|
26
|
Perkins DJ, Barber GN. Defects in translational regulation mediated by the alpha subunit of eukaryotic initiation factor 2 inhibit antiviral activity and facilitate the malignant transformation of human fibroblasts. Mol Cell Biol 2004; 24:2025-40. [PMID: 14966282 PMCID: PMC350553 DOI: 10.1128/mcb.24.5.2025-2040.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Suppression of protein synthesis through phosphorylation of the translation initiation factor alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) is known to occur in response to many forms of cellular stress. To further study this, we have developed novel cell lines that inducibly express FLAG-tagged versions of either the phosphomimetic eIF2alpha variant, eIF2alpha-S51D, or the phosphorylation-insensitive eIF2alpha-S51A. These variants showed authentic subcellular localization, were incorporated into endogenous ternary complexes, and were able to modulate overall rates of protein synthesis as well as influence cell division. However, phosphorylation of eIF2alpha failed to induce cell death or sensitize cells to killing by proapoptotic stimuli, though it was able to inhibit viral replication, confirming the role of eIF2alpha in host defense. Further, although the eIF2alpha-S51A variant has been shown to transform NIH 3T3 cells, it was unable to transform the murine fibroblast 3T3 L1 cell line. To therefore clarify this issue, we explored the role of eIF2alpha in growth control and demonstrated that the eIF2alpha-S51A variant is capable of collaborating with hTERT and the simian virus 40 large T antigen in the transformation of primary human kidney cells. Thus, dysregulation of translation initiation is indeed sufficient to cooperate with defined oncogenic elements and participate in the tumorigenesis of human tissue.
Collapse
Affiliation(s)
- Darren J Perkins
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | |
Collapse
|
27
|
Hayashi T, Saito A, Okuno S, Ferrand-Drake M, Chan PH. Induction of GRP78 by ischemic preconditioning reduces endoplasmic reticulum stress and prevents delayed neuronal cell death. J Cereb Blood Flow Metab 2003; 23:949-61. [PMID: 12902839 DOI: 10.1097/01.wcb.0000077641.41248.ea] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although the endoplasmic reticulum (ER) is implicated in neuronal degeneration in some situations, its role in delayed neuronal cell death (DND) after ischemia remains uncertain. The authors speculated that ER stress is involved in DND, that it is reduced by ischemic preconditioning, and that ER stress reduction by preconditioning is due to ER molecular chaperone induction. The phosphorylation status of eukaryotic initiation factor 2alpha (eIF2alpha) and RNA-dependent protein kinase-like ER eIF2alpha kinase (PERK) was investigated in the rat hippocampus after ischemia with and without preconditioning. PERK is phosphorylated by ER stress, which phosphorylates eIF2alpha. To investigate the role of ER molecular chaperones in preconditioning, the authors examined GRP78 and GRP94 expression, both of which are ER chaperones that inhibit PERK phosphorylation, and compared their induction and ischemic tolerance time windows. Phosphorylation of eIF2alpha and PERK was confirmed after severe ischemia but was inhibited by preconditioning. After preconditioning, GRP78 was increased in the brain with a peak at 2 days, which corresponded with the ischemic tolerance time window. Immunoprecipitation and double staining demonstrated involvement of GRP78 in prevention of PERK phosphorylation. These results suggest that GRP78 induced by preconditioning may reduce ER stress and eventual DND after ischemia.
Collapse
Affiliation(s)
- Takeshi Hayashi
- Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California 94305, U.S.A
| | | | | | | | | |
Collapse
|
28
|
Page AB, Owen CR, Kumar R, Miller JM, Rafols JA, White BC, DeGracia DJ, Krause GS. Persistent eIF2alpha(P) is colocalized with cytoplasmic cytochrome c in vulnerable hippocampal neurons after 4 hours of reperfusion following 10-minute complete brain ischemia. Acta Neuropathol 2003; 106:8-16. [PMID: 12687390 DOI: 10.1007/s00401-003-0693-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2002] [Revised: 02/21/2003] [Accepted: 02/24/2003] [Indexed: 10/25/2022]
Abstract
Upon brain reperfusion following ischemia, there is widespread inhibition of neuronal protein synthesis that is due to phosphorylation of eukaryotic initiation factor 2alpha (eIF2alpha), which persists in selectively vulnerable neurons (SVNs) destined to die. Other investigators have shown that expression of mutant eIF2alpha (S51D) mimicking phosphorylated eIF2alpha induces apoptosis, and expression of non-phosphorylatable eIF2alpha (S51A) blocks induction of apoptosis. An early event in initiating apoptosis is the release of cytochrome c from mitochondria, and cytochrome c release corresponds to the selective vulnerability of hippocampal CA1 neurons in rats after transient global cerebral ischemia. At present the signaling pathways leading to this are not well defined. We hypothesized that persistent eIF2alpha(P) reflects injury mechanisms that are causally upstream of release of cytochrome c and induction of apoptosis. At 4 h of reperfusion following 10-min cardiac arrest, vulnerable neurons in the striatum, hippocampal hilus and CA1 showed colocalized intense immunostaining for both persistent eIF2alpha(P) and cytoplasmic cytochrome c, while resistant neurons in the dentate gyrus and elsewhere did not immunostain for either. A lower intensity of persistent eIF2alpha(P) immunostaining was present in cortical layer V pyramidal neurons without cytoplasmic cytochrome c, possibly reflecting the lesser vulnerability of this area to ischemia. We did not observe cytoplasmic cytochrome c in any neurons that did not also display persistent eIF2alpha(P) immunostaining. Because phosphorylation of eIF2alpha during early brain reperfusion is carried out by PERK, these findings suggest that there is prolonged activation of the unfolded protein response in the reperfused brain.
