1
|
Beacom MJ, Gunn AJ, Bennet L. Preterm Brain Injury: Mechanisms and Challenges. Annu Rev Physiol 2025; 87:79-106. [PMID: 39532110 DOI: 10.1146/annurev-physiol-022724-104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Preterm fetuses and newborns have a high risk of neural injury and impaired neural maturation, leading to neurodevelopmental disability. Developing effective treatments is rather challenging, as preterm brain injury may occur at any time during pregnancy and postnatally, and many cases involve multiple pathogenic factors. This review examines research on how the preterm fetus responds to hypoxia-ischemia and how brain injury evolves after hypoxia-ischemia, offering windows of opportunity for treatment and insights into the mechanisms of injury during key phases. We highlight research showing that preterm fetuses can survive hypoxia-ischemia and continue development in utero with evolving brain injury. Early detection of fetal brain injury would provide an opportunity for treatments to reduce adverse neurodevelopmental outcomes, including cerebral palsy. However, this requires that we can detect injury using noninvasive methods. We discuss how circadian changes in fetal heart rate variability may offer utility as a biomarker for detecting injury and phases of injury.
Collapse
Affiliation(s)
- Michael J Beacom
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand;
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand;
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand;
| |
Collapse
|
2
|
Ding S, Kim YJ, Huang KY, Um D, Jung Y, Kong H. Delivery-mediated exosomal therapeutics in ischemia-reperfusion injury: advances, mechanisms, and future directions. NANO CONVERGENCE 2024; 11:18. [PMID: 38689075 PMCID: PMC11061094 DOI: 10.1186/s40580-024-00423-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Ischemia-reperfusion injury (IRI) poses significant challenges across various organ systems, including the heart, brain, and kidneys. Exosomes have shown great potentials and applications in mitigating IRI-induced cell and tissue damage through modulating inflammatory responses, enhancing angiogenesis, and promoting tissue repair. Despite these advances, a more systematic understanding of exosomes from different sources and their biotransport is critical for optimizing therapeutic efficacy and accelerating the clinical adoption of exosomes for IRI therapies. Therefore, this review article overviews the administration routes of exosomes from different sources, such as mesenchymal stem cells and other somatic cells, in the context of IRI treatment. Furthermore, this article covers how the delivered exosomes modulate molecular pathways of recipient cells, aiding in the prevention of cell death and the promotions of regeneration in IRI models. In the end, this article discusses the ongoing research efforts and propose future research directions of exosome-based therapies.
Collapse
Affiliation(s)
- Shengzhe Ding
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Yu-Jin Kim
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kai-Yu Huang
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - Daniel Um
- Bioengineering, University of Illinois, Urbana, IL, 61801, USA
| | - Youngmee Jung
- Center for Biomaterials, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-KIST Institute, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyunjoon Kong
- Chemical & Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA.
- Bioengineering, University of Illinois, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
- Chan Zuckerberg Biohub-Chicago, Chicago, USA.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
3
|
Xiong Q, Li X, Xia L, Yao Z, Shi X, Dong Z. Dihydroartemisinin attenuates hypoxic-ischemic brain damage in neonatal rats by inhibiting oxidative stress. Mol Brain 2022; 15:36. [PMID: 35484595 PMCID: PMC9052669 DOI: 10.1186/s13041-022-00921-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) induced by perinatal asphyxia is a major cause of neurological disability among infants. Dihydroartemisinin (DHA), derived from artemisinin, well known as an anti-malarial medicine, was proved to be able to inhibit oxidative stress and inflammation. However, whether those functions of DHA play roles in hypoxic-ischemic brain damage (HIBD), an animal model of HIE in patient which also been observed to have oxidative stress and inflammation, is unknown. In this study, we demonstrated that the DHA treatment on newborn rats significantly relieved the neuron loss and motor and cognitive impairment caused by HIBD. One of the underlying mechanisms is that DHA enhanced the anti-oxidant capacity of HIBD rats by up-regulating the total antioxidant capacity (T-AOC), gluathione reductase (GR) and catalase (CAT) while down regulating the pro-oxidative substances including hydrogen peroxide (H2O2), total nitric oxide synthase (T-NOS) and inducible nitric oxide synthase (iNOS). Thus, our study illustrated that DHA could alleviate the damage of brains and improve the cognitive and motor function of HIBD rats by inhibiting oxidative stress, provided an opportunity to interrogate potential therapeutics for affected HIE patients.
Collapse
Affiliation(s)
- Qian Xiong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiaohuan Li
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lei Xia
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhengyu Yao
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xiuyu Shi
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Zhifang Dong
- Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
4
|
Mitochondrial dynamics in the neonatal brain - a potential target following injury? Biosci Rep 2022; 42:231001. [PMID: 35319070 PMCID: PMC8965818 DOI: 10.1042/bsr20211696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/08/2023] Open
Abstract
The impact of birth asphyxia and its sequelae, hypoxic–ischaemic (HI) brain injury, is long-lasting and significant, both for the infant and for their family. Treatment options are limited to therapeutic hypothermia, which is not universally successful and is unavailable in low resource settings. The energy deficits that accompany neuronal death following interruption of blood flow to the brain implicate mitochondrial dysfunction. Such HI insults trigger mitochondrial outer membrane permeabilisation leading to release of pro-apoptotic proteins into the cytosol and cell death. More recently, key players in mitochondrial fission and fusion have been identified as targets following HI brain injury. This review aims to provide an introduction to the molecular players and pathways driving mitochondrial dynamics, the regulation of these pathways and how they are altered following HI insult. Finally, we review progress on repurposing or repositioning drugs already approved for other indications, which may target mitochondrial dynamics and provide promising avenues for intervention following brain injury. Such repurposing may provide a mechanism to fast-track, low-cost treatment options to the clinic.
Collapse
|
5
|
Chen M, Zhang X, Fan J, Sun H, Yao Q, Shi J, Qu H, Du S, Cheng Y, Ma S, Zhang M, Zhan S. Dynorphin A (1-8) inhibits oxidative stress and apoptosis in MCAO rats, affording neuroprotection through NMDA receptor and κ-opioid receptor channels. Neuropeptides 2021; 89:102182. [PMID: 34298371 DOI: 10.1016/j.npep.2021.102182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 11/18/2022]
Abstract
The contents of Dynorphin A(1-8) decreased gradually in ischemic cortices in rats and an intracerebroventricular administration of synthetic Dynorphin A(1-8) reduced the volume of cerebral infarction in our previous research. However, the specific protective mechanism is unclear and Dynorphin A(1-8) is unlikely to cross the blood-brain barrier (BBB) by noninvasive oral or intravenous administration as a macromolecule neuropeptide. In this study, intranasal administration was used to middle cerebral artery occlusion(MCAO) rats to assessed the therapeutic effects of Dynorphin A(1-8) by evaluating behavior, volume of cerebral infarct, cerebral edema ratio, histological observation. Then apoptosis neuron rate was detected by TUNEL staining. Immunohistochemical staining was carried out to explore the alteration of Bcl-2, Bax and Caspase-3. Finally, κ-opioid receptor antagonist and N-methyl-d-aspartate(NMDA) receptor antagonist were used to explore its possible mechanism. We found that MCAO rats under intranasal administration of Dynorphin A(1-8) showed better behavioral improvement, higher extent of Bcl-2, activity of SOD along with much lower level of infarction volume, brain water content, number of cell apoptosis, extent of Bax and Caspase-3, and concentration of MDA compared with those in MCAO model group and intravenous Dynorphin A(1-8) group. Administration of nor-BNI or MK-801 reversed these neuroprotective effects of intranasal Dynorphin A(1-8). In summary, Dynorphin A(1-8), with advantages of intranasal administration, could be effectively delivered to central nervous system(CNS). Dynorphin A(1-8) inhibited oxidative stress and apoptosis against cerebral ischemia/reperfusion injury, affording neuroprotection through NMDA receptor and κ-opioid receptor channels.
Collapse
Affiliation(s)
- Mengying Chen
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaodong Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jiaxin Fan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hong Sun
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Qingling Yao
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Jinming Shi
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Huiyang Qu
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuang Du
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yuxuan Cheng
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuyin Ma
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Meijuan Zhang
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Shuqin Zhan
- Department of Neurology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
6
|
Early environmental enrichment rescues memory impairments provoked by mild neonatal hypoxia-ischemia in adolescent mice. Behav Brain Res 2021; 407:113237. [PMID: 33798820 DOI: 10.1016/j.bbr.2021.113237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Hypoxia-ischemia (HI) is a consequence of a lack of oxygen and glucose support to the developing brain, which causes several neurodevelopmental impairments. Environmental enrichment (EE) is considered an option to recover the alterations observed in rodents exposed to HI. The aim of this study was to investigate the impact of early EE on memory, hippocampal volume and brain-derived neurotrophic factor (Bbnf) and glucocorticoid receptor (Nr3c1) gene expression of mice exposed to HI. At P10, pups underwent right carotid artery permanent occlusion followed by 35 min of 8% O2 hypoxic environment. Starting at P11, animals were reared in EE or in standard cage (HI-SC or SHAM-SC) conditions until behavioral testing (P45). SHAM pups did not undergo carotid ligation and hypoxic exposure. Memory performance was assessed in the Y-maze, Novel object recognition, and Barnes maze. Animals were then sacrificed for analysis of hippocampal volume and Bdnf and Nr3c1 gene expression. We observed that animals exposed to HI performed worse in all three tests compared to SHAM animals. Furthermore, HI animals exposed to EE did not differ from SHAM animals in all tasks. Moreover, HI decreased hippocampal volume, while animals reared in early EE were not different compared to SHAM animals. Animals exposed to HI also showed upregulated hippocampal Bdnf expression compared to SHAM animals. We conclude that early EE from P11 to P45 proved to be effective in recovering memory impairments and hippocampal volume loss elicited by HI. Nevertheless, Bdnf expression was not associated with the improvements in memory performance observed in animals exposed to EE after a hypoxic-ischemic event.
Collapse
|
7
|
Zhang G, Lu Y, Yang L, Dong Y, Wen J, Xu J, Zhang Q. Methylene blue post-treatment improves hypoxia-ischemic recovery in a neonatal rat model. Neurochem Int 2020; 139:104782. [PMID: 32628986 DOI: 10.1016/j.neuint.2020.104782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/11/2020] [Accepted: 06/03/2020] [Indexed: 02/05/2023]
|
8
|
Greco P, Nencini G, Piva I, Scioscia M, Volta CA, Spadaro S, Neri M, Bonaccorsi G, Greco F, Cocco I, Sorrentino F, D'Antonio F, Nappi L. Pathophysiology of hypoxic-ischemic encephalopathy: a review of the past and a view on the future. Acta Neurol Belg 2020; 120:277-288. [PMID: 32112349 DOI: 10.1007/s13760-020-01308-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Hypoxic-ischemic encephalopathy, also referred as HIE, is a type of brain injury or damage that is caused by a lack of oxygen to the brain during neonatal period. The incidence is approximately 1.5 cases per 1000 live births in developed countries. In low and middle-income countries, the incidence is much higher (10‒20 per 1000 live births). The treatment for neonatal HIE is hypothermia that is only partially effective (not more than 50% of the neonates treated achieve an improved outcome). HIE pathophysiology involves oxidative stress, mitochondrial energy production failure, glutaminergic excitotoxicity, and apoptosis. So, in the last years, many studies have focused on peptides that act somewhere in the pathway activated by severe anoxic injury leading to HIE. This review describes the pathophysiology of perinatal HIE and the mechanisms that could be the target of innovative HIE treatments.
