1
|
Li Y, Anand-Srivastava MB. Role of Gi proteins in the regulation of blood pressure and vascular remodeling. Biochem Pharmacol 2023; 208:115384. [PMID: 36549460 DOI: 10.1016/j.bcp.2022.115384] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Heterotrimeric guanine nucleotide regulatory proteins (G-proteins) through the activation of several signaling mechanisms including adenylyl cyclase/cAMP and phospholipase C (PLC)/phosphatidyl inositol (PI) turnover. regulate a variety of cellular functions, including vascular reactivity, proliferation and hypertrophy of VSMC. Activity of adenylyl cyclase is regulated by two G proteins, stimulatory (Gsα) and inhibitory (Giα). Gsα stimulates adenylyl cyclase activity and increases the levels of cAMP, whereas Giα inhibits the activity of adenylyl cyclase and results in the reduction of cAMP levels. Abnormalities in Giα protein expression and associated adenylyl cyclase\cAMP levels result in the impaired cellular functions and contribute to various pathological states including hypertension. The expression of Giα proteins is enhanced in various tissues including heart, kidney, aorta and vascular smooth muscle cells (VSMC) from genetic (spontaneously hypertensive rats (SHR)) and experimentally - induced hypertensive rats and contribute to the pathogenesis of hypertension. In addition, the enhanced expression of Giα proteins exhibited by VSMC from SHR is also implicated in the hyperproliferation and hypertrophy, the two key players contributing to vascular remodelling in hypertension. The enhanced levels of endogenous vasoactive peptides including angiotensin II (Ang II), endothelin-1 (ET-1) and growth factors contribute to the overexpression of Giα proteins in VSMC from SHR. In addition, enhanced oxidative stress, activation of c-Src, growth factor receptor transactivation and MAP kinase/PI3kinase signaling also contribute to the augmented expression of Giα proteins in VSMC from SHR. This review summarizes the role of Giα proteins, and the underlying molecular mechanisms implicated in the regulation of high blood pressure and vascular remodelling.
Collapse
Affiliation(s)
- Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada.
| |
Collapse
|
2
|
Abstract
Initially being considered as an environmental pollutant, nitric oxide has gained the momentum of research since its discovery as endothelial derived growth factor in 1987. Extensive researches have revealed the various pathological and physiological roles of nitric oxide such as inflammation, vascular and neurological regulation functions. Hence, the development of methods for quantifying nitric oxide concentration and its metabolites will be beneficial to well know about its biological functions and effects. This review summaries various methods for in vitro and in vivo nitric oxide detection, and introduces their merits and demerits.
Collapse
Affiliation(s)
- Ekta Goshi
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Gaoxin Zhou
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Qianjun He
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Tran V, De Silva TM, Sobey CG, Lim K, Drummond GR, Vinh A, Jelinic M. The Vascular Consequences of Metabolic Syndrome: Rodent Models, Endothelial Dysfunction, and Current Therapies. Front Pharmacol 2020; 11:148. [PMID: 32194403 PMCID: PMC7064630 DOI: 10.3389/fphar.2020.00148] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/04/2020] [Indexed: 12/30/2022] Open
Abstract
Metabolic syndrome is characterized by visceral obesity, dyslipidemia, hyperglycemia and hypertension, and affects over one billion people. Independently, the components of metabolic syndrome each have the potential to affect the endothelium to cause vascular dysfunction and disrupt vascular homeostasis. Rodent models of metabolic syndrome have significantly advanced our understanding of this multifactorial condition. In this mini-review we compare the currently available rodent models of metabolic syndrome and consider their limitations. We also discuss the numerous mechanisms by which metabolic abnormalities cause endothelial dysfunction and highlight some common pathophysiologies including reduced nitric oxide production, increased reactive oxygen species and increased production of vasoconstrictors. Additionally, we explore some of the current therapeutics for the comorbidities of metabolic syndrome and consider how these benefit the vasculature.
Collapse
Affiliation(s)
- Vivian Tran
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Kyungjoon Lim
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Maria Jelinic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
4
|
Menegatti R, Carvalho FS, Lião LM, Villavicencio B, Verli H, Mourão AA, Xavier CH, Castro CH, Pedrino GR, Franco OL, Oliveira-Silva I, Ashpole NM, Silva ON, Costa EA, Fajemiroye JO. Novel choline analog 2-(4-((1-phenyl-1H-pyrazol-4-yl)methyl)piperazin-1-yl)ethan-1-ol produces sympathoinhibition, hypotension, and antihypertensive effects. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1071-1083. [DOI: 10.1007/s00210-019-01649-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
|
5
|
Simonsen U, Winther AK, Oliván-Viguera A, Comerma-Steffensen S, Köhler R, Bek T. Extracellular l-arginine Enhances Relaxations Induced by Opening of Calcium-Activated SKCa Channels in Porcine Retinal Arteriole. Int J Mol Sci 2019; 20:ijms20082032. [PMID: 31027156 PMCID: PMC6515554 DOI: 10.3390/ijms20082032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/27/2023] Open
Abstract
We investigated whether the substrate for nitric oxide (NO) production, extracellular l-arginine, contributes to relaxations induced by activating small (SKCa) conductance Ca2+-activated potassium channels. In endothelial cells, acetylcholine increased 3H-l-arginine uptake, while blocking the SKCa and the intermediate (IKCa) conductance Ca2+-activated potassium channels reduced l-arginine uptake. A blocker of the y+ transporter system, l-lysine also blocked 3H-l-arginine uptake. Immunostaining showed co-localization of endothelial NO synthase (eNOS), SKCa3, and the cationic amino acid transporter (CAT-1) protein of the y+ transporter system in the endothelium. An opener of SKCa channels, cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-amine (CyPPA) induced large currents in endothelial cells, and concentration-dependently relaxed porcine retinal arterioles. In the presence of l-arginine, concentration-response curves for CyPPA were leftward shifted, an effect unaltered in the presence of low sodium, but blocked by l-lysine in the retinal arterioles. Our findings suggest that SKCa channel activity regulates l-arginine uptake through the y+ transporter system, and we propose that in vasculature affected by endothelial dysfunction, l-arginine administration requires the targeting of additional mechanisms such as SKCa channels to restore endothelium-dependent vasodilatation.