Collapse
Affiliation(s)
- Andrea B Page
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Beugnet A, Tee AR, Taylor PM, Proud CG. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 2003; 372:555-66. [PMID: 12611592 PMCID: PMC1223408 DOI: 10.1042/bj20021266] [Citation(s) in RCA: 243] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Revised: 02/07/2003] [Accepted: 02/28/2003] [Indexed: 11/17/2022]
Abstract
In mammalian cells, amino acids affect the phosphorylation state and function of several proteins involved in mRNA translation that are regulated via the rapamycin-sensitive mTOR (mammalian target of rapamycin) pathway. These include ribosomal protein S6 kinase, S6K1, and eukaryotic initiation factor 4E-binding protein, 4E-BP1. Amino acids, especially branched-chain amino acids, such as leucine, promote phosphorylation of 4E-BP1 and S6K1, and permit insulin to further increase their phosphorylation. However, it is not clear whether these effects are exerted by extracellular or intracellular amino acids. Inhibition of protein synthesis is expected to increase the intracellular level of amino acids, whereas inhibiting proteolysis has the opposite effect. We show in the present study that inhibition of protein synthesis by any of several protein synthesis inhibitors tested allows insulin to regulate 4E-BP1 or S6K1 in amino-acid-deprived cells, as does the addition of amino acids to the medium. In particular, insulin activates S6K1 and promotes initiation factor complex assembly in amino-acid-deprived cells treated with protein synthesis inhibitors, but cannot do so in the absence of these compounds. Their effects occur at concentrations commensurate with their inhibition of protein synthesis and are not due to activation of stress-activated kinase cascades. Inhibition of protein breakdown (autophagy) impairs the ability of insulin to regulate 4E-BP1 or S6K1 under such conditions. These and other data presented in the current study are consistent with the idea that it is intracellular amino acid levels that regulate mTOR signalling.
Collapse
Affiliation(s)
- Anne Beugnet
- School of Life Sciences, MSI/WTB Complex, University of Dundee, Dow Street, Scotland, UK
| | | | | | | |
Collapse
|
30
|
Petrov T, Rafols JA, Alousi SS, Kupsky WJ, Johnson R, Shah J, Shah A, Watson C. Cellular compartmentalization of phosphorylated eIF2alpha and neuronal NOS in human temporal lobe epilepsy with hippocampal sclerosis. J Neurol Sci 2003; 209:31-9. [PMID: 12686399 DOI: 10.1016/s0022-510x(02)00461-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hippocampal sclerosis (HS) is the most common neuropathologic finding in patients with medically refractory temporal lobe epilepsy (TLE). The mechanisms resulting in neuronal injury and cell loss in HS are incompletely understood, but inhibition of protein synthesis may play a pivotal role in these processes. This study examined the relationships between two molecules known to be involved in reduced protein synthesis in animals subjected to traumatic brain injury. Translational initiation of protein synthesis is inhibited when 2alpha (eIF2alpha) is phosphorylated. Recently, nitric oxide (NO) has been shown to reduce protein synthesis by inducing phosphorylation of eIF2alpha. We performed immunocytochemistry for eIF2alpha(P) and histochemistry (NADPH-D reaction) for nitric oxide synthase (NOS) to determine the distribution of these molecules in hippocampi removed from patients undergoing anterior temporal lobectomy (ATL) for medically intractable TLE due to HS. The greatest number of eIF2alpha(P) positive cells was in the CA1 sector of the hippocampus, followed by the hilus of the dentate gyrus. NADPH-D positive neurons were observed most often in the hilus. Labeling in both instances involved neuronal cell body cytoplasm and varicose processes. Combination of both staining procedures revealed close relationships between differentially labeled neurons within the hilus. The results suggest that NO participates in the phosphorylation of eIF2alpha since we demonstrated that nNOS processes are closely related to eIF2alpha(P) positive cells. This may occur through activation of kinases such as PERK, which was recently revealed. In human, TLE protein synthesis inhibition may occur at the translational level since the eIF2alpha (P) labeling is cytoplasmic. Protein synthesis inhibition may contribute to neuronal cell injury and death in HS.
Collapse
Affiliation(s)
- Theodor Petrov
- Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, 540 East Canfield Ave., Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hou ST, MacManus JP. Molecular mechanisms of cerebral ischemia-induced neuronal death. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 221:93-148. [PMID: 12455747 DOI: 10.1016/s0074-7696(02)21011-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The mode of neuronal death caused by cerebral ischemia and reperfusion appears on the continuum between the poles of catastrophic necrosis and apoptosis: ischemic neurons exhibit many biochemical hallmarks of apoptosis but remain cytologically necrotic. The position on this continuum may be modulated by the severity of the ischemic insult. The ischemia-induced neuronal death is an active process (energy dependent) and is the result of activation of cascades of detrimental biochemical events that include perturbion of calcium homeostasis leading to increased excitotoxicity, malfunction of endoplasmic reticulum and mitochondria, elevation of oxidative stress causing DNA damage, alteration in proapoptotic gene expression, and activation of the effector cysteine proteases (caspases) and endonucleases leading to the final degradation of the genome. In spite of strong evidence showing that brain infarction can be reduced by inhibiting any one of the above biochemical events, such as targeting excitotoxicity, up-regulation of an antiapoptotic gene, or inhibition of a down-stream effector caspase, it is becoming clear that targeting a single gene or factor is not sufficient for stroke therapeutics. An effective neuroprotective therapy is likely to be a cocktail aimed at all of the above detrimental events evoked by cerebral ischemia and the success of such therapeutic intervention relies upon the complete elucidation of pathways and mechanisms of the cerebral ischemia-induced active neuronal death.