Collapse
Affiliation(s)
- P Greco
- Department of Morphology, Surgery and Experimental Medicine, Institute of Obstetrics and Gynaecology, University of Ferrara, 44121, Ferrara, Italy
| | - G Nencini
- Department of Morphology, Surgery and Experimental Medicine, Institute of Obstetrics and Gynaecology, University of Ferrara, 44121, Ferrara, Italy
| | - I Piva
- Department of Women Health, Infancy and Adolescence, AUSL Ravenna, 48121, Ravenna, Italy
| | - M Scioscia
- Department of Obstetrics and Gynaecology, Policlinico Hospital of Abano Terme, Padua, Italy
| | - C A Volta
- Section of Anesthesia and Intensive Care, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - S Spadaro
- Section of Anesthesia and Intensive Care, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - M Neri
- Section of Forensic Medicine, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121, Ferrara, Italy
| | - G Bonaccorsi
- Department of Morphology, Surgery and Experimental Medicine, Institute of Obstetrics and Gynaecology, University of Ferrara, 44121, Ferrara, Italy
| | - F Greco
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynaecology, University of Foggia, 71121, Foggia, Italy
| | - I Cocco
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynaecology, University of Foggia, 71121, Foggia, Italy
| | - F Sorrentino
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynaecology, University of Foggia, 71121, Foggia, Italy.
| | - F D'Antonio
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynaecology, University of Foggia, 71121, Foggia, Italy
| | - L Nappi
- Department of Medical and Surgical Sciences, Institute of Obstetrics and Gynaecology, University of Foggia, 71121, Foggia, Italy
| |
Collapse
|
9
|
Stepanova A, Sosunov S, Niatsetskaya Z, Konrad C, Starkov AA, Manfredi G, Wittig I, Ten V, Galkin A. Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury. Antioxid Redox Signal 2019; 31:608-622. [PMID: 31037949 PMCID: PMC6657304 DOI: 10.1089/ars.2018.7693] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aims: Brain ischemia/reperfusion (I/R) is associated with impairment of mitochondrial function. However, the mechanisms of mitochondrial failure are not fully understood. This work was undertaken to determine the mechanisms and time course of mitochondrial energy dysfunction after reperfusion following neonatal brain hypoxia-ischemia (HI) in mice. Results: HI/reperfusion decreased the activity of mitochondrial complex I, which was recovered after 30 min of reperfusion and then declined again after 1 h. Decreased complex I activity occurred in parallel with a loss in the content of noncovalently bound membrane flavin mononucleotide (FMN). FMN dissociation from the enzyme is caused by succinate-supported reverse electron transfer. Administration of FMN precursor riboflavin before HI/reperfusion was associated with decreased infarct volume, attenuation of neurological deficit, and preserved complex I activity compared with vehicle-treated mice. In vitro, the rate of FMN release during oxidation of succinate was not affected by the oxygen level and amount of endogenously produced reactive oxygen species. Innovation: Our data suggest that dissociation of FMN from mitochondrial complex I may represent a novel mechanism of enzyme inhibition defining respiratory chain failure in I/R. Strategies preventing FMN release during HI and reperfusion may limit the extent of energy failure and cerebral HI injury. The proposed mechanism of acute I/R-induced complex I impairment is distinct from the generally accepted mechanism of oxidative stress-mediated I/R injury. Conclusion: Our study is the first to highlight a critical role of mitochondrial complex I-FMN dissociation in the development of HI-reperfusion injury of the neonatal brain. Antioxid. Redox Signal. 31, 608-622.
Collapse
Affiliation(s)
- Anna Stepanova
- 1Division of Neonatology, Department of Pediatrics, Columbia University, New York, New York
| | - Sergey Sosunov
- 1Division of Neonatology, Department of Pediatrics, Columbia University, New York, New York
| | - Zoya Niatsetskaya
- 1Division of Neonatology, Department of Pediatrics, Columbia University, New York, New York
| | - Csaba Konrad
- 2Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Anatoly A Starkov
- 2Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Giovanni Manfredi
- 2Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York
| | - Ilka Wittig
- 3Functional Proteomics, SFB815 Core Unit, Medical School, Goethe University, Frankfurt, Germany.,4German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Vadim Ten
- 1Division of Neonatology, Department of Pediatrics, Columbia University, New York, New York
| | - Alexander Galkin
- 1Division of Neonatology, Department of Pediatrics, Columbia University, New York, New York
| |
Collapse
|
10
|
Stepanova A, Konrad C, Guerrero-Castillo S, Manfredi G, Vannucci S, Arnold S, Galkin A. Deactivation of mitochondrial complex I after hypoxia-ischemia in the immature brain. J Cereb Blood Flow Metab 2019; 39:1790-1802. [PMID: 29629602 PMCID: PMC6727140 DOI: 10.1177/0271678x18770331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mortality from perinatal hypoxic-ischemic (HI) brain injury reached 1.15 million worldwide in 2010 and is also a major factor for neurological disability in infants. HI directly influences the oxidative phosphorylation enzyme complexes in mitochondria, but the exact mechanism of HI-reoxygenation response in brain remains largely unresolved. After induction of HI-reoxygenation in postnatal day 10 rats, activities of mitochondrial respiratory chain enzymes were analysed and complexome profiling was performed. The effect of conformational state (active/deactive (A/D) transition) of mitochondrial complex I on H2O2 release was measured simultaneously with mitochondrial oxygen consumption. In contrast to cytochrome c oxidase and succinate dehydrogenase, HI-reoxygenation resulted in inhibition of mitochondrial complex I at 4 h after reoxygenation. Immediately after HI, we observed a robust increase in the content of deactive (D) form of complex I. The D-form is less active in reactive oxygen species (ROS) production via reversed electron transfer, indicating the key role of the deactivation of complex I in ischemia/reoxygenation. We describe a novel mechanism of mitochondrial response to ischemia in the immature brain. HI induced a deactivation of complex I in order to reduce ROS production following reoxygenation. Delayed activation of complex I represents a novel mitochondrial target for pathological-activated therapy.
Collapse
Affiliation(s)
- Anna Stepanova
- 1 School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, UK.,2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Csaba Konrad
- 2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sergio Guerrero-Castillo
- 3 Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Giovanni Manfredi
- 2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Susan Vannucci
- 4 Department of Pediatrics/Newborn Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Susanne Arnold
- 3 Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Galkin
- 1 School of Biological Sciences, Queen's University Belfast, Medical Biology Centre, Belfast, UK.,2 Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
11
|
Koning G, Leverin AL, Nair S, Schwendimann L, Ek J, Carlsson Y, Gressens P, Thornton C, Wang X, Mallard C, Hagberg H. Magnesium induces preconditioning of the neonatal brain via profound mitochondrial protection. J Cereb Blood Flow Metab 2019; 39:1038-1055. [PMID: 29206066 PMCID: PMC6547197 DOI: 10.1177/0271678x17746132] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/12/2017] [Accepted: 11/06/2017] [Indexed: 12/11/2022]
Abstract
Magnesium sulphate (MgSO4) given to women in preterm labor reduces cerebral palsy in their offspring but the mechanism behind this protection is unclear, limiting its effective, safe clinical implementation. Previous studies suggest that MgSO4 is not neuroprotective if administered during or after the insult, so we hypothesised that MgSO4 induces preconditioning in the immature brain. Therefore, we administered MgSO4 at various time-points before/after unilateral hypoxia-ischemia (HI) in seven-day-old rats. We found that MgSO4 treatment administered as a bolus between 6 days and 12 h prior to HI markedly reduced the brain injury, with maximal protection achieved by 1.1 mg/g MgSO4 administered 24 h before HI. As serum magnesium levels returned to baseline before the induction of HI, we ascribed this reduction in brain injury to preconditioning. Cerebral blood flow was unaffected, but mRNAs/miRNAs involved in mitochondrial function and metabolism were modulated by MgSO4. Metabolomic analysis (H+-NMR) disclosed that MgSO4 attenuated HI-induced increases in succinate and prevented depletion of high-energy phosphates. MgSO4 pretreatment preserved mitochondrial respiration, reducing ROS production and inflammation after HI. Therefore, we propose that MgSO4 evokes preconditioning via induction of mitochondrial resistance and attenuation of inflammation.
Collapse
Affiliation(s)
- Gabriella Koning
- Perinatal Center, Institute of
Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg,
Sweden
| | - Anna-Lena Leverin
- Perinatal Center, Institute of
Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg,
Sweden
| | - Syam Nair
- Perinatal Center, Institute of
Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg,
Sweden
| | - Leslie Schwendimann
- PROTECT, INSERM, Université Paris
Diderot, Sorbonne Paris Cité, Paris, France
| | - Joakim Ek
- Perinatal Center, Institute of
Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg,
Sweden
| | - Ylva Carlsson
- Perinatal Center, Department of Clinical
Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Pierre Gressens
- PROTECT, INSERM, Université Paris
Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain,
Department of Perinatal Imaging and Health, King's College London, London, UK
| | - Claire Thornton
- Centre for the Developing Brain,
Department of Perinatal Imaging and Health, King's College London, London, UK
| | - Xiaoyang Wang
- Perinatal Center, Institute of
Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg,
Sweden
| | - Carina Mallard
- Perinatal Center, Institute of
Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg,
Sweden
| | - Henrik Hagberg
- Perinatal Center, Institute of
Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg,
Sweden
- Perinatal Center, Department of Clinical
Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Centre for the Developing Brain,
Department of Perinatal Imaging and Health, King's College London, London, UK
| |
Collapse
|
12
|
Rocha-Ferreira E, Poupon L, Zelco A, Leverin AL, Nair S, Jonsdotter A, Carlsson Y, Thornton C, Hagberg H, Rahim AA. Neuroprotective exendin-4 enhances hypothermia therapy in a model of hypoxic-ischaemic encephalopathy. Brain 2018; 141:2925-2942. [PMID: 30165597 PMCID: PMC6158761 DOI: 10.1093/brain/awy220] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 12/29/2022] Open
Abstract
Hypoxic-ischaemic encephalopathy remains a global health burden. Despite medical advances and treatment with therapeutic hypothermia, over 50% of cooled infants are not protected and still develop lifelong neurodisabilities, including cerebral palsy. Furthermore, hypothermia is not used in preterm cases or low resource settings. Alternatives or adjunct therapies are urgently needed. Exendin-4 is a drug used to treat type 2 diabetes mellitus that has also demonstrated neuroprotective properties, and is currently being tested in clinical trials for Alzheimer's and Parkinson's diseases. Therefore, we hypothesized a neuroprotective effect for exendin-4 in neonatal neurodisorders, particularly in the treatment of neonatal hypoxic-ischaemic encephalopathy. Initially, we confirmed that the glucagon like peptide 1 receptor (GLP1R) was expressed in the human neonatal brain and in murine neurons at postnatal Day 7 (human equivalent late preterm) and postnatal Day 10 (term). Using a well characterized mouse model of neonatal hypoxic-ischaemic brain injury, we investigated the potential neuroprotective effect of exendin-4 in both postnatal Day 7 and 10 mice. An optimal exendin-4 treatment dosing regimen was identified, where four high doses (0.5 µg/g) starting at 0 h, then at 12 h, 24 h and 36 h after postnatal Day 7 hypoxic-ischaemic insult resulted in significant brain neuroprotection. Furthermore, neuroprotection was sustained even when treatment using exendin-4 was delayed by 2 h post hypoxic-ischaemic brain injury. This protective effect was observed in various histopathological markers: tissue infarction, cell death, astrogliosis, microglial and endothelial activation. Blood glucose levels were not altered by high dose exendin-4 administration when compared to controls. Exendin-4 administration did not result in adverse organ histopathology (haematoxylin and eosin) or inflammation (CD68). Despite initial reduced weight gain, animals restored weight gain following end of treatment. Overall high dose exendin-4 administration was well tolerated. To mimic the clinical scenario, postnatal Day 10 mice underwent exendin-4 and therapeutic hypothermia treatment, either alone or in combination, and brain tissue loss was assessed after 1 week. Exendin-4 treatment resulted in significant neuroprotection alone, and enhanced the cerebroprotective effect of therapeutic hypothermia. In summary, the safety and tolerance of high dose exendin-4 administrations, combined with its neuroprotective effect alone or in conjunction with clinically relevant hypothermia make the repurposing of exendin-4 for the treatment of neonatal hypoxic-ischaemic encephalopathy particularly promising.
