1
|
Lykke L, Ernst C, Bek T. The vasoactive effects of bradykinin, vasoactive intestinal peptide, calcitonin gene-related peptide and neuropeptide Y depend on the perivascular tissue in porcine retinal arterioles in vitro. Acta Ophthalmol 2024; 102:349-356. [PMID: 37565361 DOI: 10.1111/aos.15742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/27/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
PURPOSE The retina contains a number of vasoactive neuropeptides and corresponding receptors, but the role of these neuropeptides for tone regulation of retinal arterioles has not been studied in detail. METHODS Porcine arterioles with preserved perivascular retinal tissue were mounted in a wire myograph, and the tone was measured after the addition of increasing concentrations of bradykinin, vasoactive intestinal peptide (VIP), neuropeptide Y (NPY), substance P (SP), calcitonin gene-related peptide (CGRP) and brain natriuretic peptide (BNP). The experiments were performed during inhibition of the synthesis of nitric oxide (NO), prostaglandins and dopamine and were repeated after removal of the perivascular retinal tissue. RESULTS Bradykinin, VIP and CGRP induced significant concentration-dependent dilatation and NPY significant concentration-dependent contraction of the arterioles in the presence of perivascular retinal tissue (p < 0.03 for all comparisons) but not on isolated arterioles. BNP and SP had no effect on vascular tone. The NOS inhibitor L-NAME reduced bradykinin- and VIP-induced relaxation (p < 0.001 for both comparisons), whereas none of the other inhibitors influenced the vasoactive effects of the studied neuropeptides. CONCLUSION The effects of neuropeptides on the tone of retinal arterioles depend on the perivascular retinal tissue and may involve effects other than those mediated by nitric oxide, prostaglandins and adrenergic compounds. Investigation of the mechanisms underlying the vasoactive effect of neuropeptides may be important for understanding and treating retinal diseases where disturbances in retinal flow regulation are involved in the disease pathogenesis.
Collapse
Affiliation(s)
- Lise Lykke
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| | - Charlotte Ernst
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Aarhus N, Denmark
| |
Collapse
|
2
|
Hodges GJ, Jackson DN, Mattar L, Johnson JM, Shoemaker JK. Neuropeptide Y and neurovascular control in skeletal muscle and skin. Am J Physiol Regul Integr Comp Physiol 2009; 297:R546-55. [PMID: 19571208 DOI: 10.1152/ajpregu.00157.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropeptide Y (NPY) is a ubiquitous peptide with multiple effects on energy metabolism, reproduction, neurogenesis, and emotion. In addition, NPY is an important sympathetic neurotransmitter involved in neurovascular regulation. Although early studies suggested that the vasoactive effects of NPY were limited to periods of high stress, there is growing evidence for the involvement of NPY on baseline vasomotor tone and sympathetically evoked vasoconstriction in vivo in both skeletal muscle and the cutaneous circulation. In Sprague-Dawley rat skeletal muscle, Y(1)-receptor activation appears to play an important role in the regulation of basal vascular conductance, and this effect is similar in magnitude to the alpha(1)-receptor contribution. Furthermore, under baseline conditions, agonist and receptor-based mechanisms for Y(1)-receptor-dependent control of vascular conductance in skeletal muscle are greater in male than female rats. In skin, there is Y(1)-receptor-mediated vasoconstriction during whole body, but not local, cooling. As with the NPY system in muscle, this neural effect in skin differs between males and females and in addition, declines with aging. Intriguingly, skin vasodilation to local heating also requires NPY and is currently thought to be acting via a nitric oxide pathway. These studies are establishing further interest in the role of NPY as an important vasoactive agent in muscle and skin, adding to the complexity of neurovascular regulation in these tissues. In this review, we focus on the role of NPY on baseline vasomotor tone in skeletal muscle and skin and how NPY modulates vasomotor tone in response to stress, with the aim of compiling what is currently known, while highlighting some of the more pertinent questions yet to be answered.