Collapse
Affiliation(s)
- Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
| | - Anna K Winther
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
| | - Aida Oliván-Viguera
- BESICoS group, Aragón Institute of Engineering Research, IIS-Aragón, University of Zaragoza, 50009 Zaragoza, Spain.
| | - Simon Comerma-Steffensen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Wilhelm Meyers Allé 4, DK-8000 Aarhus C, Denmark.
| | - Ralf Köhler
- Aragón Agency for Research and Development (ARAID) at IACS and IIS Aragón, 50009 Zaragoza, Spain.
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
6
|
Oliveira-Paula GH, Tanus-Santos JE. Nitrite-stimulated Gastric Formation of S-nitrosothiols As An Antihypertensive Therapeutic Strategy. Curr Drug Targets 2019; 20:431-443. [DOI: 10.2174/1389450119666180816120816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 08/07/2018] [Indexed: 12/14/2022]
Abstract
Hypertension is usually associated with deficient nitric oxide (NO) bioavailability, and therefore stimulating NO activity is an important antihypertensive strategy. Recently, many studies have shown that both nitrite and nitrate anions are not simple products of NO metabolism and indeed may be reduced back to NO. While enzymes with nitrite-reductase activity capable of generating NO from nitrite may contribute to antihypertensive effects of nitrite, another mechanism involving the generation of NO-related species in the stomach from nitrite has been validated. Under the acidic conditions of the stomach, nitrite generates NO-related species that form S-nitrosothiols. Conversely, drugs that increase gastric pH may impair the gastric formation of S-nitrosothiols, which may mediate antihypertensive effects of oral nitrite or nitrate. Therefore, it is now becoming clear that promoting gastric formation of S-nitrosothiols may result in effective antihypertensive responses, and this mechanism opens a window of opportunity in the therapy of hypertension. In this review, we discuss the recent studies supporting the gastric generation of S-nitrosothiols as a potential antihypertensive mechanism of oral nitrite. We also highlight some drugs that increase S-nitrosothiols bioavailability, which may also improve the responses to nitrite/nitrate therapy. This new approach may result in increased nitrosation of critical pharmacological receptors and enzymes involved in the pathogenesis of hypertension, which tend to respond less to their activators resulting in lower blood pressure.
Collapse
Affiliation(s)
- Gustavo H. Oliveira-Paula
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Jose E. Tanus-Santos
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| |
Collapse
|
7
|
Ménard B, Chazalviel L, Roussel S, Bernaudin M, Touzani O. Two-kidney one-clip is a pertinent approach to integrate arterial hypertension in animal models of stroke: Serial magnetic resonance imaging studies of brain lesions before and during cerebral ischemia. J Cereb Blood Flow Metab 2018; 38:1769-1780. [PMID: 28617154 PMCID: PMC6168912 DOI: 10.1177/0271678x17715813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although chronic arterial hypertension (CAH) represents the major comorbid factor in stroke, it is rarely integrated in preclinical studies of stroke. The majority of those investigations employ spontaneously hypertensive rats (SHR) which display a susceptibility to ischemic damage independent of hypertension. Here, we used a renovascular model of hypertension (RH) to examine, with magnetic resonance imaging (MRI), brain alterations during the development of hypertension and after brain ischemia. We also examined whether MRI-derived parameters predict the extent of ischemia-induced brain damage. RH was induced according to the two-kidney one-clip model and multiparametric MRI was performed at 3, 6, 9, and 12 weeks after hypertension and also at 10, 50, and 60 min following stroke. Blood pressure values increased progressively and reached a plateau at 6 weeks after RH induction. At 12 weeks, all hypertensive animals displayed spontaneous brain lesions (hemorrhages, deep and cortical lesions, ventricular dilatation), increased apparent diffusion coefficient (ADC) values in the corpus callosum and higher fractional anisotropy in the cortex. Following ischemia, these animals showed larger brain lesions (406 ± 82 vs. 179 ± 36 mm3, p < 0.002) which correlated with ADC values at chronic stage of hypertension. This model of hypertension displays many characteristics of the neuropathology of human CAH. The use of this model in stroke studies is relevant and desirable.
Collapse
Affiliation(s)
- Benjamin Ménard
- Normandie Univ, UNICAEN, CNRS, CEA, ISTCT/CERVOxy group, Caen, France
| | | | - Simon Roussel
- Normandie Univ, UNICAEN, CNRS, CEA, ISTCT/CERVOxy group, Caen, France
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CNRS, CEA, ISTCT/CERVOxy group, Caen, France
| | - Omar Touzani
- Normandie Univ, UNICAEN, CNRS, CEA, ISTCT/CERVOxy group, Caen, France
| |
Collapse
|
8
|
Effect of tempol and tempol plus catalase on intra-renal haemodynamics in spontaneously hypertensive stroke-prone (SHSP) and Wistar rats. J Physiol Biochem 2016; 73:207-214. [PMID: 27933463 DOI: 10.1007/s13105-016-0541-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
Abstract
Vasoconstriction within the renal medulla contributes to the development of hypertension. This study investigated the role of reactive oxygen species (ROS) in regulating renal medullary and cortical blood perfusion (MBP and CBP respectively) in both stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar rats. CBP and MBP were measured using a laser-Doppler flow meter before and after intra-renal infusion of tempol, the superoxide dismutase (SOD) mimetic or tempol plus catalase, the hydrogen peroxide-degrading enzyme. Tempol infusion significantly elevated blood perfusion within the renal medulla (MBP) in both SHRSP (by 43 ± 7%, P < 0.001) and Wistar rats (by 17 ± 2%, P < 0.05) but the magnitude of the increase was significantly greater in the SHRSP (P < 0.01). When the enzyme catalase and tempol were co-infused, MBP was again significantly increased in SHRSP (by 57 ± 6%, P < 0.001) and Wistar rats (by 33 ± 6%, P < 0.001), with a significantly greater increase in perfusion being induced in the SHRSP relative to the Wistar rats (P < 0.01). Notably, this increase was significantly greater than in those animals infused with tempol alone (P < 0.01). These results suggest that ROS plays a proportionally greater role in reducing renal vascular compliance, particularly within the renal medulla, in normotensive and hypertensive animals, with effects being greater in the hypertensive animals. This supports the hypothesis that SHRSP renal vasculature might be subjected to elevated level of oxidative stress relative to normotensive animals.
