1
|
Thongsepee N, Himakhun W, Parachat R, Martviset P, Chantree P, Sornchuer P, Sangpairoj K, Hiranyachattada S. Garcinia dulcis Extract Alleviates Inflammation in Kidney and Liver of the 2-Kidney-1-Clip Hypertensive rat. J Evid Based Integr Med 2024; 29:2515690X241244845. [PMID: 38613379 PMCID: PMC11016236 DOI: 10.1177/2515690x241244845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/20/2023] [Accepted: 03/06/2024] [Indexed: 04/14/2024] Open
Abstract
Garcinia dulcis (GD) extract possesses anti-hypertensive property that are poorly characterized. This study aimed to investigate an anti-inflammatory effect of GD flower extract in the 2-kidney-1-clip (2K1C) hypertensive compared to sham operative (SO) rat. Male Wistar rats were divided into 2 groups; the 2K1C group in which a silver clip was placed around renal artery to induce hypertension, and the SO normotensive group. Four weeks later, each group of rats were further divided into 2 subgroups, each subgroup was orally gavaged of either corn oil (vehicle) or 50 mg/kg BW GD extract daily for 4 weeks. The malondialdehyde (MDA) levels in serum, liver, and kidney were determined. Hematoxylin and eosin staining was carried out for histological examination, Periodic acid - Schiff staining for glomerular injury, Masson's trichrome staining for renal fibrosis, and immunohistochemistry for either tumor necrosis factor alpha (TNF-α) or endothelial nitric oxide synthase (eNOS) investigation. Taken together, our results demonstrated that GD flower extract decreased the MDA level in both serum and liver and kidney tissue and suppressed the expression of TNF-α in both liver and kidney of 2K1C hypertensive rats. Mesangial cell proliferation, expansion of mesangial matrix, widening Bowman's capsule space, congestion of glomerular capillary and vessel, cloudy swelling of renal tubular epithelial cell, and renal fibrosis were observed in the kidneys of 2K1C rats. Therefore, we concluded that GD flower extract can alleviate liver and kidney inflammation in which partially attenuates the glomerular injury in the 2K1C rat.
Collapse
Affiliation(s)
- Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, Thailand
| | - Wanwisa Himakhun
- Department of Pathology, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Ratsikan Parachat
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, Thailand
| | - Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, Thailand
| | - Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, Thailand
| | - Kant Sangpairoj
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathum Thani, Thailand
| | | |
Collapse
|
2
|
Kuczeriszka M, Wąsowicz K. Animal models of hypertension: The status of nitric oxide and oxidative stress and the role of the renal medulla. Nitric Oxide 2022; 125-126:40-46. [PMID: 35700961 DOI: 10.1016/j.niox.2022.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022]
Abstract
Hypertension significantly contributes to overall morbidity and mortality worldwide, and animal models of hypertension provide important tools to verify the physiological and molecular mechanisms underlying the development of the disease. A review of the most important models available would provide an insight into the appropriate targets to be addressed in the treatment of different forms of human hypertension. In the animal models discussed a special attention is given to the status and pathophysiological role of nitric oxide and its interaction with reactive oxygen species and oxidative stress. Another focus of the review are the processes running in the renal medulla which are still insufficiently explored. Deficient nitric oxide synthesis and its reduced bioavailability are important determinants of hypertension since NO is recognized as a major control factor of vascular tone homeostasis. For decades perfusion of the renal medulla has also been regarded as one of the blood pressure control factors and, noteworthily, the renal medulla belongs to the tissues with the highest NO content. The list of most often applied animal hypertension models reviewed here includes variants of salt-induced hypertension, the models with genetic background: such as spontaneously hypertensive rats (SHR) and Dahl salt sensitive (SS/SR) rats, Goldblatt 2K-1C hypertensive rats, and also the pharmacologically-plus-dietary salt-induced model known as DOCA-salt hypertension.
Collapse
Affiliation(s)
- Marta Kuczeriszka
- Department of Renal and Body Fluid Physiology, M. Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, A. Pawinskiego 5, Poland.
| | - Krzysztof Wąsowicz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury in Olsztyn, 10-719, Olsztyn, Oczapowskiego 13, Poland
| |
Collapse
|
3
|
Corrêa JWN, Boaro KR, Sene LB, Polidoro JZ, Salles TA, Martins FL, Bendhack LM, Girardi ACC. Antiproteinuric and Hyperkalemic Mechanisms Activated by Dual Versus Single Blockade of the RAS in Renovascular Hypertensive Rats. Front Physiol 2021; 12:656460. [PMID: 34177612 PMCID: PMC8221266 DOI: 10.3389/fphys.2021.656460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022] Open
Abstract
This study aimed to investigate the antiproteinuric and hyperkalemic mechanisms activated by dual renin-angiotensin system (RAS) blockade in renovascular hypertensive rats (2-kidney 1-clip model [2K-1C]). Six weeks after clipping the left renal artery or sham operation (2K), rats were treated with losartan, enalapril, or both drugs for two weeks. We found that 2K-1C rats displayed higher tail-cuff blood pressure (BP), increased non-clipped kidney Ang II concentration, and more pronounced urinary albumin excretion than 2K. BP was decreased by the treatment with either enalapril or losartan, and the combination of both drugs promoted an additional antihypertensive effect in 2K-1C rats. Renal Ang II content and albuminuria were reduced by either enalapril or losartan in monotherapy and restored to control levels by dual RAS blockade. Albuminuria in 2K-1C rats was accompanied by downregulation of the glomerular slit protein podocin, reduction of the endocytic receptors megalin and cubilin, and a marked decrease in the expression of the ClC-5 chloride channel, compared to 2K animals. Treatment with losartan and enalapril in monotherapy or combination increased the expression of podocin, cubilin, and ClC-5. However, only the combined therapy normalized podocin, cubilin, and ClC-5 protein abundance in the non-clipped kidney of 2K-1C rats. Renovascular hypertensive 2K-1C rats had a lower concentration of plasma potassium compared to 2K rats. Single RAS blockade normalized potassium plasma concentration, whereas 2K-1C rats treated with dual RAS blockade exhibited hyperkalemia. Hypokalemia in 2K-1C rats was accompanied by an increase in the cleaved activated forms of α-ENaC and γ-ENaC and the expression of β-ENaC. Combined RAS blockade but not monotherapy significantly reduced the expression of these ENaC subunits in 2K-1C rats. Indeed, double RAS blockade reduced the abundance of cleaved-α-ENaC to levels lower than those of 2K rats. Collectively, these results demonstrate that the antiproteinuric effect of dual RAS blockade in 2K-1C rats is associated with the restored abundance of podocin and cubilin, and ClC-5. Moreover, double RAS blockade-induced hyperkalemia may be due, at least partially, to an exaggerated downregulation of cleaved α-ENaC in the non-clipped kidney of renovascular hypertensive rats.