Collapse
Affiliation(s)
- Gary J Hodges
- School of Kinesiology, University of Western Ontario, London, Ontario.
| | | | | | | | | |
Collapse
|
3
|
De Mey JGR, Megens R, Fazzi GE. Functional Antagonism between Endogenous Neuropeptide Y and Calcitonin Gene-Related Peptide in Mesenteric Resistance Arteries. J Pharmacol Exp Ther 2007; 324:930-7. [DOI: 10.1124/jpet.107.133660] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
4
|
Coney AM, Marshall JM. Contribution of alpha2-adrenoceptors and Y1 neuropeptide Y receptors to the blunting of sympathetic vasoconstriction induced by systemic hypoxia in the rat. J Physiol 2007; 582:1349-59. [PMID: 17510186 PMCID: PMC2075239 DOI: 10.1113/jphysiol.2007.132563] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
There is evidence that sympathetically evoked vasoconstriction in skeletal muscle is blunted in systemic hypoxia, but the mechanisms underlying this phenomenon are not clear. In Saffan-anaesthetized Wistar rats, we have studied the role of α2-adrenoceptors and neuropeptide Y (NPY) Y1 receptors in mediating vasoconstriction evoked by direct stimulation of the lumbar sympathetic chain by different patterns of impulses in normoxia (N) and systemic hypoxia (H: breathing 8% O2). Patterns comprised 120 impulses delivered in bursts over a 1 min period at 40 or 20 Hz, or continuously at 2 Hz. Hypoxia attenuated the evoked increases in femoral vascular resistance (FVR) by all patterns, the response to 2 Hz being most affected (40 Hz bursts: N = 3.25 ± 0.75 arbitrary resistance units (RU); H = 1.14 ± 0.29 RU). Yohimbine (Yoh, α2-adrenoceptor antagonist) or BIBP 3226 (Y1-receptor antagonist) did not affect baseline FVR. In normoxia, Yoh attenuated the responses evoked by high frequency bursts and 2 Hz, whereas BIBP 3226 only attenuated the response to 40 Hz (40 Hz bursts: N + Yoh = 2.1 ± 0.59 RU; N + BIBP 3226 = 1.9 ± 0.4 RU). In hypoxia, Yoh did not further attenuate the evoked responses, but BIBP 3226 further attenuated the response to 40 Hz bursts. These results indicate that neither α2-adrenoceptors nor Y1 receptors contribute to basal vascular tone in skeletal muscle, but both contribute to constrictor responses evoked by high frequency bursts of sympathetic activity. We propose that in systemic hypoxia, the α2-mediated component represents about 50% of the sympathetically evoked constriction that is blunted, whereas the contribution made by Y1 receptors is resistant. Thus we suggest the importance of NPY in the regulation of FVR and blood pressure increases during challenges such as systemic hypoxia.
Collapse
Affiliation(s)
- Andrew M Coney
- Department of Physiology, The Medical School, Birmingham B15 2TT, UK.
| | | |
Collapse
|
5
|
Affiliation(s)
- Thomas C Westfall
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, Missouri, USA.