Collapse
|
9
|
Ahmeda AF, Alzoghaibi M. Factors regulating the renal circulation in spontaneously hypertensive rats. Saudi J Biol Sci 2015; 23:441-51. [PMID: 27298576 PMCID: PMC4890190 DOI: 10.1016/j.sjbs.2015.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/14/2015] [Accepted: 06/19/2015] [Indexed: 01/17/2023] Open
Abstract
Hypertension is one of the leading causes of health morbidity and mortality which are linked to many life threatening diseases such as stroke heart problems and renal dysfunction. The integrity of renal microcirculation is crucial to maintaining the clearance and the excretory function in the normotensive and hypertensive conditions. Furthermore, any alteration in the renal function is involved in the pathophysiology of hypertension. The aim of this review is to provide a brief discussion of some factors that regulate renal haemodynamics in spontaneously hypertensive rats, an animal model of hypertension, and how these factors are linked to the disease.
Collapse
Affiliation(s)
- Ahmad F Ahmeda
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Alzoghaibi
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
Li Q, Youn JY, Cai H. Mechanisms and consequences of endothelial nitric oxide synthase dysfunction in hypertension. J Hypertens 2015; 33:1128-36. [PMID: 25882860 PMCID: PMC4816601 DOI: 10.1097/hjh.0000000000000587] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Reduced nitric oxide bioavailability contributes to endothelial dysfunction and hypertension. The endothelial isoform of nitric oxide synthase (eNOS) is responsible for the production of nitric oxide within the endothelium. Loss of eNOS cofactor tetrahydrobiopterin to initial increase in oxidative stress leads to uncoupling of eNOS, in which the enzyme produces superoxide anion rather than nitric oxide, further substantiating oxidative stress to induce vascular pathogenesis. The current review focuses on recent advances on the molecular mechanisms and consequences of eNOS dysfunction in hypertension, and potential novel therapeutic strategies restoring eNOS function to treat hypertension.
Collapse
Affiliation(s)
- Qiang Li
- Divisions of Molecular Medicine and Cardiology, Departments of Anesthesiology and Medicine, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|
11
|
Bleakley C, Hamilton PK, Pumb R, Harbinson M, McVeigh GE. Endothelial Function in Hypertension: Victim or Culprit? J Clin Hypertens (Greenwich) 2015; 17:651-4. [PMID: 25857326 DOI: 10.1111/jch.12546] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 02/19/2015] [Indexed: 11/27/2022]
Abstract
Far from simply lining the inner surface of blood vessels, the cellular monolayer that comprises the endothelium is a highly active organ that regulates vascular tone. In health, the endothelium maintains the balance between opposing dilator and constrictor influences, while in disease, it is the common ground on which cardiovascular risk factors act to initiate the atherosclerotic process. As such, it is the site at which cardiovascular disease begins and consequently acts as a barometer of an individual's likely future cardiovascular health. The vascular endothelium is a very active organ responsible for the regulation of vascular tone through the effects of locally synthesized mediators, predominantly nitric oxide (NO), endothelial NO synthase (eNOS), and superoxide. NO is abundantly evident in normally functioning vasculature where it acts as a vasodilator, inhibits inflammation, and has an antiaggregant effect on platelets. Its depletion is both a sign and cause of endothelial dysfunction resulting from reduced activity of eNOS and amplified production of nicotinamide adenine dinucleotide oxidase, which, in turn, results in raised levels of reactive oxygen species. This cascade is the basis for reduced vascular compliance through an imbalanced regulation of tone with a predominance of vasoconstrictive elements. Further, structural changes in the microvasculature are a critical early step in the loss of normal function. This microvascular dysfunction is known to be highly predictive of future macrovascular events and is consequently a very attractive target for intervention in the hypertensive population in order to prevent cardiovascular events.
Collapse
Affiliation(s)
- Caroline Bleakley
- Department of Cardiovascular Therapeutics & Pharmacology, Queen's University Belfast, Belfast, UK
| | - Paul Kevin Hamilton
- Department of Cardiovascular Therapeutics & Pharmacology, Queen's University Belfast, Belfast, UK
| | - Richard Pumb
- Department of Cardiovascular Therapeutics & Pharmacology, Queen's University Belfast, Belfast, UK
| | - Mark Harbinson
- Department of Cardiovascular Therapeutics & Pharmacology, Queen's University Belfast, Belfast, UK
| | - Gary Eugene McVeigh
- Department of Cardiovascular Therapeutics & Pharmacology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
12
|
Mendes-Junior LDG, Monteiro MMDO, Carvalho ADS, de Queiroz TM, Braga VDA. Oral supplementation with the rutin improves cardiovagal baroreflex sensitivity and vascular reactivity in hypertensive rats. Appl Physiol Nutr Metab 2013; 38:1099-106. [PMID: 24053516 DOI: 10.1139/apnm-2013-0091] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hypothesis that oral supplementation with the flavonoid rutin improves baroreflex sensitivity and vascular reactivity in hypertensive (2-kidney-1-clip (2K1C)) rats was tested. Sixty-four rats were divided in 4 groups: sham + saline; sham + rutin; 2K1C + saline, and 2K1C + rutin. Six weeks after 2K1C surgery, the animals were treated with saline or rutin (40 mg·kg(-1)·day(-1)) by gavage for 7 days. Baroreflex sensitivity test using phenylephrine (8 μg·kg(-1), iv) and sodium nitroprusside (25 μg·kg(-1), iv), vascular reactivity, and thiobarbituric acid reactive substances assay were performed. Baroreflex sensitivity in hypertensive rats was impaired and compared with sham (-2.77 ± 0.15 vs. -1.53 ± 0.27 beats·min(-1)·mm Hg(-1); n = 8; p < 0.05). Oral supplementation with rutin restored baroreflex sensitivity in 2K1C rats (-2.40 ± 0.24 vs. -2.77 ± 0.15 beats·min(-1)·mm Hg(-1); n = 8; p > 0.05). Besides, hypertensive rats have greater contraction to phenylephrine (129.49% ± 4.46% vs. 99.50% ± 11.36%; n = 8; p < 0.05), which was restored by rutin (99.10% ± 1.77% vs. 99.50% ± 11.36%; n = 8; p > 0.05). Furthermore, vasorelaxation to acetylcholine was diminished in hypertensive rats (96.42% ± 2.80% vs. 119.35% ± 5.60%; n = 8; p < 0.05), which was also restored by rutin (117.55% ± 6.94% vs. 119.35% ± 5.60%; n = 8; p > 0.05). Finally, oxidative stress was greater in hypertensive rats (1.54 ± 0.12 vs. 0.53 ± 0.12 nmol MDA·mL(-1); n = 8; p < 0.05) and rutin supplementation significantly decreased oxidative stress in those animals (0.70 ± 0.13 vs. 1.54 ± 0.12 nmol MDA·mL(-1); n = 8; p < 0.05). We concluded that oral supplementation with rutin restores impaired baroreflex sensitivity and vascular reactivity in hypertensive rats by decreasing oxidative stress.