Collapse
Affiliation(s)
- José Wilson N Corrêa
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil.,Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Amazonas, Manaus, Brazil
| | - Karoline R Boaro
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil
| | - Letícia B Sene
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil
| | - Juliano Z Polidoro
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil
| | - Thiago A Salles
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil
| | - Flavia L Martins
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil
| | - Lusiane M Bendhack
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Adriana C C Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor) University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
4
|
Pasaoglu OT, Bircan FS, Topal T, Turkozkan N. Positive Effects of Melatonin on Renal Nitric Oxide-Asymmetric Dimethylarginine Metabolism in Fructose-Fed Rats. Metab Syndr Relat Disord 2020; 19:120-126. [PMID: 33090894 DOI: 10.1089/met.2020.0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background: The incidence of metabolic syndrome is increasing worldwide and this is mainly attributed to high carbohydrate intake, especially of fructose, and sedentary lifestyles. Nitric oxide (NO), which is synthesized by nitric oxide synthase (NOS) enzymes, is a crucial molecule for endothelial and renal health. Asymmetric dimethylarginine (ADMA) is the most potent inhibitor of NOS and it is degraded by dimethylarginine dimethylaminohydrolase (DDAH). The aim of this study was to investigate the effects of melatonin on renal NO-ADMA metabolism using a metabolic syndrome model achieved by fructose administration. Methods: Thirty-two rats were randomly divided into four groups (n = 8): (1) control group, (2) fructose group, (3) melatonin group, and (4) fructose + melatonin group. Fructose (20%) was given in drinking water. Melatonin [20 mg/(kg·day)] was administered in 0.1% ethanol solution. After 8 weeks, kidney tissues were collected to measure tissue levels of nitrite/nitrate (NOx), ADMA, arginine, symmetric dimethylarginine, DDAH activity, and endothelial NOS (eNOS) and inducible NOS (iNOS) protein levels. Results: Fructose led to low arginine/ADMA ratios (AARs) (P < 0.008). Tissue NOx levels of the fructose + melatonin group were significantly higher than those of the fructose group (P < 0.008). ADMA and arginine were significantly higher in the fructose + melatonin group than the control group (P < 0.008). The DDAH activity of the fructose and fructose + melatonin groups was significantly higher than that of the control group (P < 0.008). eNOS protein levels showed no difference and iNOS protein was not detected in any of the groups. Conclusions: A diminished AAR indicates the toxicity of fructose in the kidneys. Melatonin has beneficial effects on the NO-ADMA pathway as it restores NOx levels and increases DDAH activity, possibly as a result of a compensatory mechanism to metabolize increased ADMA.
Collapse
Affiliation(s)
- Ozge Tugce Pasaoglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, Ankara, Turkey
| | - Filiz Sezen Bircan
- Department of Biology, Faculty of Science, Gazi University, Ankara, Turkey
| | - Turgut Topal
- Department of Physiology, Gulhane Military Medical Academy, Ankara, Turkey
| | - Nurten Turkozkan
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
5
|
Nephroprotective effects of nebivolol in 2K1C rats through regulation of the kidney ROS-ADMA-NO pathway. Pharmacol Rep 2018; 70:917-929. [DOI: 10.1016/j.pharep.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/25/2018] [Accepted: 04/12/2018] [Indexed: 01/20/2023]
|
6
|
Ryazanova MA, Fedoseeva LA, Ershov NI, Efimov VM, Markel AL, Redina OE. The gene-expression profile of renal medulla in ISIAH rats with inherited stress-induced arterial hypertension. BMC Genet 2016; 17:151. [PMID: 28105926 PMCID: PMC5249016 DOI: 10.1186/s12863-016-0462-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The changes in the renal function leading to a reduction of medullary blood flow can have a great impact on sodium and water homeostasis and on the long-term control of arterial blood pressure. The RNA-Seq approach was used for transcriptome profiling of the renal medulla from hypertensive ISIAH and normotensive WAG rats to uncover the genetic basis of the changes underlying the renal medulla function in the ISIAH rats being a model of the stress-sensitive arterial hypertension and to reveal the genes which possibly may contribute to the alterations in medullary blood flow. Results Multiple DEGs specifying the function of renal medulla in ISIAH rats were revealed. The group of DEGs described by Gene Ontology term ‘oxidation reduction’ was the most significantly enriched one. The other groups of DEGs related to response to external stimulus, response to hormone (endogenous) stimulus, response to stress, and homeostatic process provide the molecular basis for integrated responses to homeostasis disturbances in the renal medulla of the ISIAH rats. Several DEGs, which may modulate the renal medulla blood flow, were detected. The reduced transcription of Nos3 pointed to the possible reduction of the blood flow in the renal medulla of ISIAH rats. Conclusions The generated data may be useful for comparison with those from different models of hypertension and for identifying the common molecular determinants contributing to disease manifestation, which may be potentially used as new pharmacological targets. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0462-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina A Ryazanova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Larisa A Fedoseeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Nikita I Ershov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Vadim M Efimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Arcady L Markel
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.,Novosibirsk State University, Novosibirsk, Russian Federation
| | - Olga E Redina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation.