| |
Collapse
|
6
|
Dubinion JH, Mi Z, Zhu C, Gao L, Jackson EK. Pancreatic Polypeptide-Fold Peptide Receptors and Angiotensin II–Induced Renal Vasoconstriction. Hypertension 2006; 47:545-51. [PMID: 16365188 DOI: 10.1161/01.hyp.0000197033.54756.83] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Gi pathway augments renal vasoconstriction induced by angiotensin II in spontaneously hypertensive but not normotensive Wistar-Kyoto rats. Because the Gi-coupled pancreatic polypeptide (PP)-fold peptide receptors Y1 and Y2 are expressed in kidneys and are activated by endogenous PP-fold peptides, we tested the hypothesis that these receptors regulate angiotensin II-induced renal vasoconstriction in kidneys from hypertensive but not normotensive rats. A selective Y1-receptor agonist [(Leu31,Pro34)-neuropeptide Y; 6 to 10 nmol/L] greatly potentiated angiotensin II-induced changes in perfusion pressure in isolated, perfused kidneys from hypertensive but not normotensive rats. A selective Y2-receptor agonist (peptide YY(3-36); 6 nM) only slightly potentiated angiotensin II-induced renal vasoconstriction and only in kidneys from hypertensive rats. Neither the Y1-receptor nor the Y2-receptor agonist increased basal perfusion pressure. BIBP3226 (1 micromol/L, highly selective Y1-receptor antagonist) and BIIE0246 (1 micromol/L, highly selective Y2-receptor antagonist) completely abolished potentiation by (Leu31,Pro34)-neuropeptide Y and peptide YY(3-36), respectively. Y1-receptor and Y2-receptor mRNA and protein levels were expressed in renal microvessels and whole kidneys, but the abundance was similar in kidneys from hypertensive and normotensive rats. Both Y1-receptor-induced and Y2-receptor-induced potentiation of angiotensin II-mediated renal vasoconstriction was completely abolished by pretreatment with pertussis toxin (30 microg/kg IV, blocks Gi proteins). These data indicate that, in kidneys from genetically hypertensive but not normotensive rats, Y1-receptor activation markedly enhances angiotensin II-mediated renal vasoconstriction by a mechanism involving Gi. Although Y2 receptors can also potentiate angiotensin II-mediated renal vasoconstriction via Gi, the effect is modest compared with Y1 receptors. These findings may have important implications for the etiology of genetic hypertension.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Blood Vessels/drug effects
- Blotting, Western
- Hypertension/genetics
- Hypertension/physiopathology
- In Vitro Techniques
- Kidney/blood supply
- Male
- Neuropeptide Y/analogs & derivatives
- Neuropeptide Y/pharmacology
- Peptide Fragments
- Peptide YY/pharmacology
- Perfusion
- Pressure
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Neuropeptide Y/genetics
- Receptors, Neuropeptide Y/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- John H Dubinion
- Center for Clinical Pharmacology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | | | | | | |
Collapse
|
7
|
Donoso MV, Delpiano AM, Huidobro-Toro JP. Modulator role of neuropeptide Y in human vascular sympathetic neuroeffector junctions. EXS 2005:65-76. [PMID: 16382997 DOI: 10.1007/3-7643-7417-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Reverse transcription polymerase chain reaction (RT-PCR) studies identified the mRNA coding for the Y1 and Y2 receptors in human mammary artery/vein and saphenous vein biopsies. Y1 receptors are expressed in vascular smooth muscles and potentiate the contractile action of sympathetic co-transmitters, adenosine triphosphate (ATP) and noradrenaline (NA); BIBP 3226, a competitive Y1 receptor antagonist, blocked the neuropeptide Y (NPY)-induced modulation. The Y2 receptor is expressed in sympathetic nerves terminals and modulates the pool of sympathetic co-transmitters released at the neuroeffector junction. NPY plays a dual role as a modulator of sympathetic co-transmission; it facilitates vascular smooth muscle reactivity and modulates the presynaptic release of ATP and NA. Sympathetic reflexes regulate human vascular resistance, where NPY plays a modulator role of paramount importance following increased sympathetic discharges, such as stress and vascular disease.
Collapse
|
8
|
Pablo Huidobro-Toro J, Verónica Donoso M. Sympathetic co-transmission: the coordinated action of ATP and noradrenaline and their modulation by neuropeptide Y in human vascular neuroeffector junctions. Eur J Pharmacol 2005; 500:27-35. [PMID: 15464018 DOI: 10.1016/j.ejphar.2004.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/25/2022]
Abstract
The historical role of noradrenaline as the predominant sympathetic neurotransmitter in vascular neuroeffector junctions has matured to include ATP and the modulator action of neuropeptide Y (NPY). Numerous studies with isolated blood vessels rings demonstrate the presence of key enzymes responsible for the synthesis of ATP, noradrenaline and NPY, their co-storage, and their electrically evoked release from sympathetic perivascular nerve terminals. Functional assays coincide to demonstrate the integral role of these neurochemicals in sympathetic reflexes. In addition, the detection of the diverse receptor populations for ATP, noradrenaline and NPY in blood vessels, either in the smooth muscle, endothelial cells or nerve endings, further contribute to the notion that sympathetic vascular reflexes encompass the orchestrated action of the noradrenaline and ATP, and their modulation by NPY. The future clinical opportunities of sympathetic co-transmission in the control of human cardiovascular diseases will be highlighted.