Collapse
Affiliation(s)
- Eridan Rocha-Ferreira
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology & Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
- EGA Institute for Women’s Health, University College London, UK
| | - Laura Poupon
- UCL School of Pharmacy, University College London, UK
| | - Aura Zelco
- UCL School of Pharmacy, University College London, UK
| | - Anna-Lena Leverin
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology & Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Syam Nair
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology & Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Andrea Jonsdotter
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology & Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Ylva Carlsson
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology & Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Claire Thornton
- Department of Women and Children’s Health, Centre for the Developing Brain, School of Life Course Sciences, King’s College London, UK
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Department of Obstetrics and Gynecology & Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
- Department of Perinatal Imaging and Health, Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King s College London, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, UK
| |
Collapse
|
13
|
Song Z, Yang W, Cheng G, Zhou X, Yang L, Zhao D. Prion protein is essential for the RE1 silencing transcription factor (REST)-dependent developmental switch in synaptic NMDA receptors. Cell Death Dis 2018; 9:541. [PMID: 29748616 PMCID: PMC5945644 DOI: 10.1038/s41419-018-0576-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
Abstract
It is important that the correct amounts of GluN2 subunits are maintained, as they determine NMDAR functional properties, which are crucial to neuronal communication, synaptogenesis and cognitive function. The transcriptional repressor RE1 silencing transcription factor (REST) is critical for the postnatal developmental switch in NMDARs. However, the mechanisms triggering REST and the link between NMDARs and REST are unclear. Here we show a new physiological essential role for cellular prion protein (PrPC) in REST-dependent homeostasis and the developmental switch of NMDARs. REST and REST-associated proteins were overactivated in the hippocampi of Prnp knockout mice (Prnp 0/0 ) compared with wild-type Prnp (Prnp +/+ ) mice. This coincided with the disruption of the normal developmental switch from GluN2B-to-GluN2A in vivo. PrPC co-located with REST under physiological environments and mediated the translocation of REST in conditioners of NMDARs in vitro in Prnp +/+ hippocampal neurons. Regardless of whether REST was knocked down or overexpressed, deletion of PrPC not only disrupted REST-mediated distribution of mitochondria, but also prevented REST-regulated expression of GluN2B and GluN2A in Prnp 0/0 . Importantly, these effects were rescued after overexpression of full-length PrPC through restoration of NMDAR2 subunits and their distributions in dendritic processes in Prnp 0/0 . Consistently, knockdown of PrPC in Prnp +/+ had a similar effect on Prnp 0/0 . Furthermore, PrPC colocalized with both GluN2B and GluN2A in Prnp +/+ . For the first time, we demonstrate that PrPC is essential for REST-regulated NMDARs. Confirming the regulation of NMDAR-modulating mechanisms could provide novel therapeutic targets against dysfunctions of glutamatergic transmission in the nervous system.
Collapse
Affiliation(s)
- Zhiqi Song
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical Collage (PUMC), Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, 100021, Beijing, China
| | - Wei Yang
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
- Hebei Institute of Animal Science and Veterinary Medicine, 071000, Baoding, China
| | - Guangyu Cheng
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Xiangmei Zhou
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Lifeng Yang
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Deming Zhao
- The State Key Laboratories for Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, Ministry of Agriculture, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
14
|
Perinatal Asphyxia and Brain Development: Mitochondrial Damage Without Anatomical or Cellular Losses. Mol Neurobiol 2018; 55:8668-8679. [PMID: 29582399 DOI: 10.1007/s12035-018-1019-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/16/2018] [Indexed: 01/05/2023]
Abstract
Perinatal asphyxia remains a significant cause of neonatal mortality and is associated with long-term neurodegenerative disorders. In the present study, we evaluated cellular and subcellular damages to brain development in a model of mild perinatal asphyxia. Survival rate in the experimental group was 67%. One hour after the insult, intraperitoneally injected Evans blue could be detected in the fetuses' brains, indicating disruption of the blood-brain barrier. Although brain mass and absolute cell numbers (neurons and non-neurons) were not reduced after perinatal asphyxia immediately and in late brain development, subcellular alterations were detected. Cortical oxygen consumption increased immediately after asphyxia, and remained high up to 7 days, returning to normal levels after 14 days. We observed an increased resistance to mitochondrial membrane permeability transition, and calcium buffering capacity in asphyxiated animals from birth to 14 days after the insult. In contrast to ex vivo data, mitochondrial oxygen consumption in primary cell cultures of neurons and astrocytes was not altered after 1% hypoxia. Taken together, our results demonstrate that although newborns were viable and apparently healthy, brain development is subcellularly altered by perinatal asphyxia. Our findings place the neonate brain mitochondria as a potential target for therapeutic protective interventions.
Collapse
|
15
|
Lau GY, Richards JG. Interspecific variation in brain mitochondrial complex I and II capacity and ROS emission in marine sculpins. J Exp Biol 2018; 222:jeb.189407. [DOI: 10.1242/jeb.189407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/29/2018] [Indexed: 12/29/2022]
Abstract
Environmental hypoxia presents a metabolic challenge for animals because it inhibits mitochondrial respiration and can lead to the generation of reactive oxygen species (ROS). We investigated the interplay between O2 use for aerobic respiration and ROS generation among sculpin fishes (Cottidae, Actinopterygii) that are known to vary in whole-animal hypoxia tolerance. We hypothesized that mitochondria from hypoxia tolerant sculpins would show more efficient O2 use with a higher phosphorylation efficiency and lower ROS emission. We showed that brain mitochondria from more hypoxia tolerant sculpins had lower complex I and higher complex II flux capacities compared with less hypoxia tolerant sculpins, but these differences were not related to variation in phosphorylation efficiency (ADP/O) or mitochondrial coupling (respiratory control ratio). The hypoxia tolerant sculpin had higher mitochondrial H2O2 emission per O2 consumed (H2O2/O2) under oligomycin-induced state 4 conditions compared to less hypoxia tolerant sculpin. An in vitro redox challenge experiment revealed species differences in how well mitochondria defend their glutathione redox status when challenged with high levels of reduced glutathione, but the redox challenge elicited the same H2O2/O2 in all species. Furthermore, in vitro anoxia-recovery lowered absolute H2O2 emission (H2O2/mg mitochondrial protein) in all species and negatively impacted state 3 respiration rates in some species, but the responses were not related to hypoxia tolerance. Overall, we clearly demonstrate a relationship between hypoxia tolerance and complex I and II flux capacities in sculpins, but the differences in complex flux capacity do not appear to be directly related to variation in ROS metabolism.
Collapse
Affiliation(s)
- Gigi Y. Lau
- Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, B.C., Canada, V6T 1Z4
| | - Jeffrey G. Richards
- Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, B.C., Canada, V6T 1Z4
| |
Collapse
|
16
|
Abstract
The term ‘Cerebral hypoxia’ refers to reduced supply of oxygen to the brain tissues. If a brain cell becomes completely deprived of oxygen, the condition is referred to as cerebral anoxia. Since brain needs constant supply of oxygen for its vital functioning, cerebral hypoxia can have major impact of cerebral hemispheres, leading to cognitive, behavioural as well as personality changes including anxiety, depression and memory loss.
Collapse
|
17
|
Baburamani AA, Sobotka KS, Vontell R, Mallard C, Supramaniam VG, Thornton C, Hagberg H. Effect of Trp53 gene deficiency on brain injury after neonatal hypoxia-ischemia. Oncotarget 2017; 8:12081-12092. [PMID: 28076846 PMCID: PMC5355327 DOI: 10.18632/oncotarget.14518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/26/2016] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-ischemia (HI) can result in permanent life-long injuries such as motor and cognitive deficits. In response to cellular stressors such as hypoxia, tumor suppressor protein p53 is activated, potently initiating apoptosis and promoting Bax-dependent mitochondrial outer membrane permeabilization. The aim of this study was to investigate the effect of Trp53 genetic inhibition on injury development in the immature brain following HI. HI (50 min or 60 min) was induced at postnatal day 9 (PND9) in Trp53 heterozygote (het) and wild type (WT) mice. Utilizing Cre-LoxP technology, CaMK2α-Cre mice were bred with Trp53-Lox mice, resulting in knockdown of Trp53 in CaMK2α neurons. HI was induced at PND12 (50 min) and PND28 (40 min). Extent of brain injury was assessed 7 days following HI. Following 50 min HI at PND9, Trp53 het mice showed protection in the posterior hippocampus and thalamus. No difference was seen between WT or Trp53 het mice following a severe, 60 min HI. Cre-Lox mice that were subjected to HI at PND12 showed no difference in injury, however we determined that neuronal specific CaMK2α-Cre recombinase activity was strongly expressed by PND28. Concomitantly, Trp53 was reduced at 6 weeks of age in KO-Lox Trp53 mice. Cre-Lox mice subjected to HI at PND28 showed no significant difference in brain injury. These data suggest that p53 has a limited contribution to the development of injury in the immature/juvenile brain following HI. Further studies are required to determine the effect of p53 on downstream targets.
