1
|
Steele LA, Spiller KL, Cohen S, Rom S, Polyak B. Temporal Control over Macrophage Phenotype and the Host Response via Magnetically Actuated Scaffolds. ACS Biomater Sci Eng 2022; 8:3526-3541. [PMID: 35838679 DOI: 10.1021/acsbiomaterials.2c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclic strain generated at the cell-material interface is critical for the engraftment of biomaterials. Mechanosensitive immune cells, macrophages regulate the host-material interaction immediately after implantation by priming the environment and remodeling ongoing regenerative processes. This study investigated the ability of mechanically active scaffolds to modulate macrophage function in vitro and in vivo. Remotely actuated magnetic scaffolds enhance the phenotype of murine classically activated (M1) macrophages, as shown by the increased expression of the M1 cell-surface marker CD86 and increased secretion of multiple M1 cytokines. When scaffolds were implanted subcutaneously into mice and treated with magnetic stimulation for 3 days beginning at either day 0 or day 5 post-implantation, the cellular infiltrate was enriched for host macrophages. Macrophage expression of the M1 marker CD86 was increased, with downstream effects on vascularization and the foreign body response. Such effects were not observed when the magnetic treatment was applied at later time points after implantation (days 12-15). These results advance our understanding of how remotely controlled mechanical cues, namely, cyclic strain, impact macrophage function and demonstrate the feasibility of using mechanically active nanomaterials to modulate the host response in vivo.
Collapse
Affiliation(s)
- Lindsay A Steele
- Department of Surgery, College of Medicine, Drexel University, 245 N. 15th Street, Philadelphia 19102, Pennsylvania, United States
| | - Kara L Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Bossone 712, Philadelphia 19104, Pennsylvania, United States
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.,Regenerative Medicine and Stem Cell (RMSC) Research Center, Ben-Gurion University of the Negev, Beer Sheva Blvd. 1, Bldg. 42, Room 328, Beer-Sheva 84105, Israel
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University, Philadelphia 19140, Pennsylvania, United States.,Center for Substance Abuse Research, Temple University, 3500 N. Broad Street, Medical Education and Research Building, Room 842, Philadelphia 19140, Pennsylvania, United States
| | - Boris Polyak
- Department of Surgery, College of Medicine, Drexel University, 245 N. 15th Street, Philadelphia 19102, Pennsylvania, United States
| |
Collapse
|
2
|
Mirbagheri SZ, Bakhtiari R, Fakhre Yaseri H, Rahimi Foroushani A, Eshraghi SS, Alebouyeh M. Transcriptional alteration of genes linked to gastritis concerning Helicobacter pylori infection status and its virulence factors. Mol Biol Rep 2021; 48:6481-6489. [PMID: 34427890 DOI: 10.1007/s11033-021-06654-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Helicobacter pylori infection and heterogeneity in its pathogenesis could describe diversity in the expression of inflammatory genes in the gastric tissue. We aimed to investigate transcriptional alteration of genes linked to gastritis concerning the H. pylori infection status and its virulence factors. METHODS AND RESULTS Biopsy samples of 12 infected and 12 non-infected patients with H. pylori that showed moderate chronic gastritis were selected for transcriptional analysis. Genotyping of H. pylori strains was done using PCR and relative expression of inflammatory genes was compared between the infected and non-infected patients using relative quantitative real-time PCR. Positive correlations between transcriptional changes of IL8 with TNF-α and Noxo1 in the infected and TNF-α with Noxo1, MMP7, and Atp4A in the non-infected patients were detected. Six distinct genotypes of H. pylori were detected that showed no correlation with gender, ethnicity, age, endoscopic findings, and transcriptional levels of host genes. Irrespective of the characterized genotypes, our results showed overexpression of TNF-α, MMP7, Noxo1, and ATP4A in the infected and IL-8, Noxo1, and ATP4A in the non-infected patients. CONCLUSIONS A complexity in transcription of genes respective to the characterized H. pylori genotypes in the infected patients was detected in our study. The observed difference in co-regulation of genes linked to gastritis in the infected and non-infected patients proposed involvement of different regulatory pathways in the inflammation of the gastric tissue in the studied groups.
Collapse
Affiliation(s)
- Seyedeh Zohre Mirbagheri
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ronak Bakhtiari
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hashem Fakhre Yaseri
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.,Gastroenterology, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Saeed Eshraghi
- Department of Pathobiology, School of Public Health and Institute Health Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Alebouyeh
- Pediatric Infections Research Centre, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
The Entry and Egress of Monocytes in Atherosclerosis: A Biochemical and Biomechanical Driven Process. Cardiovasc Ther 2021; 2021:6642927. [PMID: 34345249 PMCID: PMC8282391 DOI: 10.1155/2021/6642927] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
In accordance with “the response to injury” theory, the entry of monocytes into the intima guided by inflammation signals, taking up cholesterol and transforming into foam cells, and egress from plaques determines the progression of atherosclerosis. Multiple cytokines and receptors have been reported to be involved in monocyte recruitment such as CCL2/CCR2, CCL5/CCR5, and CX3CL1/CX3CR1, and the egress of macrophages from the plaque like CCR7/CCL19/CCL21. Interestingly, some neural guidance molecules such as Netrin-1 and Semaphorin 3E have been demonstrated to show an inhibitory effect on monocyte migration. During the processes of monocytes recruitment and migration, factors affecting the biomechanical properties (e.g., the membrane fluidity, the deformability, and stiffness) of the monocytes, like cholesterol, amyloid-β peptide (Aβ), and lipopolysaccharides (LPS), as well as the biomechanical environment that the monocytes are exposed, like the extracellular matrix stiffness, mechanical stretch, blood flow, and hypertension, were discussed in the latter section. Till now, several small interfering RNAs (siRNAs), monoclonal antibodies, and antagonists for CCR2 have been designed and shown promising efficiency on atherosclerosis therapy. Seeking more possible biochemical factors that are chemotactic or can affect the biomechanical properties of monocytes, and uncovering the underlying mechanism, will be helpful in future studies.
Collapse
|
4
|
Al-Maslamani NA, Khilan AA, Horn HF. Design of a 3D printed, motorized, uniaxial cell stretcher for microscopic and biochemical analysis of mechanotransduction. Biol Open 2021; 10:bio057778. [PMID: 33563607 PMCID: PMC7888744 DOI: 10.1242/bio.057778] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022] Open
Abstract
Cells respond to mechanical cues from their environment through a process of mechanosensing and mechanotransduction. Cell stretching devices are important tools to study the molecular pathways responsible for cellular responses to mechanobiological processes. We describe the development and testing of a uniaxial cell stretcher that has applications for microscopic as well as biochemical analyses. By combining simple fabrication techniques with adjustable control parameters, the stretcher is designed to fit a variety of experimental needs. The stretcher can be used for static and cyclic stretching. As a proof of principle, we visualize stretch induced deformation of cell nuclei via incremental static stretch, and changes in IEX1 expression via cyclic stretching. This stretcher is easily modified to meet experimental needs, inexpensive to build, and should be readily accessible for most laboratories with access to 3D printing.
Collapse
Affiliation(s)
- Noor A Al-Maslamani
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Abdulghani A Khilan
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Henning F Horn
- Biological and Biomedical Sciences Division, College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| |
Collapse
|
5
|
Liu J, Lin Q, Guo D, Yang Y, Zhang X, Tu J, Ning X, Song Y, Wang J. Association Between Pulse Pressure and Carotid Intima-Media Thickness Among Low-Income Adults Aged 45 Years and Older: A Population-Based Cross-Sectional Study in Rural China. Front Cardiovasc Med 2020; 7:547365. [PMID: 33263005 PMCID: PMC7688472 DOI: 10.3389/fcvm.2020.547365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/21/2020] [Indexed: 12/02/2022] Open
Abstract
Worldwide, the stroke burden remains severe, especially for people in low socioeconomic groups. Atherosclerosis is a leading cause of stroke that is attracting increasingly greater attention. Blood pressure, including pulse pressure (PP) and systolic (SBP) and diastolic (DBP) blood pressures, is a traditional risk factor for atherosclerosis; its association with carotid intima-media thickness (CIMT) has also been widely studied. However, published studies have not reported on the relationship between PP and CIMT in low-income adults. Thus, this study investigated the relationship between PP and CIMT in a low-income population, in China. A total of 3,789 people, aged ≥45 years and without histories of stroke or cardiovascular disease, were recruited into this study. B-mode ultrasonography was performed to determine CIMTs. Demographic characteristics, physical examination data, previous medical histories, and laboratory test results were collected for each study participant. Multiple linear regression models were used to analyze the association between CIMT and PP. The mean CIMT was 567.1 μm (males, 583.5 μm; females, 555.7 μm). The SBP, DBP, PP, and mean arterial pressure (MAP) values were all positively correlated with CIMT, in the univariate analysis; PP and MAP showed the strongest correlations. In addition, in three multiple linear regression models, PP was shown to be significantly associated with CIMT; each 1-mm Hg increase in PP resulted in a CIMT increase of ≥0.41 μm (all P < 0.001). Our results demonstrated that, when compared with SBP, DBP, and MAP, PP may be the best predictor of CIMT. Thus, controlling blood pressure, especially PP levels, is vital to decreasing the prevalence of atherosclerosis, especially in this low socioeconomic status population in China.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Qiuxing Lin
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Dandan Guo
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuan Yang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Zhang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Tu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Xianjia Ning
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Yijun Song
- Department of General Medicine, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Tianjin, China
| | - Jinghua Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Laboratory of Epidemiology, Tianjin Neurological Institute, Tianjin, China.,Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| |
Collapse
|
6
|
Wissing TB, van Haaften EE, Koch SE, Ippel BD, Kurniawan NA, Bouten CVC, Smits AIPM. Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages - implications for in situ vascular tissue engineering. Biomater Sci 2020; 8:132-147. [PMID: 31709425 DOI: 10.1039/c9bm01005j] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biomaterials are increasingly used for in situ vascular tissue engineering, wherein resorbable fibrous scaffolds are implanted as temporary carriers to locally initiate vascular regeneration. Upon implantation, macrophages infiltrate and start degrading the scaffold, while simultaneously driving a healing cascade via the secretion of paracrine factors that direct the behavior of tissue-producing cells. This balance between neotissue formation and scaffold degradation must be maintained at all times to ensure graft functionality. However, the grafts are continuously exposed to hemodynamic loads, which can influence macrophage response in a hitherto unknown manner and thereby tilt this delicate balance. Here we aimed to unravel the effects of physiological levels of shear stress and cyclic stretch on biomaterial-activated macrophages, in terms of polarization, scaffold degradation and paracrine signaling to tissue-producing cells (i.e. (myo)fibroblasts). Human THP-1-derived macrophages were seeded in electrospun polycaprolactone bis-urea scaffolds and exposed to shear stress (∼1 Pa), cyclic stretch (∼1.04), or a combination thereof for 8 days. The results showed that macrophage polarization distinctly depended on the specific loading regime applied. In particular, hemodynamic loading decreased macrophage degradative activity, especially in conditions of cyclic stretch. Macrophage activation was enhanced upon exposure to shear stress, as evidenced from the upregulation of both pro- and anti-inflammatory cytokines. Exposure to the supernatant of these dynamically cultured macrophages was found to amplify the expression of tissue formation- and remodeling-related genes in (myo)fibroblasts statically cultured in comparable electrospun scaffolds. These results emphasize the importance of macrophage mechano-responsiveness in biomaterial-driven vascular regeneration.