| |
Collapse
|
7
|
Impact of aliskiren on some hemostatic parameters in experimental arterial thrombosis in rats. Pharmacol Rep 2015; 67:173-8. [DOI: 10.1016/j.pharep.2014.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/29/2014] [Accepted: 08/18/2014] [Indexed: 11/20/2022]
|
8
|
Combined Aliskiren and L-arginine treatment reverses renovascular hypertension in an animal model. Hypertens Res 2015; 38:471-7. [PMID: 25740291 DOI: 10.1038/hr.2015.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 01/12/2015] [Accepted: 01/25/2015] [Indexed: 11/08/2022]
Abstract
Renovascular hypertension is characterized by increased renal sympathetic activity, angiotensin II and by endothelial dysfunction. The purpose of this study was to determine the role of renal sympathetic nerve activity (RSNA) in mediating the anti-hypertensive effects of aliskiren (ALSK) and L-arginine (L-ARG) in a rat renovascular hypertension model. Hypertension was induced by clipping the right renal artery, and the following five groups were divided: SHAM operated; 2-kidney, 1-clip (2K1C); 2K1C plus ALSK; 2K1C plus L-ARG; and 2K1C plus ALSK+ L-ARG. The systolic blood pressure (SBP) of 2K1C rats increased from 114.4±5.2 to 204±12.7 mm Hg (P<0.05) and was only reduced by ALSK+L-ARG treatment (138.4±4.37 mm Hg). The 2K1C hypertension increased the baseline RSNA (SHAM: 62.4±6.39 vs. 2K1C: 97.4±8.43%). L-ARG or ALSK+L-ARG treatment significantly decreased baseline RSNA (2K1C L-ARG:70.7±2.39; 2K1C ALSK+L-ARG: 69.3±4.23%), but ALSK treatment alone did not (2K1C ALSK: 84.2±2.5%). Urinary water, Na(+), Cl(-) and urea excretion were similar in the 2K1C L-ARG, 2K1C ALSK+L-ARG and SHAM groups. The combination of ALSK+L-ARG restored urine flow and increased the glomerular filtration rate. The nNOS expression in the non clipped kidney was significantly increased in 2K1C ALSK+L-ARG rats. In conclusion, combined ALSK+L-ARG treatment normalizes SBP and prevents renal dysfunction in 2K1C hypertensive rats.
Collapse
|
9
|
Ramseyer VD, Gonzalez-Vicente A, Carretero OA, Garvin JL. Angiotensin II-induced hypertension blunts thick ascending limb NO production by reducing NO synthase 3 expression and enhancing threonine 495 phosphorylation. Am J Physiol Renal Physiol 2014; 308:F149-56. [PMID: 25377910 DOI: 10.1152/ajprenal.00279.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Thick ascending limbs reabsorb 30% of the filtered NaCl load. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl transport by this segment. In contrast, chronic angiotensin II (ANG II) infusion increases net thick ascending limb transport. NOS3 activity is regulated by changes in expression and phosphorylation at threonine 495 (T495) and serine 1177 (S1177), inhibitory and stimulatory sites, respectively. We hypothesized that NO production by thick ascending limbs is impaired by chronic ANG II infusion, due to reduced NOS3 expression, increased phosphorylation of T495, and decreased phosphorylation of S1177. Rats were infused with 200 ng·kg(-1)·min(-1) ANG II or vehicle for 1 and 5 days. ANG II infusion for 5 days decreased NOS3 expression by 40 ± 12% (P < 0.007; n = 6) and increased T495 phosphorylation by 147 ± 26% (P < 0.008; n = 6). One-day ANG II infusion had no significant effect. NO production in response to endothelin-1 was blunted in thick ascending limbs from ANG II-infused animals [ANG II -0.01 ± 0.06 arbitrary fluorescence units (AFU)/min vs. 0.17 ± 0.02 AFU/min in controls; P < 0.01]. This was not due to reduced endothelin-1 receptor expression. Phosphatidylinositol 3,4,5-triphosphate (PIP3)-induced NO production was also reduced in ANG II-infused rats (ANG II -0.07 ± 0.06 vs. 0.13 ± 0.04 AFU/min in controls; P < 0.03), and this correlated with an impaired ability of PIP3 to increase S1177 phosphorylation. We conclude that in ANG II-induced hypertension NO production by thick ascending limbs is impaired due to decreased NOS3 expression and altered phosphorylation.
Collapse
Affiliation(s)
- Vanesa D Ramseyer
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit, Michigan
| | - Agustin Gonzalez-Vicente
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Ciudad Autónoma de Buenos Aires, Argentina
| | - Oscar A Carretero
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan
| | - Jeffrey L Garvin
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; and
| |
Collapse
|
10
|
Reinhold SW, Uihlein DC, Böger CA, Kloiber S, Frölich K, Bergler T, Banas B, Schweda F, Krämer BK. Renin, endothelial NO synthase and endothelin gene expression in the 2kidney-1clip Goldblatt model of long-term renovascular hypertension. Eur J Med Res 2013; 14:520-5. [PMID: 20149985 PMCID: PMC3351937 DOI: 10.1186/2047-783x-14-12-520] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objective Numerous reports have shown the influence of renin, nitric oxide (NO) and the endothelin (ET) systems for regulation of blood pressure and renal function. Furthermore, interactions between these peptides have been reported. Aim of our study was to investigate the relative contribution of these compounds in long-term renovascular hypertension/renal ischemia. Methods Hypertension/left-sided renal ischemia was induced using the 2K1C-Goldblatt rat model. Renal renin, ET-1, ET-3 and endothelial NO synthase (eNOS) gene expression was measured by means of RNAse protection assay at different timepoints up to 10 weeks after induction of renal artery stenosis. Results Plasma renin activity and renal renin gene expression in the left kidney were increased in the clipped animals while eNOS expression was unchanged. Furthermore, an increase in ET-1 expression and a decrease of ET-3 expression was detected in early stenosis. Conclusions While renin is obviously involved in regulation of blood pressure and renal function in unilateral renal artery stenosis, ET-1, ET-3 and endothelium derived NO do not appear to play an important role in renal adaptation processes in long-term renal artery stenosis, although ET-1 and ET-3 might be involved in short-term adaptation processes.