Collapse
Affiliation(s)
- Ana A Baburamani
- Perinatal Brain Injury Group, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom.,Perinatal Center, Institute of Neuroscience and Physiology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Kristina S Sobotka
- Perinatal Center, Institute of Neuroscience and Physiology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Regina Vontell
- Perinatal Brain Injury Group, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Carina Mallard
- Perinatal Center, Institute of Neuroscience and Physiology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Veena G Supramaniam
- Perinatal Brain Injury Group, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Claire Thornton
- Perinatal Brain Injury Group, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Henrik Hagberg
- Perinatal Brain Injury Group, Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom.,Perinatal Center, Institute of Neuroscience and Physiology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
18
|
Vulnerability to a Metabolic Challenge Following Perinatal Asphyxia Evaluated by Organotypic Cultures: Neonatal Nicotinamide Treatment. Neurotox Res 2017. [PMID: 28631256 DOI: 10.1007/s12640-017-9755-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypothesis of enhanced vulnerability following perinatal asphyxia was investigated with a protocol combining in vivo and in vitro experiments. Asphyxia-exposed (AS) (by 21 min water immersion of foetuses containing uterine horns) and caesarean-delivered control (CS) rat neonates were used at P2-3 for preparing triple organotypic cultures (substantia nigra, neostriatum and neocortex). At DIV 18, cultures were exposed to different concentrations of H2O2 (0.25-45 mM), added to the culture medium for 18 h. After a 48-h recovery period, the cultures were either assessed for cell viability or for neurochemical phenotype by confocal microscopy. Energy metabolism (ADP/ATP ratio), oxidative stress (GSH/GSSG) and a modified ferric reducing/antioxidant power assay were applied to homogenates of parallel culture series. In CS cultures, the number of dying cells was similar in substantia nigra, neostriatum and neocortex, but it was several times increased in AS cultures evaluated under the same conditions. A H2O2 challenge led to a concentration-dependent increase in cell death (>fourfold after 0.25 mM of H2O2) in CS cultures. In AS cultures, a significant increase in cell death was only observed after 0.5 mM of H2O2. At higher than 1 mM of H2O2 (up to 45 mM), cell death increased several times in all cultures, but the effect was still more prominent in CS than in AS cultures. The cell phenotype of dying/alive cells was investigated in formalin-fixed cultures exposed to 0 or 1 mM of H2O2, co-labelling for TUNEL (apoptosis), MAP-2 (neuronal phenotype), GFAP (astroglial phenotype) and TH (tyrosine hydroxylase; for dopamine phenotype), counterstaining for DAPI (nuclear staining), also evaluating the effect of a single dose of nicotinamide (0.8 nmol/kg, i.p. injected in 100 μL, 60 min after delivery). Perinatal asphyxia produced a significant increase in the number of DAPI/TUNEL cells/mm3, in substantia nigra and neostriatum. One millimolar of H202 increased the number of DAPI/TUNEL cells/mm3 by ≈twofold in all regions of CS and AS cultures, an effect that was prevented by neonatal nicotinamide treatment. In substantia nigra, the number of MAP-2/TH-positive cells/mm3 was decreased in AS compared to CS cultures, also by 1 mM of H202, both in CS and AS cultures, prevented by nicotinamide. In agreement, the number of MAP-2/TUNEL-positive cells/mm3 was increased by 1 mM H2O2, both in CS (twofold) and AS (threefold) cultures, prevented by nicotinamide. The number of MAP-2/TH/TUNEL-positive cells/mm3 was only increased in CS (>threefold), but not in AS (1.3-fold) cultures. No TH labelling was observed in neostriatum, but 1 mM of H2O2 produced a strong increase in the number of MAP-2/TUNEL-positive cells/mm3, both in CS (>2.9-fold) and AS (>fourfold), decreased by nicotinamide. In neocortex, H2O2 increased the number of MAP-2/TUNEL-positive cells/mm3, both in CS and AS cultures (≈threefold), decreased by nicotinamide. The ADP/ATP ratio was increased in AS culture homogenates (>sixfold), compared to CS homogenates, increased by 1 mM of H202, both in CS and AS homogenates. The GSH/GSSG ratio was significantly decreased in AS, compared to CS cultures. One millimolar of H2O2 decreased that ratio in CS and AS homogenates. The present results demonstrate that perinatal asphyxia induces long-term changes in metabolic pathways related to energy and oxidative stress, priming cell vulnerability with both neuronal and glial phenotype. The observed effects were region dependent, being the substantia nigra particularly prone to cell death. Nicotinamide administration in vivo prevented the deleterious effects observed after perinatal asphyxia in vitro, a suitable pharmacological strategy against the deleterious consequences of perinatal asphyxia.
Collapse
|
19
|
Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury. Neural Plast 2016; 2016:4901014. [PMID: 27047695 PMCID: PMC4800097 DOI: 10.1155/2016/4901014] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/12/2016] [Accepted: 02/07/2016] [Indexed: 12/03/2022] Open
Abstract
Hypoxic-ischaemic damage to the developing brain is a leading cause of child death, with high mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The developmental stage of the brain and the severity of the insult influence the selective regional vulnerability and the subsequent clinical manifestations. The increased susceptibility to hypoxia-ischaemia (HI) of periventricular white matter in preterm infants predisposes the immature brain to motor, cognitive, and sensory deficits, with cognitive impairment associated with earlier gestational age. In term infants HI causes selective damage to sensorimotor cortex, basal ganglia, thalamus, and brain stem. Even though the immature brain is more malleable to external stimuli compared to the adult one, a hypoxic-ischaemic event to the neonate interrupts the shaping of central motor pathways and can affect normal developmental plasticity through altering neurotransmission, changes in cellular signalling, neural connectivity and function, wrong targeted innervation, and interruption of developmental apoptosis. Models of neonatal HI demonstrate three morphologically different types of cell death, that is, apoptosis, necrosis, and autophagy, which crosstalk and can exist as a continuum in the same cell. In the present review we discuss the mechanisms of HI injury to the immature brain and the way they affect plasticity.
Collapse
|
20
|
Erdemli HK, Akyol S, Armutcu F, Gulec MA, Canbal M, Akyol O. Melatonin and caffeic acid phenethyl ester in the regulation of mitochondrial function and apoptosis: The basis for future medical approaches. Life Sci 2016; 148:305-12. [DOI: 10.1016/j.lfs.2016.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 12/20/2022]
|
21
|
Gopagondanahalli KR, Li J, Fahey MC, Hunt RW, Jenkin G, Miller SL, Malhotra A. Preterm Hypoxic-Ischemic Encephalopathy. Front Pediatr 2016; 4:114. [PMID: 27812521 PMCID: PMC5071348 DOI: 10.3389/fped.2016.00114] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/05/2016] [Indexed: 11/18/2022] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a recognizable and defined clinical syndrome in term infants that results from a severe or prolonged hypoxic-ischemic episode before or during birth. However, in the preterm infant, defining hypoxic-ischemic injury (HII), its clinical course, monitoring, and outcomes remains complex. Few studies examine preterm HIE, and these are heterogeneous, with variable inclusion criteria and outcomes reported. We examine the available evidence that implies that the incidence of hypoxic-ischemic insult in preterm infants is probably higher than recognized and follows a more complex clinical course, with higher rates of adverse neurological outcomes, compared to term infants. This review aims to elucidate the causes and consequences of preterm hypoxia-ischemia, the subsequent clinical encephalopathy syndrome, diagnostic tools, and outcomes. Finally, we suggest a uniform definition for preterm HIE that may help in identifying infants most at risk of adverse outcomes and amenable to neuroprotective therapies.
Collapse
Affiliation(s)
| | - Jingang Li
- The Ritchie Centre, Hudson Institute of Medical Research , Melbourne, VIC , Australia
| | - Michael C Fahey
- Monash Children's Hospital, Melbourne, VIC, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - Rod W Hunt
- The Royal Children's Hospital, Melbourne, VIC, Australia; Murdoch Childrens Research Institute, Melbourne, VIC, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia; Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Atul Malhotra
- Monash Children's Hospital, Melbourne, VIC, Australia; The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia; Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Perinatal brain damage: The term infant. Neurobiol Dis 2015; 92:102-12. [PMID: 26409031 PMCID: PMC4915441 DOI: 10.1016/j.nbd.2015.09.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 12/21/2022] Open
|
23
|
Mitochondrial Optic Atrophy (OPA) 1 Processing Is Altered in Response to Neonatal Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2015; 16:22509-26. [PMID: 26393574 PMCID: PMC4613321 DOI: 10.3390/ijms160922509] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/26/2015] [Accepted: 09/11/2015] [Indexed: 01/02/2023] Open
Abstract
Perturbation of mitochondrial function and subsequent induction of cell death pathways are key hallmarks in neonatal hypoxic-ischemic (HI) injury, both in animal models and in term infants. Mitoprotective therapies therefore offer a new avenue for intervention for the babies who suffer life-long disabilities as a result of birth asphyxia. Here we show that after oxygen-glucose deprivation in primary neurons or in a mouse model of HI, mitochondrial protein homeostasis is altered, manifesting as a change in mitochondrial morphology and functional impairment. Furthermore we find that the mitochondrial fusion and cristae regulatory protein, OPA1, is aberrantly cleaved to shorter forms. OPA1 cleavage is normally regulated by a balanced action of the proteases Yme1L and Oma1. However, in primary neurons or after HI in vivo, protein expression of YmelL is also reduced, whereas no change is observed in Oma1 expression. Our data strongly suggest that alterations in mitochondria-shaping proteins are an early event in the pathogenesis of neonatal HI injury.
Collapse
|
24
|
Kilbaugh TJ, Sutton RM, Karlsson M, Hansson MJ, Naim MY, Morgan RW, Bratinov G, Lampe JW, Nadkarni VM, Becker LB, Margulies SS, Berg RA. Persistently Altered Brain Mitochondrial Bioenergetics After Apparently Successful Resuscitation From Cardiac Arrest. J Am Heart Assoc 2015; 4:e002232. [PMID: 26370446 PMCID: PMC4599507 DOI: 10.1161/jaha.115.002232] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Although advances in cardiopulmonary resuscitation have improved survival from cardiac arrest (CA), neurologic injury persists and impaired mitochondrial bioenergetics may be critical for targeted neuroresuscitation. The authors sought to determine if excellent cardiopulmonary resuscitation and postresuscitation care and good traditional survival rates result in persistently disordered cerebral mitochondrial bioenergetics in a porcine pediatric model of asphyxia-associated ventricular fibrillation CA. METHODS AND RESULTS After 7 minutes of asphyxia, followed by ventricular fibrillation, 5 female 1-month-old swine (4 sham) received blood pressure-targeted care: titration of compression depth to systolic blood pressure of 90 mm Hg and vasopressor administration to a coronary perfusion pressure >20 mm Hg. All animals received protocol-based vasopressor support after return of spontaneous circulation for 4 hours before they were killed. The primary outcome was integrated mitochondrial electron transport system (ETS) function. CA animals displayed significantly decreased maximal, coupled oxidative phosphorylating respiration (OXPHOSCI + CII) in cortex (P<0.02) and hippocampus (P<0.02), as well as decreased phosphorylation and coupling efficiency (cortex, P<0.05; hippocampus, P<0.05). Complex I- and complex II-driven respiration were both significantly decreased after CA (cortex: OXPHOSCI P<0.01, ETSCII P<0.05; hippocampus: OXPHOSCI P<0.03, ETSCII P<0.01). In the hippocampus, there was a significant decrease in maximal uncoupled, nonphosphorylating respiration (ETSCI + CII), as well as a 30% reduction in citrate synthase activity (P<0.04). CONCLUSIONS Mitochondria in both the cortex and hippocampus displayed significant alterations in respiratory function after CA despite excellent cardiopulmonary resuscitation and postresuscitation care in asphyxia-associated ventricular fibrillation CA. Analysis of integrated ETS function identifies mitochondrial bioenergetic failure as a target for goal-directed neuroresuscitation after CA. IACUC Protocol: IAC 13-001023.