Collapse
Affiliation(s)
- J Pablo Huidobro-Toro
- Departamento de Fisiología, Unidad de Regulación Neurohumoral, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| | | |
Collapse
|
9
|
Jackson DN, Noble EG, Shoemaker JK. Y1- and alpha1-receptor control of basal hindlimb vascular tone. Am J Physiol Regul Integr Comp Physiol 2004; 287:R228-33. [PMID: 15044188 DOI: 10.1152/ajpregu.00723.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of endogenous Y(1)-receptor activation on skeletal muscle vasculature under baseline conditions is currently debated and no in vivo studies have been performed to address this issue. Therefore, this study was designed to address the effect of Y(1)-receptor and/or alpha(1)-adrenoceptor antagonism on basal hindlimb vascular conductance in male Sprague-Dawley rats in vivo. Left hindlimb vascular conductance, carotid artery mean arterial pressure, and heart rate were measured during low volume infusion of N(2)-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-d-arginine amide (BIBP3226; 100 microg/kg), prazosin (20 microg/kg), and combined blockade to the left hindlimb. Vascular conductance increased 1.5 +/- 0.5 microl.min(-1).mmHg(-1) with BIBP3226 infusion, 1.7 +/- 0.5 microl.min(-1).mmHg(-1) with prazosin infusion, and 4.8 +/- 1.0 microl.min(-1).mmHg(-1) with combined blockade (P < 0.05). Interestingly, systolic vascular conductance increased in all three conditions, but diastolic vascular conductance only increased in the two conditions where BIBP3226 was present. These data indicate that Y(1)-receptor activation plays an important role in the regulation of vascular conductance in the resting rat hindlimb. Furthermore, this effect was of the same magnitude as the alpha(1)-adrenoceptor contribution. The differential flow profiles following alpha(1) blockade with and without Y(1)-receptor blockade supports local differences in receptor distribution.
Collapse
Affiliation(s)
- Dwayne N Jackson
- Neurovascular Research Laboratory, School of Kinesiology, Rm. 3110, Thames Hall, Univ. of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
10
|
Gradin KA, Li JY, Andersson O, Simonsen U. Enhanced neuropeptide Y immunoreactivity and vasoconstriction in mesenteric small arteries from spontaneously hypertensive rats. J Vasc Res 2003; 40:252-65. [PMID: 12902638 DOI: 10.1159/000071889] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2002] [Accepted: 03/17/2003] [Indexed: 11/19/2022] Open
Abstract
Enhanced sympathetic nerve activity is thought to play a role in the pathogenesis of hypertension. The purpose of the present study was to investigate the mechanisms underlying the enhanced vasocontractile response to perivascular stimulation of mesenteric arteries isolated from female spontaneously hypertensive rats (SHR). Innervation of mesenteric small arteries was evaluated by immunohistochemistry and confocal microscopy while functional studies were conducted in a microvascular myograph. The distribution of nerve terminals immunoreactive for tyrosine hydroxylase (TH) and neuropeptide Y (NPY) was similar in mesenteric small arteries from Wistar-Kyoto (WKY) and SHR rats. However, immunointensity of TH or NPY immunoreactivities were much higher in small arteries from SHR compared to WKY. Expressed as percentage of contractions elicited by 124 mM K(+), concentration-response curves for noradrenaline (NA) and NPY were shifted leftward in SHR compared with WKY rats. The combination of noradrenaline (1 microM) and NPY (10 nM) contracted mesenteric arteries from WKY and SHR to higher levels than compared to either contractile agent added alone. The NPY Y(1) receptor antagonist, BIBP 3226, inhibited these contractions with 87 +/- 0.7 and 80 +/- 1.3% (p < 0.05, n = 6) in arteries from WKY and SHR rats, respectively. In arteries incubated with the alpha(1)-adrenoceptor antagonist, prazosin, and preactivated with vasopressin, electrical field stimulation evoked contractions which were more pronounced in mesenteric arteries from SHR compared to WKY rats. BIBP 3226 partially inhibited these contractions. In vasopressin-activated arteries BIBP 3226 caused rightward shifts of the concentration-response curves for NPY in mesenteric arteries from SHR rats, but in addition it also abolished the maximal NPY contraction in arteries from WKY rats. In the presence of BIBP 3226, low concentrations (1 pM to 10 nM) of NPY caused relaxations in arteries from WKY, but not in segments from SHR rats. Mechanical removal of the endothelium abolished NPY relaxation in arteries from WKY. In arteries activated with vasopressin and exposed to either forskolin or sodium nitroprusside, the addition of NPY evoked contractions which were more pronounced in arteries from SHR compared to WKY arteries. The present study suggests that enhanced NPY content and vasoconstriction to NPY in arteries from hypertensive rats can contribute to the enhanced sympathetic nerve activity and vascular resistance in female hypertensive rats. Endothelial cell dysfunction as well as alterations in smooth muscle response to NPY seem to contribute to the enhanced vasoconstriction in arteries from hypertensive animals.