Collapse
Affiliation(s)
- S W Reinhold
- Klinik und Poliklinik für Innere Medizin II, University of Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wu XQ, Kong X, Zhou Y, Huang K, Yang JR, Li XL. Sesamin exerts renoprotective effects by enhancing NO bioactivity in renovascular hypertensive rats fed with high-fat-sucrose diet. Eur J Pharmacol 2012; 683:231-7. [PMID: 22314221 DOI: 10.1016/j.ejphar.2012.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 01/18/2012] [Accepted: 01/21/2012] [Indexed: 11/15/2022]
Abstract
In the present study, we aimed to evaluate the protective effect of sesamin on kidney damage and renal endothelial dysfunction in two-kidney, one-clip renovascular hypertensive rats fed with a high-fat-sucrose diet (2K1C rats on HFS diet). Sesamin was intragastrically administered to 2K1C rats on HFS diet for eight weeks. Then, we measured the levels of serum hydrogen peroxide (H₂O₂), total antioxidant capability (T-AOC), renal malonaldehyde (MDA), total-erythrocuprein (T-SOD) and glutathione peroxidase (GSH-P(X)). The expressions of endothelial nitric oxide synthase (eNOS), nitrotyrosine and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit p47(phox) in the left and right renal cortexes were detected by Western blotting. Pathological changes in the left and right renal cortexes were observed by periodic acid-schiff staining (PAS) and Masson's staining. Treatment with sesamin (120 and 60mg/kg⁻¹·d⁻¹) in 2K1C rats on HFS diet improved renal function, corrected structural abnormalities, and attenuated renal oxidative stress. Furthermore, sesamin increased eNOS protein expression and reduced nitrotyrosine and p47phox protein expression. These results demonstrated that long-term treatment with sesamin had renoprotective effect and improved renal endothelial dysfunction via upregulation of eNOS expression and reduction of NO oxidative inactivation in both clipped and contralateral kidneys of 2K1C rats on HFS diet, and sesamin may have a favorably therapeutic value in treating chronic kidney disease in patients with hypertension and hyperlipemia.
Collapse
Affiliation(s)
- Xiang-Qi Wu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
12
|
Kang KT, Sullivan JC, Spradley FT, d'Uscio LV, Katusic ZS, Pollock JS. Antihypertensive therapy increases tetrahydrobiopterin levels and NO/cGMP signaling in small arteries of angiotensin II-infused hypertensive rats. Am J Physiol Heart Circ Physiol 2011; 300:H718-24. [PMID: 21148769 PMCID: PMC3064310 DOI: 10.1152/ajpheart.00393.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023]
Abstract
We previously reported that small mesenteric arteries from hypertensive rats have increased NOS-derived H(2)O(2) and reduced NO/cGMP signaling. We hypothesized that antihypertensive therapy lowers blood pressure through a tetrahydrobiopterin (BH(4))-dependent mechanism restoring NO/cGMP signaling and endothelial NOS (NOS3; eNOS) phosphorylation in small arteries. To test this hypothesis, small mesenteric arteries from normotensive rats (NORM), angiotensin II-infused rats (ANG), ANG rats with triple therapy (reserperine, hydrochlorothiazide, and hydralazine), or ANG rats with oral BH(4) therapy were studied. Both triple therapy and oral BH(4) therapy attenuated the rise in systolic blood pressure in ANG rats and restored NO/cGMP signaling in small arteries similarly. Triple therapy significantly increased vascular BH(4) levels and BH(4)-to-BH(2) ratio similar to ANG rats with BH(4) supplementation. Furthermore, triple therapy (but not oral BH(4) therapy) significantly increased GTP cyclohydrolase I (GTPCH I) activity in small arteries without a change in expression. NOS3 phosphorylation at Ser1177 was reduced in small arteries from ANG compared with NORM, while NOS3 phosphorylation at Ser633 and Thr495 were similar in ANG and NORM. NOS3 phosphorylation at Ser1177 was restored with triple therapy or oral BH(4) in ANG rats. In conclusion, antihypertensive therapy regulates NO/cGMP signaling in small arteries through increasing BH(4) levels and NOS3 phosphorylation at Ser1177.