Collapse
Affiliation(s)
- Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Robert M Sutton
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Michael Karlsson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden (M.K., M.J.H.)
| | - Magnus J Hansson
- Mitochondrial Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden (M.K., M.J.H.)
| | - Maryam Y Naim
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Ryan W Morgan
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - George Bratinov
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Joshua W Lampe
- Department of Emergency Medicine, The Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.W.L., L.B.B.)
| | - Vinay M Nadkarni
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| | - Lance B Becker
- Department of Emergency Medicine, The Hospital of the University of Pennsylvania, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (J.W.L., L.B.B.)
| | - Susan S Margulies
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA (S.S.M.)
| | - Robert A Berg
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA (T.J.K., R.M.S., M.Y.N., R.W.M., G.B., V.M.N., R.A.B.)
| |
Collapse
|
25
|
Progesterone protects mitochondrial function in a rat model of pediatric traumatic brain injury. J Bioenerg Biomembr 2014; 47:43-51. [PMID: 25348484 DOI: 10.1007/s10863-014-9585-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/17/2014] [Indexed: 02/03/2023]
Abstract
Progesterone has been studied extensively in preclinical models of adult traumatic brain injury (TBI), and has advanced to clinical trials in adults with TBI. However, there are very few preclinical studies in pediatric TBI models investigating progesterone for neuroprotection. Immature male and female rats (postnatal day, PND 17-21) underwent controlled cortical impact (CCI) to the left parietal cortex. Rats received either progesterone (10 mg/kg) at 1 h (i.p.) and 6 h (s.c.) after TBI or vehicle (22.5 % cyclohexdrin), and were compared to naïve, age-matched littermates. At 24 h after CCI, brain mitochondria were isolated from the ipsilateral hemisphere. Active (State 3) and resting (State 4) mitochondrial respiration were measured, and mitochondrial respiratory control ratio (RCR, State 3/State 4) was determined. Total mitochonidral glutathione content was measured. A separate group of rats were studied for histology, and received progesterone or vehicle every 24 h (s.c.) for 7 days. In male rats, TBI reduced mitochondrial RCR, and progesterone preserved mitochondrial RCR. This improvement of RCR was predominantly through significant decreases in State 4 respiratory rates. In female rats, post-injury treatment with progesterone did not significantly improve mitochondrial RCR. Normal (uninjured) male rats had lower mitochondrial glutathione content than normal female rats. After TBI, progesterone prevented loss of mitochondrial glutathione in male rats only. Tissue loss was reduced in progesterone treated female rats at 7d after CCI. Future studies will be directed at correlation with neurologic outcome testing. These preclinical studies could provide information for planning future clinical trials of progesterone treatment in children with TBI.
Collapse
|
26
|
Hagberg H, Mallard C, Rousset CI, Thornton C. Mitochondria: hub of injury responses in the developing brain. Lancet Neurol 2014; 13:217-32. [PMID: 24457191 DOI: 10.1016/s1474-4422(13)70261-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Progress in the field of mitochondrial biology in the past few years has shown that mitochondrial activities go beyond bioenergetics. These new aspects of mitochondrial physiology and pathophysiology have important implications for the immature brain. A picture emerges in which mitochondrial biogenesis, mitophagy, migration, and morphogenesis are crucial for brain development and synaptic pruning, and play a part in recovery after acute insults. Mitochondria also affect brain susceptibility to injury, and mitochondria-directed interventions can make the immature brain highly resistant to acute injury. Finally, the mitochondrion is a platform for innate immunity, contributes to inflammation in response to infection and acute damage, and participates in antiviral and antibacterial defence. Understanding of these new aspects of mitochondrial function will provide insights into brain development and neurological disease, and enable discovery and development of new strategies for treatment.
Collapse
Affiliation(s)
- Henrik Hagberg
- Centre for the Developing Brain, Perinatal Imaging & Health, King's College London, St Thomas' Hospital, London, UK; Perinatal Center, Departments of Clinical Sciences and Physiology & Neurosciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Carina Mallard
- Perinatal Center, Departments of Clinical Sciences and Physiology & Neurosciences, Sahlgrenska Academy, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Catherine I Rousset
- Centre for the Developing Brain, Perinatal Imaging & Health, King's College London, St Thomas' Hospital, London, UK
| | - Claire Thornton
- Centre for the Developing Brain, Perinatal Imaging & Health, King's College London, St Thomas' Hospital, London, UK
| |
Collapse
|
27
|
Nijboer CH, Bonestroo HJC, Zijlstra J, Kavelaars A, Heijnen CJ. Mitochondrial JNK phosphorylation as a novel therapeutic target to inhibit neuroinflammation and apoptosis after neonatal ischemic brain damage. Neurobiol Dis 2013; 54:432-44. [PMID: 23376684 DOI: 10.1016/j.nbd.2013.01.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 01/12/2013] [Accepted: 01/22/2013] [Indexed: 10/27/2022] Open
Abstract
Neonatal encephalopathy is associated with high mortality and life-long developmental consequences. Therapeutic options are very limited. We assessed the effects of D-JNKi, a small peptide c-Jun N-terminal kinase (JNK) MAP kinase inhibitor, on neuroinflammation, mitochondrial integrity and neuronal damage in a neonatal rat model of ischemic brain damage. Hypoxic-ischemic (HI) brain injury was induced in postnatal-day 7 rats by unilateral carotid artery occlusion and hypoxia, and was followed by intraperitoneal D-JNKi treatment. We demonstrate here for the first time that a single intraperitoneal injection with D-JNKi directly after HI strongly reduces neonatal brain damage by >85% with a therapeutic window of at least 6h. D-JNKi treatment also restored cognitive and motor function as analyzed at 9weeks post-insult. Neuroprotective D-JNKi treatment inhibited phosphorylation of nuclear c-Jun (P-c-Jun), and consequently reduced activity of the AP-1 transcription factor and production of cerebral cytokines/chemokines as determined at 3 and 24h post-HI. Inhibition of P-c-Jun by D-JNKi is thought to be mediated via inhibition of the upstream phosphorylation of cytosolic and nuclear JNK and/or by preventing the direct interaction of phosphorylated (P-)JNK with c-Jun. Surprisingly, however, HI did not induce a detectable increase in P-JNK in cytosol or nucleus. Notably, we show here for the first time that HI induces P-JNK only in the mitochondrial fraction, which was completely prevented by D-JNKi treatment. The hypothesis that mitochondrial JNK activation is key to HI brain injury was supported by data showing that treatment of rat pups with SabKIM1 peptide, a specific mitochondrial JNK inhibitor, is also neuroprotective. Inhibition of HI-induced mitochondrial JNK activation was associated with preservation of mitochondrial integrity as evidenced by prevention of ATP loss and inhibition of lipid peroxidation. The HI-induced increase in apoptotic markers (cytochrome c release and caspase 3 activation) as analyzed at 24h post-HI were also strongly reduced by D-JNKi and the mitochondrial anti-apoptotic proteins Bcl-2 and Bcl-xL were upregulated. Neuroprotection was lost after repeated 0+3h D-JNKi treatment which was associated with complete inhibition of the second peak of AP-1 activity and disability to upregulate mitochondrial Bcl-2 and Bcl-xL. We show here for the first time that D-JNKi treatment efficiently protects the neonatal brain against ischemic brain damage and subsequent cognitive and motor impairment. We propose that inhibition of phosphorylation of mitochondrial JNK is a pivotal step in preventing early loss of mitochondrial integrity leading to reduced neuroinflammation and inhibition of apoptotic neuronal loss. Moreover we show the crucial role of upregulation of mitochondrial anti-apoptotic proteins to maintain neuroprotection.
Collapse
Affiliation(s)
- Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease (NIDOD), University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
28
|
Leger PL, Bonnin P, Lacombe P, Couture-Lepetit E, Fau S, Renolleau S, Gharib A, Baud O, Charriaut-Marlangue C. Dynamic spatio-temporal imaging of early reflow in a neonatal rat stroke model. J Cereb Blood Flow Metab 2013; 33:137-45. [PMID: 23047273 PMCID: PMC3597373 DOI: 10.1038/jcbfm.2012.147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The aim of the study was to better understand blood-flow changes in large arteries and microvessels during the first 15 minutes of reflow in a P7 rat model of arterial occlusion. Blood-flow changes were monitored by using ultrasound imaging with sequential Doppler recordings in internal carotid arteries (ICAs) and basilar trunk. Relative cerebral blood flow (rCBF) changes were obtained by using laser speckle Doppler monitoring. Tissue perfusion was measured with [(14)C]-iodoantipyrine autoradiography. Cerebral energy metabolism was evaluated by mitochondrial oxygen consumption. Gradual increase in mean blood-flow velocities illustrated a gradual perfusion during early reflow in both ICAs. On ischemia, the middle cerebral artery (MCA) territory presented a residual perfusion, whereas the caudal territory remained normally perfused. On reflow, speckle images showed a caudorostral propagation of reperfusion through anastomotic connections, and a reduced perfusion in the MCA territory. Autoradiography highlighted the caudorostral gradient, and persistent perfusion in ventral and medial regions. These blood-flow changes were accompanied by mitochondrial respiration impairment in the ipsilateral cortex. Collectively, these data indicate the presence of a primary collateral pathway through the circle of Willis, providing an immediate diversion of blood flow toward ischemic regions, and secondary efficient cortical anastomoses in the immature rat brain.
Collapse
|
29
|
Abstract
The interruption of placental blood flow induces circulatory responses to maintain cerebral, cardiac, and adrenal blood flow with reduced renal, hepatic, intestinal, and skin blood flow. If placental compromise is prolonged and/or severe, total circulatory failure is likely with cerebral hypoperfusion and resultant hypoxic ischemic cerebral injury with collateral renal, cardiac, and hepatic injury. Management strategies should be targeted at restoring cerebral perfusion and oxygen delivery and minimizing the extent of secondary injury. Specifically, the focus should include the judicious use of supplemental oxygen, avoidance of hypoglycemia and elevated temperature in the delivery room, and the early administration of therapeutic hypothermia to high-risk infants.