Collapse
Affiliation(s)
- Sheng T Hou
- Experimental Stroke Group, Institute for Biological Sciences, National Research Council Canada, Ottawa, Ontario, KIA 0R6, Canada
| | | |
Collapse
|
32
|
Kumar R, Krause GS, Yoshida H, Mori K, DeGracia DJ. Dysfunction of the unfolded protein response during global brain ischemia and reperfusion. J Cereb Blood Flow Metab 2003; 23:462-71. [PMID: 12679723 DOI: 10.1097/01.wcb.0000056064.25434.ca] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A variety of endoplasmic reticulum (ER) stresses trigger the unfolded protein response (UPR), a compensatory response whose most proximal sensors are the ER membrane-bound proteins ATF6, IRE1alpha, and PERK. The authors simultaneously examined the activation of ATF6, IRE1alpha, and PERK, as well as components of downstream UPR pathways, in the rat brain after reperfusion after a 10-minute cardiac arrest. Although ATF6 was not activated, PERK was maximally activated at 10-minute reperfusion, which correlated with maximal eIF2alpha phosphorylation and protein synthesis inhibition. By 4-h reperfusion, there was 80% loss of PERK immunostaining in cortex and 50% loss in brain stem and hippocampus. PERK was degraded in vitro by mu-calpain. Although inactive IRE1alpha was maximally decreased by 90-minute reperfusion, there was no evidence that its substrate xbp-1 messenger RNA had been processed by removal of a 26-nt sequence. Similarly, there was no expression of the UPR effector proteins 55-kd XBP-1, CHOP, or ATF4. These data indicate that there is dysfunction in several key components of the UPR that abrogate the effects of ER stress. In other systems, failure to mount the UPR results in increased cell death. As other studies have shown evidence for ER stress after brain ischemia and reperfusion, the failure of the UPR may play a significant role in reperfusion neuronal death.
Collapse
Affiliation(s)
- Rita Kumar
- Department of Emergency Medicine, Wayne State University, Detroit, Michigan, U.S.A
| | | | | | | | | |
Collapse
|
33
|
Abstract
There is increasing evidence that some neuronal death after brain ischaemia is mediated by the action of cysteine-requiring aspartate-directed proteases (caspases), the proteases responsible for apoptosis in mammals, although this form of neuronal death is not always accompanied by the morphological changes that are typical of apoptosis in other tissues. Caspase-mediated neuronal death is more extensive after transient than permanent focal brain ischaemia and may contribute to delayed loss of neurons from the penumbral region of infarcts. The activation of caspases after brain ischaemia is largely consequent on the translocation of Bax, Bak, and other BH3-only members of the Bcl-2 family to the mitochondrial outer membrane and the release of cytochrome c, procaspase-9, and apoptosis activating factor-1 (Apaf-1) from the mitochondrial intermembrane space. How exactly ischaemia induces this translocation is still poorly understood. NF-kappaB, the c-jun N-terminal kinase-c-Jun pathway, p53, E2F1, and other transcription factors are probably all involved in regulating the expression of BH3-only proteins after brain ischaemia, and mitochondrial translocation of Bad from sequestering cytosolic proteins is promoted by inactivation of the serine-threonine kinase, Akt. Other processes that are probably involved in the activation of caspases after brain ischaemia include the mitochondrial release of the second mitochondrial activator of caspases (Smac) or direct inhibitor-of-apoptosis-binding protein with low pI (DIABLO), the accumulation of products of lipid peroxidation, a marked reduction in protein synthesis, and the aberrant reentry of neurons into the cell cycle. Non-caspase-mediated neuronal apoptosis may also occur, but there is little evidence to date that this makes a significant contribution to brain damage after ischaemia. The intracellular processes that contribute to caspase-mediated neuronal death after ischaemia are all potential targets for therapy. However, anti-apoptotic interventions in stroke patients will require detailed evaluation using a range of outcome measures, as some such interventions seem simply to delay neuronal death and others to preserve neurons but not neuronal function.
Collapse
Affiliation(s)
- Seth Love
- Department of Neuropathology, Institute of Clinical Neurosciences, Frenchay Hospital, BS16 1LE, Bristol, UK.
| |
Collapse
|
34
|
Klettner A, Herdegen T. The immunophilin-ligands FK506 and V-10,367 mediate neuroprotection by the heat shock response. Br J Pharmacol 2003; 138:1004-12. [PMID: 12642403 PMCID: PMC1573741 DOI: 10.1038/sj.bjp.0705132] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2002] [Revised: 11/18/2002] [Accepted: 12/04/2002] [Indexed: 11/08/2022] Open
Abstract
(1) The macrolid FK506 is widely used in transplantation to suppress allograft rejection. FK506 and its derivatives are powerful neuroprotective molecules, but the underlying mechanisms remain to be resolved. We have previously shown that the FK506 mediated neuroprotection against oxygen radicals is independent of the inhibition of calcineurin but depends on de novo protein synthesis. (2) Here, we have shown that FK506 mediates protection against H(2)O(2), UV-light or thapsigargin in neuronal cell lines, but not in non-neuronal cells such as R3T3 fibroblasts. We compared in detail the effect of FK506 on apoptotic features in PC12 cells after H(2)O(2) with V-10,367 which binds to FKBPs but does not inhibit calcineurin. Both molecules exert the same neuroprotective effect after H(2)O(2) stimulation. FK506, but not V-10,367, inhibited the cytochrome c release out of the mitochondria and the caspase 3 activation, while both molecules inhibited the cleavage of Poly-(ADP-ribose)-polymerase (Parp) and prevented the expression of p53. (3) FK506 and V-10,367 rapidly induced the expression of Hsp70 and Hsp27, but not Hsp90. Their neuroprotective actions could be completely blocked by quercetin, a functional inhibitor of the heat shock proteins. (4) We conclude that immunophilin-ligands such as FK506 and V-10,367 exert their neuroprotection independent of calcineurin through the induction of the heat shock response. The identification of the underlying signal transduction from application of immunophilin ligands to the expression of heat shock proteins represents a novel target cascade for neuroprotection.
