1
|
Villamor G, Winograd D, Baum JD. Painful bruising: Gynecology, hematology, or just pill bias? A case report. Case Rep Womens Health 2023; 39:e00538. [PMID: 37719129 PMCID: PMC10502329 DOI: 10.1016/j.crwh.2023.e00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023] Open
Abstract
A 23-year-old woman, G0, presented to the emergency department with painful bruising of the legs shortly after starting an oral contraceptive pill. The presumed diagnosis was pill-induced ecchymosis, and she was instructed to discontinue the medication. Her bruising resolved. However, the working diagnosis was later questioned as the patient had used other oral contraceptive pills in the past without any adverse reaction. In addition, there is robust literature associating these medications with thrombosis, not bruising. The patient later disclosed that she had concomitantly started an oral hair supplement along with her oral contraceptive pill. Analysis of the supplement contents revealed that it contained extract of Aesculus hippocastanum, a herbal anticoagulant, making this a much more plausible explanation for the ecchymosis. She then resumed the original oral contraceptive pill alone without any reaction. The case highlights how cognitive bias resulted in a misdiagnosis. Specifically, this case introduces the concept of pill bias, as the patient's unexplained bruising was presumed to be a result of her use of an oral contraceptive despite the lack of evidence to support this claim. This bias has the potential to impact clinical decision-making and lead to clinical errors.
Collapse
Affiliation(s)
- Gabriela Villamor
- Jersey Shore University Medical Center Department of Obstetrics and Gynecology, Neptune, NJ, United States
| | - Deborah Winograd
- Jersey Shore University Medical Center Department of Obstetrics and Gynecology, Neptune, NJ, United States
| | - Jonathan D. Baum
- Jersey Shore University Medical Center Department of Obstetrics and Gynecology, Neptune, NJ, United States
| |
Collapse
|
2
|
Wang X, Zhao G, Ju C, Dong L, Liu Y, Ding Z, Li W, Peng Y, Zheng J. Reduction of emodin-8-O-ß-D-glucoside content participates in processing-based detoxification of polygoni multiflori radix. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154750. [PMID: 36990007 DOI: 10.1016/j.phymed.2023.154750] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The occurrence of severe liver injury by the herbal medicine Polygoni Multiflori Radix (PMR) has drawn significant attention. The fact that processing attenuates PMR-induced hepatotoxicity has been well accepted, but the mechanisms are still ambiguous. PURPOSE This study aimed to illuminate the mechanism of processing-based attenuation of PMR hepatotoxicity. METHODS The contents of emodin-8-O-β-d-glucoside (EG) and emodin (EMD) in raw and processed PMR were quantified. The difference in toxicokinetic behaviors of EG and EMD was determined in vivo, and the disposition properties of EG were investigated in vitro and in vivo. RESULTS Decreased EG content was found in processed (black bean) PMR. Processed PMR showed reduced adverse effects relative to raw PMR. In addition, less hepatic protein adduction derived from EMD was produced in mice after exposure to processed PMR than that in animals receiving raw PMR. Glucose transporters SGLT1 and GLUT2 participated in the absorption of EG, and effective hydrolysis of EG to EMD took place in the intestinal epithelial cells during the process of absorption. Cytosolic broad-specificity β-glucosidase and lactase phlorizin hydrolase, as well as intestinal flora, participated in the hydrolysis of EG. The circulated EMD resulting from the deglycosylation of EG executed the hepatotoxic action. CONCLUSION EG is a pre-toxin and can be metabolically activated to EMD participating in the hepatotoxic event. The reduction of EG content due to processing is a key mechanistic factor that initiates the detoxification of PMR.
Collapse
Affiliation(s)
- Xu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Guode Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Chengguo Ju
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, Liaoning 116600, PR China
| | - Lingwen Dong
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Yuyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Zifang Ding
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550025, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004 Guizhou, PR China.
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China.
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Roa, Shenyang, Liaoning 110016, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
3
|
Comparison of the prognostic models for mortality in idiosyncratic drug-induced liver injury. Hepatol Int 2022; 17:488-498. [PMID: 36327052 DOI: 10.1007/s12072-022-10405-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/08/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Several models have been proposed to predict acute liver failure/death in patients with drug-induced liver injury (DILI), but the predictive performances of them have not been systematically compared. We aim to compare the current models for their predictive potency of mortality at DILI onset. METHODS DILI patients hospitalized at both Beijing Friendship Hospital and the Fifth Medical Center of PLA General Hospital were categorized into death/liver transplantation (LT) or survival without LT group. Predictive potency of 28-day, 90-day, 6-month and 12-month death/LT outcomes of Hy's Law, nHy's Law, Robles-Diaz Model, drug-induced liver toxicity (DrILTox ALF) Score, Model for End-stage Liver Disease (MELD) Score, and Ghabril Model was compared by Delong method. RESULTS A total of 6.3% (83/1314) patients died or received LT within 12 months after DILI onset. The area under receiver operating characteristic of Hy's Law, nHy's Law, and Robles-Diaz Model was all lower than 0.750 for the prediction of within 12 months' mortality. DrILTox ALF Score, MELD Score and Ghabril Model showed better predictive potency of 28-day [0.896 (0.878-0.912), 0.934 (0.919-0.947), 0.935 (0.921-0.948), respectively], 90-day [0.883 (0.864-0.899), 0.951 (0.938-0.962), 0.952 (0.939-0.963), respectively], 6-month [0.820 (0.799-0.841), 0.905 (0.888-0.921) and 0.908 (0.891-0.923), respectively] and 12-month [0.801 (0.779-0.823), 0.882 (0.863-0.899) and 0.885 (0.866-0.902), respectively] mortality. CONCLUSION Despite the difference of clinical characteristics and implicated-drug categories between China and industrialized countries, we demonstrate that MELD Score and Ghabril Model have the best predictive performance in the prediction of mortality within 12 months after DILI onset.
Collapse
|
4
|
Li D, Lyu Y, Song Q, Lai YS, Zuo Z. Idiosyncratic liver injury induced by bolus combination treatment with emodin and 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucopyranoside in rats. Front Pharmacol 2022; 13:1017741. [PMID: 36225587 PMCID: PMC9549410 DOI: 10.3389/fphar.2022.1017741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Polygoni Multiflori Radix (PMR) is a commonly used traditional Chinese medicine in clinical practice, while adverse effects of hepatotoxicity related to PMR have been frequently reported. The clinical case reports indicated that PMR hepatotoxicity could occur under both overdose medication/long-term exposure and low doses with short-duration (idiosyncratic) conditions. The combination treatment with emodin and 2,3,5,4′-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG), two major PMR components, was reported to contribute to PMR hepatotoxicity after long-term treatment. However, the role of the combination treatment of these two components in PMR-induced idiosyncratic liver injury has not been clearly clarified. In this study, the LPS-mediated inflammatory stress model rats were adopted to explore the idiosyncratic liver injury induced by the bolus combination treatment with emodin and TSG. After a bolus oral administration with TSG (165 mg/kg), emodin (5 mg/kg) or their combination in both normal and LPS-mediated inflammatory stress model rats, the systemic/hepatic concentrations of emodin, emodin glucuronides and bile acids were determined; the hepatotoxicity assessments were conducted via monitoring histopathological changes and liver injury biomarkers (ALT and AST). Moreover, the protein expressions of bile acid homeostasis- and apoptosis-related proteins were examined. No liver damage was observed in the normal rats after a bolus dose with the individual or combination treatment, while the bolus combination treatment with emodin and TSG induced liver injury in the LPS-mediated inflammatory stress model rats, evidenced by the elevated plasma levels of alanine aminotransferase (∼66%) and aspartate aminotransferase (∼72%) accompanied by severe inflammatory cell infiltration and apoptotic hepatocytes in liver tissue. Moreover, such combination treatment at a bolus dose in the LPS-mediated inflammatory stress model rats could significantly elevate the hepatic TBA levels by about 45% via up-regulating the hepatic protein expression levels of bile acid synthesis enzymes and inhibiting that of bile acid efflux transporters and the expression levels of apoptosis-related proteins. Our study for the first time proved the major contribution of the combination treatment with emodin and TSG in PMR-induced idiosyncratic liver injury.
Collapse
|
5
|
Li D, Lyu Y, Zhao J, Ji X, Zhang Y, Zuo Z. Accumulation of the Major Components from Polygoni Multiflori Radix in Liver and Kidney after Its Long-Term Oral Administrations in Rats. PLANTA MEDICA 2022; 88:950-959. [PMID: 34521133 DOI: 10.1055/a-1585-5991] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although Polygoni Multiflori Radix (PMR) has been widely used as a tonic and an anti-aging remedy for centuries, the extensively reported hepatotoxicity and potential kidney toxicity hindered its safe use in clinical practice. To better understand its toxicokinetics, the current study was proposed, aiming to evaluate the biodistributions of the major PMR components including 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG), emodin, emodin-8-O-β-D-glucopyranoside (EMG) and physcion as well as their corresponding glucuronides following bolus and multiple oral administrations of PMR to rats. Male Sprague-Dawley rats received a bolus dose or 21 days of oral administrations of PMR concentrated granules at 4.12 g/kg (equivalent to 20.6 g/kg raw material). Fifteen minutes after bolus dose or the last dose on day 21, rats were sacrificed and the blood, liver, and kidney were collected for the concentration determination of both parent form and glucuronides of TSG, emodin, EMG, and physcion by HPLC-MS/MS. Among all the tested analytes, TSG, EMG, EMG glucuronides in liver and TSG, EMG, as well as all the glucuronides of these analytes in the kidney demonstrated the most significant accumulation after multiple doses. Moreover, the levels of the parent analytes were all significantly higher in liver and kidney in comparison to their plasma levels. Strong tissue binding of all four analytes and accumulation of TSG, EMG, and EMG glucuronides in the liver and TSG, EMG, as well as the glucuronides of all four analytes in the kidney after multiple dosing of PMR were considered to be associated with its toxicity.
Collapse
Affiliation(s)
- Dan Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, P. R. China
| | - Yuanfeng Lyu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, P. R. China
| | - Jiajia Zhao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, P. R. China
| | - Xiaoyu Ji
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, P. R. China
| | - Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, P. R. China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong SAR, P. R. China
| |
Collapse
|
6
|
2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside enhances the hepatotoxicity of emodin in vitro and in vivo. Toxicol Lett 2022; 365:74-85. [PMID: 35753641 DOI: 10.1016/j.toxlet.2022.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022]
Abstract
Herb-induced liver injury results from the interplay between the herb and host with the herbal components serving as the major origin for hepatotoxicity. Although Polygoni Multiflori Radix (PMR) has been frequently reported to induce liver injury, contributions of its major components such as emodin, emodin-8-O-β-D-glucopyranoside, physcion and 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG) towards its hepatotoxicity have not been clearly identified. Our initial cytotoxicity screenings of the major PMR components using rat hepatocytes identified emodin as the most toxic. Subsequently, the bile acid homeostasis-related mechanisms of emodin and its combination treatment with TSG in PMR-associated liver injury were explored in sandwich-cultured rat hepatocytes (SCRH) and verified in rats. In SCRH, emodin was found to be able to induce total bile acid accumulation in a dose-dependent manner. In both SCRH and rats, the presence of TSG significantly enhanced the hepatotoxicity of emodin via i) increasing its hepatic exposure by inhibiting its glucuronidation mediated metabolism; ii) enhancing its disruption on bile acid homeostasis through amplifying its inhibition on bile acid efflux transporters and its up-regulation on bile acids synthesis enzymes; iii) enhancing its apoptosis. Our study for the first time demonstrated the critical role of the combination treatment with emodin and TSG in PMR-induced liver injury.