Collapse
Affiliation(s)
- Kyu-Tae Kang
- Vascular Biology Center, CB 3213, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | |
Collapse
|
13
|
Evans RG, Head GA, Eppel GA, Burke SL, Rajapakse NW. Angiotensin II and neurohumoral control of the renal medullary circulation. Clin Exp Pharmacol Physiol 2010; 37:e58-69. [DOI: 10.1111/j.1440-1681.2009.05233.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Ramseyer VD, Garvin JL. Angiotensin II decreases nitric oxide synthase 3 expression via nitric oxide and superoxide in the thick ascending limb. Hypertension 2008; 53:313-8. [PMID: 19075094 DOI: 10.1161/hypertensionaha.108.124107] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
NO produced by NO synthase type 3 (NOS3) in medullary thick ascending limbs (mTHALs) inhibits Cl(-) reabsorption. Acutely, angiotensin II stimulates thick ascending limb NO production. In endothelial cells, NO inhibits NOS3 expression. Therefore, we hypothesized that angiotensin II decreases NOS3 expression via NO in mTHALs. After 24 hours, 10 and 100 nmol/L of angiotensin II decreased NOS3 expression by 23+/-9% (n=6; P<0.05) and 50+/-5% (n=7; P<0.001), respectively, in primary cultures of rat mTHALs. NO synthase inhibition by 4 mmol/L of N(G)-nitro-L-arginine methyl ester hydrochloride prevented angiotensin II from decreasing NOS3 expression (Delta=-5+/-8%; n=5). In the presence of N(G)-nitro-L-arginine methyl ester hydrochloride, the addition of exogenous NO (1 micromol/L spermine NONOate) restored the angiotensin II-induced decreases in NOS3 expression (-22+/-6%; n=7; P<0.013). In addition, NO scavenging with 10 micromol/L of carboxy-PTIO abolished the effect of angiotensin II in NOS3 expression (Delta=-1+/-8% versus carboxy-PTIO alone; n=6). Angiotensin II increases superoxide, and superoxide scavenges NO. Thus, we tested whether scavenging superoxide enhances the angiotensin II-induced reduction in NOS3 expression. Surprisingly, treatment with 100 micromol/L of Tempol, a superoxide dismutase mimetic, blocked the angiotensin II-induced decrease in NOS3 expression (Delta=-3+/-7%; n=6). This effect was not because of increased hydrogen peroxide. We concluded that angiotensin II-induced decreases in NOS3 expression in mTHALs require both NO and superoxide. Decreased NOS3 expression by angiotensin II in mTHALs could contribute to increased salt retention observed in angiotensin II-induced hypertension.
Collapse
Affiliation(s)
- Vanesa D Ramseyer
- Hypertension and Vascular Research Division, Henry Ford Hospital, 2799 West Grand Blvd, Detroit, MI 48202-2689, USA
| | | |
Collapse
|
15
|
Helle F, Hultström M, Skogstrand T, Palm F, Iversen BM. Angiotensin II-induced contraction is attenuated by nitric oxide in afferent arterioles from the nonclipped kidney in 2K1C. Am J Physiol Renal Physiol 2008; 296:F78-86. [PMID: 18945823 DOI: 10.1152/ajprenal.90518.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two-kidney, one-clip (2K1C) is a model of renovascular hypertension where we previously found an exaggerated intracellular calcium (Ca(i)(2+)) response to ANG II in isolated afferent arterioles (AAs) from the clipped kidney (Helle F, Vagnes OB, Iversen BM. Am J Physiol Renal Physiol 291: F140-F147, 2006). To test whether nitric oxide (NO) ameliorates the exaggerated ANG II response in 2K1C, we studied ANG II (10(-7) mol/l)-induced calcium signaling and contractility with or without the NO synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME). In AAs from the nonclipped kidney, l-NAME increased the ANG II-induced Ca(i)(2+) response from 0.28 +/- 0.05 to 0.55 +/- 0.09 (fura 2, 340 nm/380 nm ratio) and increased contraction from 80 +/- 6 to 60 +/- 6% of baseline (P < 0.05). In vessels from sham and clipped kidneys, l-NAME had no effect. In diaminofluorescein-FM diacetate-loaded AAs from the nonclipped kidney, ANG II increased NO-derived fluorescence to 145 +/- 34% of baseline (P < 0.05 vs. sham), but not in vessels from the sham or clipped kidney. Endothelial NOS (eNOS) mRNA and ser-1177 phosphorylation were unchanged in both kidneys from 2K1C, while eNOS protein was reduced in the clipped kidney compared with sham. Cationic amino acid transferase-1 and 2 mRNAs were increased in 2K1C, indicating increased availability of l-arginine for NO synthesis, but counteracted by decreased scavenging of the eNOS inhibitor asymmetric dimethylarginine by dimethylarginine dimethylaminohydrolase 2. In conclusion, the Ca(i)(2+) and contractile responses to ANG II are blunted by NO release in the nonclipped kidney. This may protect the nonclipped kidney from the hypertension and elevated ANG II levels in 2K1C.
Collapse
Affiliation(s)
- Frank Helle
- Renal Research Group, Institute of Medicine, University of Bergen, N-5021 Bergen, Norway
| | | | | | | | | |
Collapse
|
16
|
Lee J. Nitric oxide in the kidney : its physiological role and pathophysiological implications. Electrolyte Blood Press 2008; 6:27-34. [PMID: 24459519 PMCID: PMC3894485 DOI: 10.5049/ebp.2008.6.1.27] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 02/01/2008] [Indexed: 12/02/2022] Open
Abstract
Nitric oxide has been implicated in many physiologic processes that influence both acute and long-term control of kidney function. Its net effect in the kidney is to promote natriuresis and diuresis, contributing to adaptation to variations of dietary salt intake and maintenance of normal blood pressure. A pretreatment with nitric oxide donors or L-arginine may prevent the ischemic acute renal injury. In chronic kidney diseases, the systolic blood pressure is correlated with the plasma level of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase. A reduced production and biological action of nitric oxide is associated with an elevation of arterial pressure, and conversely, an exaggerated activity may represent a compensatory mechanism to mitigate the hypertension.