Collapse
Affiliation(s)
- Tamar B Wissing
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
7
|
Shahid M, Hermes EL, Chandra D, Tauseef M, Siddiqui MR, Faridi MH, Wu MX. Emerging Potential of Immediate Early Response Gene X-1 in Cardiovascular and Metabolic Diseases. J Am Heart Assoc 2019; 7:e009261. [PMID: 30373431 PMCID: PMC6404175 DOI: 10.1161/jaha.118.009261] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohd Shahid
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoIL
| | - Erin L. Hermes
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoIL
| | - David Chandra
- The Wellman Center for PhotomedicineDepartment of DermatologyMassachusetts General HospitalHarvard Medical SchoolBostonMA
| | - Mohammad Tauseef
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoIL
| | - M. Rizwan Siddiqui
- Department of PediatricsNorthwestern University Feinberg School of MedicineChicagoIL
| | - M. Hafeez Faridi
- Department of Pharmaceutical SciencesChicago State University College of PharmacyChicagoIL
| | - Mei X. Wu
- The Wellman Center for PhotomedicineDepartment of DermatologyMassachusetts General HospitalHarvard Medical SchoolBostonMA
- Division of Health Sciences and TechnologyHarvard‐Massachusetts Institute of TechnologyBostonMA
| |
Collapse
|
8
|
Adams S, Wuescher LM, Worth R, Yildirim-Ayan E. Mechano-Immunomodulation: Mechanoresponsive Changes in Macrophage Activity and Polarization. Ann Biomed Eng 2019; 47:2213-2231. [PMID: 31218484 PMCID: PMC7043232 DOI: 10.1007/s10439-019-02302-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022]
Abstract
In recent years, biomaterial- and scaffold-based immunomodulation strategies were implemented in tissue regeneration efforts for manipulating macrophage polarization (a.k.a. phenotype or lineage commitment, or differentiation). Yet, most of our understanding of macrophage phenotype commitment and phagocytic capacity is limited to how physical cues (extracellular matrix stiffness, roughness, and topography) and soluble chemical cues (cytokines and chemokines released from the scaffold) influence macrophage polarization. In the context of immune response-tissue interaction, the mechanical cues experienced by the residing cells within the tissue also play a critical role in macrophage polarization and inflammatory response. However, there is no compiled study discussing the effect of the dynamic mechanical environment around the tissues on macrophage polarization and the innate immune response. The aim of this comprehensive review paper is 2-fold; (a) to highlight the importance of mechanical cues on macrophage lineage commitment and function and (b) to summarize the important studies dedicated to understand how macrophage polarization changes with different mechanical loading modalities. For the first time, this review paper compiles and compartmentalizes the studies investigating the role of dynamic mechanical loading with various modalities, amplitude, and frequency on macrophage differentiation. A deeper understanding of macrophage phenotype in mechanically dominant tissues (i.e. musculoskeletal tissues, lung tissues, and cardiovascular tissues) provides mechanistic insights into the design of mechano-immunomodulatory tissue scaffold for tissue regeneration.
Collapse
Affiliation(s)
- Sarah Adams
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, 43606, USA
| | - Leah M Wuescher
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Randall Worth
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, 43606, USA.
- Department of Orthopaedic Surgery, University of Toledo Medical Center, Toledo, OH, 43614, USA.
| |
Collapse
|
9
|
Bonito V, de Kort BJ, Bouten CV, Smits AI. Cyclic Strain Affects Macrophage Cytokine Secretion and Extracellular Matrix Turnover in Electrospun Scaffolds. Tissue Eng Part A 2019; 25:1310-1325. [DOI: 10.1089/ten.tea.2018.0306] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Valentina Bonito
- Soft Tissue Engineering & Mechanobiology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bente J. de Kort
- Soft Tissue Engineering & Mechanobiology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V.C. Bouten
- Soft Tissue Engineering & Mechanobiology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anthal I.P.M. Smits
- Soft Tissue Engineering & Mechanobiology Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
10
|
Hou D, Yan Y, Liu J, Zhao X, Cheng H, Mi J. Childhood pulse pressure predicts subclinical vascular damage in adulthood. J Hypertens 2018; 36:1663-1670. [DOI: 10.1097/hjh.0000000000001748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Wissing TB, Bonito V, Bouten CVC, Smits AIPM. Biomaterial-driven in situ cardiovascular tissue engineering-a multi-disciplinary perspective. NPJ Regen Med 2017; 2:18. [PMID: 29302354 PMCID: PMC5677971 DOI: 10.1038/s41536-017-0023-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022] Open
Abstract
There is a persistent and growing clinical need for readily-available substitutes for heart valves and small-diameter blood vessels. In situ tissue engineering is emerging as a disruptive new technology, providing ready-to-use biodegradable, cell-free constructs which are designed to induce regeneration upon implantation, directly in the functional site. The induced regenerative process hinges around the host response to the implanted biomaterial and the interplay between immune cells, stem/progenitor cell and tissue cells in the microenvironment provided by the scaffold in the hemodynamic environment. Recapitulating the complex tissue microstructure and function of cardiovascular tissues is a highly challenging target. Therein the scaffold plays an instructive role, providing the microenvironment that attracts and harbors host cells, modulating the inflammatory response, and acting as a temporal roadmap for new tissue to be formed. Moreover, the biomechanical loads imposed by the hemodynamic environment play a pivotal role. Here, we provide a multidisciplinary view on in situ cardiovascular tissue engineering using synthetic scaffolds; starting from the state-of-the art, the principles of the biomaterial-driven host response and wound healing and the cellular players involved, toward the impact of the biomechanical, physical, and biochemical microenvironmental cues that are given by the scaffold design. To conclude, we pinpoint and further address the main current challenges for in situ cardiovascular regeneration, namely the achievement of tissue homeostasis, the development of predictive models for long-term performances of the implanted grafts, and the necessity for stratification for successful clinical translation.
Collapse
Affiliation(s)
- Tamar B Wissing
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Valentina Bonito
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
12
|
Shahid M, Javed AA, Chandra D, Ramsey HE, Shah D, Khan MF, Zhao L, Wu MX. IEX-1 deficiency induces browning of white adipose tissue and resists diet-induced obesity. Sci Rep 2016; 6:24135. [PMID: 27063893 PMCID: PMC4827096 DOI: 10.1038/srep24135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/21/2016] [Indexed: 12/27/2022] Open
Abstract
Chronic inflammation plays a crucial role in the pathogenesis of obesity and insulin resistance. However, the primary mediators that affect energy homeostasis remain ill defined. Here, we report an unexpected role for immediate early response gene X-1 (IEX-1), a downstream target of NF-κB, in energy metabolism. We found that IEX-1 expression was highly induced in white adipose tissue (WAT) in both epidydmal and subcutaneous depots but not in interscapular brown adipose tissue (BAT) in mice fed a high fat diet (HFD). Null mutation of IEX-1 protected mice against HFD-induced adipose and hepatic inflammation, hepatic steatosis, and insulin resistance. Unexpectedly, IEX-1 knockout (IEX-1(-/-)) mice gained markedly less weight on HFD for 20 weeks as compared to wild-type (WT) littermates (37 ± 3 versus 48 ± 2 gm) due to increased energy expenditure. Mechanistically, we showed that IEX-1 deficiency induced browning and activated thermogenic genes program in WAT but not in BAT by promoting alternative activation of adipose macrophages. Consequently, IEX-1(-/-) mice exhibited enhanced thermogenesis (24 ± 0.1 versus 22 ± 0.1 kcal/hour/kg in WT mice) explaining increased energy expenditure and lean phenotype in these mice. In conclusion, the present study suggests that IEX-1 is a novel physiological regulator of energy homeostasis via its action in WAT.