Collapse
|
7
|
Kang L, Li D, Jiang X, Zhang Y, Pan M, Hu Y, Si L, Zhang Y, Huang J. Hepatotoxicity of the Major Anthraquinones Derived From Polygoni Multiflori Radix Based on Bile Acid Homeostasis. Front Pharmacol 2022; 13:878817. [PMID: 35662717 PMCID: PMC9157432 DOI: 10.3389/fphar.2022.878817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/15/2022] [Indexed: 01/22/2023] Open
Abstract
Polygoni Multiflori Radix (PMR), the dried root of Polygonum Multiflorum Thunb., has been widely used as traditional Chinese medicines in clinical practice for centuries. However, the frequently reported hepatotoxic adverse effects hindered its safe use in clinical practice. This study aims to explore the hepatotoxic effect of PMR extract and the major PMR derived anthraquinones including emodin, chrysophanol, and physcion in mice and the underlying mechanisms based on bile acid homeostasis. After consecutively treating the ICR mice with PMR extract or individual anthraquinones for 14 or 28 days, the liver function was evaluated by measuring serum enzymes levels and liver histological examination. The compositions of bile acids (BAs) in the bile, liver, and plasma were measured by LC-MS/MS, followed by Principal Component Analysis (PCA) and Partial Least Squares Discriminate Analysis (PLS-DA). Additionally, gene and protein expressions of BA efflux transporters, bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2), were examined to investigate the underlying mechanisms. After 14-day administration, mild inflammatory cell infiltration in the liver was observed in the physcion- and PMR-treated groups, while it was found in all the treated groups after 28-day treatment. Physcion and PMR extract induced hepatic BA accumulation after 14-day treatment, but such accumulation was attenuated after 28-day treatment. Based on the PLS-DA results, physcion- and PMR-treated groups were partially overlapping and both groups showed a clear separation with the control group in the mouse liver. The expression of Bsep and Mrp2 in the physcion- and PMR-treated mouse liver was decreased after 14-day treatment, while the downregulation was abrogated after 28-day treatment. Our study, for the first time, demonstrated that both PMR extract and tested anthraquinones could alter the disposition of either the total or individual BAs in the mouse bile, liver, and plasma via regulating the BA efflux transporters and induce liver injury, which provide a theoretical basis for the quality control and safe use of PMR in practice.
Collapse
Affiliation(s)
- Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan, China.,School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan, China
| | - Dan Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Xin Jiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- College of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, China
| | - Minhong Pan
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Yixin Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luqin Si
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjun Zhang
- The Third Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, China
| | - Jiangeng Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Soares PF, Fernandes MTCF, Souza ADS, Lopes CM, Dos Santos DAC, Oliveira DPR, Pereira MG, Prado NMDBL, Gomes GSDS, Santos G, Paraná R. Causality imputation between herbal products and HILI: An algorithm evaluation in a systematic review. Ann Hepatol 2022; 25:100539. [PMID: 34555512 DOI: 10.1016/j.aohep.2021.100539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/04/2023]
Abstract
Algorithms can have several purposes in the clinical practice. There are different scales for causality imputation in DILI (Drug-Induced Liver Injury), but the applicability and validity of these for the HILI (Herb-Induced Liver Injury) evaluation is questionable for some scales. The purpose of the study was to determine the clinical and demographic profile of the patients with HILI, and the main algorithmic scales used in its causality assessment. The methodology was a systematic review of articles in English, Spanish, or Portuguese language, from 1979 to 2019, involving humans, with descriptors related to HILI. Qualitative and quantitative statistical analysis were performed. As a result, from a total of 60 articles, 203 HILI reports were selected: 59.9% were women, similar with other studies, and the average age was 45.8 years. Jaundice was the most frequent symptom and regarding the type of lesion, the hepatocellular was the most frequent. In regard to HILI severity, 3.0% were severe and 7.6% were fatal or required liver transplantation. In 72.3% of the cases, the most used algorithm was RUCAM (Roussel Uclaf Causality Assessment Method). The conclusion of the study is that RUCAM was the most used algorithm for causality assessment in HILI. The patients were predominantly female, jaundice was the main symptom, and HILI is reversible in the majority of cases.
Collapse
Affiliation(s)
- Pedro Felipe Soares
- School Medicine of Bahia- University Federal of Bahia, Av. Rector Miguel Calmon, S/N - Vale do Canela, 40110-100, Salvador - BA, Brazil.
| | | | | | - Caio Medina Lopes
- Faculty of Pharmacy - University Federal of Bahia, Salvador, BA, Brazil.
| | | | | | | | | | | | - Genário Santos
- Sciences of Health Post Graduation Program - University Federal of Bahia, Salvador, BA, Brazil.
| | - Raymundo Paraná
- School Medicine of Bahia- University Federal of Bahia, Av. Rector Miguel Calmon, S/N - Vale do Canela, 40110-100, Salvador - BA, Brazil.
| |
Collapse
|
9
|
Wang X, Ding Z, Ma K, Sun C, Zheng X, You Y, Zhang S, Peng Y, Zheng J. Cysteine-Based Protein Covalent Binding and Hepatotoxicity Induced by Emodin. Chem Res Toxicol 2022; 35:293-302. [DOI: 10.1021/acs.chemrestox.1c00358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Zifang Ding
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Kaiqi Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Chen Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Xiaojiao Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yutong You
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Shiyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P.R. China
| |
Collapse
|
10
|
Teschke R, Eickhoff A, Schulze J, Danan G. Herb-induced liver injury (HILI) with 12,068 worldwide cases published with causality assessments by Roussel Uclaf Causality Assessment Method (RUCAM): an overview. Transl Gastroenterol Hepatol 2021; 6:51. [PMID: 34423172 PMCID: PMC8343418 DOI: 10.21037/tgh-20-149] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Herbal products including herbal medicines are worldwide used in large amounts for treating minor ailments and for disease prevention. However, efficacy of most herbal products has rarely been well documented through randomized controlled trials in line with evidence-based medicine concepts, which could be used to estimate the benefit/risk ratio. Instead, much better documented are adverse reactions such as liver injury associated with the consumption of some herbal products, so called herb-induced liver injury (HILI), which represents a clinical challenge. In order to establish HILI as valid diagnosis, the use of a diagnostic algorithms such as Roussel Uclaf Causality Assessment Method (RUCAM) is widely recommended, although physicians in some countries are reluctant to use RUCAM for their HILI cases. This review on worldwide HILI and RUCAM, developed as part of the artificial intelligence ideas, reveals that China is the leading country with 24 publications on HILI cases that were all assessed for causality using RUCAM, followed by Korea with 15 reports, Germany with 9 reports, the US with 7 reports, and Spain with 6 reports, whereas the remaining countries provided less than 4 reports. The total number of assessed HILI cases is 12,068 worldwide derived from 80 publications but in each report HILI case numbers were variable in a range from 1 up to 6,971. This figure compares with 46,266 cases of drug-induced liver injury (DILI) published worldwide from 2014 to early 2019 also assessed for causality by RUCAM. The original version of RUCAM was validated and established in 1993 and updated in 2016 that should be used in future HILI cases. RUCAM is an objective, structured, and validated method, specifically designed for liver injury. It is a scoring system including case data elements to be assessed and scored individually to provide a final score in five causality gradings. Among the 11,404/12,068 HILI (94.5%) cases assessable for evaluation, causality gradings were highly probable in 4.2%, probable in 15.5%, possible in 70.3%, and unlikely or excluded in 10.0%. To improve the future reporting of RUCAM based HILI cases, recommendations include the strict adherence to instructions outlined in the updated RUCAM and, in particular, to follow prospective data collection on the cases to ensure completeness of case data. In conclusion, RUCAM can well be used to assess causality in suspected HILI cases, and additional efforts are now required to increase the quality of the reported cases.
Collapse
Affiliation(s)
- Rolf Teschke
- Division of Gastroenterology and Hepatology, Department of Internal Medicine II, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| | - Axel Eickhoff
- Division of Gastroenterology and Hepatology, Department of Internal Medicine II, Klinikum Hanau, Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/ Main, Frankfurt/Main, Germany
| | - Johannes Schulze
- Institute of Occupational, Social and Environmental Medicine, Goethe-University Frankfurt/Main, Frankfurt/Main, Germany
| | - Gaby Danan
- Pharmacovigilance consultancy, Paris, France
| |
Collapse
|
11
|
High-Throughput Identification of Organic Compounds from Polygoni Multiflori Radix Praeparata ( Zhiheshouwu) by UHPLC-Q-Exactive Orbitrap-MS. Molecules 2021; 26:molecules26133977. [PMID: 34209934 PMCID: PMC8428211 DOI: 10.3390/molecules26133977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 12/30/2022] Open
Abstract
Polygoni Multiflori Radix Praeparata (PMRP), as the processed product of tuberous roots of Polygonum multiflorum Thunb., is one of the most famous traditional Chinese medicines, with a long history. However, in recent years, liver adverse reactions linked to PMRP have been frequently reported. Our work attempted to investigate the chemical constituents of PMRP for clinical research and safe medication. In this study, an effective and rapid method was established to separate and characterize the constituents in PMRP by combining ultra-high performance liquid chromatography with hybrid quadrupole-orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap-MS). Based on the accurate mass measurements for molecular and characteristic fragment ions, a total of 103 compounds, including 24 anthraquinones, 21 stilbenes, 15 phenolic acids, 14 flavones, and 29 other compounds were identified or tentatively characterized. Forty-eight compounds were tentatively characterized from PMRP for the first time, and their fragmentation behaviors were summarized. There were 101 components in PMRP ethanol extract (PMRPE) and 91 components in PMRP water extract (PMRPW). Simultaneously, the peak areas of several potential xenobiotic components were compared in the detection, which showed that PMRPE has a higher content of anthraquinones and stilbenes. The obtained results can be used in pharmacological and toxicological research and provided useful information for further in vitro and in vivo studies.
Collapse
|
12
|
Rao T, Liu YT, Zeng XC, Li CP, Ou-Yang DS. The hepatotoxicity of Polygonum multiflorum: The emerging role of the immune-mediated liver injury. Acta Pharmacol Sin 2021; 42:27-35. [PMID: 32123300 PMCID: PMC7921551 DOI: 10.1038/s41401-020-0360-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/02/2020] [Indexed: 02/06/2023] Open
Abstract
Herbal and dietary supplements (HDS)-induced liver injury has been a great concern all over the world. Polygonum multiflorum Thunb., a well-known Chinese herbal medicine, is recently drawn increasing attention because of its hepatotoxicity. According to the clinical and experimental studies, P. multiflorum-induced liver injury (PM-DILI) is considered to be immune-mediated idiosyncratic liver injury, but the role of immune response and the underlying mechanisms are not completely elucidated. Previous studies focused on the direct toxicity of PM-DILI by using animal models with intrinsic drug-induced liver injury (DILI). However, most epidemiological and clinical evidence demonstrate that PM-DILI is immune-mediated idiosyncratic liver injury. The aim of this review is to assess current epidemiological, clinical and experimental evidence about the possible role of innate and adaptive immunity in the idiosyncratic hepatotoxicity of P. multiflorum. The potential effects of factors associated with immune tolerance, including immune checkpoint molecules and regulatory immune cells on the individual's susceptibility to PM-DILI are also discussed. We conclude by giving our hypothesis of possible immune mechanisms of PM-DILI and providing suggestions for future studies on valuable biomarkers identification and proper immune models establishment.
Collapse
Affiliation(s)
- Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.
| | - Ya-Ting Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Xiang-Chang Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China
| | - Chao-Peng Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, 410205, China
| | - Dong-Sheng Ou-Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, 410008, China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Changsha, 410008, China.