Collapse
Affiliation(s)
- Alexa Klettner
- Christian-Albrechts-University of Kiel, Institute of Pharmacology, Hospitalstrasse 4, 24105 Kiel, Germany.
| | | |
Collapse
|
35
|
Garner JN, Joshi B, Jagus R. Characterization of rainbow trout and zebrafish eukaryotic initiation factor 2alpha and its response to endoplasmic reticulum stress and IPNV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2003; 27:217-231. [PMID: 12590973 DOI: 10.1016/s0145-305x(02)00096-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The cDNAs of rainbow trout and zebrafish eIF2alpha have been isolated and found to encode proteins of similar molecular weight and isoelectric point to the alpha-subunit of the human translational initiation factor, eIF2. The rainbow trout (36.0kDa) and zebrafish (36.2kDa) eIF2alphas share 93 and 91% identity to the human protein, respectively, and are recognized by antibodies raised to the human form. In mammals, the phosphorylation of the alpha-subunit of eIF2 plays a key role in the regulation of protein synthesis in response to a range of cellular stresses. Regions corresponding to the human phosphorylation and kinase-docking sites are identical in the proteins of both fish species, as are residues that interact with the eIF2 recycling factor, eIF2B. Moreover, both recombinant rainbow trout and zebrafish eIF2alphas can be phosphorylated in vitro by the mammalian heme-sensitive eIF2alpha-kinase, HRI/HCR, as well as the interferon-inducible, dsRNA sensitive kinase, PKR. Phosphorylation of rainbow trout and zebrafish eIF2alpha can also occur in vivo. RTG-2 and ZFL cells subjected to endoplasmic reticulum (ER) stress by treatment with the Ca(2+)-ionophore A23187 showed increased levels of eIF2alpha phosphorylation, suggesting similarity between the ER stress response in fish and other higher eukaryotes. Furthermore, RTG-2 cells responded to treatment with poly(I).poly(C) or to infection by infectious pancreatic necrosis virus, IPNV, by increasing eIF2alpha phosphorylation. These data imply that RTG-2 cells express the interferon-induced eIF2alpha-kinase, PKR and suggests that the interferon/eIF2alpha/PKR response to virus infection may be a conserved vertebrate characteristic. Overall these data are consistent with the premise that fish are able to regulate protein synthesis in response to cellular stresses through phosphorylation of eIF2alpha.
Collapse
Affiliation(s)
- Joseph N Garner
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD 21202, USA
| | | | | |
Collapse
|
36
|
Petrov T, Steiner J, Braun B, Rafols JA. Sources of endothelin-1 in hippocampus and cortex following traumatic brain injury. Neuroscience 2003; 115:275-83. [PMID: 12401340 DOI: 10.1016/s0306-4522(02)00345-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endothelin 1 (ET-1) exerts normally a powerful vasoconstrictor role in the control of the brain microcirculation. In altered states, such as following traumatic brain injury (TBI), it may contribute to the development of ischemia and/or secondary cell injury. Because little is known of ET-1's cellular compartmentalization and its association to vulnerable neurons after TBI, we assessed its expression (both mRNA and protein) in cerebral cortex and hippocampus using correlative in situ hybridization and immunocytochemical techniques.Sprague-Dawley male rats were killed at 4, 24 or 48 h after TBI (450 g from 2 m, Marmarou's model). Semiquantitative analysis of our in situ hybridization results indicated a 2.5- and a 2.0-fold increase in ET-1 mRNA content in the hippocampus and cortex respectively which persisted up to 48 h post TBI. At 4 and 24 h after TBI enzyme-linked immunosorbent assay showed a tendency for increased ET-1 synthesis. In animals subjected to TBI, qualitative immunocytochemical analysis revealed a shift in ET-1 expression from astrocytes (in control animals) to endothelial cells, macrophages and neurons. Astrocytes and macrophages were identified unequivocally by using double immunofluorescence revealing ET-1 and glial fibrillary acidic protein or ED-1, respectively, the markers being specific for these cellular types. While this redistribution was most prominent at 4 and 24 h post TBI, at 48 h the endothelial cells remained strongly ET-1 immunopositive. The results suggest that cellular types which in the intact animal synthesize little or no ET-1 provide novel sources of the peptide after TBI. These sources may contribute to the sustained cerebrovascular hypoperfusion observed post TBI.
Collapse
Affiliation(s)
- Th Petrov
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
6-hydroxydopamine, 1-methyl-4-phenyl-pyridinium (MPP+), and rotenone cause the death of dopaminergic neurons in vitro and in vivo and are widely used to model Parkinson's disease. To identify regulated genes in such models, we performed serial analysis of gene expression on neuronal PC12 cells exposed to 6-hydroxydopamine. This revealed a striking increase in transcripts associated with the unfolded protein response. Immunoblotting confirmed phosphorylation of the key endoplasmic reticulum stress kinases IRE1alpha and PERK (PKR-like ER kinase) and induction of their downstream targets. There was a similar response to MPP+ and rotenone, but not to other apoptotic initiators. As evidence that endoplasmic reticulum stress contributes to neuronal death, sympathetic neurons from PERK null mice in which the capacity to respond to endoplasmic reticulum stress is compromised were more sensitive to 6-hydroxydopamine. Our findings, coupled with evidence from familial forms of Parkinson's disease, raise the possibility of widespread involvement of endoplasmic reticulum stress and the unfolded protein response in the pathophysiology of this disease.
Collapse
|
38
|
Cudna RE, Dickson AJ. Endoplasmic reticulum signaling as a determinant of recombinant protein expression. Biotechnol Bioeng 2003; 81:56-65. [PMID: 12432581 DOI: 10.1002/bit.10445] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Generation of functional recombinant proteins requires efficient and undisturbed functioning of the ER-Golgi secretory pathway in host cells. In large-scale production, where target proteins are highly overexpressed, this pathway can be easily congested with unfolded or misfolded proteins. Accumulating evidence suggests that, in addition to responsibility for protein processing, ER is also an important signaling compartment and a sensor of cellular stress. Two ER responses have been described to arise from the overaccumulation of proteins: unfolded protein response (UPR) and ER overload response (EOR). UPR and EOR employ various mechanisms at the transcriptional and the translational levels to deal efficiently and appropriately with encountered stress. This review will outline the molecular bases of ER functioning and stress response, highlight the relevance of ER signaling to the large-scale cell culture productivity and discuss possible approaches to the improvement of the secretion capacities of recombinant cells.