Collapse
Affiliation(s)
- Jongun Lee
- Department of Physiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
17
|
Toda N, Ayajiki K, Okamura T. Interaction of Endothelial Nitric Oxide and Angiotensin in the Circulation. Pharmacol Rev 2007; 59:54-87. [PMID: 17329548 DOI: 10.1124/pr.59.1.2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Discovery of the unexpected intercellular messenger and transmitter nitric oxide (NO) was the highlight of highly competitive investigations to identify the nature of endothelium-derived relaxing factor. This labile, gaseous molecule plays obligatory roles as one of the most promising physiological regulators in cardiovascular function. Its biological effects include vasodilatation, increased regional blood perfusion, lowering of systemic blood pressure, and antithrombosis and anti-atherosclerosis effects, which counteract the vascular actions of endogenous angiotensin (ANG) II. Interactions of these vasodilator and vasoconstrictor substances in the circulation have been a topic that has drawn the special interest of both cardiovascular researchers and clinicians. Therapeutic agents that inhibit the synthesis and action of ANG II are widely accepted to be essential in treating circulatory and metabolic dysfunctions, including hypertension and diabetes mellitus, and increased availability of NO is one of the most important pharmacological mechanisms underlying their beneficial actions. ANG II provokes vascular actions through various receptor subtypes (AT1, AT2, and AT4), which are differently involved in NO synthesis and actions. ANG II and its derivatives, ANG III, ANG IV, and ANG-(1-7), alter vascular contractility with different mechanisms of action in relation to NO. This review article summarizes information concerning advances in research on interactions between NO and ANG in reference to ANG receptor subtypes, radical oxygen species, particularly superoxide anions, ANG-converting enzyme inhibitors, and ANG receptor blockers in patients with cardiovascular disease, healthy individuals, and experimental animals. Interactions of ANG and endothelium-derived relaxing factor other than NO, such as prostaglandin I2 and endothelium-derived hyperpolarizing factor, are also described.
Collapse
Affiliation(s)
- Noboru Toda
- Department of Pharmacology, Shiga University of Medical Science, Seta, Otsu, Japan.
| | | | | |
Collapse
|
18
|
Forbes MS, Thornhill BA, Park MH, Chevalier RL. Lack of endothelial nitric-oxide synthase leads to progressive focal renal injury. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:87-99. [PMID: 17200185 PMCID: PMC1762694 DOI: 10.2353/ajpath.2007.060610] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Because endothelial nitric-oxide synthase (eNOS) is generally considered protective against renal injury, we examined eNOS knockout mice for kidney pathology. In 80% of the adults examined, the renal surface was marked by distinct indented scars containing crowded small glomeruli but lacking attached tubules. Although vasculature was intact in the scars, Bowman's space was dilated and glomerular tufts were degenerated. The atubular glomeruli were embedded in a dense interstitial matrix composed of cells positive for fibroblast (FSP-1) or macrophage (F4/80) markers, degenerated proximal tubules and collecting ducts, and diffuse fibrotic deposits. Surrounding regions of kidney contained mostly normal-appearing tubules, but enlarged or sclerotic glomeruli were also present. In neonatal animals, apoptosis and necrosis were concentrated in tubules within focal parenchymal zones, with narrowing of the glomerulotubular "neck." In summary, targeted deletion of eNOS in mice leads to progressive focal renal abnormalities, including glomerular hypoplasia, and tubular cell death, leading to separation of glomeruli from tubules and tubular disruption. These abnormalities begin developing during the normal up-regulation of eNOS in the maturing kidney and are similar to those of a variety of chronic renal disorders. Endogenous renal eNOS production therefore seems critical for the maintenance of nephron maturation and integrity.
Collapse
Affiliation(s)
- Michael S Forbes
- Department of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
19
|
Sanz-Rosa D, Oubiña MP, Cediel E, De las Heras N, Aragoncillo P, Balfagón G, Cachofeiro V, Lahera V. Eplerenone reduces oxidative stress and enhances eNOS in SHR: vascular functional and structural consequences. Antioxid Redox Signal 2005; 7:1294-301. [PMID: 16115035 DOI: 10.1089/ars.2005.7.1294] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of the present study was to evaluate the effect of the aldosterone receptor antagonist eplerenone on endothelial function, oxidative stress, and structural alterations present in spontaneously hypertensive rats (SHR). To carry out the study, male SHR (18 weeks old) were treated with two doses of eplerenone (30 and 100 mg/kg/day) for 10 weeks. A group of n = 8 untreated SHR was used as a control-vehicle group, and a group of Wistar Kyoto rats (n = 8) was used as a reference of normotensive conditions. Systolic arterial pressure (SAP) was measured by the tail-cuff method. Endothelium-dependent and -independent relaxations, as well as endothelial nitric oxide synthase (eNOS) and the subunit p22phox of NAD(P)H oxidase mRNA expressions, were studied in aorta from SHR untreated or treated with eplerenone. Media/lumen ratio was also calculated in aortic preparations. In addition, levels of reduced glutathione (GSH), oxidized glutathione (GSSG), and malonyl dialdehyde (MDA) were evaluated in liver homogenates. Treatment with eplerenone reduced (p < 0.05) SAP and normalized aortic media/lumen ratio and acetylcholine relaxations. Both doses of the drug enhanced (p < 0.05) eNOS and reduced p22phox mRNA expressions. Similarly, eplerenone increased (p < 0.05) hepatic GSH/GSSG ratio, and reduced (p < 0.05) hepatic MDA levels in a comparable manner. Consequently, it could be concluded that aldosterone participates in the functional and structural vascular alterations of SHR through the diminution of nitric oxide availability and an enhancement of vascular and systemic oxidative stress.