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, 410205, China.
| |
Collapse
|
13
|
Overview of Pharmacokinetics and Liver Toxicities of Radix Polygoni Multiflori. Toxins (Basel) 2020; 12:toxins12110729. [PMID: 33233441 PMCID: PMC7700391 DOI: 10.3390/toxins12110729] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Radix Polygoni Multiflori (RPM), a traditional Chinese medicine, has been used as a tonic and an anti-aging remedy for centuries. However, its safe and effective application in clinical practice could be hindered by its liver injury potential and lack of investigations on its hepatotoxicity mechanism. Our current review aims to provide a comprehensive overview and a critical assessment of the absorption, distribution, metabolism, excretion of RPM, and their relationships with its induced liver injury. Based on the well-reported intrinsic liver toxicity of emodin, one of the major components in RPM, it is concluded that its plasma and liver concentrations could attribute to RPM induced liver injury via metabolic enzymes alteration, hepatocyte apoptosis, bile acids homeostasis disruption, and inflammatory damage. Co-administered 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside in RPM and other drugs/herbs could further aggravate the hepatotoxicity of emodin via enhancing its absorption and inhibiting its metabolism. To ensure the safe clinical use of RPM, a better understanding of the toxicokinetics and effect of its co-occurring components or other co-administered drugs/herbs on the pharmacokinetics of emodin is warranted.
Collapse
|
14
|
Teschke R, Danan G. Worldwide Use of RUCAM for Causality Assessment in 81,856 Idiosyncratic DILI and 14,029 HILI Cases Published 1993-Mid 2020: A Comprehensive Analysis. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E62. [PMID: 33003400 PMCID: PMC7600114 DOI: 10.3390/medicines7100062] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 04/12/2023]
Abstract
Background: A large number of idiosyncratic drug induced liver injury (iDILI) and herb induced liver injury(HILI) cases of variable quality has been published but some are a matter of concern if the cases were not evaluated for causality using a robust causality assessment method (CAM) such as RUCAM (Roussel Uclaf Causality Assessment Method) as diagnostiinjuryc algorithm. The purpose of this analysis was to evaluate the worldwide use of RUCAM in iDILI and HILI cases. Methods: The PubMed database (1993-30 June 2020) was searched for articles by using the following key terms: Roussel Uclaf Causality Assessment Method; RUCAM; Idiosyncratic drug induced liver injury; iDILI; Herb induced liver injury; HILI. Results: Considering reports published worldwide since 1993, our analysis showed the use of RUCAM for causality assessment in 95,885 cases of liver injury including 81,856 cases of idiosyncratic DILI and 14,029 cases of HILI. Among the top countries providing RUCAM based DILI cases were, in decreasing order, China, the US, Germany, Korea, and Italy, with China, Korea, Germany, India, and the US as the top countries for HILI. Conclusion: Since 1993 RUCAM is certainly the most widely used method to assess causality in IDILI and HILI. This should encourage practitioner, experts, and regulatory agencies to use it in order to reinforce their diagnosis and to take sound decisions.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Teaching Hospital of the Medical Faculty of the Goethe University, D-60590 Frankfurt/Main, Germany
| | - Gaby Danan
- Pharmacovigilance Consultancy, F-75020 Paris, France;
| |
Collapse
|
15
|
Santos G, Gasca J, Parana R, Nunes V, Schinnoni M, Medina-Caliz I, Cabello MR, Lucena MI, Andrade RJ. Profile of herbal and dietary supplements induced liver injury in Latin America: A systematic review of published reports. Phytother Res 2020; 35:6-19. [PMID: 32525269 DOI: 10.1002/ptr.6746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Hepatotoxicity related to HDS is a growing global health issue. We have undertaken a systematic review of published case reports and case series from LA from 1976 to 2020 to describe the clinical features of HDS related hepatotoxicity in this region. We search in PubMed, Web of Science, Scopus and specific LA databases according to PRISMA guidelines. Only HILI cases published in LA that met criteria for DILI definition were included. Duplicate records or reports that lacked relevant data that precluded establishing causality were excluded. Finally, 17 records (23 cases) were included in this review. Centella asiatica, Carthamus tinctorius, and Herbalife® were the most reported HDS culprit products, the main reason for HDS consumption was weight loss. The clinical characteristics of HDS hepatotoxicity in our study were compared to those of other studies in the USA, Europe and China showing a similar signature with predominance of young females, hepatocellular damage, a high rate of ALF and mortality, more frequent inadvertent re-challenge and chronic damage. This study underscores the challenge in causality assessment when multi-ingredients HDS are taken and the need for consistent publication practice when reporting hepatotoxicity cases due to HDS, to foster HDS liver safety particularly in LA.
Collapse
Affiliation(s)
- Genario Santos
- Núcleo de Hepatologia, Hospital Universitário Prof. Edgard Santos - UFBA, Salvador, Brazil
| | - Jessica Gasca
- UICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Raymundo Parana
- Núcleo de Hepatologia, Hospital Universitário Prof. Edgard Santos - UFBA, Salvador, Brazil
| | - Vinicius Nunes
- Núcleo de Hepatologia, Hospital Universitário Prof. Edgard Santos - UFBA, Salvador, Brazil
| | - Maria Schinnoni
- Núcleo de Hepatologia, Hospital Universitário Prof. Edgard Santos - UFBA, Salvador, Brazil
| | - Inmaculada Medina-Caliz
- Servicio de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Spain
| | - Maria Rosario Cabello
- Núcleo de Hepatologia, Hospital Universitário Prof. Edgard Santos - UFBA, Salvador, Brazil.,CIBERehd, Madrid, Spain
| | - Maria Isabel Lucena
- Núcleo de Hepatologia, Hospital Universitário Prof. Edgard Santos - UFBA, Salvador, Brazil.,UICEC IBIMA, Plataforma SCReN (Spanish Clinical Research Network), Servicio de Farmacología Clínica, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain.,CIBERehd, Madrid, Spain
| | - Raul J Andrade
- Servicio de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga - IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Spain.,CIBERehd, Madrid, Spain
| |
Collapse
|
16
|
Zhang Z, Yang L, Huang X, Gao Y. Metabolomics profiling of Polygoni Multiflori Radix and Polygoni Multiflori Radix Preparata extracts using UPLC-Q/TOF-MS. Chin Med 2019; 14:46. [PMID: 31673279 PMCID: PMC6814990 DOI: 10.1186/s13020-019-0268-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022] Open
Abstract
Background The side effects caused by Polygoni Multiflori Radix (PMR) and Polygoni Multiflori Radix Praeparata (PMRP) have often appeared globally. There is no research on the changes of endogenous metabolites among PMR- and PMRP-treated rats. The aim of this study was to evaluate the varying metabolomic effects between PMR- and PMRP-treated rats. We tried to discover relevant differences in biomarkers and endogenous metabolic pathways. Methods Hematoxylin and eosin staining and immunohistochemistry staining were performed to find pathological changes. Biochemical indicators were also measured, one-way analysis of variance with Dunnett’s multiple comparison test was used for biochemical indicators comparison among various groups. Metabolomics analysis based on ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry (UPLC-Q/TOF-MS) was performed to find the changes in metabolic biomarkers. Multivariate statistical approaches such as principal component analysis (PCA) and orthogonal partial least square-discriminant analysis (OPLS-DA) were applied to reveal group clustering trend, evaluate and maximize the discrimination between the two groups. MetaboAnalyst 4.0 was performed to find and confirm the pathways. Results PMR extracts exhibited slight hepatotoxic effects on the liver by increasing aspartate and alanine aminotransferase levels. Twenty-nine metabolites were identified as biomarkers, belonging to five pathways, including alpha-linolenic acid metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, arginine and proline metabolism, and primary bile acid biosynthesis. Conclusion This study provided a comprehensive description of metabolomic changes between PMR- and PMRP-treated rats. The underlying mechanisms require further research.
Collapse
Affiliation(s)
- Zhaoyan Zhang
- 1College of Life Science and Bioengineering, Beijing University of Technology, No. 100, Ping Le Yuan Road, Chaoyang District, Bejing, 100124 China.,2Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, No. 27, Tai Ping Road, Haidian District, Beijing, 100850 China
| | - Liang Yang
- 2Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, No. 27, Tai Ping Road, Haidian District, Beijing, 100850 China
| | - Xiaoyan Huang
- 2Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, No. 27, Tai Ping Road, Haidian District, Beijing, 100850 China.,3Second Clinical College of Guangzhou University of Chinese Medicine, No. 111, Da De Road, Yue Xiu District, Guangzhou, 510120 China
| | - Yue Gao
- 1College of Life Science and Bioengineering, Beijing University of Technology, No. 100, Ping Le Yuan Road, Chaoyang District, Bejing, 100124 China.,2Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, No. 27, Tai Ping Road, Haidian District, Beijing, 100850 China
| |
Collapse
|
17
|
Influence Factors on the Hepatotoxicity of Polygoni Multiflori Radix. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:5482896. [PMID: 31662776 PMCID: PMC6778938 DOI: 10.1155/2019/5482896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Background Chinese herbal medicine (CHM) with reported hepatotoxicity is identified, in which Polygoni Multiflori Radix (HSW) attracts most attention. According to the Traditional Chinese Medicine (TCM) theory, processing is believed to be able to reduce the toxicity of HSW, but in publications, both processed and unprocessed HSW are reported to cause liver injury. Methods This article reviews the case reports and experimental researches involving liver damage associated with HSW from the following aspects: clinical features, hepatic toxicity components, hepatotoxicity mechanism, and so on. Results HSW has hepatotoxicity in different degrees and even leads to death, and the reason is multioriginal. Conclusions People should be educated to have a broad understanding on ensuring drug use safety and lower drug-induced risks when taking HSW preparations.
Collapse
|
18
|
Zhang L, Liu X, Tu C, Li C, Song D, Zhu J, Zhou Y, Wang X, Li R, Xiao X, Liu Y, Wang J. Components synergy between stilbenes and emodin derivatives contributes to hepatotoxicity induced by Polygonum multiflorum. Xenobiotica 2019; 50:515-525. [PMID: 31424332 DOI: 10.1080/00498254.2019.1658138] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polygonum multiflorum Thunb. (PM) is a famous traditional Chinese medicine with liver tonic effect, but arousing great concerns for hepatotoxicity issue. In this study, we elucidated the contribution of the two major compounds, emodin-8-O-β-D-glucoside (EG) and 2,3,5,4´-tetrahydroxyl diphenylethylene-2-O-glucoside (TSG), in PM-induced liver injury.Based on LC-MS, the two concerned compounds were detected simultaneously in the sera of patients with PM-induced liver injury. In the lipopolysaccharide (LPS)-mediated inflammatory stress rat model, by the analysis of plasma biochemistry and liver histopathology, we observed that the solo treatment of EG, not TSG, could induce significant liver injury; and the combined administration of EG and TSG caused more severe liver injury than that of EG.Metabolomics analysis revealed that the EG-triggered liver injury was associated with significant disturbances of sphingolipids and primary bile acids metabolism pathways. In the combined administration group, much more disturbances in EG-triggered metabolic pathways, as well as alterations of several additional pathways such as retinol metabolism and vitamin B6 metabolism, were observed.Taken together, we considered EG was involved in the idiosyncratic liver injury of PM, and TSG played a synergetic role with EG, which contributed to the understanding of the hepatotoxic basis of PM.