Collapse
Affiliation(s)
- Mohd Shahid
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - Ammar A Javed
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - David Chandra
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - Haley E Ramsey
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - Dilip Shah
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA
| | - Mohammed F Khan
- Department of Anesthesia, Critical Care and Pain Medicine, Shriners Hospitals for Children, MGH and HMS, Boston, MA 02114, USA
| | - Liping Zhao
- Department of Molecular Biology, MGH and HMS, Boston, Massachusetts USA
| | - Mei X Wu
- The Wellman Center for Photomedicine, Massachusetts General Hospital (MGH) and Department of Dermatology, Harvard Medical School (HMS), Boston, Massachusetts 02114 USA.,Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Boston, Massachusetts USA
| |
Collapse
|
13
|
Abstract
INTRODUCTION Apoptosis plays an important role in age-related disease, and prostate apoptosis response-4 (PAR-4) is a novel apoptosis-inducing factor that regulates apoptosis in most cells. Recent studies suggest that PAR-4 plays an important role in the progression of many age-related diseases. This review highlights the significance of PAR-4 and builds a strong case supporting its role as a possible therapeutic target in age-related disease. AREAS COVERED This review covers the advancements over the last 15 years with respect to PAR-4 and its significance in age-related disease. Additionally, it provides knowledge regarding the significance of PAR-4 in age-related disease as well as its role in apoptotic signaling pathways, endoplasmic reticulum (ER) stress, and other mechanisms that may induce age-related disease. EXPERT OPINION PAR-4 may be a potential therapeutic target that can trigger selective apoptosis in cancer cells. It is induced by ER stress and increased ER stress, and it is involved in the activity of the dopamine D2 receptor. Abnormal expression of PAR-4 may be associated with cardiovascular disease and diabetes. PAR-4 agonists and inhibitors must be identified before gene therapy can commence.
Collapse
Affiliation(s)
- Wu Qinan
- The First Affiliated Hospital of the Third Military Medical University, Endocrine Department , Post number: 400038, Chongqing , China
| | | | | |
Collapse
|
14
|
Fan Y, Wang J, Wei L, He B, Wang C, Wang B. Iron deficiency activates pro-inflammatory signaling in macrophages and foam cells via the p38 MAPK-NF-κB pathway. Int J Cardiol 2011; 152:49-55. [DOI: 10.1016/j.ijcard.2010.07.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/18/2010] [Accepted: 07/02/2010] [Indexed: 01/19/2023]
|
15
|
Jankowski P, Bilo G, Kawecka-Jaszcz K. The pulsatile component of blood pressure – Its role in the pathogenesis of atherosclerosis. Blood Press 2009; 16:238-45. [PMID: 17852092 DOI: 10.1080/08037050701428166] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pulse pressure (PP) is traditionally believed to increase cardiovascular risk because of an increase in afterload leading to left ventricular hypertrophy. It has also been emphasized that low diastolic blood pressure, being in part responsible for high PP, leads to an impairment of myocardial perfusion with all its adverse consequences. More recently, however, a direct role of pulsatile blood pressure changes in the pathogenesis of atherosclerosis and its complications has become better known. Experimental studies indicate that there is a cause-and-effect type of relationship between the pulsatile component of blood pressure and atherosclerotic process. A significant relationship between the parameters of the pulsatile blood pressure component and the extent of coronary atherosclerosis was also demonstrated. Currently the presence of a bidirectional link between atherosclerosis and PP is commonly postulated, meaning that an increased PP may be both a cause and an effect of atherosclerosis. This may result in a vicious circle wherein the pulsatile blood pressure component induces/enhances the development of atherosclerosis, which in its turn reduces the arterial compliance and enhances pulse wave reflection, thereby leading to an increase in PP. Currently new drug classes are being investigated, which might reduce the pulsatile blood pressure component without changing mean blood pressure level. Their clinical usefulness should become known over the next few years.
Collapse
Affiliation(s)
- Piotr Jankowski
- I Department of Cardiology and Hypertension, Collegium Medicum Jagiellonian University, Kraków, Poland.
| | | | | |
Collapse
|
16
|
Raitakari OT, Juonala M, Taittonen L, Jula A, Laitinen T, Kähönen M, Viikari JS. Pulse Pressure in Youth and Carotid Intima-Media Thickness in Adulthood. Stroke 2009; 40:1519-21. [DOI: 10.1161/strokeaha.108.525253] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Large pulse pressure associates with atherosclerosis, but it is unclear if it contributes to the development of atherosclerosis or if atherosclerosis leads to pulse pressure widening. We examined whether exposure to large pulse pressure in childhood predicts carotid artery intima-media thickness in adulthood.
Methods—
Carotid intima-media thickness was measured in 2146 adults in the Cardiovascular Risk in Young Finns Study. These subjects have blood pressure data available dating back to their childhood (baseline in 1980, ages 3 to 18 years).
Results—
Baseline pulse pressure measured in adolescence was significantly related to carotid intima-media thickness measured in adulthood 21 years later (
r
=0.123,
P
<0.0001). The relation remained significant (
P
=0.0029) in models adjusted for age, sex, adolescent mean arterial pressure, adult systolic pressure, adult pulse pressure, body mass index, smoking, physical activity, and carotid artery diameter. Each 10 mm Hg increment in pulse pressure was associated with a 0.008-mm (95% CI, 0.003 to 0.013 mm) increase in carotid intima-media thickness.
Conclusions—
Exposure to wide pulse pressure in adolescence may induce changes that contribute to carotid artery intima-media thickening.
Collapse
Affiliation(s)
- Olli T. Raitakari
- From the Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R., M.J.) and the Departments of Clinical Physiology (O.T.R.) and Medicine (M.J., J.S.A.V.), University of Turku, Turku, Finland; the Department of Clinical Physiology (M.K.), University of Tampere and Tampere University Hospital, Tampere, Finland; the Department of Pediatrics (L.T.), University of Oulu, Oulu, Finland; Vaasa Central Hospital (L.T.), Vaasa, Finland; the Department of Clinical Physiology (T.L.), University
| | - Markus Juonala
- From the Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R., M.J.) and the Departments of Clinical Physiology (O.T.R.) and Medicine (M.J., J.S.A.V.), University of Turku, Turku, Finland; the Department of Clinical Physiology (M.K.), University of Tampere and Tampere University Hospital, Tampere, Finland; the Department of Pediatrics (L.T.), University of Oulu, Oulu, Finland; Vaasa Central Hospital (L.T.), Vaasa, Finland; the Department of Clinical Physiology (T.L.), University
| | - Leena Taittonen
- From the Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R., M.J.) and the Departments of Clinical Physiology (O.T.R.) and Medicine (M.J., J.S.A.V.), University of Turku, Turku, Finland; the Department of Clinical Physiology (M.K.), University of Tampere and Tampere University Hospital, Tampere, Finland; the Department of Pediatrics (L.T.), University of Oulu, Oulu, Finland; Vaasa Central Hospital (L.T.), Vaasa, Finland; the Department of Clinical Physiology (T.L.), University
| | - Antti Jula
- From the Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R., M.J.) and the Departments of Clinical Physiology (O.T.R.) and Medicine (M.J., J.S.A.V.), University of Turku, Turku, Finland; the Department of Clinical Physiology (M.K.), University of Tampere and Tampere University Hospital, Tampere, Finland; the Department of Pediatrics (L.T.), University of Oulu, Oulu, Finland; Vaasa Central Hospital (L.T.), Vaasa, Finland; the Department of Clinical Physiology (T.L.), University
| | - Tomi Laitinen
- From the Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R., M.J.) and the Departments of Clinical Physiology (O.T.R.) and Medicine (M.J., J.S.A.V.), University of Turku, Turku, Finland; the Department of Clinical Physiology (M.K.), University of Tampere and Tampere University Hospital, Tampere, Finland; the Department of Pediatrics (L.T.), University of Oulu, Oulu, Finland; Vaasa Central Hospital (L.T.), Vaasa, Finland; the Department of Clinical Physiology (T.L.), University
| | - Mika Kähönen
- From the Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R., M.J.) and the Departments of Clinical Physiology (O.T.R.) and Medicine (M.J., J.S.A.V.), University of Turku, Turku, Finland; the Department of Clinical Physiology (M.K.), University of Tampere and Tampere University Hospital, Tampere, Finland; the Department of Pediatrics (L.T.), University of Oulu, Oulu, Finland; Vaasa Central Hospital (L.T.), Vaasa, Finland; the Department of Clinical Physiology (T.L.), University
| | - Jorma S.A. Viikari
- From the Research Centre of Applied and Preventive Cardiovascular Medicine (O.T.R., M.J.) and the Departments of Clinical Physiology (O.T.R.) and Medicine (M.J., J.S.A.V.), University of Turku, Turku, Finland; the Department of Clinical Physiology (M.K.), University of Tampere and Tampere University Hospital, Tampere, Finland; the Department of Pediatrics (L.T.), University of Oulu, Oulu, Finland; Vaasa Central Hospital (L.T.), Vaasa, Finland; the Department of Clinical Physiology (T.L.), University
| |
Collapse
|
17
|
Hallow KM, Taylor WR, Rachev A, Vito RP. Markers of inflammation collocate with increased wall stress in human coronary arterial plaque. Biomech Model Mechanobiol 2009; 8:473-86. [DOI: 10.1007/s10237-009-0151-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 02/23/2009] [Indexed: 10/21/2022]
|
18
|
Oscarsson J, Karched M, Thay B, Chen C, Asikainen S. Proinflammatory effect in whole blood by free soluble bacterial components released from planktonic and biofilm cells. BMC Microbiol 2008; 8:206. [PMID: 19038023 PMCID: PMC2612679 DOI: 10.1186/1471-2180-8-206] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 11/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aggregatibacter actinomycetemcomitans is an oral bacterium associated with aggressive forms of periodontitis. Increasing evidence points to a link between periodontitis and cardiovascular diseases, however, the underlying mechanisms are poorly understood. This study investigated the pathogenic potential of free-soluble surface material, released from live planktonic and biofilm A. actinomycetemcomitans cells. RESULTS By employing an ex vivo insert model (filter pore size 20 nm) we demonstrated that the A. actinomycetemcomitans strain D7S and its derivatives, in both planktonic and in biofilm life-form, released free-soluble surface material independent of outer membrane vesicles. This material clearly enhanced the production of several proinflammatory cytokines (IL-1 beta, TNF-alpha, IL-6, IL-8, MIP-1 beta) in human whole blood, as evidenced by using a cytokine antibody array and dissociation-enhanced-lanthanide-fluorescent-immunoassay. In agreement with this, quantitative real-time PCR indicated a concomitant increase in transcription of each of these cytokine genes. Experiments in which the LPS activity was blocked with polymyxin B showed that the stimulatory effect was only partly LPS-dependent, suggesting the involvement of additional free-soluble factors. Consistent with this, MALDI-TOF-MS and immunoblotting revealed release of GroEL-like protein in free-soluble form. Conversely, the immunomodulatory toxins, cytolethal distending toxin and leukotoxin, and peptidoglycan-associated lipoprotein, appeared to be less important, as evidenced by studying strain D7S cdt/ltx double, and pal single mutants. In addition to A. actinomycetemcomitans a non-oral species, Escherichia coli strain IHE3034, tested in the same ex vivo model also released free-soluble surface material with proinflammatory activity. CONCLUSION A. actinomycetemcomitans, grown in biofilm and planktonic form, releases free-soluble surface material independent of outer membrane vesicles, which induces proinflammatory responses in human whole blood. Our findings therefore suggest that release of surface components from live bacterial cells could constitute a mechanism for systemic stimulation and be of particular importance in chronic localized infections, such as periodontitis.