Collapse
Affiliation(s)
- Jeffrey M Perlman
- Division of Newborn Medicine, Department of Pediatrics, Weill Cornell Medical College, 525 East 68th Street, Suite N-506, New York, NY 10065, USA.
| |
Collapse
|
30
|
Kim YJ, Kim SY, Sung DK, Chang YS, Park WS. Neuroprotective effects of L-carnitine against oxygen-glucose deprivation in rat primary cortical neurons. KOREAN JOURNAL OF PEDIATRICS 2012; 55:238-48. [PMID: 22844318 PMCID: PMC3405156 DOI: 10.3345/kjp.2012.55.7.238] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 02/15/2012] [Accepted: 03/20/2012] [Indexed: 01/29/2023]
Abstract
Purpose Hypoxic-ischemic encephalopathy is an important cause of neonatal mortality, as this brain injury disrupts normal mitochondrial respiratory activity. Carnitine plays an essential role in mitochondrial fatty acid transport and modulates excess acyl coenzyme A levels. In this study, we investigated whether treatment of primary cultures of rat cortical neurons with L-carnitine was able to prevent neurotoxicity resulting from oxygen-glucose deprivation (OGD). Methods Cortical neurons were prepared from Sprague-Dawley rat embryos. L-Carnitine was applied to cultures just prior to OGD and subsequent reoxygenation. The numbers of cells that stained with acridine orange (AO) and propidium iodide (PI) were counted, and lactate dehydrogenase (LDH) activity and reactive oxygen species (ROS) levels were measured. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the terminal uridine deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay were performed to evaluate the effect of L-carnitine (1 µM, 10 µM, and 100 µM) on OGD-induced neurotoxicity. Results Treatment of primary cultures of rat cortical neurons with L-carnitine significantly reduced cell necrosis and prevented apoptosis after OGD. L-Carnitine application significantly reduced the number of cells that died, as assessed by the PI/AO ratio, and also reduced ROS release in the OGD groups treated with 10 µM and 100 µM of L-carnitine compared with the untreated OGD group (P<0.05). The application of L-carnitine at 100 µM significantly decreased cytotoxicity, LDH release, and inhibited apoptosis compared to the untreated OGD group (P<0.05). Conclusion L-Carnitine has neuroprotective benefits against OGD in rat primary cortical neurons in vitro.
Collapse
Affiliation(s)
- Yu Jin Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
31
|
The oxygen free radicals originating from mitochondrial complex I contribute to oxidative brain injury following hypoxia-ischemia in neonatal mice. J Neurosci 2012; 32:3235-44. [PMID: 22378894 DOI: 10.1523/jneurosci.6303-11.2012] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Oxidative stress and Ca(2+) toxicity are mechanisms of hypoxic-ischemic (HI) brain injury. This work investigates if partial inhibition of mitochondrial respiratory chain protects HI brain by limiting a generation of oxidative radicals during reperfusion. HI insult was produced in p10 mice treated with complex I (C-I) inhibitor, pyridaben, or vehicle. Administration of P significantly decreased the extent of HI injury. Mitochondria isolated from the ischemic hemisphere in pyridaben-treated animals showed reduced H(2)O(2) emission, less oxidative damage to the mitochondrial matrix, and increased tolerance to the Ca(2+)-triggered opening of the permeability transition pore. A protective effect of pyridaben administration was also observed when the reperfusion-driven oxidative stress was augmented by the exposure to 100% O(2) which exacerbated brain injury only in vehicle-treated mice. In vitro, intact brain mitochondria dramatically increased H(2)O(2) emission in response to hyperoxia, resulting in substantial loss of Ca(2+) buffering capacity. However, in the presence of the C-I inhibitor, rotenone, or the antioxidant, catalase, these effects of hyperoxia were abolished. Our data suggest that the reperfusion-driven recovery of C-I-dependent mitochondrial respiration contributes not only to the cellular survival, but also causes oxidative damage to the mitochondria, potentiating a loss of Ca(2+) buffering capacity. This highlights a novel neuroprotective strategy against HI brain injury where the major therapeutic principle is a pharmacological attenuation, rather than an enhancement of mitochondrial oxidative metabolism during early reperfusion.
Collapse
|
32
|
Hypoxic-ischemic injury in the developing brain: the role of reactive oxygen species originating in mitochondria. Neurol Res Int 2012; 2012:542976. [PMID: 22548167 PMCID: PMC3323863 DOI: 10.1155/2012/542976] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/12/2011] [Accepted: 11/22/2011] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial dysfunction is the most fundamental mechanism of cell damage in cerebral hypoxia-ischemia and reperfusion. Mitochondrial respiratory chain (MRC) is increasingly recognized as a source for reactive oxygen species (ROS) in the postischemic tissue. Potentially, ROS originating in MRC can contribute to the reperfusion-driven oxidative stress, promoting mitochondrial membrane permeabilization. The loss of mitochondrial membranes integrity during reperfusion is considered as the major mechanism of secondary energy failure. This paper focuses on current data that support a pathogenic role of ROS originating from mitochondrial respiratory chain in the promotion of secondary energy failure and proposes potential therapeutic strategy against reperfusion-driven oxidative stress following hypoxia-ischemia-reperfusion injury of the developing brain.
Collapse
|
33
|
Mild hypoxemia during initial reperfusion alleviates the severity of secondary energy failure and protects brain in neonatal mice with hypoxic-ischemic injury. J Cereb Blood Flow Metab 2012; 32:232-41. [PMID: 22108720 PMCID: PMC3272612 DOI: 10.1038/jcbfm.2011.164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reperfusion triggers an oxidative stress. We hypothesized that mild hypoxemia in reperfusion attenuates oxidative brain injury following hypoxia-ischemia (HI). In neonatal HI-mice, the reperfusion was initiated by reoxygenation with room air (RA) followed by the exposure to 100%, 21%, 18%, 15% oxygen for 60 minutes. Systemic oxygen saturation (SaO(2)), cerebral blood flow (CBF), brain mitochondrial respiration and permeability transition pore (mPTP) opening, markers of oxidative injury, and cerebral infarcts were assessed. Compared with RA-littermates, HI-mice exposed to 18% oxygen exhibited significantly decreased infarct volume, oxidative injury in the brain mitochondria and tissue. This was coupled with improved mitochondrial tolerance to mPTP opening. Oxygen saturation maintained during reperfusion at 85% to 95% was associated (r=0.57) with the best neurologic outcome. Exposure to 100% or 15% oxygen significantly exacerbated brain injury and oxidative stress. Compared with RA-mice, hyperoxia dramatically increased reperfusion CBF, but exposure to 15% oxygen significantly reduced CBF to values observed during the HI-insult. Mild hypoxemia during initial reperfusion alleviates the severity of HI-brain injury by limiting the reperfusion-driven oxidative stress to the mitochondria and mPTP opening. This suggests that at the initial stage of reperfusion, a slightly decreased systemic oxygenation (SaO(2) 85% to 95%) may be beneficial for infants with birth asphyxia.
Collapse
|
34
|
Wang X, Leverin AL, Han W, Zhu C, Johansson BR, Jacotot E, Ten VS, Sims NR, Hagberg H. Isolation of brain mitochondria from neonatal mice. J Neurochem 2011; 119:1253-61. [PMID: 21985402 PMCID: PMC3532608 DOI: 10.1111/j.1471-4159.2011.07525.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 09/23/2011] [Accepted: 10/06/2011] [Indexed: 11/30/2022]
Abstract
Mitochondria are key contributors to many forms of cell death including those resulting from neonatal hypoxic-ischemic brain injury. Mice have become increasingly popular in studies of brain injury, but there are few reports evaluating mitochondrial isolation procedures for the neonatal mouse brain. Using evaluation of respiratory activity, marker enzymes, western blotting and electron microscopy, we have compared a previously published procedure for isolating mitochondria from neonatal mouse brain (method A) with procedures adapted from those for adult rats (method B) and neonatal rats (method C). All three procedures use Percoll density gradient centrifugation as a key step in the isolation but differ in many aspects of the fractionation procedure and the solutions used during fractionation. Methods A and B both produced highly enriched fractions of well-coupled mitochondria with high rates of respiratory activity. The fraction from method C exhibited less preservation of respiratory properties and was more contaminated with other subcellular components. Method A offers the advantage of being more rapid and producing larger mitochondrial yields making it useful for routine applications. However, method B produced mitochondria that were less contaminated with synaptosomes and associated cytosolic components that suits studies that have a requirement for higher mitochondrial purification.
Collapse
Affiliation(s)
- Xiaoyang Wang
- Perinatal Center, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Barbiro-Michaely E, Mendelman A, Mayevsky A. The evaluation of nitric oxide involvement in Metrazol induced status epilepticus using multiparametric monitoring. Brain Res 2011; 1377:50-9. [DOI: 10.1016/j.brainres.2011.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/30/2010] [Accepted: 01/02/2011] [Indexed: 11/26/2022]
|
36
|
Lai MC, Yang SN. Perinatal hypoxic-ischemic encephalopathy. J Biomed Biotechnol 2010; 2011:609813. [PMID: 21197402 PMCID: PMC3010686 DOI: 10.1155/2011/609813] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/08/2010] [Indexed: 01/12/2023] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) is an important cause of brain injury in the newborn and can result in long-term devastating consequences. Perinatal hypoxia is a vital cause of long-term neurologic complications varying from mild behavioural deficits to severe seizure, mental retardation, and/or cerebral palsy in the newborn. In the mammalian developing brain, ongoing research into pathophysiological mechanism of neuronal injury and therapeutic strategy after perinatal hypoxia is still limited. With the advent of promising therapy of hypothermia in HIE, this paper reviews the pathophysiology of HIE and the future potential neuroprotective strategies for clinical potential for hypoxia sufferers.
Collapse
Affiliation(s)
- Ming-Chi Lai
- Department of Pediatrics, Chi Mei Medical Center, Tainan, Taiwan
| | - San-Nan Yang
- Graduate Institute of Medicine, Kaohsiung Medical University, No. 100, Zihyou 1st Road, Sanmin District Kaohsiung City 807, Taiwan
- Center of Excellence for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
37
|
Complement component c1q mediates mitochondria-driven oxidative stress in neonatal hypoxic-ischemic brain injury. J Neurosci 2010; 30:2077-87. [PMID: 20147536 DOI: 10.1523/jneurosci.5249-09.2010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury in infants is a leading cause of lifelong disability. We report a novel pathway mediating oxidative brain injury after hypoxia-ischemia in which C1q plays a central role. Neonatal mice incapable of classical or terminal complement activation because of C1q or C6 deficiency or pharmacologically inhibited assembly of membrane attack complex were subjected to hypoxia-ischemia. Only C1q(-/-) mice exhibited neuroprotection coupled with attenuated oxidative brain injury. This was associated with reduced production of reactive oxygen species (ROS) in C1q(-/-) brain mitochondria and preserved activity of the respiratory chain. Compared with C1q(+/+) neurons, cortical C1q(-/-) neurons exhibited resistance to oxygen-glucose deprivation. However, postischemic exposure to exogenous C1q increased both mitochondrial ROS production and mortality of C1q(-/-) neurons. This C1q toxicity was abolished by coexposure to antioxidant Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid). Thus, the C1q component of complement, accelerating mitochondrial ROS emission, exacerbates oxidative injury in the developing HI brain. The terminal complement complex is activated in the HI neonatal brain but appeared to be nonpathogenic. These findings have important implications for design of the proper therapeutic interventions against HI neonatal brain injury by highlighting a pathogenic priority of C1q-mediated mitochondrial oxidative stress over the C1q deposition-triggered terminal complement activation.