Collapse
Affiliation(s)
- Le Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China.,China Military Institute of Chinese Medicine, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Xiaoyi Liu
- China Military Institute of Chinese Medicine, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Can Tu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China.,China Military Institute of Chinese Medicine, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Chunyu Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Di Song
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China.,China Military Institute of Chinese Medicine, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Jingxiao Zhu
- China Military Institute of Chinese Medicine, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Yuanyuan Zhou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China.,China Military Institute of Chinese Medicine, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Xiaohui Wang
- China Military Institute of Chinese Medicine, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Xiaohe Xiao
- China Military Institute of Chinese Medicine, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| | - Youping Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, P.R. China
| | - Jiabo Wang
- China Military Institute of Chinese Medicine, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, P.R. China
| |
Collapse
|
19
|
Li C, Rao T, Chen X, Zou Z, Wei A, Tang J, Xiong P, Li P, Jing J, He T, Bai Z, Yin J, Tan Z, Yu P, Zhou H, Wang J, Xiao X, Ouyang D. HLA-B*35:01 Allele Is a Potential Biomarker for Predicting Polygonum multiflorum-Induced Liver Injury in Humans. Hepatology 2019; 70:346-357. [PMID: 30985007 DOI: 10.1002/hep.30660] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022]
Abstract
Polygonum multiflorum (PM) is a well-known Chinese herbal medicine that has been reported to induce inflammation-associated idiosyncratic liver injury. This study aimed to identify the genetic basis of susceptibility to PM-drug-induced liver injury (PM-DILI) and to develop biological markers for predicting the risk of PM-DILI in humans. The major histocompatibility complex (MHC) regions of 11 patients with PM-DILI were sequenced, and all human leukocyte antigen (HLA)-type frequencies were compared to the Han-MHC database. An independent replication study that included 15 patients with PM-DILI, 33 patients with other DILI, and 99 population controls was performed to validate the candidate allele by HLA-B PCR sequence-based typing. A prospective cohort study that included 72 outpatients receiving PM for 4 weeks was designed to determine the influence of the risk allele on PM-DILI. In the pilot study, the frequency of HLA-B*35:01 was 45.4% in PM-DILI patients compared with 2.7% in the Han Chinese population (odds ratio [OR], 30.4; 95% confidence interval [CI], 11.7-77.8; P = 1.9 × 10-10 ). In the independent replication study and combined analyses, a logistic regression model confirmed that HLA-B*35:01 is a high-risk allele of PM-DILI (PM-DILI versus other DILI, OR, 86.5; 95% CI, 14.2-527.8, P = 1.0 × 10-6 ; and PM-DILI versus population controls, OR, 143.9; 95% CI, 30.1-687.5, P = 4.8 × 10-10 ). In the prospective cohort study, an asymptomatic increase in transaminase levels was diagnosed in 6 patients, representing a significantly higher incidence (relative risk, 8.0; 95% CI, 1.9-33.2; P < 0.02) in the HLA-B*35:01 carriers (37.5%) than in the noncarriers (4.7%). Conclusion: The HLA-B*35:01 allele is a genetic risk factor for PM-DILI and a potential biomarker for predicting PM-DILI in humans.
Collapse
Affiliation(s)
- Chaopeng Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan, China.,The First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang, China
| | - Tai Rao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Zhengsheng Zou
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| | - Aiwu Wei
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Jinfa Tang
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, Henan, China
| | - Peng Xiong
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| | - Pengyan Li
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| | - Jing Jing
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| | - Tingting He
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| | - Zhaofang Bai
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| | - Jiye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Zhirong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Peng Yu
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan, China.,School of Pharmaceutical Science, Central South University, Changsha, Hunan, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China
| | - Jiabo Wang
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| | - Xiaohe Xiao
- The Fifth Medical Center, General Hospital of PLA, Beijing, China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University, Changsha, China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, China.,Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan, China
| |
Collapse
|
20
|
Han L, Wang P, Wang Y, Zhao Q, Zheng F, Dou Z, Yang W, Hu L, Liu C. Rapid Discovery of the Potential Toxic Compounds in Polygonum multiflorum by UHPLC/Q-Orbitrap-MS-Based Metabolomics and Correlation Analysis. Front Pharmacol 2019; 10:329. [PMID: 31057397 PMCID: PMC6477936 DOI: 10.3389/fphar.2019.00329] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/19/2019] [Indexed: 12/20/2022] Open
Abstract
The dry roots of Polygonum multiflorum (PM), involving both the raw and processed materials, are widely used as the traditional Chinese medicine for treating various diseases in China. Hepatotoxicity has been occasionally reported in patients who consume PM. Unfortunately, no definite criteria are currently available regarding the processing technology of PM for reduction the toxicity. In this work, we aimed to investigate the variations of PM metabolite profiles induced by different processing technologies by UHPLC/Q-Orbitrap-MS and multivariate statistical analysis, and to discover the potential toxic compounds by correlating the cytotoxicity of L02 cell with the contents of metabolites in raw and processed PM samples. We could identify two potential toxic compounds, emodin-8-O-glucoside and torachrysone-O-hexose, which could be selected as the toxic markers to evaluate different processing methods. The results indicated all processed PM samples could decrease the cytotoxicity on L02 cell. The best processing technology for PM process was to steam PM in black soybean decoction (BD-PM) for 24 h.
Collapse
Affiliation(s)
- Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, China
| | - Piao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, China.,Singapore Phenome Centre, Lee Kong Chian School of Medicine, School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore
| | - Qianyu Zhao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fang Zheng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhiying Dou
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenzhi Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Limin Hu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Caixiang Liu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, the Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
21
|
Tu C, He Q, Li CY, Niu M, Han ZX, Ge FL, Zhou YY, Zhang L, Wang XH, Zhu JX, Li RS, Song HB, Xiao XH, Wang JB. Susceptibility-Related Factor and Biomarkers of Dietary Supplement Polygonum multiflorum-Induced Liver Injury in Rats. Front Pharmacol 2019; 10:335. [PMID: 31024306 PMCID: PMC6459954 DOI: 10.3389/fphar.2019.00335] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/19/2019] [Indexed: 12/21/2022] Open
Abstract
Polygonum multiflorum [PM, synonym Reynoutria multiflora (Thunb.) Moldenke.], a well-known and commonly used Traditional Chinese Medicine and herbal dietary supplement for nourishing the kidney and liver, etc., has aroused wide concern for its reported potential hepatotoxicity. Previous clinical cases and experimental studies have suggested that mild immune stress (MIS) may be one of the susceptibility-related factors of idiosyncratic drug-induced liver injury (IDILI) caused by PM. In this paper, we found that the same dose of PM caused abnormal liver biochemical indicators and liver tissue damage in MIS model rats, while it did not result in liver injury in normal rats, further confirming that MIS is a susceptibility factor for PM-IDILI. Plasma chemokine/cytokine profiling indicated that the MIS model group was significantly different from the other groups, showing a significant upregulation of plasma chemokines, while the MIS/PM group showed upregulated expression of chemokines or pro-inflammatory cytokines. Liver histopathological examination indicated a small amount of inflammatory cytokine infiltration in the MIS group, but no hepatocyte injury, consistent with the plasma profiles of increased chemokines and unchanged inflammatory cytokines. Notably, metabolomics characterization showed that MIS caused reprogramming of these metabolic pathways (such as phenylalanine and glutamate pathways), which was associated with acute phase reactions and inflammatory responses. These results suggested that MIS may promote an immune response to the initial cellular injury induced by PM in the liver, and MIS-induced upregulation of chemokines and metabolic reprogramming may an important mechanism that mediates the susceptibility to PM-IDILI. Furthermore, via receiver operating characteristic (ROC) curves analysis, we identified 12 plasma cytokines (e.g., IP-10, MCP-1 and MIP-1α) and nine metabolomics biomarkers (e.g., L-Phenylalanine, Creatinine, and L-glutamine) with differential capabilities (all ROC AUC > 0.9) of identifying susceptibility model animals from normal ones, which might be of referable value for the clinical recognition of PM-IDILI susceptible individuals.
Collapse
Affiliation(s)
- Can Tu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qin He
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Chun-Yu Li
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zi-Xin Han
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fei-Lin Ge
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuan-Yuan Zhou
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Le Zhang
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Wang
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jing-Xiao Zhu
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Rui-Sheng Li
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Hai-Bo Song
- Center for Drug Reevaluation, China National Medical Product Administration, Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Ruan LY, Li MH, Xing YX, Hong W, Chen C, Chen JF, Xu H, Zhao WL, Wang JS. Hepatotoxicity and hepatoprotection of Polygonum multiflorum Thund. as two sides of the same biological coin. JOURNAL OF ETHNOPHARMACOLOGY 2019; 230:81-94. [PMID: 30416091 DOI: 10.1016/j.jep.2018.10.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/09/2018] [Accepted: 10/23/2018] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum Thund., a well-known and commonly-used TCM (Traditional Chinese Medicine) for treating hypertension, hyperlipidemia, premature graying of hair, and etc., has aroused wide concern for its reported potential liver toxicity. Due to its various active ingredients, the mechanisms underlying the hepatotoxicity of raw Polygonum multiflorum Thund (RPM) remain largely unknown. AIM OF THE STUDY 1H NMR metabolomics was used to study the mechanism of RPM induced hepatotoxicity and disclosed the existence of hepatotoxicity and hepatoprotection conversion during RPM administration in mice. MATERIALS AND METHODS Three dosages of RPM were administered by gavage to mice for consecutive 28 days. The serum and liver samples were collected and then subjected for histopathology observation, biochemical measurement and 1H NMR metabolic profiling. RESULTS RPM caused oxidative stress and mitochondria dysfunction in mice, resulting in significant disturbance in energy metabolism, amino acid metabolism and pyrimidine metabolism and also inducing inflammatory responses. RPM induced hepatotoxicity in an apparent non-linear manner: the most severe in low dosage group, and to a less extent in medium group according to metabolomics analysis. The attenuation of liver injury in mice livers might result from the therapeutic effects, such as anti-oxidative capacity of RPM components. CONCLUSION RPM exerted a complicated non-linear manner in healthy recipients, switching between hepatoxicity and hepatoprotection dependent on the dosage and status of the body.