Collapse
Affiliation(s)
- Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, SE-90187 Umeå, Sweden.
| | | | | | | | | |
Collapse
|
19
|
Systemic delivery of IL-10 by an AAV vector prevents vascular remodeling and end-organ damage in stroke-prone spontaneously hypertensive rat. Gene Ther 2008; 16:383-91. [PMID: 18818668 DOI: 10.1038/gt.2008.151] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Interleukin-10 (IL-10) ameliorates various T-helper type 1 cell-mediated chronic inflammatory diseases. Although the therapeutic benefits of IL-10 include antiatherosclerotic effects, pathophysiological effects of IL-10 on vascular remodeling in hypertension have not yet been elucidated. These studies were designed to determine whether sustained IL-10 expression, mediated by an adeno-associated virus (AAV) vector, prevents vascular remodeling and target-organ damage in the stroke-prone spontaneously hypertensive rat (SHR-SP)-an animal model of malignant hypertension. A single intramuscular injection of an AAV1 vector encoding rat IL-10 introduced long-term IL-10 expression. These IL-10-transduced rats had decreased stroke episodes and proteinuria, resulting in improved survival. Histological examination revealed a reduced level of deleterious vascular remodeling of resistance vessels in the brain and kidney of these rats. Immunohistochemical analysis indicated that IL-10 inhibited the enhanced renal transforming growth factor-beta expression and perivascular infiltration of monocytes/macrophages and nuclear factor-kappaB-positive cells normally observed in the SHR-SP. Four weeks after IL-10 vector injection, systolic blood pressure significantly decreased and this effect persisted for several months. Overall, AAV vector-mediated systemic IL-10 expression prevented vascular remodeling and inflammatory lesions of target organs in the SHR-SP. This approach provides significant insights into the prevention strategy of disease onset with unknown genetic predisposition or intractable polygenic disorders.
Collapse
|
20
|
Raza S, Robertson KA, Lacaze PA, Page D, Enright AJ, Ghazal P, Freeman TC. A logic-based diagram of signalling pathways central to macrophage activation. BMC SYSTEMS BIOLOGY 2008; 2:36. [PMID: 18433497 PMCID: PMC2383880 DOI: 10.1186/1752-0509-2-36] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 04/23/2008] [Indexed: 12/19/2022]
Abstract
Background The complex yet flexible cellular response to pathogens is orchestrated by the interaction of multiple signalling and metabolic pathways. The molecular regulation of this response has been studied in great detail but comprehensive and unambiguous diagrams describing these events are generally unavailable. Four key signalling cascades triggered early-on in the innate immune response are the toll-like receptor, interferon, NF-κB and apoptotic pathways, which co-operate to defend cells against a given pathogen. However, these pathways are commonly viewed as separate entities rather than an integrated network of molecular interactions. Results Here we describe the construction of a logically represented pathway diagram which attempts to integrate these four pathways central to innate immunity using a modified version of the Edinburgh Pathway Notation. The pathway map is available in a number of electronic formats and editing is supported by yEd graph editor software. Conclusion The map presents a powerful visual aid for interpreting the available pathway interaction knowledge and underscores the valuable contribution well constructed pathway diagrams make to communicating large amounts of molecular interaction data. Furthermore, we discuss issues with the limitations and scalability of pathways presented in this fashion, explore options for automated layout of large pathway networks and demonstrate how such maps can aid the interpretation of functional studies.
Collapse
Affiliation(s)
- Sobia Raza
- Division of Pathway Medicine, University of Edinburgh, The Chancellor's Building, College of Medicine, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| | | | | | | | | | | | | |
Collapse
|
21
|
Shimomura T, Izawa C, Matsui T. Development of a compact optical system for microarray scanning using a DVD pickup head. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2008; 79:035101. [PMID: 18377039 DOI: 10.1063/1.2885609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We present a compact optical system using a commercially available DVD pickup head for microarray scanning. Our instrument successfully provides a low-cost, compact, and simple microarray scanning optical system in comparison to conventional ones due to the use of small-sized optical components and the implementation of a simple autofocusing system using an embedded voice coil motor. The performance of this system was validated by using a microarray slide with spots of fluorescent dyes. It was confirmed that our optical head performed satisfactorily and was suitable for practical use in microarray scanners. This result provides evidence of the superiority of our microarray scanning optical system over conventional ones because of its space-saving properties and cost effectiveness.
Collapse
Affiliation(s)
- T Shimomura
- Funai Electric Co., Ltd., 1-1 Minami-watarida-chou, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-0855, Japan.
| | | | | |
Collapse
|
22
|
Timofeeva AV, Goryunova LE, Khaspekov GL, Kovalevskii DA, Scamrov AV, Bulkina OS, Karpov YA, Talitskii KA, Buza VV, Britareva VV, Beabealashvilli RS. Altered gene expression pattern in peripheral blood leukocytes from patients with arterial hypertension. Ann N Y Acad Sci 2007; 1091:319-35. [PMID: 17341625 DOI: 10.1196/annals.1378.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The role of various inflammatory mechanisms and oxidative stress in the development of atherosclerosis and arterial hypertension (AH) has been increasingly acknowledged during recent years. Hypertension per se or factors that cause hypertension along with other complications lead to infiltration of activated leukocytes in the vascular wall, where these cells contribute to the development of vascular injury by releasing cytokines, oxygen radicals, and other toxic mediators. However, molecular mechanisms underlying leukocyte activation at transcriptional level in AH are still far from being clear. To solve this problem we employed cDNA microarray technology to reveal the differences in gene expression in peripheral blood leukocytes from patients with AH compared with healthy individuals. The microarray data were verified by a semi-quantitative RT-PCR method. We found 25 genes with differential expression in leukocytes from AH patients among which 21 genes were upregulated and 4 genes were downregulated. These genes are implicated in apoptosis (CASP2, CASP4, and CASP8, p53, UBID4, NAT1, and Fte-1), inflammatory response (CAGC, CXCR4, and CX3CR1), control of MAP kinase function (PYST1, PAC1, RAF1, and RAFB1), vesicular trafficking of molecules among cellular organelles (GDI-1 and GDI-2), cell redox homeostasis (GLRX), cellular stress (HSPA8 and HSP40), and other processes. Gene expression pattern of the majority of genes was similar in AH patients independent of the disease stage and used hypotensive therapy, but was clearly different from that of normotensive subjects.