Collapse
Affiliation(s)
- David Sanz-Rosa
- Department of Physiology, School of Medicine, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Somoza B, González C, Cachofeiro V, Lahera V, Fernández-Alfonso MS. Chronic l-arginine treatment reduces vascular smooth muscle cell hypertrophy through cell cycle modifications in spontaneously hypertensive rats. J Hypertens 2004; 22:751-8. [PMID: 15126917 DOI: 10.1097/00004872-200404000-00018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the effect of long-term l-arginine supplementation on phenotype and proliferative status of vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) as well as the possible changes in nitric oxide (NO) availability. METHODS Male SHR, 22 weeks of age, received l-arginine (660 mg/kg per day) in their drinking water for 12 weeks. VSMCs from untreated (C-VSMC) and l-arginine-treated (l-Arg-VSMC) SHR were isolated from the common carotid artery, cultured and used until passage five. Size, protein content, cell proliferation and ploidy were evaluated in carotid VSMCs in culture, as well as the possible association of NO in these changes. RESULTS Relative cell size, total protein content per cell, and number of polyploid cells were significantly lower in l-Arg-VSMC compared to C-VSMC. Fetal calf serum stimulation (10% FCS) increased cell number only in l-Arg-VSMC. DNA synthesis, assessed by [H]methylthymidine incorporation after 10% FCS stimulation, was higher in l-Arg-VSMC than in C-VSMC. Cell cycle analysis revealed a significant increase of the number of l-Arg-VSMC at the G1 phase, together with a reduction at the G2 + M phase. In contrast, C-VSMC were arrested at the G2 + M phase of the cell cycle. Nitrite/nitrate levels, as well as intracellular cyclic guanosine monophosphate (cGMP) content, were significantly higher in l-Arg-VSMC. This was accompanied by enhanced inducible nitric oxide synthase (iNOS) expression and activity and a decreased constitutive nitric oxide synthase (cNOS) activity in these cells. CONCLUSIONS The results suggest that chronic treatment with l-arginine induces changes in VSMC size, ploidy and cell cycle. These changes are accompanied by iNOS induction and stimulation of the NO-cGMP pathway.
Collapse
Affiliation(s)
- Beatriz Somoza
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
21
|
Bergström G, Evans RG. Mechanisms underlying the antihypertensive functions of the renal medulla. ACTA ACUST UNITED AC 2004; 181:475-86. [PMID: 15283761 DOI: 10.1111/j.1365-201x.2004.01321.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
There is good evidence that the renal medulla plays a pivotal role in long-term regulation of blood pressure. 'Renal medullary' blood pressure regulating systems have been postulated to involve both exocrine (pressure natriuresis/diuresis) and endocrine [renal medullary depressor hormone (RMDH)] functions. However, recent studies indicate that pressure diuresis/natriuresis dominates the antihypertensive renal response to increased renal perfusion pressure, suggesting little physiological role for a putative RMDH in compensatory responses to acutely increased blood pressure. The medullary circulation appears to play a key role in mediating pressure diuresis, although the precise mechanisms involved remain controversial. Counter-regulatory vasodilator mechanisms (e.g. nitric oxide), at least partly mediated through cross-talk between the vasculature and the tubular epithelium, protect the medullary circulation from the vasoconstrictor effects of hormonal factors such as angiotensin II. These mechanisms also appear to contribute to compensatory responses to increased salt intake in salt-resistant individuals. Failure of these mechanisms predisposes the organism towards the development of hypertension, appears to underlie the development of some forms of experimental hypertension, and may even contribute to the pathogenesis of essential hypertension.
Collapse
Affiliation(s)
- G Bergström
- Department of Clinical Physiology, Cardiovascular Institute, Göteborg University, Göteborg, Sweden
| | | |
Collapse
|
22
|
Chade AR, Rodriguez-Porcel M, Herrmann J, Krier JD, Zhu X, Lerman A, Lerman LO. Beneficial effects of antioxidant vitamins on the stenotic kidney. Hypertension 2003; 42:605-12. [PMID: 12925565 DOI: 10.1161/01.hyp.0000089880.32275.7c] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Renal artery stenosis (RAS) may lead to renal injury, partly mediated through increased oxidative stress. However, the potential effects of chronic oral antioxidant intervention on the stenotic kidney remain unknown. This study was designed to test the hypothesis that chronic antioxidant vitamin supplementation in RAS would preserve renal function and structure. Single-kidney hemodynamics and function were quantified in vivo in pigs using electron-beam CT after 12 weeks of unilateral RAS (n=7), a similar degree of RAS orally supplemented with vitamins C (1 g) and E (100 IU/kg) (RAS+Vitamins, n=7), or controls (normal, n=7). Renal tissue was studied ex vivo using Western blotting and immunohistochemistry. Mean arterial pressure was similarly elevated in both RAS groups, while ischemic renal volume and glomerular filtration rate were similarly reduced. Renal blood flow was decreased in RAS compared with normal (326.5+/-99.9 versus 553.4+/-48.7 mL/min, respectively, P=0.01), but preserved in RAS+Vitamins (485.2+/-104.1 mL/min, P=0.3 versus normal). The marked increase in the expression of the NADPH-oxidase subunits p47phox and p67phox, nitrotyrosine, endothelial and inducible nitric oxide synthase, and nuclear factor-kappaB observed in RAS (P<0.05 versus normal) was normalized in RAS+Vitamins (P>0.1). Furthermore, trichrome staining and the expression of transforming growth factor-beta and tissue inhibitor of matrix-metalloproteinase-1 were also decreased in RAS+Vitamins. In conclusion, chronic blockade of the oxidative stress pathway in RAS using antioxidant vitamins improved renal hemodynamics and decreased oxidative stress, inflammation, and fibrosis in the ischemic kidney. These observations underscore the involvement of oxidative stress in renal injury in RAS and support a role for antioxidant vitamins in preserving the ischemic kidney.