Collapse
Affiliation(s)
- Kathryn A Gradin
- Department of Physiology, Institute of Physiology and Pharmacology, University of Göteborg, Göteborg, Sweden.
| | | | | | | |
Collapse
|
11
|
Zhang W, Lundberg JM, Thorén P. The effect of a neuropeptide Y antagonist, BIBP 3226, on short-term arterial pressure control in conscious unrestrained rats with congestive heart failure. Life Sci 1999; 65:1839-44. [PMID: 10576563 DOI: 10.1016/s0024-3205(99)00435-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of a neuropeptide Y (NPY) Y1-receptor antagonist (BIBP 3226) on mean arterial pressure (MAP) and heart rate were investigated in conscious unrestrained rats with chronic congestive heart failure. The rats were randomly assigned to 2 groups, and received either BIBP 3226 or its inactive enantiomer (BIBP 3435) as an intravenous infusion (6 mg/kg/h for 1.5 h, respectively). Before, during and after the infusion, rats were stressed with a jet of air and received a bolus injection of NPY (2 nmol/kg iv.). There was no difference between the 2 groups in resting MAP and heart rate before, during or after infusion (BIBP 3226 vs. BIBP 3435). The effects of exogenous NPY on MAP were significantly attenuated in BIBP 3226 group during and 1 h after the infusion (p<0.05). The tissue NPY levels in heart, adrenal gland and kidney in heart failure rats were not different from those in sham-operated rats. The results suggest that Y1-receptor mechanisms are of minor importance in the short-term control of basal MAP and heart rate in conscious unrestrained rats with congestive heart failure.
Collapse
Affiliation(s)
- W Zhang
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | | | | |
Collapse
|
12
|
Qiu C, Bruneval P, Roeckel A, Heudes D, Duong Van Huyen JP, Roux S. Mibefradil prevents L-NAME-exacerbated nephrosclerosis in spontaneously hypertensive rats. J Hypertens 1999; 17:1489-95. [PMID: 10526911 DOI: 10.1097/00004872-199917100-00018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To determine the potential renal protective effects of a novel calcium channel blocker mibefradil in chronic renal failure. METHOD We compared the long-term effects of mibefradil with an angiotensin-converting enzyme inhibitor cilazapril on blood pressure, proteinuria, renal function and histological alterations in N-nitro-L-arginine methylester (L-NAME)-treated spontaneously hypertensive rats (SHR). Three groups of SHR were studied for 45 days: group 1 (n = 14), treated with L-NAME only (50 mg/l in the drinking water); group 2 (n = 15) L-NAME plus co-treatment with mibefradil (30 mg/kg per day); group 3 (n = 15), L-NAME plus co-treatment with cilazapril (10 mg/kg per day). RESULTS Both mibefradil and cilazapril attenuated the increased systolic blood pressure, and prevented the development of proteinuria and the decreased creatinine clearance (Ccr) seen at day 42 in the group treated with L-NAME alone. Notably, mibefradil had similar effects to cilazapril on proteinuria and Ccr, despite a reduced antihypertensive effect All animals receiving mibefradil co-treatment remained alive throughout the experiment, whereas the mortality rate was 43% in SHR treated with L-NAME alone. Both mibefradil and cilazapril completely prevented renal structural damage as assessed by scoring glomerular, tubulo-interstitial and vascular lesions. CONCLUSIONS Our data show that mibefradil prevented the development of hypertension and proteinuria, renal functional impairment and nephrosclerosis, and also improved animal survival. The renal protective effects of mibefradil were at least equivalent to those of an ACE inhibitor in this animal model of chronic renal failure.