Collapse
|
38
|
Han RZ, Hu JJ, Weng YC, Li DF, Huang Y. NMDA receptor antagonist MK-801 reduces neuronal damage and preserves learning and memory in a rat model of traumatic brain injury. Neurosci Bull 2010; 25:367-75. [PMID: 19927173 DOI: 10.1007/s12264-009-0608-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE NMDA receptor channel plays an important role in the pathophysiological process of traumatic brain injury (TBI). The present study aims to study the pathological mechanism of TBI and the impairment of learning and memory after TBI, and to investigate the mechanism of the protective effect of NMDA receptor antagonist MK-801 on learning and memory disorder after TBI. METHODS Forty Sprague-Dawley rats (weighing approximately 200 g) were randomized into 5 groups (n = 8 in each group): control group, model group, low-dose group (MK-801 0.5 mg/kg), middle-dose group (MK-801 2 mg/kg), and high-dose group (MK-801 10 mg/kg). TBI model was established using a weight-drop head injury mode. After 2-month drug treatment, learning and memory ability was evaluated by using Morris water maze test. Then the animals were sacrificed, and brain tissues were taken out for morphological and immunohistochemical assays. RESULTS The ability of learning and memory was significantly impaired in the TBI model animals. Besides, the neuronal caspase-3 expression, neuronal nitric oxide synthase (nNOS)-positive neurons and OX-42-positive microglia were all increased in TBI animals. Meanwhile, the number of neuron synapses was decreased, and vacuoles degeneration could be observed in mitochondria. After MK-801 treatment at 3 different dosages, the ability of learning and memory was markedly improved, as compared to that of the TBI model animals. Moreover, neuronal caspase-3 expression, OX-42-positive microglia and nNOS-positive neurons were all significantly decreased. Meanwhile, the mitochondria degeneration was greatly inhibited. CONCLUSION MK-801 could significantly inhibit the degeneration and apoptosis of neurons in damaged brain areas. It could also inhibit TBI-induced increase in nNOS-positive neurons and OX-42-positive microglia. Impairment in learning and memory in TBI animals could be repaired by treatment with MK-801.
Collapse
Affiliation(s)
- Rui-Zhang Han
- Medical College of Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
39
|
Hagberg H, Mallard C, Rousset CI, Wang X. Apoptotic mechanisms in the immature brain: involvement of mitochondria. J Child Neurol 2009; 24:1141-6. [PMID: 19574577 PMCID: PMC3674552 DOI: 10.1177/0883073809338212] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Brain injury after hypoxic-ischemic encephalopathy often develops with delayed appearance, opening a therapeutic window. Clinical studies in newborns show that post-hypoxic-ischemic hypothermia improves outcome. This has generated renewed interest in the molecular mechanisms of hypoxic-ischemic brain injury. In this brief review, we propose that mitochondrial permeabilization is crucial for injury to advance beyond the point of no return. We suggest that excitatory amino acids, nitric oxide, inflammation, trophic factor withdrawal, and an increased pro- versus antiapoptotic Bcl-2 protein ratio will trigger Bax-dependent mitochondrial outer membrane permeabilization. Mitochondrial outer membrane permeabilization, in turn, elicits mitochondrial release of cytochrome C, apoptosis-inducing factor, second mitochondria-derived activator of caspase/Diablo, and HtrA2/Omi. Cytochrome C efflux activates caspase-9/-3, leading to DNA fragmentation. Apoptosis-inducing factor interacts with cyclophilin A and induces chromatinolysis. Blockage of mitochondrial outer membrane permeabilization holds promise as a strategy for perinatal brain protection.
Collapse
Affiliation(s)
- Henrik Hagberg
- Perinatal Center, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg University, Sweden.
| | | | | | | |
Collapse
|
40
|
Robertson CL, Scafidi S, McKenna MC, Fiskum G. Mitochondrial mechanisms of cell death and neuroprotection in pediatric ischemic and traumatic brain injury. Exp Neurol 2009; 218:371-80. [PMID: 19427308 DOI: 10.1016/j.expneurol.2009.04.030] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2009] [Revised: 04/23/2009] [Accepted: 04/28/2009] [Indexed: 11/30/2022]
Abstract
There are several forms of acute pediatric brain injury, including neonatal asphyxia, pediatric cardiac arrest with global ischemia, and head trauma, that result in devastating, lifelong neurologic impairment. The only clinical intervention that appears neuroprotective is hypothermia initiated soon after the initial injury. Evidence indicates that oxidative stress, mitochondrial dysfunction, and impaired cerebral energy metabolism contribute to the brain cell death that is responsible for much of the poor neurologic outcome from these events. Recent results obtained from both in vitro and animal models of neuronal death in the immature brain point toward several molecular mechanisms that are either induced or promoted by oxidative modification of macromolecules, including consumption of cytosolic and mitochondrial NAD(+) by poly-ADP ribose polymerase, opening of the mitochondrial inner membrane permeability transition pore, and inactivation of key, rate-limiting metabolic enzymes, e.g., the pyruvate dehydrogenase complex. In addition, the relative abundance of pro-apoptotic proteins in immature brains and neurons, and particularly within their mitochondria, predisposes these cells to the intrinsic, mitochondrial pathway of apoptosis, mediated by Bax- or Bak-triggered release of proteins into the cytosol through the mitochondrial outer membrane. Based on these pathways of cell dysfunction and death, several approaches toward neuroprotection are being investigated that show promise toward clinical translation. These strategies include minimizing oxidative stress by avoiding unnecessary hyperoxia, promoting aerobic energy metabolism by repletion of NAD(+) and by providing alternative oxidative fuels, e.g., ketone bodies, directly interfering with apoptotic pathways at the mitochondrial level, and pharmacologic induction of antioxidant and anti-inflammatory gene expression.
Collapse
Affiliation(s)
- Courtney L Robertson
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, 21201, USA
| | | | | | | |
Collapse
|
41
|
Caspersen CS, Sosunov A, Utkina-Sosunova I, Ratner VI, Starkov AA, Ten VS. An isolation method for assessment of brain mitochondria function in neonatal mice with hypoxic-ischemic brain injury. Dev Neurosci 2008; 30:319-24. [PMID: 18349523 DOI: 10.1159/000121416] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 11/28/2007] [Indexed: 11/19/2022] Open
Abstract
This work was undertaken to develop a method for the isolation of mitochondria from a single cerebral hemisphere in neonatal mice. Mitochondria from the normal mouse brain hemisphere isolated by the proposed method exhibited a good respiratory control ratio of 6.39 +/- 0.53 during glutamate-malate-induced phosphorylating respiration. Electron microscopy showed intact mitochondria. The applicability of this method was tested on mitochondria isolated from naïve mice and their littermates subjected to hypoxic-ischemic insult. Hypoxic-ischemic insult prior to reperfusion resulted in a significant (p < 0.01) inhibition of phosphorylating respiration compared to naïve littermates. This was associated with a profound depletion of the ATP content in the ischemic hemisphere. The expression for Mn superoxide dismutase and cytochrome C (markers for the integrity of the mitochondrial matrix and outer membrane) was determined by Western blot to control for mitochondrial integrity and quantity in the compared samples. Thus, we have developed a method for the isolation of the cerebral mitochondria from a single hemisphere adapted to neonatal mice. This method may serve as a valuable tool to study mitochondrial function in a mouse model of immature brain injury. In addition, the suggested method enables us to examine the mitochondrial functional phenotype in immature mice with a targeted genetic alteration.
Collapse
|
42
|
Abstract
More than half of the initially-formed neurons are deleted in certain brain regions during normal development. This process, whereby cells are discretely removed without interfering with the further development of remaining cells, is called programmed cell death (PCD). The term apoptosis is used to describe certain morphological manifestations of PCD. Many of the effectors of this developmental cell death program are highly expressed in the developing brain, making it more susceptible to accidental activation of the death machinery, e.g. following hypoxia-ischemia or irradiation. Recent evidence suggests, however, that activation and regulation of cell death mechanisms under pathological conditions do not exactly mirror physiological, developmentally regulated PCD. It may be argued that the conditions after e.g. ischemia are not even compatible with the execution of PCD as we know it. Under pathological conditions cells are exposed to various stressors, including energy failure, oxidative stress and unbalanced ion fluxes. This results in parallel triggering and potential overshooting of several different cell death pathways, which then interact with one another and result in complex patterns of biochemical manifestations and cellular morphological features. These types of cell death are here called "pathological apoptosis," where classical hallmarks of PCD, like pyknosis, nuclear condensation and caspase-3 activation, are combined with non-PCD features of cell death. Here we review our current knowledge of the mechanisms involved, with special focus on the potential for therapeutic intervention tailored to the needs of the developing brain.
Collapse
Affiliation(s)
- Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Göteborg University, SE 405 30 Göteborg, Sweden.
| | | | | |
Collapse
|
43
|
Johnston MV, Hoon AH. Cerebral palsy. Neuromolecular Med 2008; 8:435-50. [PMID: 17028368 DOI: 10.1385/nmm:8:4:435] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 11/30/1999] [Accepted: 03/08/2006] [Indexed: 12/28/2022]
Abstract
Cerebral palsy (CP) is a group of disorders of movement and posture resulting from nonprogressive disturbances of the fetal or neonatal brain. More than 80% of cases of CP in term infants originate in the prenatal period; in premature infants, both prenatal or postnatal causes contribute. The most prevalent pathological lesion seen in CP is periventricular white matter injury (PWMI) resulting from vulnerability of the immature oligodendrocytes (pre-OLs) before 32 wk of gestation. PWMI is responsible for the spastic diplegia form of CP and a spectrum of cognitive and behavioral disorders. Oxidative stress and excitotoxicity resulting from excessive stimulation of ionotropic glutamate receptors on preOLs are the most prominent molecular mechanisms for PWMI. Asphyxia around the time of birth in term infants accounts for less than 15% of CP in developed countries but the incidence is higher in underdeveloped areas. Asphyxia causes a different pattern of brain injury and CP than is seen after preterm injuries. This type of CP is associated with the clinical syndrome of hypoxic-ischemic encephalopathy shortly after the insult, and the cortex, basal ganglia, and brainstem are selectively vulnerable to injury. Experimental models indicate that neurons in the neonatal brain are more likely to die by delayed apoptosis extending over days to weeks than those in the adult brain. Neurons die by glutamate-mediated excitotoxicity involving downstream caspase-dependent and caspase-independent cell death pathways. Recent reports indicate that males and females preferentially utilize different pathways. Clinical trials indicate that mild hypothermia reduces death or disability in term infants following asphyxia and basic research suggests that this approach might be combined with pharmacological strategies in the future.
Collapse
Affiliation(s)
- Michael V Johnston
- Kennedy Krieger Institute and Department of Neurology, Johns Hopkins University School of Medicine, 707 North Broadway, Baltimore, MD 21205, USA.
| | | |
Collapse
|
44
|
Nakai A. Role of mitochondrial permeability transition in the immature brain following intrauterine ischemia. J NIPPON MED SCH 2007; 74:190-201. [PMID: 17625367 DOI: 10.1272/jnms.74.190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Recirculation following 30 minutes of intrauterine ischemia due to uterine artery occlusion has previously been found to be accompanied by delayed deterioration of the cellular bioenergetic state and of mitochondrial function in the fetal rat brain. The objective of this study was to assess whether the delayed deterioration is due to the activation of mitochondrial permeability transition (MPT), which is observed ultrastructurally as mitochondrial swelling. The respiratory activities and ultrastructure of isolated mitochondria and the cellular bioenergetic state in the fetal rat brain were examined at the end of 30 minutes of intrauterine ischemia and after 1, 2, 3 or 4 hours of recirculation. Cyclosporin A (CsA), a potent and specific MPT blocker, or vehicle was given 1 hour after recirculation. In the vehicle-treated animals, the transient ischemia was associated with a delayed deterioration of the cellular bioenergetic state and mitochondrial activities 4 hours of recirculation. The number of swollen mitochondria increased markedly after 4 hours of recirculation. Both the deterioration and swelling were prevented by CsA. The present study indicates that treatment with CsA improves recovery of energy metabolism and inhibits mitochondrial swelling following transient intrauterine ischemia in the fetal brain. The results suggest that mitochondria and MPT may be involved in the development of ischemic brain damage in the immature rat.