Collapse
Affiliation(s)
- Renata E Cudna
- Biochemistry Research Division, School of Biological Sciences, 2.205 Stopford Building, University of Manchester, Oxford Road, United Kingdom.
| | | |
Collapse
|
39
|
Ferrer I. Differential expression of phosphorylated translation initiation factor 2 alpha in Alzheimer's disease and Creutzfeldt-Jakob's disease. Neuropathol Appl Neurobiol 2002; 28:441-51. [PMID: 12445160 DOI: 10.1046/j.1365-2990.2002.t01-1-00410.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Studies in vitro have shown that phosphorylated translation initiation factor 2 alpha (TIF 2 alpha) may have several functions, including regulation of protein synthesis, control of cell death and procurement of resistance to oxidative stress in nerve cells. These properties may have implications in certain human neurodegenerative diseases, such as Alzheimer's disease (AD) and Creutzfeldt-Jakob's disease (CJD), in which oxidative stress appears to be involved in the process of neurodegeneration and neurone death. Single and double-labelling immunohistochemistry to phosphorylated TIF 2 alpha, phosphorylated SAPK/JNK, phosphorylated p38, tau, Cu/Zn superoxide dismutase 1 (SOD 1) and cleaved caspase-3 (17 kDa), and in situ end-labelling of nuclear DNA fragmentation, was carried out in postmortem samples of 10 patients with AD (stages III and VI of Braak and Braak), seven patients with CJD (five cases with methionine/methionine and two cases with methionine/valine at the codon 129 of the PrP gene) and eight age-matched controls. No phosphorylated TIF 2 alpha immunoreactivity was found in control brains, but strong phosphorylated TIF 2 alpha expression was observed in subpopulations of neurones bearing neurofibrillary tangles (NFTs) or pretangles in the hippocampus, entorhinal cortex and isocortex in AD. Phosphorylated TIF 2 alpha is restricted to neurones with abnormal tau deposition, but only approximately 80% of neurones with NFTs in the hippocampus and 60% in the isocortex colocalize phosphorylated TIF 2 alpha, thus indicating that not all neurones with NFTs over-express phosphorylated TIF 2 alpha. Moreover, phosphorylated TIF 2 alpha immunoreactivity was found in a percentage of neurones expressing phosphorylated SAPK/JNK and p38, which, in turn, are involved in tau phosphorylation in AD. However, dystrophic neurites of senile plaques that contain abnormal tau and express SOD 1 are negative to antiphosphorylated TIF 2 alpha antibodies. Smooth muscle cells in blood vessels affected by amyloid angiopathy, which are putative targets of beta A 4 amyloid-derived oxidative stress, are not associated with phosphorylated TIF 2 alpha immunoreactivity. Double-staining with the method of in situ end-labelling of nuclear DNA fragmentation demonstrated no relationship between phosphorylated TIF 2 alpha expression and increased nuclear DNA vulnerability in individual cells. Moreover, no single caspase-3-immunoreactive cell in AD expressed phosphorylated TIF 2 alpha. Oxidative stress response, manifested as positive SOD 1 expression in Bergmann glia and in a few reactive astrocytes, has been demonstrated in CJD. No phosphorylated SAPK/JNK or phosphorylated p38 kinase immunoreactivity was observed in these cases. Moreover, neurones and glial cells do not over-express phosphorylated TIF 2 alpha in CJD. The present results demonstrate selective expression of phosphorylated TIF 2 alpha in subpopulations of nerve cells with abnormal tau deposition, and suggest that factors linked with tau deposition regulate protein synthesis throughout TIF 2 alpha phosphorylation in certain neurones sensitive to oxidative stress in AD.
Collapse
Affiliation(s)
- I Ferrer
- Departament de Biologia Cellular i Anatomia Patològica, Universitat de Barcelona, Neurològics, Universitat de Barcelona-Hospital Clinic, Barcelona, Spain.
| |
Collapse
|
40
|
Mengesdorf T, Proud CG, Mies G, Paschen W. Mechanisms underlying suppression of protein synthesis induced by transient focal cerebral ischemia in mouse brain. Exp Neurol 2002; 177:538-46. [PMID: 12429199 DOI: 10.1006/exnr.2002.8002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Transient global cerebral ischemia triggers suppression of the initiation step of protein synthesis, a process which is controlled by endoplasmic reticulum (ER) function. ER function has been shown to be disturbed after transient cerebral ischemia, as indicated by an activation of the ER-resident eIF2alpha kinase PERK. In this study, we investigated ischemia-induced changes in protein levels and phosphorylation states of the initiation factors eIF2alpha, eIF2B epsilon, and eIF4G1 and of p70 S6 kinase, proteins playing a central role in the control of the initiation of translation. Transient focal cerebral ischemia was induced in mice by occlusion of the left middle cerebral artery. Transient ischemia caused a long-lasting suppression of global protein synthesis. eIF2alpha was transiently phosphorylated after ischemia, peaking at 1-3 h of recovery. eIF2B epsilon and p70 S6 kinase were completely dephosphorylated during ischemia and phosphorylation did not recover completely following reperfusion. In addition, eIF2B epsilon, eIF4G1, and p70 S6 kinase protein levels decreased progressively with increasing recirculation time. Thus, several different processes contributed to ischemia-induced suppression of the initiation of protein synthesis: a long-lasting dephosphorylation of eIF2B epsilon and p70 S6K starting during ischemia, a transient phosphorylation of eIF2alpha during early reperfusion, and a marked decrease of eIF2B epsilon, eIF4G1, and p70 S6K protein levels starting during vascular occlusion (eIF4G1). Study of the mechanisms underlying ischemia-induced suppression of the initiation step of translation will help to elucidate the role of protein synthesis inhibition in the development of neuronal cell injury triggered by transient cerebral ischemia.