Collapse
Affiliation(s)
- Alejandro R Chade
- Division of Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minn 55905, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Cediel E, Sanz-Rosa D, Oubina MP, de las Heras N, González Pacheco FR, Vegazo O, Jiménez J, Cachofeiro V, Lahera V. Effect of AT1 receptor blockade on hepatic redox status in SHR: possible relevance for endothelial function? Am J Physiol Regul Integr Comp Physiol 2003; 285:R674-81. [PMID: 12775556 DOI: 10.1152/ajpregu.00643.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study investigated whether the amelioration of endothelial dysfunction by candesartan (2 mg.kg-1.day-1; 10 wk) in spontaneously hypertensive rats (SHR) was associated with modification of hepatic redox system. Systolic arterial pressure (SAP) was higher (P < 0.05) in SHR than in Wistar-Kyoto rats (WKY) and was reduced (P < 0.05) by candesartan in both strains. Acetylcholine (ACh) relaxations were smaller (P < 0.05) and contractions induced by ACh + NG-nitro-l-arginine methyl ester (l-NAME) were greater (P < 0.05) in SHR than in WKY. Treatment with candesartan enhanced (P < 0.05) ACh relaxations in SHR and reduced (P < 0.05) ACh + l-NAME contractions in both strains. Expression of aortic endothelial nitric oxide synthase (eNOS) mRNA was similar in WKY and SHR, and candesartan increased (P < 0.05) it in both strains. Aortic mRNA expression of the subunit p22phox of NAD(P)H oxidase was higher (P < 0.05) in SHR than in WKY. Treatment with candesartan reduced (P < 0.05) p22phox expression only in SHR. Malonyl dialdehyde (MDA) levels were higher (P < 0.05), and the ratio reduced/oxidized glutathione (GSH/GSSG) as well as glutathione peroxidase activity (GPx) were lower (P < 0.05) in liver homogenates from SHR than from WKY. Candesartan reduced (P < 0.05) MDA and increased (P < 0.05) GSH/GSSG ratio without affecting GPx. Vessel, lumen, and media areas were bigger (P < 0.05) in SHR than in WKY. Candesartan treatment reduced (P < 0.05) media area in SHR without affecting vessel or lumen area. The results suggest that hypertension is not only associated with elevation of vascular superoxide anions but with alterations of the hepatic redox system, where ANG II is clearly involved. The results further support the key role of ANG II via AT1 receptors for the functional and structural vascular alterations produced by hypertension.
Collapse
Affiliation(s)
- Eva Cediel
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Li H, Wallerath T, Münzel T, Förstermann U. Regulation of endothelial-type NO synthase expression in pathophysiology and in response to drugs. Nitric Oxide 2002; 7:149-64. [PMID: 12381413 DOI: 10.1016/s1089-8603(02)00111-8] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In many types of cardiovascular pathophysiology such as hypercholesterolemia and atherosclerosis, diabetes, cigarette smoking, or hypertension (with its sequelae stroke and heart failure) the expression of endothelial NO synthase (eNOS) is altered. Both up- and downregulation of eNOS have been observed, depending on the underlying disease. When eNOS is upregulated, the upregulation is often futile and goes along with a reduction in bioactive NO. This is due to an increased production of superoxide generated by NAD(P)H oxidase and by an uncoupled eNOS. A number of drugs with favorable effects on cardiovascular disease upregulate eNOS expression. The resulting increase in vascular NO production may contribute to their beneficial effects. These compounds include statins, angiotensin-converting enzyme inhibitors, AT1 receptor antagonists, calcium channel blockers, and some antioxidants. Other drugs such as glucocorticoids, whose administration is associated with cardiovascular side effects, downregulate eNOS expression. Stills others such as the immunosuppressants cyclosporine A and FK506/tacrolimus or erythropoietin have inconsistent effects on eNOS. Thus regulation of eNOS expression and activity contributes to the overall action of several classes of drugs, and the development of compounds that specifically upregulate this protective enzyme appears as a desirable target for drug development.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55101, Mainz, Germany
| | | | | | | |
Collapse
|
25
|
Nishimoto Y, Tomida T, Matsui H, Ito T, Okumura K. Decrease in renal medullary endothelial nitric oxide synthase of fructose-fed, salt-sensitive hypertensive rats. Hypertension 2002; 40:190-4. [PMID: 12154112 DOI: 10.1161/01.hyp.0000024267.71656.0d] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the expression of endothelial NO synthase (eNOS) in the kidneys of fructose-fed insulin-resistant rats (FFR) with a low- or high-sodium diet. Male Sprague-Dawley rats were fed a control (C) or high-fructose (40% fructose; F) diet, with each coming in low-sodium (0.024% NaCl; LS-C or LS-F) or high-sodium (3% NaCl; HS-C or HS-F) varieties, for 2 weeks. Half of the FFR were orally administered pioglitazone (10 mg. kg(-1). day(-1)), an insulin-sensitizing agent (LS-FP or HS-FP). The systolic blood pressure was significantly higher in the HS-F rats than in the LS-F rats or the HS-C rats (HS-F rats, 129+/-4 mm Hg, versus LS-F rats, 115+/-3 mm Hg, P<0.05; or versus HS-C rats, 116+/-5 mm Hg, P<0.05), which indicated the salt dependence of hypertension in FFR. The protein expression of eNOS in the renal medulla of FFR was significantly lower than that in control rats during a high sodium load. The administration of pioglitazone prevented the hypertension (HS-F rats, 129+/-4 mm Hg, versus HS-FP rats, 113+/-3 mm Hg, P<0.05) and the reduction of medullary eNOS protein expression in HS-F rats. There was no significant difference in eNOS expression in the renal cortex or aorta between FFR and control rats, regardless of sodium load. These results suggest that the decrease in renal medullary NO production by eNOS during a high sodium load may play a role in fructose-fed, salt-sensitive hypertension.
Collapse
Affiliation(s)
- Yasuhiro Nishimoto
- Internal Medicine II, Nagoya University School of Medicine, Nagoya, Japan.
| | | | | | | | | |
Collapse
|