Collapse
Affiliation(s)
- Ling-Yu Ruan
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China
| | - Ming-Hui Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China
| | - Yue-Xiao Xing
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China
| | - Wei Hong
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China
| | - Cheng Chen
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China
| | - Jian-Feng Chen
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China
| | - Han Xu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China
| | - Wen-Long Zhao
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China
| | - Jun-Song Wang
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| |
Collapse
|
23
|
Qin X, Peng Y, Zheng J. In Vitro and in Vivo Studies of the Electrophilicity of Physcion and its Oxidative Metabolites. Chem Res Toxicol 2018; 31:340-349. [PMID: 29667811 DOI: 10.1021/acs.chemrestox.8b00026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Physcion (1,8-dihydroxy-3-methoxy-6-methyl-9,10-anthracenedione) is a bioactive component found in Polygoni Multiflori Radix (PMR), which has been widely used as traditional Chinese medicine. Unfortunately, studies showed hepatotoxicity of PMR during its clinical use. The mechanisms of its toxic action remain unknown. The major objectives of this study were to characterize oxidative metabolites of physcion in vitro and in vivo and to determine the electrophilicity of the parent compound and its oxidative metabolites. Five oxidative metabolites (M1-M5) were detected in rat liver microsomal incubations after exposure to physcion, and the formation of the metabolites was NADPH dependent. M1-M4 were monohydroxylation metabolites, and M5 was O-demethylation metabolite. A total of three N-acetylcysteine (NAC) conjugates (M6-M8) were observed in rat liver microsomes fortified with NAC as a trapping agent. M6 was derived from M4 conjugated with a molecule of NAC; M7 and M8 originated from parent compound physcion adducted with a molecule of NAC, respectively. M1-M8 were also observed in urine of rats given physcion. HLM incubations produced four oxidative metabolites and two NAC conjugates. The structures of M3, M7, and M8 were characterized by LC-Q-TOF MS and NMR. Recombinant P450 enzyme incubations demonstrated that CYPs2C19, 1A2, 2B6, and 3A4 were mainly involved in hydroxylation of physcion. The metabolism study assisted us to better understand the mechanisms of physcion-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xiaotong Qin
- Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning 110016 , P.R. China
| | - Ying Peng
- Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning 110016 , P.R. China
| | - Jiang Zheng
- Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning 110016 , P.R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province , Guizhou Medical University , Guiyang , Guizhou 550025 , P.R. China
| |
Collapse
|
24
|
Teschke R, Danan G. Causality Assessment Methods in Drug-Induced Liver Injury. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/978-1-4939-7677-5_27] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Li YX, Gong XH, Liu MC, Peng C, Li P, Wang YT. Investigation of Liver Injury of Polygonum multiflorum Thunb. in Rats by Metabolomics and Traditional Approaches. Front Pharmacol 2017; 8:791. [PMID: 29163173 PMCID: PMC5672018 DOI: 10.3389/fphar.2017.00791] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023] Open
Abstract
Liver injury induced by Polygonum multiflorum Thunb. (PM) have been reported since 2006, which aroused widespread concern. However, the toxicity mechanism of PM liver injury remained unclear. In this study, the mechanism of liver injury induced by different doses of PM after long-term administration was investigated in rats by metabolomics and traditional approaches. Rats were randomly divided into control group and PM groups. PM groups were oral administered PM of low (10 g/kg), medium (20 g/kg), high (40 g/kg) dose, while control group was administered distilled water. After 28 days of continuous administration, the serum biochemical indexes in the control and three PM groups were measured and the liver histopathology were analyzed. Also, UPLC-Q-TOF-MS with untargeted metabolomics was performed to identify the possible metabolites and pathway of liver injury caused by PM. Compared with the control group, the serum levels of ALT, AST, ALP, TG, and TBA in middle and high dose PM groups were significantly increased. And the serum contents of T-Bil, D-Bil, TC, TP were significantly decreased. However, there was no significant difference between the low dose group of PM and the control group except serum AST, TG, T-Bil, and D-Bil. Nine biomarkers were identified based on biomarkers analysis. And the pathway analysis indicated that fat metabolism, amino acid metabolism and bile acid metabolism were involved in PM liver injury. Based on the biomarker pathway analysis, PM changed the lipid metabolism, amino acid metabolism and bile acid metabolism and excretion in a dose-dependent manner which was related to the mechanism of liver injury.
Collapse
Affiliation(s)
- Yun-Xia Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Hong Gong
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mei-Chen Liu
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
26
|
Zhao DS, Jiang LL, Fan YX, Dong LC, Ma J, Dong X, Xu XJ, Li P, Li HJ. Identification of urine tauro-β-muricholic acid as a promising biomarker in Polygoni Multiflori Radix-induced hepatotoxicity by targeted metabolomics of bile acids. Food Chem Toxicol 2017; 108:532-542. [DOI: 10.1016/j.fct.2017.02.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023]
|
27
|
Herman A, Herman AP. Topically used herbal products for the treatment of hair loss: preclinical and clinical studies. Arch Dermatol Res 2017; 309:595-610. [DOI: 10.1007/s00403-017-1759-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/26/2017] [Indexed: 11/24/2022]
|
28
|
Jiang LL, Zhao DS, Fan YX, Yu Q, Li P, Li HJ. Detection of Emodin Derived Glutathione Adduct in Normal Rats Administered with Large Dosage of Polygoni Multiflori Radix. Front Pharmacol 2017; 8:446. [PMID: 28729838 PMCID: PMC5498464 DOI: 10.3389/fphar.2017.00446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/22/2017] [Indexed: 01/31/2023] Open
Abstract
Polygoni Multiflori Radix (PMR) has been commonly used as a tonic in China for centuries. PMR-associated hepatotoxicity has been drawing increasingly more attention in recent years in parallel with its wide utilization. Anthraquinones (AQs) are recognized as the main hepatotoxic components in PMR. However, the exact underlying mechanism of AQs poisoning is still not fully understood. Herein, we proposed a hypothesis that metabolic activation of AQs such as emodin was involved in PMR-induced liver injury, AQs followed to generate the electrophilic reactive metabolites and subsequently formed covalent adduct with cellular nucleophiles in the liver to exert hepatotoxicity. In the present study, the link of cytotoxicity of PMR in primary human hepatocytes and the depletion of glutathione (GSH) was investigated by MTT assay and UHPLC-QqQ-MS/MS analysis. The results showed that PMR depleted GSH and therefore induced cytotoxicity. Then, emodin-GSH adduct was identified in bile of liver injured rats after intragastric administration of PMR or emodin with the aid of UHPLC-QTOF-MS/MS method. Our findings not only provided confirmative evidence that the mechanism of hepatotoxicity induced by AQs in PMR involved key metabolic steps, but also revealed that emodin-GSH adduct had potential to be further developed as a sensitive and traceable biomarker for the assessment of PMR-induced liver injury.
Collapse
Affiliation(s)
- Li-Long Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Dong-Sheng Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Ya-Xi Fan
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Qiong Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing, China
| |
Collapse
|
29
|
Li CY, He Q, Gao D, Li RY, Zhu Y, Li HF, Feng WW, Yang MH, Xiao XH, Wang JB. Idiosyncratic drug-induced liver injury linked to Polygonum multiflorum: A case study by pharmacognosy. Chin J Integr Med 2017; 23:625-630. [DOI: 10.1007/s11655-017-2543-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Indexed: 11/24/2022]
|
30
|
Zhang CE, Niu M, Li Q, Zhao YL, Ma ZJ, Xiong Y, Dong XP, Li RY, Feng WW, Dong Q, Ma X, Zhu Y, Zou ZS, Cao JL, Wang JB, Xiao XH. Urine metabolomics study on the liver injury in rats induced by raw and processed Polygonum multiflorum integrated with pattern recognition and pathways analysis. JOURNAL OF ETHNOPHARMACOLOGY 2016; 194:299-306. [PMID: 27620661 DOI: 10.1016/j.jep.2016.09.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 08/25/2016] [Accepted: 09/07/2016] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygonum multiflorum L. is a famous traditional Chinese medicine that has always been perceived to be safe. Recently, the increasing case reports on hepatotoxicity induced by Raw P. multiflorum (RP) have attracted particular attention. However, the diagnosis and identification of RP-induced hepatotoxicity are still very difficult for its unknown mechanism and the lack of specific biomarkers. AIM OF THE STUDY To further explore the toxicity and metabolic mechanisms involved in the hepatotoxicity induced by RP. MATERIALS AND METHODS The hepatotoxicity induced by RP and its processed products (PP) (dosed at 20g/kg for 4 weeks) on rats were investigated using conventional approaches including the biochemical analysis and histopathological observations. Further, a urinary metabolomic approach was developed to study the metabolic disturbances caused by RP and PP, followed by the pattern recognition approach and pathways analysis. RESULTS RP showed obvious hepatotoxity whereas PP did not. 16 potential biomarkers (pyridoxamine, 4-pyridoxic acid, citrate et al.) differentially expressed in RP group were identified compared with the control and PP-treated groups. The pathways analysis showed that vitamin B6 metabolism, tryptophan metabolism and citrate cycle might be the major enriched pathways involved in the hepatotoxicity of the herb. CONCLUSION 16 differentially expressed metabolites were identified to be involved in the RP-induced hepatotoxicity. Vitamin B6 metabolism might be mostly related to the hepatotoxicity induced by RP. This finding may provide a potential therapeutic target or option to treat hepatotoxicity induced by RP.
Collapse
Affiliation(s)
- Cong-En Zhang
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ming Niu
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, PR China
| | - Qi Li
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, PR China
| | - Yan-Ling Zhao
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, PR China
| | - Zhi-Jie Ma
- Beijing Friendship Hospital, Capital Medical University, Beijing, PR China
| | - Yin Xiong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, PR China
| | - Xiao-Ping Dong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Rui-Yu Li
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wu-Wen Feng
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qing Dong
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xiao Ma
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yun Zhu
- Integrative Medical Center, 302 Military Hospital, Beijing, PR China
| | - Zheng-Sheng Zou
- Diagnosis and Treatment Center for Non-infectious Diseases, 302 Military Hospital, Beijing, PR China
| | - Jun-Ling Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, PR China.
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, 302 Military Hospital, Beijing, PR China.
| |
Collapse
|
31
|
Li CY, Tu C, Gao D, Wang RL, Zhang HZ, Niu M, Li RY, Zhang CE, Li RS, Xiao XH, Yang MH, Wang JB. Metabolomic Study on Idiosyncratic Liver Injury Induced by Different Extracts of Polygonum multiflorum in Rats Integrated with Pattern Recognition and Enriched Pathways Analysis. Front Pharmacol 2016; 7:483. [PMID: 28018221 PMCID: PMC5156827 DOI: 10.3389/fphar.2016.00483] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022] Open
Abstract
Currently, numerous liver injury cases related to a famous Chinese herb- Polygonum Multiflorum (Heshouwu in Chinese) have attracted great attention in many countries. Our previous work showed that Heshouwu-induced hepatotoxicity belonged to idiosyncratic drug-induced liver injury (IDILI). Unfortunately, the components and mechanisms attributed to IDILI of Heshouwu are difficult to determine and thus remain unknown. Attempts to explore puzzles, we prepared the chloroform (CH)-, ethyl acetate (EA)-, and residue (RE) extracts of Heshouwu to investigate IDILI constituents and underlying mechanisms, using biochemistry, histopathology, and metabolomics examinations. The results showed that co-treatment with non-toxic dose of lipopolysaccharide (LPS) and EA extract could result in evident liver injury, indicated by the significant elevation of plasma alanine aminotransferase and aspartate aminotransferase activities, as well as obvious liver histologic damage; whereas other two separated fractions, CH and RE extracts, failed to induce observable liver injury. Furthermore, 21 potential metabolomic biomarkers that differentially expressed in LPS/EA group compared with other groups without liver injury were identified by untargeted metabolomics, mainly involved two pathways: tricarboxylic acid cycle and sphingolipid metabolism. This work illustrated EA extract had close association with the idiosyncratic hepatotoxicity of Heshouwu and provided a metabolomic insight into IDILI of different extracts from Heshouwu.