Collapse
Affiliation(s)
- Thorsten Mengesdorf
- Department of Experimental Neurology, Max-Planck-Institute for Neurological Research, 50931, Köln, Germany
| | | | | | | |
Collapse
|
41
|
Zhao F, Kuroiwa T, Miyasaka N, Nagaoka T, Nakane M, Tamura A, Mizusawa H. Ultrastructural and MRI study of the substantia nigra evolving exofocal post-ischemic neuronal death in the rat. Neuropathology 2002; 22:91-105. [PMID: 12416550 DOI: 10.1046/j.1440-1789.2002.00437.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To clarify the morphological characteristics of exofocal post-ischemic neuronal death (EPND) in the substantia nigra (SN), we investigated the course of light- and electron-microscopic changes of the SN of rats subjected to occlusion of the left middle cerebral artery (MCA) for 1, 2, 4, 7 and 12 days. To assess cellular edema, sequential magnetic resonance (MR) mapping of the apparent diffusion coefficient (ADC) and the T2 value test was performed. Histological and electron-microscopic examination on day 1 showed dotted chromatin clumps in the nuclei of some neurons and mild swelling of the perivascular endfeet of astrocytes in the ipsilateral SN. On day 2, a few cells of the ipsilateral SN pars reticulata (SNr) revealed key morphological signs of apoptosis--apoptotic body-like condensation and segregation of the chromatin and DNA fragmentation-like nuclear remnants. On day 4, 38% of neurons became swollen (pale neurons) with cytoplasmic microvacuoles, which appeared to originate from rough endoplasmic reticulum (rER), mitochondria and Golgi apparatus. Twenty percent of neurons showed massive proliferation of the cisternae of the rER, some of which were fragmented or had lost their normal parallel arrangement. In addition, MR mapping revealed a transient ADC decrease with a T2 increase (signifying a phase of cellular edema), which coordinated with the phase of ultrastructural cellular swelling. Further, the total number of neurons started to decrease gradually, the perivascular endfeet of astrocytes were markedly swollen, and the neuropil became loose on day 4. On day 7, reactive astrocytes and dark neurons occurred most frequently. These results suggest that the EPND in the SN after occlusion of the MCA in adult rats is due to both apoptosis and necrosis, although necrosis seems to be the dominant mechanism of the EPND. However, the morphologic resemblances of EPND to delayed neuronal death suggest these processes have a common pathomechanism.
Collapse
Affiliation(s)
- Fengyu Zhao
- Department of Neurology and Neurological Science, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Garcia-Barrio M, Dong J, Cherkasova VA, Zhang X, Zhang F, Ufano S, Lai R, Qin J, Hinnebusch AG. Serine 577 is phosphorylated and negatively affects the tRNA binding and eIF2alpha kinase activities of GCN2. J Biol Chem 2002; 277:30675-83. [PMID: 12070158 DOI: 10.1074/jbc.m203187200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase GCN2 regulates translation initiation by phosphorylating eukaryotic initiation factor 2alpha (eIF2alpha), impeding general protein synthesis but specifically inducing translation of GCN4, a transcriptional activator of amino acid biosynthetic genes in Saccharomyces cerevisiae. GCN2 activity is stimulated in amino acid-deprived cells through binding of uncharged tRNA to a domain related to histidyl tRNA synthetase. We show that GCN2 is phosphorylated by another kinase on serine 577, located N-terminal to the kinase domain. Mutation of Ser-577 to alanine produced partial activation of GCN2 in nonstarved cells, increasing the level of phosphorylated eIF2alpha, derepressing GCN4 expression, and elevating the cellular levels of tryptophan and histidine. The Ala-577 mutation also increased the tRNA binding affinity of purified GCN2, which can account for the elevated kinase activity of GCN2-S577A in nonstarved cells where uncharged tRNA levels are low. Whereas Ser-577 remains phosphorylated in amino acid-starved cells, its dephosphorylation could mediate GCN2 activation in other stress or starvation conditions by lowering the threshold of uncharged tRNA required to activate the protein.
Collapse
Affiliation(s)
- Minerva Garcia-Barrio
- Laboratory of Gene Regulation and Development, NICHD/National Institutes of Health, Building 6A, Rm. B1A13, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sorimachi T, Abe H, Takeuchi S, Tanaka R. Ischemic depolarization monitoring: evaluation of protein synthesis in the hippocampal CA1 after brief unilateral ischemia in a gerbil model. J Neurosurg 2002; 97:104-11. [PMID: 12134899 DOI: 10.3171/jns.2002.97.1.0104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors investigate whether depolarization monitoring is an accurate index of ischemic damage in a gerbil model of unilateral ischemia and assess the effects of brief cerebral ischemia on protein synthesis in this model. METHODS The authors evaluate the relationship between the duration of ischemic depolarization caused by unilateral carotid artery occlusion and ischemia-induced neuronal damage in the CA1 subregion 7 days after ischemia. When the depolarization period exceeded 210 seconds, some neuronal damage was detected, and almost complete neuronal damage was observed when the period exceeded 400 seconds. Uptake of [14C]valine was evaluated in ischemic and nonischemic CA1 subregions. Disturbances in protein synthesis were seen in all animals subjected to sublethal ischemia (< or = 210-second depolarization) after a 10-minute recirculation, and after 2 and 6 hours of recirculation in animals with 90 seconds or more of depolarization. Inhibition of protein synthesis was proportional to the length of the depolarization period. After 1 and 3 days of recirculation, protein synthesis returned to near normal, and some animals with depolarizations greater than 180 to 210 seconds showed an increase in protein synthesis. Protein synthesis in all animals returned to normal levels after 7 days of recirculation. CONCLUSIONS In this study the authors demonstrate that monitoring of ischemic depolarization is a useful method to predict neuronal damage in the hippocampal CA1 in this model, and they identify subtle changes in protein synthesis after brief ischemia. Sublethal ischemia was divided into three categories by its depolarization period (< 90 seconds, 90-180 seconds, and > 180-210 seconds) with regard to changes in protein synthesis.