Collapse
|
13
|
Tian XY, Wong WT, Leung FP, Zhang Y, Wang YX, Lee HK, Ng CF, Chen ZY, Yao X, Au CL, Lau CW, Vanhoutte PM, Cooke JP, Huang Y. Oxidative stress-dependent cyclooxygenase-2-derived prostaglandin f(2α) impairs endothelial function in renovascular hypertensive rats. Antioxid Redox Signal 2012; 16:363-73. [PMID: 21951274 PMCID: PMC3584508 DOI: 10.1089/ars.2010.3874] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UNLABELLED Abstract Aims: The role of endothelium-derived contracting factors (EDCFs) in regulating renovascular function is yet to be elucidated in renovascular hypertension (RH). The current study investigated whether oxidative stress-dependent cyclooxygenase (COX)-2-derived prostaglandin F(2α) (PGF(2α)) impairs endothelial function in renal arteries of renovascular hypertensive rats (RHR). RESULTS Renal hypertension was induced in rats by renal artery stenosis of both kidneys using the 2-kidney 2-clip model. Acute treatment with reactive oxygen species (ROS) scavengers, COX-2 inhibitors, and thromboxane-prostanoid receptor antagonists, but not COX-1 inhibitors, improved endothelium-dependent relaxations and eliminated endothelium-dependent contractions in RHR renal arteries. Five weeks of treatment with celecoxib or tempol reduced blood pressure, increased renal blood flow, and restored endothelial function in RHRs. Increased ROS production in RHR arteries was inhibited by ROS scavengers, but unaffected by COX-2 inhibitors; whereas increased PGF(2α) release was reduced by both ROS scavengers and COX-2 inhibitors. ROS also induced COX-2-dependent contraction in RHR renal arteries, which was accompanied by the release of COX-2-derived PGF(2α). Further, chronic tempol treatment reduced COX-2 and BMP4 upregulation, p38MAPK phosphorylation, and the nitrotyrosine level in RHR renal arteries. CONCLUSION These findings demonstrate the functional importance of oxidative stress, which serves as an initiator of increased COX-2 activity, and that COX-2-derived PGF(2α) plays an important role in mediating endothelial dysfunction in RH. INNOVATION The current study, thus, suggests that drugs targeting oxidative stress-dependent COX-2-derived PGF(2α) may be useful in the prevention and management of RH. Antioxid. Redox Signal. 16, 363-373.
Collapse
Affiliation(s)
- Xiao Yu Tian
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ojeda NB, Intapad S, Royals TP, Black JT, Dasinger JH, Lee Tull F, Alexander BT. Hypersensitivity to acute ANG II in female growth-restricted offspring is exacerbated by ovariectomy. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1199-205. [PMID: 21832208 PMCID: PMC3197341 DOI: 10.1152/ajpregu.00219.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/05/2011] [Indexed: 11/22/2022]
Abstract
Female growth-restricted offspring are normotensive in adulthood. However, ovariectomy induces a marked increase in mean arterial pressure (MAP) that is abolished by renin angiotensin system (RAS) blockade, suggesting RAS involvement in the etiology of hypertension induced by ovariectomy in adult female growth-restricted offspring. Blockade of the RAS also abolishes hypertension in adult male growth-restricted offspring. Moreover, sensitivity to acute ANG II is enhanced in male growth-restricted offspring. Thus, we hypothesized that an enhanced sensitivity to acute ANG II may contribute to hypertension induced by ovariectomy in female growth-restricted offspring. Female offspring were subjected to ovariectomy (OVX) or sham ovariectomy (intact) at 10 wk of age. Cardio-renal hemodynamic parameters were determined before and after an acute infusion of ANG II (100 ng·kg(-1)·min(-1) for 30 min) at 16 wk of age in female offspring pretreated with enalapril (40 mg·kg(-1)·day(-1) for 7 days). Acute ANG II induced a significant increase in MAP in intact growth-restricted offspring (155 ± 2 mmHg, P < 0.05) relative to intact control (145 ± 4 mmHg). Ovariectomy augmented the pressor response to ANG II in growth-restricted offspring (163 ± 2 mmHg, P < 0.05), with no effect in control (142 ± 2 mmHg). Acute pressor responses to phenylephrine did not differ in growth-restricted offspring relative to control, intact, or ovariectomized. Furthermore, renal hemodynamic responses to acute ANG II were significantly enhanced only in ovariectomized female growth-restricted offspring. Thus, these data suggest that enhanced responsiveness to acute ANG II is programmed by intrauterine growth restriction and that sensitivity to acute ANG II is modulated by ovarian hormones in female growth-restricted offspring.