Collapse
Affiliation(s)
- A V Timofeeva
- Russian Cardiology Reseach and Production Center, Laboratory of Genetic Engineering, 3rd Cherepkovskaya str. 15a, 121552 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Albadawi H, Patton GM, Bratton CF, Peterson BG, Watkins MT. Human microvascular endothelial synthesis of interleukin-8 during in vitro ischemia and reperfusion. J Cell Biochem 2007; 100:412-20. [PMID: 16927373 DOI: 10.1002/jcb.21002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
These studies were undertaken to evaluate human microvascular endothelial cell (MEC) synthesis of interleukin-8 (IL-8), a potent neutrophil chemoattractant, under in vitro conditions of ischemia and reperfusion. IL-8 and other related CXC chemokines are believed to mediate tissue injury in a variety of pathologic conditions in humans. MEC grown on microcarrier beads were exposed to 3 or 6 h of in vitro ischemia followed by 2 h of reperfusion. Conditioned medium, MEC protein, and total RNA extracts were assayed for IL-8 using an ELISA. During ischemia alone, MEC increased intracellular, but not extracellular levels of IL-8 secretion. In contrast, reperfusion markedly stimulated both intracellular and extracellular IL-8 secretion. Neither 3 h of ischemia alone or followed by reperfusion altered steady-state levels of IL-8 mRNA when compared to pre-ischemic levels. In contrast, after 6 h of ischemia alone and ischemia followed by reperfusion, IL-8 mRNA was increased eight- and sixfold, respectively, when compared to pre-ischemic levels. These studies demonstrate an inverse relationship between the rate of IL-8 protein secretion and the steady-state levels of IL-8 mRNA during ischemia and reperfusion. During ischemia and reperfusion both the increase in cell-associated IL-8 protein and the release of IL-8 into the medium is dependent on de novo protein synthesis rather than the intracellular accumulation of IL-8. These experiments indicate that post-ischemic modulation of IL-8 release and synthesis following ischemia reperfusion will require strategies directed towards inhibition of IL-8 transcription and in depth knowledge of the mechanisms regulating IL-8 secretion.
Collapse
Affiliation(s)
- Hassan Albadawi
- Department of Surgery, Division of Vascular Surgery, Massachusetts General Hospital, Harvard Medical School, Boston University School of Medicine and the VA Boston Healthcare System, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
24
|
Sugiyama S, Yamamoto K, Nishimura N, Nakagawa M, Maruta Y, Ando J. Adequate design of customized cDNA macroarray for convenient multiple gene expression analysis. J Biosci Bioeng 2007; 103:74-81. [PMID: 17298904 DOI: 10.1263/jbb.103.74] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Accepted: 10/24/2006] [Indexed: 11/17/2022]
Abstract
To establish a convenient, cost-effective, and reasonably reliable method for monitoring multiple gene expression using customized membrane-based macroarray, we constructed a cDNA macroarray with multiple probes for 13 human vascular endothelial genes and assessed the accuracy of the macroarray measurements. For each gene, two cDNA probes (450-550 bp) were designed from different regions (coding region and 3'-untranslated region [3'-UTR], respectively) on the basis of simple criteria concerning length and sequence specificity and spotted on the macroarray. In addition, unmodified oligonucleotide probes (80 mer) targeted to a unique sequence from the coding region of each gene were spotted on the same macroarray. Using this macroarray, shear stress-induced mRNA expression changes were analyzed in human coronary artery endothelial cells. Comparison of the expression ratios obtained with those measured using quantitative real-time polymerase chain reaction (PCR) as a reference method revealed that cDNA probes designed from a sequence within the coding region provided a highly accurate expression profile, whereas results obtained from oligonucleotide probes showed no correlation with real-time PCR data, which might be caused by inadequate immobilization of oligonucletotide probes on the nylon membrane. In addition, we observed that cDNA probes targeting different regions of a gene yielded different signal intensities. Most cDNA probes designed from a sequence within the coding region showed detectable signals, whereas few cDNA probes designed from 3'-UTR did.
Collapse
Affiliation(s)
- Shunpei Sugiyama
- Lab Co., Ltd., 2-12 Kita 27 Nishi 6, Kita-ku, Sapporo 001-0027, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Matheson LA, Maksym GN, Santerre JP, Labow RS. Differential effects of uniaxial and biaxial strain on U937 macrophage-like cell morphology: Influence of extracellular matrix type proteins. J Biomed Mater Res A 2007; 81:971-81. [PMID: 17252550 DOI: 10.1002/jbm.a.31117] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tissue engineering concepts have expanded in the last decade to consider the importance of biochemical signaling from extracellular matrix (ECM) proteins adhered to substrates such as polymeric and ceramic scaffolds. This study investigated combined ECM/mechanical factors on the key signaling cells (macrophages) for wound healing, since previously, mechanical strain and ECM proteins have only been considered separately for their effects on macrophage morphology. Human U937 macrophage-like cells were cultured on a model elastomeric membrane, coated with either collagen type I or poly-RGD peptide (ProNectin). The cells were subjected to cyclic uniform uniaxial or nonuniform biaxial strain with the Flexercell Tension Plus system to simulate strains that various soft tissue implants may undergo during the critical tissue-implant integration period. The surface coatings affected total cellular protein, which was significantly higher in cells on collagen than ProNectin coated surfaces after biaxial, but not uniaxial strain, whereas ProNectin coated surfaces caused a decrease in DNA following uniaxial, but not biaxial strain. Adding the protein coatings that relate to the wound healing process during tissue regeneration, elicited effects specific to the strain type imposed. The combination of these parameters caused changes in U937 macrophage-like cells that should be considered in the outcome of the desired performance in the tissue-material constructs.
Collapse
Affiliation(s)
- Loren A Matheson
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Luttikhuizen DT, van Amerongen MJ, de Feijter PC, Petersen AH, Harmsen MC, van Luyn MJA. The correlation between difference in foreign body reaction between implant locations and cytokine and MMP expression. Biomaterials 2006; 27:5763-70. [PMID: 16934325 DOI: 10.1016/j.biomaterials.2006.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Accepted: 07/11/2006] [Indexed: 01/30/2023]
Abstract
The foreign body reaction (FBR) differs between subcutaneously and supra-epicardially implanted materials. We hypothesize that this is a result of differences in cytokine, chemokine and matrix metalloproteinase (MMP) dynamics. Therefore we applied collagen disks subcutaneously and on the epicardium in mice and analyzed the FBR from day 1 to 21. Both the influx of leukocytes and implant degradation were higher in supra-epicardially implanted collagen than in subcutaneously implanted material. This correlated with a higher gene expression of pro-inflammatory cytokines such as IL-1 and IL-6, and a lower expression of the anti-inflammatory cytokine IL-10. Furthermore, the higher supra-epicardial expression of PMN attractants CXCL1/KC and CXCL2/MIP2 correlated with a higher and prolonged PMN influx. The gene expression levels of collagen degrading MMPs, i.e. MMP8, MMP13 and MMP14 were similar in subcutaneous and supra-epicardial disks. However, the activity of these enzymes was markedly higher supra-epicardially. In addition, the MMP9 expression was higher supra-epicardially, suggesting a role for this enzyme in the degradation process. In conclusion, a strong pro-inflammatory milieu is generated after supra-epicardial implantation that enables prolonged PMN presence and activation. This, together with the high supra-epicardial MMP9 level, could explain the observed difference in Col-I degradation between locations.
Collapse
Affiliation(s)
- Daniel T Luttikhuizen
- Department of Pathology and Laboratory Medicine, Medical Biology Section, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Matheson LA, Maksym GN, Santerre JP, Labow RS. The functional response of U937 macrophage-like cells is modulated by extracellular matrix proteins and mechanical strain. Biochem Cell Biol 2006; 84:763-73. [PMID: 17167540 DOI: 10.1139/o06-093] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular matrix proteins (ECMs) play a significant role in the transfer of mechanical strain to monocyte-derived macrophages (MDMs) affecting morphological changes in a foreign body reaction. This study investigated how the functional responses of U937 macrophage-like cells differed when subjected to 2 dynamic strain types (nonuniform biaxial or uniform uniaxial strain) while cultured on siloxane membranes coated with either collagen type I or RGD peptide repeats (ProNectin®). Biaxial strain caused an increase in intracellular esterase and acid phosphatase (AP) activities, as well as monocyte-specific esterase (MSE) protein levels in cells that were seeded on either uncoated surfaces (shown previously) or collagen, but not ProNectin®. Released AP activity, but not released esterase activity, was increased on all surfaces. Biaxial strain increased IL-6, but not IL-8 on all surfaces. When cells were subjected to uniaxial strain, intracellular esterase increased on coated surfaces only, whereas intracellular AP activity was unaffected. Both esterase and AP released activities increased on all surfaces. Uniaxial strain increased the release of IL-6 on all surfaces, but IL-8 on coated surfaces only. This study demonstrated for the first time that ECM proteins could specifically modulate cellular responses to different types of strain. Using this approach with an in vitro cell system may help to unravel the complex function of MDMs in the foreign-body reaction.
Collapse
Affiliation(s)
- Loren A Matheson
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, ON, Canada
| | | | | | | |
Collapse
|
28
|
Wang H, Zheng Y, He S. Induction of release and up-regulated gene expression of interleukin (IL)-8 in A549 cells by serine proteinases. BMC Cell Biol 2006; 7:22. [PMID: 16696869 PMCID: PMC1489934 DOI: 10.1186/1471-2121-7-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2005] [Accepted: 05/15/2006] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hypersecretion of cytokines and serine proteinases has been observed in asthma. Since protease-activated receptors (PARs) are receptors of several serine proteinases and airway epithelial cells are a major source of cytokines, the influence of serine proteinases and PARs on interleukin (IL)-8 secretion and gene expression in cultured A549 cells was examined. RESULTS A549 cells express all four PARs at both protein and mRNA levels as assessed by flow cytometry, immunofluorescence microscopy and reverse transcription polymerase chain reaction (PCR). Thrombin, tryptase, elastase and trypsin induce a up to 8, 4.3, 4.4 and 5.1 fold increase in IL-8 release from A549 cells, respectively following 16 h incubation period. The thrombin, elastase and trypsin induced secretion of IL-8 can be abolished by their specific inhibitors. Agonist peptides of PAR-1, PAR-2 and PAR-4 stimulate up to 15.6, 6.6 and 3.5 fold increase in IL-8 secretion, respectively. Real time PCR shows that IL-8 mRNA is up-regulated by the serine proteinases tested and by agonist peptides of PAR-1 and PAR-2. CONCLUSION The proteinases, possibly through activation of PARs can stimulate IL-8 release from A549 cells, suggesting that they are likely to contribute to IL-8 related airway inflammatory disorders in man.