Collapse
Affiliation(s)
- C Qiu
- Pharma Division, Preclinical Research, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
Martina B, Lorz W, Frach B, Bart T, Battegay EJ. The effects of mibefradil and enalapril on 24-hour blood pressure control and left ventricular mass in patients with mild to moderate hypertension: double-blind, randomized trial. J Cardiovasc Pharmacol 1999; 33:647-51. [PMID: 10218737 DOI: 10.1097/00005344-199904000-00019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In this prospective, double-blind, monocenter drug trial, 48 primary care patients with mild to moderate essential hypertension were randomized to mibefradil, 50 mg, titrated to 100 mg, or enalapril, 20 mg, titrated to 2 x 20 mg. Ambulatory 24-h blood pressure measurements (ABPM) and echocardiography were performed at baseline and after 12 weeks' treatment. Complete data from 43 patients were analyzed. Mibefradil (n = 22; titration, 13 patients) reduced mean 24-h ABP from 159+/-14/102+/-7 mm Hg to 140+/-10/89+/-7 mm Hg after 12 weeks. Enalapril (n = 21; titration, six patients) reduced baseline ABP from 156+/-12/100+/-9 mm Hg to 140+/-17/89+/-10 mm Hg (12 weeks). Trough-to-peak ratios in DBP were 86% for mibefradil and 75% with enalapril. Left ventricular mass (LVM) decreased from 199+/-65 to 193+/-62 g [M-mode modified American Society of Echocardiography (ASE)] and from 184+/-65 to 173+/-50 g (truncated ellipsoid method) after 12 weeks in response to mibefradil (p > 0.2), and from 212+/-50 to 196+/-57 g and from 182+/-39 to 170+/-40 g (mean +/- SD, p < 0.02) with enalapril. Mibefradil matched enalapril in 24-h ABP control. Enalapril reduced LVM significantly after 12 weeks (p < 0.02). Mibefradil did not significantly reduce LVM after 12 weeks.
Collapse
Affiliation(s)
- B Martina
- Medical University Outpatient Clinic, University Hospital Basel, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Munakata M, Hiraizumi T, Nunokawa T, Ito N, Taguchi F, Yamauchi Y, Yoshinaga K. Type A behavior is associated with an increased risk of left ventricular hypertrophy in male patients with essential hypertension. J Hypertens 1999; 17:115-20. [PMID: 10100102 DOI: 10.1097/00004872-199917010-00017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine whether type A behavior, which is associated with a risk of coronary heart disease, affects left ventricular hypertrophy in patients with essential hypertension. DESIGN Cross-sectional study of 88 untreated patients with mild to moderate essential hypertension (33 men, mean +/- SEM age 54 +/- 1 years). METHODS We measured the type A behavior score using a standardized questionnaire, left ventricular mass index using M-mode echocardiography and 24 h mean ambulatory blood pressure (recorded every 30 min). Beat-to-beat blood pressure was also measured using a Finapres device in patients at rest and during mental stress (counting backward) to determine the blood pressure response to stress. RESULTS The left ventricular mass index was correlated with the type A behavior score (r = 0.214, P < 0.05), age (r = 0.266, P < 0.05), 24 h mean systolic and diastolic blood pressures (r = 0.391, P < 0.001, and r = 0.382, P < 0.001, respectively), systolic blood pressure both at rest and during stress (r = 0.255, P < 0.05, and r = 0.215, P < 0.05, respectively), and the variability of both systolic and diastolic blood pressures at rest (r = 0.253, P < 0.05, and r = 0.321, P < 0.01, respectively). Stepwise multiple linear regression analysis demonstrated that age was associated with an increase in the left ventricular mass index for both sexes (P = 0.004 for males, P = 0.003 for females). The type A behavior score predicted a greater increase in left ventricular mass index in men (P = 0.018) but not in women. The 24 h mean systolic blood pressure was associated with a greater increase in left ventricular mass index in women (P < 0.001) but not in men. CONCLUSION Type A behavior is an independent risk factor for left ventricular hypertrophy in male patients with essential hypertension.