Collapse
Affiliation(s)
- Takatoshi Sorimachi
- Department of Neurosurgery, Brain Research Institute, Niigata University, Japan.
| | | | | | | |
Collapse
|
44
|
Imai H, Harland J, McCulloch J, Graham DI, Brown SM, Macrae IM. Specific expression of the cell cycle regulation proteins, GADD34 and PCNA, in the peri-infarct zone after focal cerebral ischaemia in the rat. Eur J Neurosci 2002; 15:1929-36. [PMID: 12099899 DOI: 10.1046/j.1460-9568.2002.02025.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell cycle proteins play key roles in cell survival or death under pathological conditions. Expression of growth arrest and DNA damage-inducible protein, GADD34 and proliferating cell nuclear antigen (PCNA) have been investigated in the core and peri-infarct zone at 2 and 24 h after middle cerebral artery occlusion (MCAO). At these times after MCAO, numerous GADD34-positive cells were present, particularly in the peri-infarct zone (e.g. 24 +/- 4 and 52 +/- 6 immunopositive cells/0.25 mm2 at 2 and 24 h, respectively, in cortex). PCNA-immunopositive cells were barely detectable in the peri-infarct zone at 2 h; however, numerous PCNA-immunopositive cells were present in this zone by 24 h (0.7 +/- 0.3 and 10.6 +/- 1.5 immunopositive cells/0.25 mm2, respectively) as well as in the adjacent cortex and in the contralateral cingulate cortex. Most GADD34-immunopositive cells coexpressed the neuronal marker Neu-N with a smaller number coexpressing the microglial marker, Mrf-1. Evidence of morphologically 'abnormal' and 'normal' GADD34 immunopositive neurons was found within the peri-infarct zone. The majority of PCNA immunopositive cells were Mrf-1 positive with a smaller number Neu-N positive. Double-labelling revealed colocalization of GADD34 and PCNA in some cells within the peri-infarct zone and in the ependymal cells lining the ventricles. The presence of GADD34 and PCNA in a key anatomical location pertinent to the evolving ischaemic lesion indicates that GADD34, either alone or in combination with PCNA, has the potential to influence cell survival in ischaemically compromised tissue.
Collapse
Affiliation(s)
- H Imai
- Wellcome Surgical Institute, University of Glasgow, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
45
|
Wu S, Hu Y, Wang JL, Chatterjee M, Shi Y, Kaufman RJ. Ultraviolet light inhibits translation through activation of the unfolded protein response kinase PERK in the lumen of the endoplasmic reticulum. J Biol Chem 2002; 277:18077-83. [PMID: 11877419 DOI: 10.1074/jbc.m110164200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Exposure to ultraviolet light can cause inflammation, premature skin aging, and cancer. UV irradiation alters the expression of multiple genes that encode functions to repair DNA damage, arrest cell growth, and induce apoptosis. In addition, UV irradiation inhibits protein synthesis, although the mechanism is not known. In this report, we show that UV irradiation induces phosphorylation of eukaryotic translation initiation factor 2 on the alpha-subunit (eIF2alpha) and inhibits protein synthesis in a dosage- and time-dependent manner. The UV-induced phosphorylation of eIF2alpha was prevented by the overexpression of a non-phosphorylatable mutant of eIF2alpha (S51A). PERK is an eIF2alpha protein kinase localized to the endoplasmic reticulum that is activated by the accumulation of unfolded proteins in the endoplasmic reticulum. Expression of trans-dominant-negative mutants of PERK also prevented eIF2alpha phosphorylation upon UV treatment and protected from the associated translation attenuation. The luminal domain of dominant-negative mutant PERK formed heterodimers with endogenous PERK to inhibit the PERK signaling pathway. In contrast, eIF2alpha phosphorylation was not inhibited by overexpression of a trans-dominant-negative mutant kinase, PKR, supporting the theory that UV-induced eIF2alpha phosphorylation is specifically mediated by PERK. These results support a novel mechanism by which UV irradiation regulates translation via an endoplasmic reticulum-stress signaling pathway.
Collapse
Affiliation(s)
- Shiyong Wu
- Department of Radiation Oncology and Biological Chemistry, The Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Barnea A, Roberts J. Suppression of BDNF-induced expression of neuropeptide Y (NPY) in cortical cultures by oxygen-glucose deprivation: a model system to study ischemic mechanisms in the perinatal brain. J Neurosci Res 2002; 68:199-212. [PMID: 11948665 DOI: 10.1002/jnr.10191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The aim of this study was to establish a culture system that can serve as a model to study hypoxic-ischemic mechanisms regulating the functional expression of NPY neurons in the perinatal brain. Using an aggregate culture system derived from the rat fetal cortex, we defined the effects of oxygen and glucose deprivation on NPY expression, using BDNF-induced production of NPY as a functional criterion. NPY neurons exhibited a differential susceptibility to oxygen and glucose deprivation. Although the neurons could withstand oxygen deprivation for 16 hr, they were dramatically damaged by 8 hr of glucose deprivation and by 1-4 hr of deprivation of both oxygen and glucose (N+Glu-). One-hour exposure to N+Glu- led to a transient inhibition ( approximately 50%) of NPY production manifesting within 24 hr and recovering by 5 days thereafter, a 2-hr exposure to N+Glu- led to a sustained inhibition (50-75%) manifesting 1-5 days thereafter, and a 4-hr exposure to N+Glu- led to a total irreversible suppression of BDNF-induced production of NPY manifesting within 24 hr and lasting 8 days after re-supply of oxygen and glucose. Moreover, 1-hr exposure to N+Glu- led to a substantial and 4-hr exposure led to a total disappearance of immunostaining for MAP-2 and NPY but not for GFAP; indicating that neurons are the primary cell-type damaged by oxygen-glucose deprivation. Analysis of cell viability (LDH, MTT) indicated that progressive changes in cell integrity take place during the 4-hr exposure to N+Glu- followed by massive cell death 24 hr thereafter. Thus, we defined a culture system that can serve as a model to study mechanisms by which ischemic insult leads to suppression and eventually death of NPY neurons. Importantly, changes in NPY neurons can be integrated into the overall scheme of ischemic injury in the perinatal brain.