Collapse
Affiliation(s)
- Norma B. Ojeda
- Departments of Pediatrics and
- Physiology and Biophysics
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | - Suttira Intapad
- Physiology and Biophysics
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| | | | | | | | | | - Barbara T. Alexander
- Physiology and Biophysics
- Women's Health Research Center, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
15
|
Bonaventura D, de Lima RG, da Silva RS, Bendhack LM. NO donors-relaxation is impaired in aorta from hypertensive rats due to a reduced involvement of K(+) channels and sarcoplasmic reticulum Ca(2+)-ATPase. Life Sci 2011; 89:595-602. [PMID: 21839096 DOI: 10.1016/j.lfs.2011.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 07/05/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
Abstract
AIMS To examine the vasodilatation induce by the NO donors, [Ru(terpy)(bdq)NO](3+) (TERPY) and sodium nitroprusside (SNP), and to compare their effects in aortic rings from hypertensive 2K-1C and normotensive 2K rats. MAIN METHODS Vascular reactivity was performed in aortic rings pre-contracted with phenylephrine (Phe 100nM). We have analyzed the maximal relaxation (Emax) and potency (pD(2)) of NO donors. KEY FINDINGS Potency of SNP was greater than TERPY in both arterial groups. The vasodilatation induced by TERPY was greater in 2K than in 2K-1C, and it was inhibited by sGC inhibitor ODQ in 2K and in 2K-1C aortic rings. ODQ did not alter the efficacy to SNP, but it reduced its potency in 2K and 2K-1C. The blockade of K(+) channels reduced the potency of TERPY only in aortic rings of 2K. On the other hand, the potency of SNP was reduced in both 2K and 2K-1C. The combination of ODQ and TEA reduced the relaxation induced by TERPY and SNP in 2K and reduced the efficacy to SNP in 2K-1C aortic rings but it had no additional effect on the TERPY relaxation in 2K-1C aortas. The production of cGMP induced by TERPY was greater than that produced by SNP, which was similarly increased in 2K and 2K-1C. Sarcoplasmic reticulum Ca-ATPase inhibition only impaired the relaxation induced by SNP in 2K aortic rings. SIGNIFICANCE Taken together, our results provide evidences that in this model of hypertension, impaired K(+) channels activation by TERPY and SERCA activation by SNP may contribute to decreased vasodilatation.
Collapse
Affiliation(s)
- Daniella Bonaventura
- Depto. de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil.
| | | | | | | |
Collapse
|
16
|
Hedegaard ER, Stankevicius E, Simonsen U, Fröbert O. Non-endothelial endothelin counteracts hypoxic vasodilation in porcine large coronary arteries. BMC PHYSIOLOGY 2011; 11:8. [PMID: 21575165 PMCID: PMC3118136 DOI: 10.1186/1472-6793-11-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 05/15/2011] [Indexed: 11/25/2022]
Abstract
Background The systemic vascular response to hypoxia is vasodilation. However, reports suggest that the potent vasoconstrictor endothelin-1 (ET-1) is released from the vasculature during hypoxia. ET-1 is reported to augment superoxide anion generation and may counteract nitric oxide (NO) vasodilation. Moreover, ET-1 was proposed to contribute to increased vascular resistance in heart failure by increasing the production of asymmetric dimethylarginine (ADMA). We investigated the role of ET-1, the NO pathway, the potassium channels and radical oxygen species in hypoxia-induced vasodilation of large coronary arteries. Results In prostaglandin F2α (PGF2α, 10 μM)-contracted segments with endothelium, gradual lowering of oxygen tension from 95 to 1% O2 resulted in vasodilation. The vasodilation to O2 lowering was rightward shifted in segments without endothelium at all O2 concentrations except at 1% O2. The endothelin receptor antagonist SB217242 (10 μM) markedly increased hypoxic dilation despite the free tissue ET-1 concentration in the arterial wall was unchanged in 1% O2 versus 95% O2. Exogenous ET-1 reversed hypoxic dilation in segments with and without endothelium, and the hypoxic arteries showed an increased sensitivity towards ET-1 compared to the normoxic controls. Without affecting basal NO, hypoxia increased NO concentration in PGF2α-contracted arteries, and an NO synthase inhibitor, L-NOARG,(300 μM, NG-nitro-L-Arginine) reduced hypoxic vasodilation. NO-induced vasodilation was reduced in endothelin-contracted preparations. Arterial wall ADMA concentrations were unchanged by hypoxia. Blocking of potassium channels with TEA (tetraethylammounium chloride)(10 μM) inhibited vasodilation to O2 lowering as well as to NO. The superoxide scavenger tiron (10 μM) and the putative NADPH oxidase inhibitor apocynin (10 μM) leftward shifted concentration-response curves for O2 lowering without changing vasodilation to 1% O2. PEG (polyethylene glycol) catalase (300 u/ml) inhibited H2O2 vasodilation, but failed to affect vasodilation to O2 lowering. Neither did PEG-SOD (polyethylene glycol superoxide dismutase)(70 u/ml) affect vasodilation to O2 lowering. The mitochondrial inhibitors rotenone (1 μM) and antimycin A (1 μM) both inhibited hypoxic vasodilatation. Conclusion The present results in porcine coronary arteries suggest NO contributes to hypoxic vasodilation, probably through K channel opening, which is reversed by addition of ET-1 and enhanced by endothelin receptor antagonism. These latter findings suggest that endothelin receptor activation counteracts hypoxic vasodilation.
Collapse
Affiliation(s)
- Elise R Hedegaard
- Department of Pharmacology, Aarhus University, Wilhem Meyers Allé 4, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
17
|
Letourneur A, Roussel S, Toutain J, Bernaudin M, Touzani O. Impact of genetic and renovascular chronic arterial hypertension on the acute spatiotemporal evolution of the ischemic penumbra: a sequential study with MRI in the rat. J Cereb Blood Flow Metab 2011; 31:504-13. [PMID: 20648035 PMCID: PMC3049506 DOI: 10.1038/jcbfm.2010.118] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although chronic arterial hypertension (CAH) increases the risk of stroke and the severity of the resultant lesion, it is rarely integrated in preclinical studies. Here, we analyzed the impact of CAH on the acute spatiotemporal evolution of the ischemic penumbra as defined by the perfusion-weighted imaging/diffusion-weighted imaging mismatch. Sequential 7T-MRI examinations were performed from 30 minutes up to 4 hours after permanent cerebral ischemia in genetically hypertensive rats (spontaneously hypertensive rats, SHR), renovascular-hypertensive rats (RH-WKY), and their normotensive controls (Wistar-Kyoto rats, WKY). The apparent diffusion coefficient (ADC)-defined lesion was larger in hypertensive rats than in normotensive animals as early as 30 minutes after the ischemia. The ischemic penumbra was smaller in both genetically and renovascular-hypertensive rats (at 30 minutes; SHR=66±25 mm(3), RH-WKY=55±17 mm(3) versus WKY=117±14 mm(3); P<0.008) and there was no significant difference between the perfusion deficit and ADC lesion (mismatch definition of penumbra) as early as 90 minutes after the occlusion. Genetic hypertension and induced renovascular hypertension resulted in larger lesion and smaller penumbra that vanished rapidly. These data support the need to integrate CAH in preclinical studies relative to the treatment of stroke, as failure to do so may lead to preclinical results nonpredictive of clinical trials, which include hypertensive patients.