Collapse
Affiliation(s)
- Chun-Yu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Can Tu
- China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China; School of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China
| | - Dan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Rui-Lin Wang
- Integrative Medical Center, 302 Military Hospital Beijing, China
| | - Hai-Zhu Zhang
- China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China; School of Pharmacy, Chengdu University of Traditional Chinese MedicineChengdu, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Rui-Yu Li
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Cong-En Zhang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Rui-Sheng Li
- Research Center for Clinical and Translational Medicine, 302 Hospital of People's Liberation Army Beijing, China
| | - Xiao-He Xiao
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Mei-Hua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing, China
| | - Jia-Bo Wang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| |
Collapse
|
32
|
Teschke R, Larrey D, Melchart D, Danan G. Traditional Chinese Medicine (TCM) and Herbal Hepatotoxicity: RUCAM and the Role of Novel Diagnostic Biomarkers Such as MicroRNAs. MEDICINES (BASEL, SWITZERLAND) 2016; 3:E18. [PMID: 28930128 PMCID: PMC5456249 DOI: 10.3390/medicines3030018] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/04/2016] [Accepted: 07/06/2016] [Indexed: 02/08/2023]
Abstract
Background: Traditional Chinese Medicine (TCM) with its focus on herbal use is popular and appreciated worldwide with increased tendency, although its therapeutic efficacy is poorly established for most herbal TCM products. Treatment was perceived as fairly safe but discussions emerged more recently as to whether herb induced liver injury (HILI) from herbal TCM is a major issue; Methods: To analyze clinical and case characteristics of HILI caused by herbal TCM, we undertook a selective literature search in the PubMed database with the search items Traditional Chinese Medicine, TCM, alone and combined with the terms herbal hepatotoxicity or herb induced liver injury; Results: HILI caused by herbal TCM is rare and similarly to drugs can be caused by an unpredictable idiosyncratic or a predictable intrinsic reaction. Clinical features of liver injury from herbal TCM products are variable, and specific diagnostic biomarkers such as microsomal epoxide hydrolase, pyrrole-protein adducts, metabolomics, and microRNAs are available for only a few TCM herbs. The diagnosis is ascertained if alternative causes are validly excluded and causality levels of probable or highly probable are achieved applying the liver specific RUCAM (Roussel Uclaf Causality Assessment Method) as the most commonly used diagnostic tool worldwide. Case evaluation may be confounded by inappropriate or lacking causality assessment, poor herbal product quality, insufficiently documented cases, and failing to exclude alternative causes such as infections by hepatotropic viruses including hepatitis E virus infections; Conclusion: Suspected cases of liver injury from herbal TCM represent major challenges that deserve special clinical and regulatory attention to improve the quality of case evaluations and ascertain patients' safety and benefit.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, D-63450 Hanau, Teaching Hospital of the Medical Faculty of the Goethe University, Frankfurt/Main D-63450, Germany.
| | - Dominique Larrey
- Department of Liver and Transplantation-IRB-INSERM (Institut de Recherche Biologique-INstitut de la Santé Et de la Recherche Médicale) 1183, Saint Eloi Hospital, Montpellier University, 34295 Montpellier, France.
| | - Dieter Melchart
- Competence Centre for Complementary Medicine and Naturopathy (CoCoNat), Klinikum rechts der Isar, Technische Universität München, Munich D-80801, Germany.
- Institute for Complementary and Integrative Medicine, University Hospital Zurich and University of Zurich, Zurich CH-8091, Switzerland.
| | - Gaby Danan
- Pharmacovigilance Consultancy, Paris 75020, France.
| |
Collapse
|
33
|
Frenzel C, Teschke R. Herbal Hepatotoxicity: Clinical Characteristics and Listing Compilation. Int J Mol Sci 2016; 17:E588. [PMID: 27128912 PMCID: PMC4881436 DOI: 10.3390/ijms17050588] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 03/31/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
Herb induced liver injury (HILI) and drug induced liver injury (DILI) share the common characteristic of chemical compounds as their causative agents, which were either produced by the plant or synthetic processes. Both, natural and synthetic chemicals are foreign products to the body and need metabolic degradation to be eliminated. During this process, hepatotoxic metabolites may be generated causing liver injury in susceptible patients. There is uncertainty, whether risk factors such as high lipophilicity or high daily and cumulative doses play a pathogenetic role for HILI, as these are under discussion for DILI. It is also often unclear, whether a HILI case has an idiosyncratic or an intrinsic background. Treatment with herbs of Western medicine or traditional Chinese medicine (TCM) rarely causes elevated liver tests (LT). However, HILI can develop to acute liver failure requiring liver transplantation in single cases. HILI is a diagnosis of exclusion, because clinical features of HILI are not specific as they are also found in many other liver diseases unrelated to herbal use. In strikingly increased liver tests signifying severe liver injury, herbal use has to be stopped. To establish HILI as the cause of liver damage, RUCAM (Roussel Uclaf Causality Assessment Method) is a useful tool. Diagnostic problems may emerge when alternative causes were not carefully excluded and the correct therapy is withheld. Future strategies should focus on RUCAM based causality assessment in suspected HILI cases and more regulatory efforts to provide all herbal medicines and herbal dietary supplements used as medicine with strict regulatory surveillance, considering them as herbal drugs and ascertaining an appropriate risk benefit balance.
Collapse
Affiliation(s)
- Christian Frenzel
- Department of Medicine I, University Medical Center Hamburg Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 63450 Hanau, Germany.
| |
Collapse
|
34
|
Danan G, Teschke R. RUCAM in Drug and Herb Induced Liver Injury: The Update. Int J Mol Sci 2015; 17:E14. [PMID: 26712744 PMCID: PMC4730261 DOI: 10.3390/ijms17010014] [Citation(s) in RCA: 464] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022] Open
Abstract
RUCAM (Roussel Uclaf Causality Assessment Method) or its previous synonym CIOMS (Council for International Organizations of Medical Sciences) is a well established tool in common use to quantitatively assess causality in cases of suspected drug induced liver injury (DILI) and herb induced liver injury (HILI). Historical background and the original work confirm the use of RUCAM as single term for future cases, dismissing now the term CIOMS for reasons of simplicity and clarity. RUCAM represents a structured, standardized, validated, and hepatotoxicity specific diagnostic approach that attributes scores to individual key items, providing final quantitative gradings of causality for each suspect drug/herb in a case report. Experts from Europe and the United States had previously established in consensus meetings the first criteria of RUCAM to meet the requirements of clinicians and practitioners in care for their patients with suspected DILI and HILI. RUCAM was completed by additional criteria and validated, assisting to establish the timely diagnosis with a high degree of certainty. In many countries and for more than two decades, physicians, regulatory agencies, case report authors, and pharmaceutical companies successfully applied RUCAM for suspected DILI and HILI. Their practical experience, emerging new data on DILI and HILI characteristics, and few ambiguous questions in domains such alcohol use and exclusions of non-drug causes led to the present update of RUCAM. The aim was to reduce interobserver and intraobserver variability, to provide accurately defined, objective core elements, and to simplify the handling of the items. We now present the update of the well accepted original RUCAM scale and recommend its use for clinical, regulatory, publication, and expert purposes to validly establish causality in cases of suspected DILI and HILI, facilitating a straightforward application and an internationally harmonized approach of causality assessment as a common basic tool.
Collapse
Affiliation(s)
- Gaby Danan
- Pharmacovigilance Consultancy, rue des Ormeaux, 75020 Paris, France.
| | - Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Frankfurt am Main, D-63450 Hanau, Germany.
| |
Collapse
|
35
|
Lee WJ, Kim HW, Lee HY, Son CG. Systematic review on herb-induced liver injury in Korea. Food Chem Toxicol 2015; 84:47-54. [PMID: 26165727 DOI: 10.1016/j.fct.2015.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/03/2015] [Accepted: 06/07/2015] [Indexed: 12/18/2022]
Abstract
Herbal drugs are generally regarded as safe due to their extensive clinical use especially in East Asian countries. However, the potential toxicity of herbal drugs has become an important medical issue recently, resulting in numerous reports of drug-induced liver injury (DILI). Here, we performed a systematic review of herbal medicines with the potential to cause hepatotoxicity in Korea. A literature search of six databases, including PubMed and five Korean electronic databases, was performed to identify cases of herb-induced liver injury (HILI) in Korea, yielding 31 unique reports, including 21 single herb and 10 multi-herb preparations. From these reports, we identified 97 cases of HILI (47 males, 49 females, and 1 unknown sex) consisting of 74.7% hepatocellular-type injury, 10.8% cholestatic-type injury, and 14.5% mixed-type injury. Causative agents included 21 unique herbal preparations, including 11 single species and 10 multispecies, with Polygoni Multiflori (39.2%) and Dictamnus dasycarpus (37.1%) as the most frequent agents. These analyses presented a feature of HILI, and produced a comprehensive list of herbs with a higher risk of hepatotoxicity in Korea. Further studies will be necessary to ascertain the mechanisms by which these herbs induce HILI and to determine whether these effects are specific to the Korean population.
Collapse
Affiliation(s)
- Woo-Jin Lee
- Korean Medical College of Daejeon University, 62, Daehak-ro Dong-gu, Daejeon, 301-716, Republic of Korea
| | - Hae-Won Kim
- Korean Medical College of Daejeon University, 62, Daehak-ro Dong-gu, Daejeon, 301-716, Republic of Korea
| | - Hyun-Yong Lee
- Korean Medical College of Daejeon University, 62, Daehak-ro Dong-gu, Daejeon, 301-716, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 176-9 Daeheung-ro Jung-gu, Daejeon, 301-724, Republic of Korea.
| |
Collapse
|
36
|
Bounda GA, Feng YU. Review of clinical studies of Polygonum multiflorum Thunb. and its isolated bioactive compounds. Pharmacognosy Res 2015; 7:225-36. [PMID: 26130933 PMCID: PMC4471648 DOI: 10.4103/0974-8490.157957] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 02/18/2015] [Accepted: 06/02/2015] [Indexed: 01/05/2023] Open
Abstract
Polygonum multiflorum Thunb. (PMT), officially listed in the Chinese Pharmacopoeia, is one of the most popular perennial Chinese traditional medicines known as He shou wu in China and East Asia, and as Fo-ti in North America. Mounting pharmacological studies have stressed out its key benefice for the treatment of various diseases and medical conditions such as liver injury, cancer, diabetes, alopecia, atherosclerosis, and neurodegenerative diseases as well. International databases such as PubMed/Medline, Science citation Index and Google Scholar were searched for clinical studies recently published on P. multiflorum. Various clinical studies published articles were retrieved, providing information relevant to pharmacokinetics-pharmacodynamics analysis, sleep disorders, dyslipidemia treatment, and neurodegenerative diseases. This review is an effort to update the clinical picture of investigations ever carried on PMT and/or its isolated bio-compounds and to enlighten its therapeutic assessment.
Collapse
Affiliation(s)
- Guy-Armel Bounda
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - YU Feng
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Ministry of Education, China
| |
Collapse
|
37
|
Teschke R, Eickhoff A. Herbal hepatotoxicity in traditional and modern medicine: actual key issues and new encouraging steps. Front Pharmacol 2015; 6:72. [PMID: 25954198 PMCID: PMC4407580 DOI: 10.3389/fphar.2015.00072] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/18/2015] [Indexed: 12/19/2022] Open
Abstract
Plants are natural producers of chemical substances, providing potential treatment of human ailments since ancient times. Some herbal chemicals in medicinal plants of traditional and modern medicine carry the risk of herb induced liver injury (HILI) with a severe or potentially lethal clinical course, and the requirement of a liver transplant. Discontinuation of herbal use is mandatory in time when HILI is first suspected as diagnosis. Although, herbal hepatotoxicity is of utmost clinical and regulatory importance, lack of a stringent causality assessment remains a major issue for patients with suspected HILI, while this problem is best overcome by the use of the hepatotoxicity specific CIOMS (Council for International Organizations of Medical Sciences) scale and the evaluation of unintentional reexposure test results. Sixty five different commonly used herbs, herbal drugs, and herbal supplements and 111 different herbs or herbal mixtures of the traditional Chinese medicine (TCM) are reported causative for liver disease, with levels of causality proof that appear rarely conclusive. Encouraging steps in the field of herbal hepatotoxicity focus on introducing analytical methods that identify cases of intrinsic hepatotoxicity caused by pyrrolizidine alkaloids, and on omics technologies, including genomics, proteomics, metabolomics, and assessing circulating micro-RNA in the serum of some patients with intrinsic hepatotoxicity. It remains to be established whether these new technologies can identify idiosyncratic HILI cases. To enhance its globalization, herbal medicine should universally be marketed as herbal drugs under strict regulatory surveillance in analogy to regulatory approved chemical drugs, proving a positive risk/benefit profile by enforcing evidence based clinical trials and excellent herbal drug quality.