Collapse
Affiliation(s)
- Ayalla Barnea
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039, USA.
| | | |
Collapse
|
47
|
Abstract
The emerging field of nuclear eIF research has yielded many surprises and led to the dissolution of some dogmatic/ideological viewpoints of the place of translation in the regulation of gene expression. Eukaryotic initiation factors (eIFs) are classically defined by their cytoplasmic location and ability to regulate the initiation phase of protein synthesis. For instance, in the cytoplasm, the m7G cap-binding protein eIF4E plays a distinct role in cap-dependent translation initiation. Disruption of eIF4E's regulatory function drastically effects cell growth and may lead to oncogenic transformation. A growing number of studies indicate that many eIFs, including a substantial fraction of eIF4E, are found in the nucleus. Indeed, nuclear eIF4E participates in a variety of important RNA-processing events including the nucleocytoplasmic transport of specific, growth regulatory mRNAs. Although unexpected, it is possible that some eIFs regulate protein synthesis within the nucleus. This review will focus on the novel, nuclear functions of eIF4E and how they contribute to eIF4E's growth-activating and oncogenic properties. Both the cytoplasmic and nuclear functions of eIF4E appear to be dependent on its intrinsic ability to bind to the 5' m7G cap of mRNA. For example, Promyelocytic Leukemia Protein (PML) potentially acts as a negative regulator of nuclear eIF4E function by decreasing eIF4E's affinity for the m7G cap. Therefore, eIF4E protein is flexible enough to utilize a common biochemical activity, such as m7G cap binding, to participate in divergent processes in different cellular compartments.
Collapse
Affiliation(s)
- Stephen Strudwick
- Structural Biology Program, Department of Physiology & Biophysics, Mount Sinai School of Medicine, New York University, One Gustave Levy Place, New York, NY 10029, USA
| | | |
Collapse
|
48
|
Proud CG. Regulation of eukaryotic initiation factor eIF2B. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 26:95-114. [PMID: 11575168 DOI: 10.1007/978-3-642-56688-2_4] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- C G Proud
- Department of Anatomy and Physiology, MSI/WTB Complex, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| |
Collapse
|
49
|
Clemens MJ. Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2002; 27:57-89. [PMID: 11575161 DOI: 10.1007/978-3-662-09889-9_3] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alpha subunit of polypeptide chain initiation factor eIF2 can be phosphorylated by a number of related protein kinases which are activated in response to cellular stresses. Physiological conditions which result in eIF2 alpha phosphorylation include virus infection, heat shock, iron deficiency, nutrient deprivation, changes in intracellular calcium, accumulation of unfolded or denatured proteins and the induction of apoptosis. Phosphorylated eIF2 acts as a dominant inhibitor of the guanine nucleotide exchange factor eIF2B and prevents the recycling of eIF2 between successive rounds of protein synthesis. Extensive phosphorylation of eIF2 alpha and strong inhibition of eIF2B activity can result in the downregulation of the overall rate of protein synthesis; less marked changes may lead to alterations in the selective translation of alternative open reading frames in polycistronic mRNAs, as demonstrated in yeast. These mechanisms can provide a signal transduction pathway linking eukaryotic cellular stress responses to alterations in the control of gene expression at the translational level.
Collapse
Affiliation(s)
- M J Clemens
- Department of Biochemistry and Immunology, St George's Hospital Medical School, University of London, Cranmer Terrace, London SW17 0RE, UK
| |
Collapse
|
50
|
Abstract
Traumatic axonal injury (TAI), a consequence of traumatic brain injury (TBI), results from progressive pathologic processes initiated at the time of injury. Studies attempting to characterize the pathology associated with TAI have not succeeded in following damaged and/or disconnected axonal segments back to their individual neuronal somata to determine their fate. To address this issue, 71 adult male Sprague Dawley rats were subjected to moderate central fluid percussion injury and killed between 30 min and 7 d after injury. Antibodies to the C terminus of beta-amyloid precursor protein (APP) identified TAI in continuity with individual neuronal somata in the mediodorsal neocortex, the hilus of the dentate gyrus, and the dorsolateral thalamus. These somata were followed with immunocytochemical markers of neuronal injury targeting phosphorylated 200 kDa neurofilaments (RMO-24), altered protein translation (phosphorylated eukaryotic translation initiation factor 2 alpha), and cell death [terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)], with parallel electron microscopic (EM) assessment. Despite the finding of TAI within 20-50 micrometer of the soma, no evidence of cell death, long associated with proximal axotomy, was seen via TUNEL or routine light microscopy/electron microscopy. Rather, there was rapid onset (<6 hr after injury) subcellular change associated with impaired protein synthesis identified by EM, immunocytochemical, and Western blot analyses. When followed 7 d after injury, these abnormalities did not reveal dramatic progression. Rather, some somata showed evidence of potential reorganization and repair. This study demonstrates a novel somatic response to TAI in the perisomatic domain and also provides insight into the multifaceted pathology associated with TBI.
Collapse
|