Collapse
Affiliation(s)
- Annelise Letourneur
- UMR CI-NAPS 6232, CNRS, CEA, Université de Caen Basse-Normandie, Centre CYCERON, Caen, France
| | | | | | | | | |
Collapse
|
18
|
Dalsgaard T, Kroigaard C, Simonsen U. Calcium-activated potassium channels - a therapeutic target for modulating nitric oxide in cardiovascular disease? Expert Opin Ther Targets 2010; 14:825-37. [PMID: 20560781 DOI: 10.1517/14728222.2010.500616] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Cardiovascular risk factors are often associated with endothelial dysfunction, which is also prognostic for occurrence of cardiovascular events. Endothelial dysfunction is reflected by blunted vasodilatation and reduced nitric oxide (NO) bioavailability. Endothelium-dependent vasodilatation is mediated by NO, prostacyclin, and an endothelium-derived hyperpolarising factor (EDHF), and involves small (SK) and intermediate (IK) conductance Ca(2+)-activated K(+) channels. Therefore, SK and IK channels may be drug targets for the treatment of endothelial dysfunction in cardiovascular disease. AREAS COVERED IN THIS REVIEW SK and IK channels are involved in EDHF-type vasodilatation, but recent studies suggest that these channels are also involved in the regulation of NO bioavailability. Here we review how SK and IK channels may regulate NO bioavailability. WHAT THE READER WILL GAIN Opening of SK and IK channels is associated with EDHF-type vasodilatation, but, through increased endothelial cell Ca(2+) influx, L-arginine uptake, and decreased ROS production, it may also lead to increased NO bioavailability and endothelium-dependent vasodilatation. TAKE HOME MESSAGE Opening of SK and IK channels can increase both EDHF and NO-mediated vasodilatation. Therefore, openers of SK and IK channels may have the potential of improving endothelial cell function in cardiovascular disease.
Collapse
Affiliation(s)
- Thomas Dalsgaard
- Department of Pharmacology, Aarhus University, DK-8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
19
|
Derosa G, Salvadeo SAT. Endothelial function, blood pressure control, and risk modification: impact of irbesartan alone or in combination. Integr Blood Press Control 2010; 3:21-30. [PMID: 21949618 PMCID: PMC3172058 DOI: 10.2147/ibpc.s6081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Indexed: 01/13/2023] Open
Abstract
Irbesartan, an angiotensin II type 1 receptor antagonist, is approved as monotherapy, or in combination with other drugs, for the treatment of hypertension in many countries worldwide. Data in the literature suggest that irbesartan is effective for reducing blood pressure over a 24-hour period with once-daily administration, and slows the progression of renal disease in patients with hypertension and type 2 diabetes. Furthermore, irbesartan shows a good safety and tolerability profile, compared with angiotensin II inhibitors and other angiotensin II type 1 receptor antagonists. Thus, irbesartan appears to be a useful treatment option for patients with hypertension, including those with type 2 diabetes and nephropathy. Irbesartan has an inhibitory effect on the pressor response to angiotensin II and improves arterial stiffness, vascular endothelial dysfunction, and inflammation in hypertensive patients. There has been considerable interest recently in the renoprotective effect of irbesartan, which appears to be independent of reductions in blood pressure. In particular, mounting data suggests that irbesartan improves endothelial function, oxidative stress, and inflammation in the kidneys. Recent studies have highlighted a possible role for irbesartan in improving coronary artery inflammation and vascular dysfunction. In this review we summarize and comment on the most important data available with regard to antihypertensive effect, endothelial function improvement, and cardiovascular risk reduction with irbesartan.
Collapse
Affiliation(s)
- Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Sibilla AT Salvadeo
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Tang EHC, Vanhoutte PM. Endothelial dysfunction: a strategic target in the treatment of hypertension? Pflugers Arch 2010; 459:995-1004. [PMID: 20127126 DOI: 10.1007/s00424-010-0786-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/06/2010] [Accepted: 01/08/2010] [Indexed: 10/19/2022]
Abstract
Endothelial dysfunction is a common feature of hypertension, and it results from the imbalanced release of endothelium-derived relaxing factors (EDRFs; in particular, nitric oxide) and endothelium-derived contracting factors (EDCFs; angiotensin II, endothelins, uridine adenosine tetraphosphate, and cyclooxygenase-derived EDCFs). Thus, drugs that increase EDRFs (using direct nitric oxide releasing compounds, tetrahydrobiopterin, or L-arginine supplementation) or decrease EDCF release or actions (using cyclooxygenase inhibitor or thromboxane A2/prostanoid receptor antagonists) would prevent the dysfunction. Many conventional antihypertensive drugs, including angiotensin-converting enzyme inhibitors, calcium channel blockers, and third-generation beta-blockers, possess the ability to reverse endothelial dysfunction. Their use is attractive, as they can address arterial blood pressure and vascular tone simultaneously. The severity of endothelial dysfunction correlates with the development of coronary artery disease and predicts future cardiovascular events. Thus, endothelial dysfunction needs to be considered as a strategic target in the treatment of hypertension.