Collapse
Affiliation(s)
- Akihito Nakai
- Department of Female Reproductive and Developmental Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
45
|
Abstract
OBJECTIVE The purpose of this study was to determine whether oxygen treatment could attenuate the alterations in cerebral energy metabolism found in the brain following hypoxia-ischemia. DESIGN Seven-day-old rat pups were subjected to unilateral carotid artery ligation followed by 2 hrs of hypoxia (8% oxygen at 37 degrees C). The concentrations of high-energy phosphate compounds and glycolytic intermediates and the activity of Na+/K+-adenosine triphosphatase were measured at 4-72 hrs of recovery. Brain weight was used to determine the severity of the brain injury at 2 wks after insult. SETTING Experimental setting. SUBJECTS Rat pups. INTERVENTIONS Pups were treated with 100% oxygen 1 hr after the insult at 2.5 atmospheres absolute (hyperbaric oxygen) or at normobaric pressure for a duration of 2 hrs. MEASUREMENTS AND MAIN RESULTS During the initial period of recovery from hypoxia-ischemia, values of adenosine triphosphate and phosphocreatine remained at levels below normal, whereas the levels of glucose and other glycolytic intermediates were elevated. Hyperbaric oxygen and normobaric oxygen both attenuated brain injury, restored the levels of adenosine triphosphate and phosphocreatine, decreased the levels of the glycolytic intermediates, and increased the utilization of energy. CONCLUSIONS These results suggest that oxygen treatment during the initial period of recovery from a hypoxia-ischemic insult is able to attenuate energy deficits in the brain, which ultimately leads to a reduction in brain injury.
Collapse
Affiliation(s)
- John W Calvert
- Department of Physiology, Loma Linda University Medical Center, Loma Linda, CA, USA
| | | |
Collapse
|
46
|
Clarkson AN, Clarkson J, Jackson DM, Sammut IA. Mitochondrial involvement in transhemispheric diaschisis following hypoxia-ischemia: Clomethiazole-mediated amelioration. Neuroscience 2006; 144:547-61. [PMID: 17112678 DOI: 10.1016/j.neuroscience.2006.09.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 09/22/2006] [Accepted: 09/22/2006] [Indexed: 11/24/2022]
Abstract
Mitochondria play a central role in both the physiological and pathophysiological regulation of cell survival/death. Increasing evidence places mitochondrial dysfunction at the center of many neuropathological conditions. The present study investigates the extent of mitochondrial dysfunction in cortical, hippocampal and cerebellar tissues in a rat model of hypoxia-ischemia (HI). We hypothesized that; mitochondrial dysfunction in situ may be prevented by treatment with clomethiazole (CMZ), a GABA(A) receptor agonist. Assessment of mitochondrial FAD-linked respiration at both 1- and 3-day post-HI revealed a marked decrease in activity from ipsilateral cortical and hippocampal regions (P<0.001). In addition, small changes were seen in contralateral cortical and hippocampal tissues as well as in the cerebellum at 3-days (P<0.05). Assessment of the mitochondrial electron transport chain (complexes I-V), and mitochondrial markers of integrity (citrate synthase) and oxidative stress (aconitase) confirmed mitochondrial impairment in ipsilateral regions following HI. Complexes I, II-III, V and citrate synthase were also impaired in contralateral regions and cerebellum 3-days post-HI. Treatment with CMZ (414 mg/kg/day via minipumps) provided marked protection to all aspects of neuronal tissue assessed. Circulating cytokine (interleukin [IL]-1alpha, IL-1beta, tumor necrosis factor [TNF]-alpha, granulocyte macrophage colony-stimulating factor [GM-CSF], IL-4 and IL-10) levels were also assessed in these animals 3-days post-HI. Plasma IL-1alpha, IL-1beta, TNF-alpha and GM-CSF levels were significantly increased post-HI. Treatment with CMZ ameliorated the increases in IL-1alpha, IL-1beta, TNF-alpha and GM-CSF levels while increasing plasma IL-4 and IL-10 levels. This study provides evidence of the extent of mitochondrial damage following an HI-insult. In addition, we have shown that protection afforded by CMZ extends to preservation of mitochondrial function and integrity via anti-inflammatory mediated pathways.
Collapse
Affiliation(s)
- A N Clarkson
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand.
| | | | | | | |
Collapse
|
47
|
Robertson CL, Soane L, Siegel ZT, Fiskum G. The potential role of mitochondria in pediatric traumatic brain injury. Dev Neurosci 2006; 28:432-46. [PMID: 16943666 DOI: 10.1159/000094169] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 04/03/2006] [Indexed: 01/08/2023] Open
Abstract
Mitochondria play a central role in cerebral energy metabolism, intracellular calcium homeostasis and reactive oxygen species generation and detoxification. Following traumatic brain injury (TBI), the degree of mitochondrial injury or dysfunction can be an important determinant of cell survival or death. Literature would suggest that brain mitochondria from the developing brain are very different from those from mature animals. Therefore, aspects of developmental differences in the mitochondrial response to TBI can make the immature brain more vulnerable to traumatic injury. This review will focus on four main areas of secondary injury after pediatric TBI, including excitotoxicity, oxidative stress, alterations in energy metabolism and cell death pathways. Specifically, we will describe what is known about developmental differences in mitochondrial function in these areas, in both the normal, physiologic state and the pathologic state after pediatric TBI. The ability to identify and target aspects of mitochondrial dysfunction could lead to novel neuroprotective therapies for infants and children after severe TBI.
Collapse
Affiliation(s)
- Courtney L Robertson
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|
48
|
Tichauer KM, Brown DW, Hadway J, Lee TY, St Lawrence K. Near-infrared spectroscopy measurements of cerebral blood flow and oxygen consumption following hypoxia-ischemia in newborn piglets. J Appl Physiol (1985) 2006; 100:850-7. [PMID: 16293704 DOI: 10.1152/japplphysiol.00830.2005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Impaired oxidative metabolism following hypoxia-ischemia (HI) is believed to be an early indicator of delayed brain injury. The cerebral metabolic rate of oxygen (CMRO2) can be measured by combining near-infrared spectroscopy (NIRS) measurements of cerebral blood flow (CBF) and cerebral deoxy-hemoglobin concentration. The ability of NIRS to measure changes in CMRO2 following HI was investigated in newborn piglets. Nine piglets were subjected to 30 min of HI by occluding both carotid arteries and reducing the fraction of inspired oxygen to 8%. An additional nine piglets served as sham-operated controls. Measurements of CBF, oxygen extraction fraction (OEF), and CMRO2 were obtained at baseline and at 6 h after the HI insult. Of the three parameters, only CMRO2 showed a persistent and significant change after HI. Five minutes after reoxygenation, there was a 28 ± 12% (mean ± SE) decrease in CMRO2, a 72 ± 50% increase in CBF, and a 56 ± 19% decrease in OEF compared with baseline ( P < 0.05). By 30 min postinsult and for the remainder of the study, there were no significant differences in CBF and OEF between control and insult groups, whereas CMRO2 remained depressed throughout the 6-h postinsult period. This study demonstrates that NIRS can measure decreases in CMRO2 caused by HI. The results highlight the potential for NIRS to be used in the neonatal intensive care unit to detect delayed brain damage.
Collapse
Affiliation(s)
- Kenneth M Tichauer
- Imaging Division, Lawson Health Research Institute, 268 Grosvenor St., London, Ontario, Canada N6A 4V2
| | | | | | | | | |
Collapse
|
49
|
Blomgren K, Hagberg H. Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radic Biol Med 2006; 40:388-97. [PMID: 16443153 DOI: 10.1016/j.freeradbiomed.2005.08.040] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2005] [Revised: 08/01/2005] [Accepted: 08/24/2005] [Indexed: 11/17/2022]
Abstract
The immature brain is particularly susceptible to free radical injury because of its poorly developed scavenging systems and high availability of iron for the catalytic formation of free radicals. Neurons are more vulnerable to free radical damage than glial cells, but oligodendrocyte progenitors and immature oligodendrocytes in very prematurely born infants are selectively vulnerable to depletion of antioxidants and free radical attack. Reactive oxygen and nitrogen species play important roles in the initiation of apoptotic mechanisms and in mitochondrial permeability transition, and therefore constitute important targets for therapeutic intervention. Oxidative stress is an early feature after cerebral ischemia and experimental studies targeting the formation of free radicals demonstrate various degrees of protection after perinatal insults. Oxidative stress-regulated release of proapoptotic factors from mitochondria appears to play a much more important role in the immature brain. This review will summarize and compare with the adult brain some of the current knowledge of free radical formation in the developing brain and its roles in the pathophysiology after cerebral hypoxia-ischemia.
Collapse
Affiliation(s)
- Klas Blomgren
- Arvid Carlsson Institute, Sahlgrenska Academy, Göteborg University, Sweden.
| | | |
Collapse
|
50
|
Abstract
Excitotoxicity is an important mechanism involved in perinatal brain injuries. Glutamate is the major excitatory neurotransmitter, and most neurons as well as many oligodendrocytes and astrocytes possess receptors for glutamate. Perinatal insults such as hypoxia-ischemia, stroke, hypoglycemia, kernicterus, and trauma can disrupt synaptic function leading to accumulation of extracellular glutamate and excessive stimulation of these receptors. The activities of certain glutamate receptor/channel complexes are enhanced in the immature brain to promote activity-dependent plasticity. Excessive stimulation of glutamate receptor/ion channel complexes triggers calcium flooding and a cascade of intracellular events that results in apoptosis and/or necrosis. Recent research suggests that some of these intracellular pathways are sexually dimorphic. Age dependent expression of different glutamate receptor subtypes with varying abilities to flux calcium has been associated with special patterns of selective vulnerability at different gestational ages. For example, selective injury to the putamen, thalamus and cerebral cortex from near total asphyxia in term infants may be related to excessive activation of neuronal NMDA and AMPA type glutamate receptors, while brainstem injury may be related primarily to stimulation of neuronal AMPA/kainate receptors. In contrast, periventricular leukomalacia in premature infants has been linked to expression of AMPA/kainate receptors on immature oligodendrocytes. Insight into the molecular pathways that mediate perinatal brain injuries could lead to therapeutic interventions.
Collapse
Affiliation(s)
- Michael V Johnston
- Kennedy Krieger Institute and Department of Neurology, Johns Hopkins University School of Medicine, 707 North Broadway, Baltimore, MD 21205, USA.
| |
Collapse
|