Collapse
Affiliation(s)
- M Munakata
- Division of Hypertension and Cardiology, Tohoku Rosai Hospital, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Cao Z, Hulthén UL, Allen TJ, Cooper ME. Angiotensin converting enzyme inhibition and calcium antagonism attenuate streptozotocin-diabetes-associated mesenteric vascular hypertrophy independently of their hypotensive action. J Hypertens 1998; 16:793-9. [PMID: 9663919 DOI: 10.1097/00004872-199816060-00010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate the relative roles of angiotensin II, bradykinin, and calcium-dependent pathways in the genesis of mesenteric vascular hypertrophy in experimental diabetes. DESIGN Streptozotocin-induced diabetic Sprague-Dawley rats were randomly allocated to these treatments for 24 weeks: no treatment; ramipril at a hypotensive dose; ramipril plus the bradykinin type 2 receptor blocker icatibant; icatibant alone; ramipril at a low dose; the angiotensin II type 1 receptor antagonist, valsartan; the dihydropyridine calcium antagonist, lacidipine; and the nondihydropyridine calcium antagonist mibefradil. METHODS Systolic blood pressure was serially measured every 4 weeks by tail-cuff plethysmography. We assessed the vascular architecture in sections of mesenteric arteries obtained after in-vivo perfusion, which were stained with an antibody to alpha-smooth muscle actin. RESULTS Both blood pressure and the mesenteric arterial wall: lumen ratio were reduced by administration of ramipril, at the high dose, either alone or in combination with icatibant, and also by valsartan. Treatment either with the low dose of ramipril or with the calcium antagonists lacidipine and mibefradil was associated with a decrease in the wall : lumen ratio of the mesenteric arteries without influencing blood pressure. CONCLUSIONS These findings demonstrate that blockade both of angiotensin II-dependent and of calcium-dependent pathways attenuates mesenteric vascular hypertrophy in experimental diabetes. Furthermore, the antitrophic effects of these antihypertensive agents may be independent of their hypotensive effects.
Collapse
Affiliation(s)
- Z Cao
- Department of Medicine, University of Melbourne, Austin & Repatriation Medical Centre, Heidelberg West, Victoria, Australia
| | | | | | | |
Collapse
|
16
|
Abstract
The existence of neurogenic mediator candidates apart from noradrenaline and acetylcholine involved in the control of vascular tone has attracted enormous attention during the past few decades. One such mediator is neuropeptide Y (NPY), which is co-localized with noradrenaline in sympathetic perivascular nerves. Stimulation of sympathetic nerves in vitro and in vivo causes non-adrenergic vasoconstriction which can be blocked by experimental manipulations that inhibit NPY mechanisms. Thus, the vasopressor response to stimulation of sympathetic nerves can be attenuated by chemical or surgical sympathectomy, treatment with reserpine or other pharmacological agents, and tachyphylaxis to NPY or by NPY antagonists. The NPY field was long plagued by a lack of specific antagonists, but with the recently developed, selective, non-peptide and stable NPY antagonists it has now become possible to study subtypes of this receptor family. For instance, it has become clear that the NPY Y1 receptor mediates most of the direct peripheral effects of NPY on vascular tone. These antagonists promise to stimulate NPY research and will likely unravel the true significance of NPY in cardiovascular control under physiological conditions as well as in pathophysiological states.
Collapse
Affiliation(s)
- A Franco-Cereceda
- Department of Thoracic Surgery, Karolinska Hospital, Stockholm, Sweden.
| | | |
Collapse
|
17
|
|