Collapse
Affiliation(s)
- Rolf Teschke
- Division of Gastroenterology and Hepatology, Department of Internal Medicine II, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty of the Goethe University Frankfurt MainFrankfurt, Germany
| | | |
Collapse
|
38
|
Ma J, Zheng L, He YS, Li HJ. Hepatotoxic assessment of Polygoni Multiflori Radix extract and toxicokinetic study of stilbene glucoside and anthraquinones in rats. JOURNAL OF ETHNOPHARMACOLOGY 2015; 162:61-68. [PMID: 25557036 DOI: 10.1016/j.jep.2014.12.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/05/2014] [Accepted: 12/23/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polygoni Multiflori Radix (PMR) has been traditionally used as a tonic and an anti-aging remedy for centuries; however, hepatic lesions linked to PMR have been frequently reported. AIM OF THE STUDY This work attempted to investigate the hepatotoxic potential of PMR extract and the toxicokinetics of stilbene glucoside and anthraquinones in PMR extract following repeated administration. MATERIALS AND METHODS Histopathological and biochemical tests were performed to assess the hepatotoxicity of PMR extract. A rapid and sensitive liquid chromatography-mass spectrometry (LC-MS) assay was developed for toxicokinetic analysis of the main constituents of PMR extract, including 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (TSG), emodin-8-O-β-D-glucoside and emodin. RESULTS The histopathological and biochemical tests indicated that repeated administration of high-dose PMR extract (20 g/kg) for 3 weeks could cause hepatic lesions, while the low-dose treatment (1 g/kg) was safe. Necrosis and steatosis of hepatic cells, inflammatory cell infiltration and mild fibrosis were the main toxicity symptoms caused by high-dose PMR extract in rat liver. The aspartate aminotransferase (AST) levels increased by approximately 17%, from 110.80±0.84 to 129.75±10.83 IU/L, in the high-dose group compared with the control group. The proposed LC-MS method was proven to be suitable for the simultaneous quantification of these three constituents by affording desirable linearity (r(2)>0.998) and satisfactory precision (error less than 10%). The toxicokinetic study showed that emodin could not be detected in the low-dose group, but the AUC and Cmax of emodin displayed a gradual increase with repeated treatments in the high-dose group. The toxicokinetics of TSG in the low- and high-dose groups exhibited similar trends after repeated administration. CONCLUSIONS Consideration needs to be given to the rational application of PMR in the clinic to balance its benefits and risks. The increased emodin exposure in vivo provided a putative explanation for the observed hepatic lesions induced by PMR extract, although further studies to confirm the potentially causal link between emodin exposure and hepatic lesions are still necessary.
Collapse
Affiliation(s)
- Jiang Ma
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tong jia Lane, Nanjing 210009, China
| | - Li Zheng
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tong jia Lane, Nanjing 210009, China
| | - Yi-Sheng He
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tong jia Lane, Nanjing 210009, China
| | - Hui-Jun Li
- State Key Laboratory of Natural Medicines (China Pharmaceutical University), No. 24 Tong jia Lane, Nanjing 210009, China.
| |
Collapse
|
39
|
Lv GP, Meng LZ, Han DQ, Li HY, Zhao J, Li SP. Effect of sample preparation on components and liver toxicity of Polygonum multiflorum. J Pharm Biomed Anal 2015; 109:105-11. [PMID: 25766851 DOI: 10.1016/j.jpba.2015.02.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/06/2015] [Accepted: 02/16/2015] [Indexed: 12/22/2022]
Abstract
It was shown that different extracts had significant differences in the toxicity of Polygonum multiflorum. In this study, the effect of sample preparation on components and liver toxicity of different extracts from P. multiflorum were determined. Hepatoxic components were discovered based on biomembrane extraction. Comparative chemistry and toxicology between ethanol and water extracts were also performed. The results showed that ethanol extract had much stronger hepatotoxicity, the content of emodin-8-O-β-d-glucopyranoside, physcion-8-O-β-d-glucopyranoside, emodin and physcion was significantly higher in ethanol extract than in water extract, while the human hepatocytes extraction showed that 2,3,5,4'-tetrahydroxystilbene-2-O-β-d-glucopyranoside, emodin-8-O-β-d-glucopyranoside, physcion-8-O-β-d-glucopyranoside, emodin and physcion had interaction with human hepatocytes. The hepatotoxic effect of these components was investigated on human hepatocytes LO2 cells and emodin-8-O-β-d-glucopyranoside, physcion-8-O-β-d-glucopyranoside, emodin and physcion were finally confirmed to be, at least partial, hepatotoxic components. The results showed that sample preparation has significant effect on components in extracts of P. multiflorum especially the components related to hepatotoxicity. Water extract, the conventional administration form of Chinese herbs, is prefer for phytotherapy before well understanding their chemistry and biological activities.
Collapse
Affiliation(s)
- G P Lv
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - L Z Meng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - D Q Han
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao; Shenzhen Institute of Drug Control, Shenzhen, China
| | - H Y Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - J Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| | - S P Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
40
|
Stickel F, Shouval D. Hepatotoxicity of herbal and dietary supplements: an update. Arch Toxicol 2015; 89:851-65. [DOI: 10.1007/s00204-015-1471-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
|
41
|
Lei X, Chen J, Ren J, Li Y, Zhai J, Mu W, Zhang L, Zheng W, Tian G, Shang H. Liver Damage Associated with Polygonum multiflorum Thunb.: A Systematic Review of Case Reports and Case Series. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:459749. [PMID: 25648693 PMCID: PMC4306360 DOI: 10.1155/2015/459749] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
Abstract
Objective. To summarize the characteristics and analysis of relevant factors and to give references for prevention and further study of liver damage associated with Polygonum multiflorum Thunb. (HSW), we provide a systematic review of case reports and case series about liver damage associated with HSW. Methods. An extensive search of 6 medical databases was performed up to June 2014. Case reports and case series involving liver damage associated with HSW were included. Results. This review covers a total of 450 cases in 76 articles. HSW types included raw and processed HSW decoction pieces and many Chinese patent medicines that contain HSW. Symptoms of liver damage occur mostly a month or so after taking the medicine, mainly including jaundice, fatigue, anorexia, and yellow or tawny urine. Of the 450 patients, two cases who received liver transplantation and seven who died, the remaining 441 cases recovered or had liver function improvement after discontinuing HSW products and conservative care. Conclusion. HSW causes liver toxicity and may cause liver damage in different degrees and even lead to death; most of them are much related to long-term and overdose of drugs. Liver damage associated with HSW is reversible, and, after active treatment, the majority can be cured. People should be alert to liver damage when taking HSW preparations.
Collapse
Affiliation(s)
- Xiang Lei
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin 300193, China
| | - Jing Chen
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin 300193, China
| | - Jingtian Ren
- Center for Drug Reevaluation, State Food and Drug Administration, Xicheng, Beijing 100045, China
| | - Yan Li
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin 300193, China
| | - Jingbo Zhai
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin 300193, China
| | - Wei Mu
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 816 Zhenli Road, Tianjin 300150, China
| | - Li Zhang
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, 816 Zhenli Road, Tianjin 300150, China
| | - Wenke Zheng
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin 300193, China
| | - Guihua Tian
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Dongcheng, Beijing 100007, China
| | - Hongcai Shang
- Tianjin University of Traditional Chinese Medicine, 88 Yuquan Road, Tianjin 300193, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
42
|
|
43
|
Teschke R. Traditional Chinese Medicine Induced Liver Injury. J Clin Transl Hepatol 2014; 2:80-94. [PMID: 26357619 PMCID: PMC4521264 DOI: 10.14218/jcth.2014.00003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/27/2014] [Accepted: 03/02/2014] [Indexed: 12/12/2022] Open
Abstract
Traditional Chinese Medicine (TCM) is popular around the world and encompasses many different practices with particular emphasis on herbal TCM. Using the PubMed database, a literature search was undertaken to assess the extent herbal TCM products exert rare hepatotoxicity. Analysis of reported cases revealed numerous specified herbal TCM products with potential hepatotoxicity. Among these were An Shu Ling, Bai Fang, Bai Xian Pi, Ban Tu Wan, Bo He, Bo Ye Qing Niu Dan, Bofu Tsu Sho San, Boh Gol Zhee, Cang Er Zi, Chai Hu, Chaso, Chi R Yun, Chuan Lian Zi, Ci Wu Jia, Da Chai Hu Tang, Da Huang, Du Huo, Gan Cao, Ge Gen, Ho Shou Wu, Hu Bohe You, Hu Zhang, Huang Qin, Huang Yao Zi, Hwang Geun Cho, Ji Gu Cao, Ji Ji, Ji Xue Cao, Jiguja, Jin Bu Huan, Jue Ming Zi, Kamishoyosan, Kudzu, Lei Gong Teng, Long Dan Xie Gan Tang, Lu Cha, Ma Huang, Mao Guo Tian Jie Cai, Onshido, Polygonum multiflorum, Qian Li Guang, Ren Shen, Sairei To, Shan Chi, Shen Min, Shi Can, Shi Liu Pi, Shou Wu Pian, Tian Hua Fen, White flood, Wu Bei Zi, Xi Shu, Xiao Chai Hu Tang, Yin Chen Hao, Zexie, Zhen Chu Cao, and various unclassified Chinese herbal mixtures. Causality was firmly established for a number of herbal TCM products by a positive reexposure test result, the liver specific scale of CIOMS (Council for International Organizations of Medical Sciences), or both. Otherwise, the quality of case data was mixed, especially regarding analysis of the herb ingredients because of adulteration with synthetic drugs, contamination with heavy metals, and misidentification. In addition, non-herbal TCM elements derived from Agaricus blazei, Agkistrodon, Antelope, Bombyx, Carp, Fish gallbladder, Phellinus, Scolopendra, Scorpio, and Zaocys are also known or potential hepatotoxins. For some patients, the clinical course was severe, with risks for acute liver failure, liver transplantation requirement, and lethality. In conclusion, the use of few herbal TCM products may rarely be associated with hepatotoxicity in some susceptible individuals, necessitating a stringent pretreatment evaluation of the risk/benefit ratio, based on results of multicenter, randomized, double-blind, placebo-controlled clinical trials.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty of the Goethe University Frankfurt/ Main, Germany
| |
Collapse
|
44
|
Lahiri DK, Maloney B, Long JM, Greig NH. Lessons from a BACE1 inhibitor trial: off-site but not off base. Alzheimers Dement 2014; 10:S411-9. [PMID: 24530026 DOI: 10.1016/j.jalz.2013.11.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/04/2013] [Accepted: 11/25/2013] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by formation of neuritic plaque primarily composed of a small filamentous protein called amyloid-β peptide (Aβ). The rate-limiting step in the production of Aβ is the processing of Aβ precursor protein (APP) by β-site APP-cleaving enzyme (BACE1). Hence, BACE1 activity plausibly plays a rate-limiting role in the generation of potentially toxic Aβ within brain and the development of AD, thereby making it an interesting drug target. A phase II trial of the promising LY2886721 inhibitor of BACE1 was suspended in June 2013 by Eli Lilly and Co., due to possible liver toxicity. This outcome was apparently a surprise to the study's team, particularly since BACE1 knockout mice and mice treated with the drug did not show such liver toxicity. Lilly proposed that the problem was not due to LY2886721 anti-BACE1 activity. We offer an alternative hypothesis, whereby anti-BACE1 activity may induce apparent hepatotoxicity through inhibiting BACE1's processing of β-galactoside α-2,6-sialyltransferase I (STGal6 I). In knockout mice, paralogues, such as BACE2 or cathepsin D, could partially compensate. Furthermore, the short duration of animal studies and short lifespan of study animals could mask effects that would require several decades to accumulate in humans. Inhibition of hepatic BACE1 activity in middle-aged humans would produce effects not detectable in mice. We present a testable model to explain the off-target effects of LY2886721 and highlight more broadly that so-called off-target drug effects might actually represent off-site effects that are not necessarily off-target. Consideration of this concept in forthcoming drug design, screening, and testing programs may prevent such failures in the future.