Collapse
Affiliation(s)
- Eva H C Tang
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Ave Louis Pasteur, NRB741, Boston, MA 02115, USA.
| | | |
Collapse
|
21
|
Simonsen U, Rodriguez-Rodriguez R, Dalsgaard T, Buus NH, Stankevicius E. Novel approaches to improving endothelium-dependent nitric oxide-mediated vasodilatation. Pharmacol Rep 2009; 61:105-15. [PMID: 19307698 DOI: 10.1016/s1734-1140(09)70012-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 02/03/2009] [Indexed: 01/27/2023]
Abstract
Endothelial dysfunction, which is defined by decreased endothelium-dependent vasodilatation, is associated with an increased number of cardiovascular events. Nitric oxide (NO) bioavailability is reduced by altered endothelial signal transduction or increased formation of radical oxygen species reacting with NO. Endothelial dysfunction is therapeutically reversible and physical exercise, calcium channel blockers, angiotensin converting enzyme inhibitors, and angiotensin receptor antagonists improve flow-evoked endothelium-dependent vasodilation in patients with hypertension and diabetes. We have investigated three different approaches, with the aim of correcting endothelial dysfunction in cardiovascular disease. Thus, (1) we evaluated the effect of a cell permeable superoxide dismutase mimetic, tempol, on endothelial dysfunction in small arteries exposed to high pressure, (2) investigated the endothelial signal transduction pathways involved in vasorelaxation and NO release induced by an olive oil component, oleanolic acid, and (3) investigated the role of calcium-activated K channels in the release of NO induced by receptor activation. Tempol increases endothelium-dependent vasodilatation in arteries from hypertensive animals most likely through the lowering of radical oxygen species, but other mechanisms also appear to contribute to the effect. While oleanolic acid leads to the release of NO by calcium-independent phosphorylation of endothelial NO synthase, endothelial calcium-activated K channels and an influx of calcium play an important role in G-protein coupled receptor-evoked release of NO. Thus, all three approaches increase bioavailability of NO in the vascular wall, but it remains to be addressed whether these actions have any direct benefit at a clinical level.
Collapse
Affiliation(s)
- Ulf Simonsen
- Department of Pharmacology, Faculty of Health Sciences, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Since nitric oxide (NO) was identified as the endothelial-derived relaxing factor in the late 1980s, many approaches have attempted to provide an adequate means for measuring physiological levels of NO. Although several techniques have been successful in achieving this aim, the electrochemical method has proved the only technique that can reliably measure physiological levels of NO in vitro, in vivo, and in real time. We describe here the development of electrochemical sensors for NO, including the fabrication of sensors, the detection principle, calibration, detection limits, selectivity, and response time. Furthermore, we look at the many experimental applications where NO selective electrodes have been successfully used.
Collapse
Affiliation(s)
- Ian R Davies
- World Precision Instruments Limited, Aston, United Kingdom
| | | |
Collapse
|
23
|
Christensen FH, Stankevicius E, Hansen T, Jørgensen MM, Valverde VL, Simonsen U, Buus NH. Flow- and acetylcholine-induced dilatation in small arteries from rats with renovascular hypertension — effect of tempol treatment. Eur J Pharmacol 2007; 566:160-6. [PMID: 17482591 DOI: 10.1016/j.ejphar.2007.03.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2006] [Revised: 03/22/2007] [Accepted: 03/25/2007] [Indexed: 10/23/2022]
Abstract
We investigated whether renovascular hypertension alters vasodilatation mediated by nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) and the influence of the superoxide dismutase mimetic tempol on vasodilatation. One-kidney one-clip hypertensive Sprague-Dawley rats, treated with either vehicle or tempol (from weeks 5 to 10 after placement of the clip), and uninephrectomized control rats were investigated. In renal hypertensive rats systolic blood pressure increased to 171+/-6 mmHg (n=10), while in tempol-treated rats systolic blood pressure remained normal (139+/-7 mmHg, n=5). In isolated pressurized mesenteric small arteries NO-mediated dilatation was obtained by increasing flow rate and EDHF-mediated dilatation by acetylcholine. In arteries from hypertensive rats, flow-induced dilatation was blunted, as compared to normotensive and tempol-treated rats, while acetylcholine-induced dilatation remained normal. Measured by dihydroethidium staining there was an increased amount of superoxide in arteries from vehicle-treated rats, but not from tempol-treated rats. Expression by immunoblotting of endothelial NO synthase and the NAD(P)H oxidase subunit p47phox remained unaffected by high blood pressure and tempol treatment. Simultaneous measurements of NO-concentration and relaxation were performed in isolated coronary arteries from the same animals. As compared to vehicle-treated rats, both acetylcholine-induced relaxation and NO-concentration increased in arteries from tempol-treated animals, while only the relaxation was improved by the NO donor, S-nitroso-N-acetylpenicillamine (SNAP). In conclusion renovascular hypertension selectively inhibits flow-induced NO-mediated vasodilatation, while EDHF-type vasodilatation remains unaffected, suggesting that high blood pressure leads to increased generation of superoxide contributing to decreased NO bioavailability. Furthermore, the abnormal endothelium function can be corrected by tempol treatment, but this seems to involve mechanisms partly independent of NO.
Collapse
|
24
|
Moesgaard SG, Olsen LH, Aasted B, Viuff BM, Pedersen LG, Pedersen HD, Harrison AP. Direct measurements of nitric oxide release in relation to expression of endothelial nitric oxide synthase in isolated porcine mitral valves. ACTA ACUST UNITED AC 2007; 54:156-60. [PMID: 17381681 DOI: 10.1111/j.1439-0442.2007.00915.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to measure the direct release of nitric oxide (NO) from the porcine mitral valve using a NO microelectrode. Furthermore, the expression and localization of endothelial nitric oxide synthase (eNOS) in the mitral valve was studied using immunohistochemistry, Western blotting and RT-PCR. Results show that bradykinin increases NO release from mitral valves (DeltaBradykinin: 33.71 +/- 10.41 nm NO, P < 0.001, n = 10), whereas N-nitro-l-arginine methyl esther (l-NAME) decreases NO release when compared with basal level (Deltal-NAME: 82.69 +/- 15.66 nm NO, P < 0.005, n = 4). Both protein and mRNA expression of eNOS in mitral valves and in isolated valvular endothelial cells suggest that the NO release is mainly associated with the mitral valve endothelium. It is concluded that direct NO release from porcine mitral valves coincides with eNOS expression. This study documents useful techniques for investigations into the role of local NO release in mitral valve diseases.