Collapse
Affiliation(s)
- Haiyan Wang
- Allergy and Inflammation Research Institute, the Key Immunopharmacology Laboratory of Guangdong Province, Shantou University Medical College, Shantou 515031, China
| | - Yanshan Zheng
- Allergy and Inflammation Research Institute, the Key Immunopharmacology Laboratory of Guangdong Province, Shantou University Medical College, Shantou 515031, China
| | - Shaoheng He
- Allergy and Inflammation Research Institute, the Key Immunopharmacology Laboratory of Guangdong Province, Shantou University Medical College, Shantou 515031, China
| |
Collapse
|
29
|
Matheson LA, Maksym GN, Santerre JP, Labow RS. Cyclic biaxial strain affects U937 macrophage-like morphology and enzymatic activities. J Biomed Mater Res A 2006; 76:52-62. [PMID: 16224781 DOI: 10.1002/jbm.a.30448] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
As monocytes migrate to the site of a foreign body and differentiate into mature monocyte-derived macrophages (MDMs), the cells undergo a morphological transformation that involves mechanical stimulation via membrane stretch. Because the site of many cardiovascular implant devices includes substrates that are also undergoing mechanical change, it is of interest to assess the effect of such dynamic conditions on cellular-biomaterial responses. This study investigated the influence of cyclic (0.25 Hz) biaxial strain (maximum 10% amplitude) on human U937 macrophage-like cells cultured on a flexible siloxane membrane. Cell attachment was unaffected by the strain but total protein levels were significantly higher in stimulated cells. Intracellular esterase and released acid phosphatase activities were elevated by dynamic loading in addition to a strain-induced increase of monocyte-specific esterase protein as demonstrated by immunoblotting analysis. The morphology of static cells changed with cyclic strain from a round cell shape to an irregular, spread phenotype with a progressive reorganization of filamentous actin. The focal adhesion protein vinculin showed distinct reorganization in structure going from a well-defined arrangement in static cells to a diffuse staining pattern in mechano-stimulated cells. This study has demonstrated that U937 cells respond to cyclic deformation with an augmentation of select enzymatic activities that have been identified as being important in polymer biodegradation processes, as well as morphological changes, which may be characteristic of mechanical stress-induced cell activation.
Collapse
Affiliation(s)
- Loren A Matheson
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
30
|
Hung YC, Hong MY, Huang GS. Cholesterol loading augments oxidative stress in macrophages. FEBS Lett 2006; 580:849-61. [PMID: 16414045 DOI: 10.1016/j.febslet.2005.12.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 12/30/2005] [Accepted: 12/30/2005] [Indexed: 10/25/2022]
Abstract
To investigate the molecular consequence of loading free cholesterol into macrophages, we conducted a large-scale gene expression study to analyze acetylated-LDL-laden foam cells (AFC) and oxidized-LDL-laden foam cells (OFC) induced from human THP-1 cell lines. Cluster analysis was performed using 9600-gene microarray datasets from time course experiment. AFC and OFC shared common expression profiles; however, there were sufficient differences between these two treatments that AFC and OFC appealed as two separate entities. We identified 80 commonly upregulated genes and 48 commonly downregulated genes in AFC and OFC. Functional annotation of the differentially expressed genes indicated that apoptosis, extracellular matrix, oxidative stress, and cell proliferation was deregulated. We also identified 87 differentially expressed genes unique for AFC and 31 genes for OFC. The uniquely expressed genes of AFC are associated with kinase activity, ATP binding activity, and transporter activity, while unique genes for OFC are associated with cell signaling and adhesion. To validate the hypothesis that oxidative stress is a common feature for AFC and OFC, we performed a cluster analysis employing the genes related to oxidative stress, but we were unable to distinguish AFC from OFC in this manner. We performed real-time RT-PCR and ELISA on foam cells to examine the transcripts and secreted protein of interleukin 1 beta (IL1beta). IL1beta was rapidly induced in foam cells, but for AFC both RNA level and protein level dropped immediately and was attenuated. To detect levels of reactive oxygen species in foam cells we conducted hydroethidine staining and observed high levels of superoxide anion. We conclude that loading free cholesterol induces high levels of superoxide anion, increases oxidative stress, and triggers a transient inflammatory response in macrophages.
Collapse
Affiliation(s)
- Yao-Ching Hung
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, China Medical University and Hospital, Taiwan
| | | | | |
Collapse
|
31
|
Sommer SL, Berndt TJ, Frank E, Patel JB, Redfield MM, Dong X, Griffin MD, Grande JP, van Deursen JMA, Sieck GC, Romero JC, Kumar R. Elevated blood pressure and cardiac hypertrophy after ablation of the gly96/IEX-1 gene. J Appl Physiol (1985) 2005; 100:707-16. [PMID: 16166241 DOI: 10.1152/japplphysiol.00306.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
gly96/IEX 1 is a growth- and apoptosis-regulating, immediate early gene that is widely expressed in epithelial and vascular tissues. In vascular tissues, expression of the gene is induced by mechanical stretch, and overexpression of the gene prevents injury-induced vascular smooth muscle hypertrophy and neointimal hyperplasia. We now show that deletion of the gly96/IEX-1 gene in mice is associated with development of elevated blood pressure, cardiac hypertrophy, and diminished fractional shortening of the left ventricle. Systolic blood pressure in conscious male gly96/IEX-1-/- mice is 20-25 mmHg higher than in gly96/IEX-1+/+ mice. Serum and/or urine concentrations of sodium, potassium, creatinine, angiotensin II, corticosterone, aldosterone, epinephrine, norepinephrine, prostaglandin E2, thromboxane B2, prostaglandin-6-keto-1alpha, nitrites and nitrates, cAMP, and cGMP are normal in gly96/IEX-1-/- mice. Alterations in dietary sodium intake do not alter blood pressure in gly96/IEX-1-/- mice. Aortic mRNAs for endothelial nitric oxide synthase, guanylate cyclase-alpha, and cGMP kinase-1 are increased in gly96/IEX-1-/- mice. Treatment with Nomega-nitro-L-arginine methyl ester or L-arginine does not alter blood pressure in gly96/IEX-1-/- mice. Gly96/IEX-1-/- mice respond to infused sodium nitroprusside with decrements in blood pressure similar to those seen in wild-type littermate mice. In contrast to gly96/IEX-1 transgenic mice that have abnormalities in immune function, gly96/IEX-1-/- mice have normal lymphoid tissue architecture and a normal complement of T and B cells in lymphoid tissues. Ablation of the gly96/IEX-1 gene results in hypertension and cardiac hypertrophy, suggesting a novel role for this gene in cardiovascular physiology.
Collapse
Affiliation(s)
- Stacy L Sommer
- Department of Internal Medicine, MS 1-120, Mayo Clinic Rochester, Mayo College of Medicine, 200 First St. SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Arvanitis DA, Flouris GA, Spandidos DA. Genomic rearrangements on VCAM1, SELE, APEG1and AIF1 loci in atherosclerosis. J Cell Mol Med 2005; 9:153-9. [PMID: 15784173 PMCID: PMC6741330 DOI: 10.1111/j.1582-4934.2005.tb00345.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The inflammatory nature of atherosclerosis has been well established. However, the initial steps that trigger this response in the arterial intima remain obscure. Previous studies reported a significant rate of genomic alterations in human atheromas. The accumulation of genomic rearrangements in vascular endothelium and smooth muscle cells may be important for disease development. To address this issue, 78 post-mortem obtained aortic atheromas were screened for microsatellite DNA alterations versus correspondent venous blood. To evaluate the significance of these observations, 33 additional histologically normal aortic specimens from age and sex-matched cases were examined. Loss of heterozygosity (LOH) was found in 47,4% of the cases and in 18,2% of controls in at least one locus. The LOH occurrence in aortic tissue is associated to atherosclerosis risk (OR 4,06, 95% CI 1,50 to 10,93). Significant genomic alterations were found on 1p32-p31, 1q22-q25, 2q35 and 6p21.3 where VCAM1, SELE, APEG1 and AIF1 genes have been mapped respectively. Our data implicate somatic DNA rearrangements, on loci associated to leukocyte adhesion, vascular smooth muscle cells growth, differentiation and migration, to atherosclerosis development as an inflammatory condition.