Collapse
Affiliation(s)
- Debomoy K Lahiri
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Bryan Maloney
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Justin M Long
- Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nigel H Greig
- Laboratory of Translational Gerontology, Intramural Research Program, National Institute of Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
45
|
Teschke R, Wolff A, Frenzel C, Schulze J, Eickhoff A. Herbal hepatotoxicity: a tabular compilation of reported cases. Liver Int 2012; 32:1543-56. [PMID: 22928722 DOI: 10.1111/j.1478-3231.2012.02864.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 07/23/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Herbal hepatotoxicity is a field that has rapidly grown over the last few years along with increased use of herbal products worldwide. AIMS To summarize the various facets of this disease, we undertook a literature search for herbs, herbal drugs and herbal supplements with reported cases of herbal hepatotoxicity. METHODS A selective literature search was performed to identify published case reports, spontaneous case reports, case series and review articles regarding herbal hepatotoxicity. RESULTS A total of 185 publications were identified and the results compiled. They show 60 different herbs, herbal drugs and herbal supplements with reported potential hepatotoxicity, additional information including synonyms of individual herbs, botanical names and cross references are provided. If known, details are presented for specific ingredients and chemicals in herbal products, and for references with authors that can be matched to each herbal product and to its effect on the liver. Based on stringent causality assessment methods and/or positive re-exposure tests, causality was highly probable or probable for Ayurvedic herbs, Chaparral, Chinese herbal mixture, Germander, Greater Celandine, green tea, few Herbalife products, Jin Bu Huan, Kava, Ma Huang, Mistletoe, Senna, Syo Saiko To and Venencapsan(®). In many other publications, however, causality was not properly evaluated by a liver-specific and for hepatotoxicity-validated causality assessment method such as the scale of CIOMS (Council for International Organizations of Medical Sciences). CONCLUSIONS This compilation presents details of herbal hepatotoxicity, assisting thereby clinical assessment of involved physicians in the future.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Academic Teaching Hospital of the Medical Faculty of the Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
46
|
Liang Z, Leung NN, Chen H, Zhao Z. Quality evaluation of various commercial specifications of Polygoni Multiflori Radix and its dregs by determination of active compounds. Chem Cent J 2012; 6:53. [PMID: 22682356 PMCID: PMC3406978 DOI: 10.1186/1752-153x-6-53] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background According to market investigation, two kinds of Polygoni Multiflori Radix decoction pieces with different specifications are commercially available: irregular thick slices (0.7-1.3 cm) and length-wise into thin slices (0.11-0.2 cm). The objective of this study was to evaluate the quality of various samples of Polygoni Multiflori Radix decoction pieces and its dregs. Results A simple and reliable high performance liquid chromatographic method was developed for determination the contents of 2,3,5,4′-tetrahydroxystilbene-2-O-β-D- glucopyranoside (THSG), emodin and physcion, which were considered to be potent active ingredients. The results showed that the contents of THSG, emodin and physcion varied in samples of different diameters and thicknesses. The results also indicated the dregs of Polygoni Multiflori Radix still contained a considerable amount of THSG, emodin and physcion. Conclusion The various commercial specifications of Polygoni Multiflori Radix sold in the markets did not correlate with their prices, and the dregs of Polygoni Multiflori Radix can be further utilized.
Collapse
Affiliation(s)
- Zhitao Liang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, People's Republic of China.
| | | | | | | |
Collapse
|
47
|
Wu X, Chen X, Huang Q, Fang D, Li G, Zhang G. Toxicity of raw and processed roots of Polygonum multiflorum. Fitoterapia 2011; 83:469-75. [PMID: 22210538 DOI: 10.1016/j.fitote.2011.12.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 12/12/2011] [Accepted: 12/12/2011] [Indexed: 12/26/2022]
Abstract
The roots of Polygonum multiflorum (Chinese name: He-Shou-Wu, HSW) are used in traditional Chinese medicine for many diseases in processed form or raw state. There are reports dealing with the toxicity of HSW. However, the toxicity is caused by over dosage or by the herb itself remains unclear. We evaluated the toxicity of raw and processed HSW on Kunming (KM) mice. For raw HSW, the toxicity of water decocta is much higher than that of acetone extract. Meanwhile, the toxicity of acetone extract of raw HSW is considerably higher than that of acetone extract of processed HSW. HPLC analyses revealed that the contents of characteristic compounds in raw HSW were changed after processing: the content of 2,3,4',5-tetrahydroxystilbene 2-O-β-D-glucoside was decreased by 55.8%, whereas the content of emodin was increased by 34.0%. Thus, processing could reduce the toxicity of HSW. Thus, the toxicity of HSW does not depend on the content of anthranoid derivatives, it may be correlated with the content of tetrahydroxystilbene glucosides.
Collapse
Affiliation(s)
- Xiaoqing Wu
- Chengdu Institute of Biology of the Chinese Academy of Sciences, Chengdu, PR China
| | | | | | | | | | | |
Collapse
|
48
|
Jung KA, Min HJ, Yoo SS, Kim HJ, Choi SN, Ha CY, Kim HJ, Kim TH, Jung WT, Lee OJ, Lee JS, Shim SG. Drug-Induced Liver Injury: Twenty Five Cases of Acute Hepatitis Following Ingestion of Polygonum multiflorum Thunb. Gut Liver 2011; 5:493-9. [PMID: 22195249 PMCID: PMC3240794 DOI: 10.5009/gnl.2011.5.4.493] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/01/2011] [Accepted: 05/24/2011] [Indexed: 12/14/2022] Open
Abstract
Background/Aims Complementary medicines, including herbal preparations and nutritional supplements, are widely used without prescriptions. As a result, there has been growing interest in the risk of hepatotoxicity with these agents. It is difficult to determine causal relationships between these herbal preparations and hepatotoxicity. We report on 25 patients diagnosed with toxic hepatitis following ingestion of Polygonum multiflorum Thunb. Methods Twenty-five patients (median age, 48 years [24 to 65 years]; M:F=18:7) with suspected P. multiflorum Thunb-induced liver injury were admitted to our hospital between 2007 and 2009. We analyzed clinical and histological data, including the types and the duration of P. multiflorum Thunb intake and the duration of hospital care. We also determined the type of liver injury using the R ratio (serum activity of ALT/serum activity of ALP). Results The types of complementary medicine used included tea (n=16), liquor (n=5), tea and liquor (n=2), powder (n=1), and honeyed pudding (n=1). The most common presenting sign was jaundice (76%), and 18 patients (72%) had evidence of hepatocellular liver injury. Histological findings were consistent with acute hepatitis in all cases (n=10) for which liver biopsy was performed. Twenty-three patients (91.6%) recovered with conservative management, 1 patient (4%) had a liver transplant, and 1 patient (4%) died of hepatic failure. Conclusions In our cases, we found that P. multiflorum Thunb could be hepatotoxic and could lead to severe drug-induced liver injury, and even death.
Collapse
Affiliation(s)
- Kyoung Ah Jung
- Department of Internal Medicine, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yu J, Xie J, Mao XJ, Wang MJ, Li N, Wang J, Zhaori GT, Zhao RH. Hepatoxicity of major constituents and extractions of Radix Polygoni Multiflori and Radix Polygoni Multiflori Praeparata. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1291-1299. [PMID: 21840387 DOI: 10.1016/j.jep.2011.07.055] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 05/12/2011] [Accepted: 07/28/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Radix Polygoni Multiflori (RPM) and Radix Polygoni Multiflori Praeparata (RPMP) were traditionally widely used as Chinese herbal medicine. However, liver adverse reactions caused by RPM or RPMP were frequently reported all around the world recent years. The aim of this study was to study the cytotoxicities of RPM, RPMP and their major constituents on human liver cell L-02 simultaneously. MATERIALS AND METHODS Multi-assays, including MTT assay, neutral red uptake (NRU) assay, LDH leakage percentage and liver enzyme secretion (AST, ALT and ALP) were used. Cytotoxicities of major chemical constituents of RPM, 2, 3, 5, 4'-tetrahydroxy-stilbene-2-O-β-D-glucoside (TSG), physcion and emodin, were tested. The cytotoxicities of water, 50% ethanol and 95% ethanol extractions of RPM and RPMP were tested. HPLC-DAD analysis was carried to reveal the content change of TSG, physcion and emodin after the processing procedure. RESULTS The TD(50) of TSG, physcion and emodin in MTT assay were >10,000 μM, 2853.61 μM and 520.37 μM. In the NRU assay, the TD(50) of TSG, physcion and emodin were much smaller (1401.53 μM, 1140.00 μM, and 3.80 μM). Emodin induced much severe liver enzyme secretion than TSG and physcion. Cell proliferation and LDH leakage rate showed no difference between RPM and RPMP extractions, but ALP, AST and ALT secretions in RPMP extractions were significant lower than that of PMR groups. Water extractions of RPM and RPMP were less toxic than any other solvent in most of the assays. Positive correlation was found between the TSG/emodin ratio and MTT survival rate. The emodin/physcion ratio also showed positive correlation with the LDH leakage percentage. CONCLUSIONS In conclusion, Radix Polygonum multiflorum and Radix Polygonum multiflorum Praeparata were not liver injure inducing in our in vitro assays. However, the processing produce of RPM could reduce its effect on both cell proliferation and enzyme secretion of liver cell. Judging from cell proliferation, integrity of cell membrane and enzyme secretion, three major chemical constituents of RPM: TSG, physcion and emodin showed no, moderate and severe cytotoxicity against human liver cell line L-02 respectively. Chemical constituents-cytotoxicity relationship investigation revealed that TSG and physcion probably had attenuating effect to emodin. The attenuating mechanisms were still under investigation.
Collapse
Affiliation(s)
- Jie Yu
- Yunnan University of Traditional Chinese Medicine, 1076 Yuhua Road, Chenggong District, Kunming, Yunnan Province, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Liang Z, Chen H, Yu Z, Zhao Z. Comparison of raw and processed Radix Polygoni Multiflori (Heshouwu) by high performance liquid chromatography and mass spectrometry. Chin Med 2010; 5:29. [PMID: 20704710 PMCID: PMC2930642 DOI: 10.1186/1749-8546-5-29] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 08/12/2010] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Radix Polygoni Multiflori is the dried root tuber of Polygonum multiflorum Thunb. (Fam. Polygonaceae). According to Chinese medicine theory, raw (R-RPM) and processed (P-RPM) Radix Polygoni Multiflori possess different properties. The present study investigates the differences in chemistry between raw and processed Radix Polygoni Multiflori. METHODS Five pairs of R-RPM and P-RPM as well as 15 commercial decoction pieces were analyzed with high performance liquid chromatography (HPLC) and mass spectrometry (MS). RESULTS Two anthraquinones, namely emodin-8-O-(6'-O-malonyl)-glucoside and physcion-8-O-(6'-O-malonyl)-glucoside disappeared or decreased significantly and 2,3,5,4'-tetrahydroxystilbene-2-O-beta-D-glucopyranoside, emodin-8-O-beta-D-glucopyranoside and physcion-8-O-beta-D-glucopyranoside decreased after the R-RPM samples being processed. On the other hand, the contents of emodin and physcion generally increased after processing. CONCLUSION The present study indicates that processing Radix Polygoni Multiflori may change the contents and types of chemicals in it. These changes are probably responsible for the various pharmacological effects of R-RPM and P-RPM as well as hepatotoxicity.
Collapse
Affiliation(s)
- Zhitao Liang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Zhiling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Zhongzhen Zhao
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| |
Collapse
|