Collapse
Affiliation(s)
- D A Arvanitis
- Department of Virology, Medical School, University of Crete, Heraklion, Crete, Greece
| | | | | |
Collapse
|
33
|
The N. gonorrhoeae type IV pilus stimulates mechanosensitive pathways and cytoprotection through a pilT-dependent mechanism. PLoS Biol 2005; 3:e100. [PMID: 15769184 PMCID: PMC1065265 DOI: 10.1371/journal.pbio.0030100] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 01/18/2005] [Indexed: 01/16/2023] Open
Abstract
The Neisseria gonorrhoeae type IV pilus is a retractile appendage that can generate forces near 100 pN. We tested the hypothesis that type IV pilus retraction influences epithelial cell gene expression by exerting tension on the host membrane. Wild-type and retraction-defective bacteria altered the expression of an identical set of epithelial cell genes during attachment. Interestingly, pilus retraction, per se, did not regulate novel gene expression but, rather, enhanced the expression of a subset of the infection-regulated genes. This is accomplished through mitogen-activated protein kinase activation and at least one other undefined stress-activated pathway. These results can be reproduced by applying artificial force on the epithelial membrane, using a magnet and magnetic beads. Importantly, this retraction-mediated signaling increases the ability of the cell to withstand apoptotic signals triggered by infection. We conclude that pilus retraction stimulates mechanosensitive pathways that enhance the expression of stress-responsive genes and activate cytoprotective signaling. A model for the role of pilus retraction in influencing host cell survival is presented.
Collapse
|
34
|
Frye SR, Yee A, Eskin SG, Guerra R, Cong X, McIntire LV. cDNA microarray analysis of endothelial cells subjected to cyclic mechanical strain: importance of motion control. Physiol Genomics 2005; 21:124-30. [PMID: 15632272 DOI: 10.1152/physiolgenomics.00029.2003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microarrays were utilized to determine gene expression of vascular endothelial cells (ECs) subjected to mechanical stretch for insight into the role of strain in vascular pathophysiology. Over 4,000 genes were screened for expression changes resulting from cyclic strain (10%, 1 Hz) of human umbilical vein ECs for 6 and 24 h. Comparison of t-statistics and adjusted P values identified genes having significantly different expression between strained and static cells but not between strained and motion control. Relative to static, 6 h of cyclic stretch upregulated two genes and downregulated two genes, whereas 24 h of cyclic stretch upregulated eight genes but downregulated no genes. However, incorporating the motion control revealed that fluid agitation over the cells, rather than strain, is the primary regulator of differential expression. Furthermore, no gene exceeded a threefold change when comparing cyclic strain to either static or motion control. Quantitative real-time polymerase chain reaction confirmed the dominance of fluid agitation in gene regulation with the exception of heat shock protein 10 at 24 h and plasminogen activator inhibitor 1 at 6 h. Taken together, the small number of differentially expressed genes and their low fold expression levels indicate that cyclic strain is a weak inducer of gene regulation in ECs. However, many of the differentially expressed genes possess antioxidant properties, suggesting that oxidative mechanisms direct EC adaptation to cyclic stretch.
Collapse
Affiliation(s)
- Stacie R Frye
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Cardiovascular disease is the most important cause of morbidity and mortality in developed countries, causing twice as many deaths as cancer in the USA. The major cardiovascular diseases, including coronary artery disease (CAD), myocardial infarction (MI), congestive heart failure (CHF) and common congenital heart disease (CHD), are caused by multiple genetic and environmental factors, as well as the interactions between them. The underlying molecular pathogenic mechanisms for these disorders are still largely unknown, but gene expression may play a central role in the development and progression of cardiovascular disease. Microarrays are high-throughput genomic tools that allow the comparison of global expression changes in thousands of genes between normal and diseased cells/tissues. Microarrays have recently been applied to CAD/MI, CHF and CHD to profile changes in gene expression patterns in diseased and non-diseased patients. This same technology has also been used to characterise endothelial cells, vascular smooth muscle cells and inflammatory cells, with or without various treatments that mimic disease processes involved in CAD/MI. These studies have led to the identification of unique subsets of genes associated with specific diseases and disease processes. Ongoing microarray studies in the field will provide insights into the molecular mechanism of cardiovascular disease and may generate new diagnostic and therapeutic markers.
Collapse
Affiliation(s)
- Stephen Archacki
- Center for Molecular Genetics, Department of Molecular Cardiology, Lerner Research Institute; Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences Cleveland State University, Cleveland, OH 44115, USA
| | - Qing Wang
- Center for Molecular Genetics, Department of Molecular Cardiology, Lerner Research Institute; Center for Cardiovascular Genetics, Department of Cardiovascular Medicine, The Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
36
|
Immediate early gene X-1 interacts with proteins that modulate apoptosis. Biochem Biophys Res Commun 2004; 323:1293-8. [PMID: 15451437 DOI: 10.1016/j.bbrc.2004.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Indexed: 10/26/2022]
Abstract
Immediate early gene X-1 (IEX-1) modulates apoptosis, cellular growth, mechanical strain-induced cardiac hypertrophy, and vascular intimal hyperplasia. To determine how IEX-1 alters apoptosis, we performed yeast two-hybrid studies using IEX-1 as the "bait" protein, and examined interactions between IEX-1 and proteins expressed by a human kidney cDNA expression library. We found that IEX-1 interacts with several proteins of which at least four are known to play a role in the regulation of apoptosis: (1) calcium-modulating cyclophilin ligand; (2) tumor necrosis factor-related apoptosis-inducing ligand (tumor necrosis factor superfamily, member 10); (3) ML-1 myeloid cell leukemia gene encoded protein; and (4) BAT3, a gene present in the major histo-compatibility complex. Our data suggest that IEX-1 may regulate apoptosis by directly interacting with various proteins involved in the control of apoptotic pathways.
Collapse
|
37
|
Arlt A, Minkenberg J, Kocs B, Grossmann M, Kruse ML, Fölsch UR, Schäfer H. The expression of immediate early gene X-1 (IEX-1) is differentially induced by retinoic acids in NB4 and KG1 cells: possible implication in the distinct phenotype of retinoic acid-responsive and -resistant leukemic cells. Leukemia 2004; 18:1646-55. [PMID: 15306824 DOI: 10.1038/sj.leu.2403481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a cell-type- and stimulus-dependent fashion, the early response gene immediate early gene X-1 (IEX-1) is involved in growth control and modulation of apoptosis. The present study demonstrates that, in the two acute promyelocytic leukemia (APL) cell lines NB4 and KG1, exhibiting distinct responsiveness to retinoic acids (RAs), IEX-1 expression is rapidly (30-60 min) induced by all-trans- or cis-RA and independently of other signal transduction mediators, such as TNFalpha, NF-kappaB or MAP kinases. In NB4 cells (expressing PML-RARalpha), this increase is transient and completely reversible, along with a cell cycle arrest, ongoing differentiation and lower sensitivity to anti-cancer-drug-induced apoptosis. In contrast, the RA-induced IEX-1 expression in KG1 cells (expressing PLZF-RARalpha) persists over days, along with continued cell cycle progression and increased apoptotic sensitivity. Furthermore, two functional RA-response elements in the IEX-1 promoter were identified by gel shift and luciferase reporter gene assays. IEX-1 might be a rather unique transcriptional target of the two X-RARalpha fusion receptors exhibiting distinct responsiveness to RAs. Following a different time course of direct transcriptional induction by PML-RARalpha and PLZF-RARalpha in NB4 and KG1 cells, respectively, IEX-1 expression may be involved in the modified actions of these receptors and the distinct phenotypes of APL cells.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins
- Cell Cycle/drug effects
- Cell Differentiation/drug effects
- Drug Resistance, Neoplasm
- Electrophoretic Mobility Shift Assay
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Luciferases/metabolism
- Membrane Proteins
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Oncogene Proteins, Fusion/metabolism
- Phenotype
- Promoter Regions, Genetic
- Transcription, Genetic
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A Arlt
- Division of Molecular Gastroenterology & Hepatology, 1st Department of Medicine, Christian-Albrechts-University, Kiel, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- M V Podgoreanu
- Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
39
|
Chon H, Gaillard CAJM, van der Meijden BB, Dijstelbloem HM, Kraaijenhagen RJ, van Leenen D, Holstege FCP, Joles JA, Bluyssen HAR, Koomans HA, Braam B. Broadly Altered Gene Expression in Blood Leukocytes in Essential Hypertension Is Absent During Treatment. Hypertension 2004; 43:947-51. [PMID: 15007037 DOI: 10.1161/01.hyp.0000123071.35142.72] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We assessed whether large-scale expression profiling of leukocytes of patients with essential hypertension reflects characteristics of systemic disease and whether such changes are responsive to antihypertensive therapy. Total RNA from leukocytes were obtained from untreated (n=6) and treated (n=6) hypertensive patients without apparent end-organ damage and from normotensive controls (n=9). RNA was reverse-transcribed and labeled and gene expression analyzed using a 19-K oligonucleotide microarray using dye swaps. Samples of untreated and of treated patients were pooled for each sex and compared with age- and sex-matched controls. In untreated patients, 680 genes were differentially regulated (314 up and 366 down). In the treated patients, these changes were virtually absent (4 genes up, 3 genes down). A myriad of changes was observed in pathways involved in inflammation. Inflammation-dampening interleukin receptors were decreased in expression. Intriguingly, inhibitors of cytokine signaling (the PIAS family of proteins) were differentially expressed. The expression of several genes that are involved in regulation of blood pressure were also differentially expressed: angiotensin II type 1 receptor, ANP-A receptor, endothelin-2, and 3 of the serotonin receptors were increased, whereas endothelin-converting enzyme-1 was decreased. Strikingly, virtually no changes in gene expression could be detected in hypertensive patients who had become normotensive with treatment. This observation substantiates the long-standing idea that hypertension is associated with a complex systemic response involving inflammation-related genes. Furthermore, leukocytes display differential gene expression that is of importance in blood pressure control. Importantly, treatment of blood pressure to normal values can virtually correct such disturbances.
Collapse
Affiliation(s)
- Helena Chon
- Department of Nephrology, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mah N, Thelin A, Lu T, Nikolaus S, Kühbacher T, Gurbuz Y, Eickhoff H, Klöppel G, Lehrach H, Mellgård B, Costello CM, Schreiber S. A comparison of oligonucleotide and cDNA-based microarray systems. Physiol Genomics 2004; 16:361-70. [PMID: 14645736 DOI: 10.1152/physiolgenomics.00080.2003] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Large-scale public data mining will become more common as public release of microarray data sets becomes a corequisite for publication. Therefore, there is an urgent need to clarify whether data from different microarray platforms are comparable. To assess the compatibility of microarray data, results were compared from the two main types of high-throughput microarray expression technologies, namely, an oligonucleotide-based and a cDNA-based platform, using RNA obtained from complex tissue (human colonic mucosa) of five individuals. From 715 sequence-verified genes represented on both platforms, 64% of the genes matched in "present" or "absent" calls made by both platforms. Calls were influenced by spurious signals caused by Alu repeats in cDNA clones, clone annotation errors, or matched probes that were designed to different regions of the gene; however, these factors could not completely account for the level of call discordance observed. Expression levels in sequence-verified, platform-overlapping genes were not related, as demonstrated by weakly positive rank order correlation. This study demonstrates that there is only moderate overlap in the results from the two array systems. This fact should be carefully considered when performing large-scale analyses on data originating from different microarray platforms.
Collapse
Affiliation(s)
- Nancy Mah
- First Department of Medicine, Christian-Albrechts-University Kiel, D-24105 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Schulze PC, de Keulenaer GW, Kassik KA, Takahashi T, Chen Z, Simon DI, Lee RT. Biomechanically Induced Gene
iex-1
Inhibits Vascular Smooth Muscle Cell Proliferation and Neointima Formation. Circ Res 2003; 93:1210-7. [PMID: 14592999 DOI: 10.1161/01.res.0000103635.38096.2f] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mechanotransduction plays a prominent role in vascular pathophysiology but is incompletely understood. In this study, we report the biomechanical induction of the immediate early response gene iex-1 in vascular smooth muscle cells (SMCs). Mechanical induction of iex-1 was confirmed by Northern (30-fold induction after 2 hours) and Western (6-fold induction after 24 hours) analyses. Expression of iex-1 was regulated by mechanical activation of nuclear factor (NF)-kappaB and abolished by overexpression of IkappaB in SMCs. The function of iex-1 in SMCs was explored by gene transfer using adenoviral vectors overexpressing iex-1. After 48 hours of 4% cyclic mechanical strain, adenoviral vectors overexpressing iex-1-infected cells had lower 3[H]-thymidine incorporation compared with AdGFP-infected controls (71.3+/-8.5% versus 180.2+/-19.4% in controls; P<0.001). Overexpression of iex-1 suppressed mitogenesis induced by platelet-derived growth factor (208.1+/-108.3% versus 290.0+/-120.5% in controls; P<0.05). This was accompanied by reduced degradation of p27kip1, inhibition of Rb hyperphosphorylation, and reduced cell cycle progression. To investigate functional effects of iex-1 in vivo, we performed carotid artery mechanical injury and endothelial denudation in low-density lipoprotein receptor-deficient mice followed by intraluminal injection of adenoviral vectors (3x10(9) pfu in 50 microL) for overexpression of iex-1 or gfp (control). Vascular overexpression of iex-1 reduced neointima formation 2 weeks after injury (intima/media ratio, 0.23+/-0.04 versus 0.5+/-0.24 in controls; P<0.05). Our findings demonstrate that biomechanical strain induces iex-1 with subsequent antiproliferative effects in SMCs and that selective gene transfer of iex-1 inhibits the local vascular response after injury. These findings suggest that the induction of iex-1 represents a novel negative biomechanical feedback mechanism limiting the vascular response to injury.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/genetics
- Apoptosis Regulatory Proteins
- Arteriosclerosis/genetics
- Arteriosclerosis/physiopathology
- Carotid Artery Injuries/genetics
- Carotid Artery Injuries/physiopathology
- Cell Cycle/physiology
- Cell Division/physiology
- Cells, Cultured
- Gene Expression Regulation
- Green Fluorescent Proteins
- Humans
- Immediate-Early Proteins/genetics
- Immediate-Early Proteins/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Mechanotransduction, Cellular/physiology
- Membrane Proteins
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- NF-kappa B/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, LDL/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Stress, Mechanical
- Tunica Intima/physiopathology
Collapse
Affiliation(s)
- P Christian Schulze
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass 02139, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Arlt A, Kruse ML, Breitenbroich M, Gehrz A, Koc B, Minkenberg J, Fölsch UR, Schäfer H. The early response gene IEX-1 attenuates NF-kappaB activation in 293 cells, a possible counter-regulatory process leading to enhanced cell death. Oncogene 2003; 22:3343-51. [PMID: 12761504 DOI: 10.1038/sj.onc.1206524] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The early response gene IEX-1 is involved in the regulation of cellular growth and survival, and its expression is related to stress-, growth- and death-inducing signals. Addressing the role of IEX-1 in the promotion of apoptosis, we investigated the effect of IEX-1 on nuclear factor-kappaB (NF-kappaB) activation. Stably transfected HEK-293 cells conditionally overexpressing IEX-1 exhibit decreased levels of NF-kappaB activity, either basal or TNFalpha induced, as shown by gel-shift and luciferase reporter gene assay. Furthermore, activated p65 accumulated in the nuclei of 293 cells to a lower degree, if IEX-1 expression was increased. This inhibited NF-kappaB activation was preceded by an altered turnover of IkappaBalpha and phospho-IkappaBalpha. In addition, IEX-1 expression also inhibited the activity of the 26S-proteasome, as shown by a fluorometric proteasome assay. Conversely, disruption of IEX-1 expression in 293 cells by stable transfection with specific anti-IEX-1 hammerhead ribozymes increased NF-kappaB activity, and accelerated the degradation of IkappaBalpha. Along with these opposite effects of IEX-1 expression and IEX-1 disruption on NF-kappaB activation, the sensitivity of 293 cells towards various apoptotic stimuli also changed. In contrast to ribozyme-transduced 293 cells that were significantly less sensitive to apoptosis, this sensitivity was enhanced if IEX-1 expression was increased. Our data suggest that IEX-1 - itself an NF-kappaB target gene - inhibits the activation of this transcription factor, and hereby may counteract the antiapoptotic potential of NF-kappaB.
Collapse
Affiliation(s)
- Alexander Arlt
- Laboratory of Molecular Gastroenterology & Hepatology, 1st Department of Medicine, Christian-Albrechts University of Kiel, Schittenhelmstr. 12, D-24105 Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
OBJECTIVE To review molecular mechanisms of lung cell activation by stretch. DATA SOURCES Published original and review articles. DATA SUMMARY Positive-pressure mechanical ventilation is associated with both beneficial and harmful effects. Data indicate that mechanical ventilation can induce, or increase, lung inflammation. This effect is clearly linked to the degree of lung cell stretching. By modeling cyclic stretch in cultured cells, it has been possible to investigate the cellular pathways activated by this mechanical strain. Integrin receptors, proteins of the focal adhesion plaque, and the cytoskeleton itself participate in the multiple molecular complex that senses cyclic stretch, transforming a mechanical signal into a biological response. Several intracellular signaling pathways then are activated and eventually result in increased transcription of genes harboring "stretch-response elements" in their promoters. Among these pathways, the mitogen-activated protein kinase signaling cascade appears to be central in mediating the effects of cell stretching. Other posttranscriptional mechanisms, such as messenger RNA stabilization and the secretion of preformed mediators, also may account for the secretion of inflammatory mediators after cyclic stretch. CONCLUSION Identification of the relevant molecular mechanisms will help in the development of novel ventilatory and pharmacologic therapeutic strategies aimed at preventing the deleterious effects of mechanical ventilation.
Collapse
Affiliation(s)
- Jérôme Pugin
- Division of Medical Intensive Care, University Hospital, Geneva, Switzerland
| |
Collapse
|
44
|
Del Prete Z, Baker SP, Grigg P. Stretch responses of cutaneous RA afferent neurons in mouse hairy skin. J Neurophysiol 2003; 89:1649-59. [PMID: 12612035 DOI: 10.1152/jn.00909.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Rapidly adapting (RA), stretch-sensitive neurons were recorded in vitro, using an isolated preparation of skin and nerve from mouse hindlimb. The skin was stretched uniaxially using a pseudo-Gaussian noise stimulus. Loads and displacements were recorded as were spike responses of single RA afferent neurons. The goal was to determine what components of the mechanical stimulus were associated with spike responses. The association between stimuli and spike responses was measured using multiple logistic regression. Spike responses were strongly associated with the rate of change of stress and weakly associated with the rate of change of strain and with stress. There was no association between spike responses and strain. There were significant memory effects associated with each variable, and memory effects differed for each variable. The maximal effect of the rate of change of stress was observed 8-12 ms prior to a spike.
Collapse
Affiliation(s)
- Zaccaria Del Prete
- Department of Mechanical Engineering, University of Rome La Sapienza, 00184 Rome, Italy
| | | | | |
Collapse
|
45
|
|
46
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2002. [PMCID: PMC2447335 DOI: 10.1002/cfg.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|