Collapse
Affiliation(s)
- S G Moesgaard
- Department of Basic Animal and Veterinary Sciences, The Royal Vetinary and Agricultural University, Fredriksberg, Denmark.
| | | | | | | | | | | | | |
Collapse
|
25
|
Sivieri DO, Bispo-da-Silva LB, Oliveira EB, Resende AC, Salgado MCO. Potentiation of bradykinin effect by angiotensin-converting enzyme inhibition does not correlate with angiotensin-converting enzyme activity in the rat mesenteric arteries. Hypertension 2007; 50:110-5. [PMID: 17470724 DOI: 10.1161/hypertensionaha.106.085761] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin-converting enzyme (kininase II [ACE]) inhibitors are capable of potentiating bradykinin (BK) effects by enhancing the actions of bradykinin on B(2) receptors independent of blocking its inactivation. To investigate further the importance of ACE kininase activity on BK-induced vasodilation, we investigated the effect of inhibiting ACE, as well as other kininases, on both BK metabolism and vasodilator effect in preparations that exhibit increased ACE activity. Mesenteric arterial beds obtained from 1-kidney, 1-clip hypertensive rats presented augmented ACE and angiotensin I converting activities compared with normotensive rats. The isolated and perfused mesenteric beds were exposed to BK for 15 minutes in the absence or in the presence of kininase inhibitors; then, the perfusate was collected for analysis of the products of BK metabolism by high-performance liquid chromatography. BK was metabolized to the fragments BK(1-8), BK(1-7), and BK(1-5), and the recovery of intact BK was reduced by 47% in the hypertensive group. Recovery of BK was increased in both groups in the presence of a kininase I inhibitor and in the hypertensive group by neutral endopeptidase 24.11 inhibitor; however, ACE inhibition did not affect BK metabolism in both groups. In contrast, only the ACE inhibitor potentiated the vasodilator effect of BK in a mesenteric bed preconstricted with phenylephrine; the increase in BK effect, nevertheless, was not greater in arteries from hypertensive rats that presented an increased ACE activity when compared with those in the normotensive group. These data demonstrated that ACE inhibitor-induced potentiation of BK vasodilator effects is not related to their actions on BK degradation.
Collapse
Affiliation(s)
- Disney O Sivieri
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto-USP, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
26
|
Stankevičius E, Lopez-Valverde V, Rivera L, Hughes AD, Mulvany MJ, Simonsen U. Combination of Ca2+ -activated K+ channel blockers inhibits acetylcholine-evoked nitric oxide release in rat superior mesenteric artery. Br J Pharmacol 2006; 149:560-72. [PMID: 16967048 PMCID: PMC2014669 DOI: 10.1038/sj.bjp.0706886] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE The present study investigated whether calcium-activated K+ channels are involved in acetylcholine-evoked nitric oxide (NO) release and relaxation. EXPERIMENTAL APPROACH Simultaneous measurements of NO concentration and relaxation were performed in rat superior mesenteric artery and endothelial cell membrane potential and intracellular calcium ([Ca2+]i) were measured. KEY RESULTS A combination of apamin plus charybotoxin, which are, respectively, blockers of small-conductance and of intermediate- and large-conductance Ca2+ -activated K channels abolished acetylcholine (10 microM)-evoked hyperpolarization of endothelial cell membrane potential. Acetylcholine-evoked NO release was reduced by 68% in high K+ (80 mM) and by 85% in the presence of apamin plus charybdotoxin. In noradrenaline-contracted arteries, asymmetric dimethylarginine (ADMA), an inhibitor of NO synthase inhibited acetylcholine-evoked NO release and relaxation. However, only further addition of oxyhaemoglobin or apamin plus charybdotoxin eliminated the residual acetylcholine-evoked NO release and relaxation. Removal of extracellular calcium or an inhibitor of calcium influx channels, SKF96365, abolished acetylcholine-evoked increase in NO concentration and [Ca2+]i. Cyclopiazonic acid (CPA, 30 microM), an inhibitor of sarcoplasmic Ca2+ -ATPase, caused a sustained NO release in the presence, but only a transient increase in the absence, of extracellular calcium. Incubation with apamin and charybdotoxin did not change acetylcholine or CPA-induced increases in [Ca2+]i, but inhibited the sustained NO release induced by CPA. CONCLUSIONS AND IMPLICATIONS Acetylcholine increases endothelial cell [Ca2+]i by release of stored calcium and calcium influx resulting in activation of apamin and charybdotoxin-sensitive K channels, hyperpolarization and release of NO in the rat superior mesenteric artery.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Apamin/pharmacology
- Arginine/analogs & derivatives
- Arginine/pharmacology
- Barium Compounds/pharmacology
- Benzimidazoles/pharmacology
- Calcium/metabolism
- Charybdotoxin/pharmacology
- Chlorides/pharmacology
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiology
- Imidazoles/pharmacology
- In Vitro Techniques
- Indoles/pharmacology
- Indomethacin/pharmacology
- Male
- Mesenteric Artery, Superior/drug effects
- Mesenteric Artery, Superior/metabolism
- Mesenteric Artery, Superior/physiology
- Nitric Oxide/metabolism
- Oxyhemoglobins/pharmacology
- Penicillamine/analogs & derivatives
- Penicillamine/pharmacology
- Potassium Channels, Calcium-Activated/antagonists & inhibitors
- Potassium Channels, Calcium-Activated/physiology
- Rats
- Rats, Wistar
- Vasodilation/drug effects
- Vasodilation/physiology
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- E Stankevičius
- Department of Pharmacology, Faculty of Health Sciences, University of Aarhus Aarhus C, Denmark
- Department of Physiology, Kaunas University of Medicine Kaunas, Lithuania
| | - V Lopez-Valverde
- Department of Pharmacology, Faculty of Health Sciences, University of Aarhus Aarhus C, Denmark
| | - L Rivera
- Departamento de Fisiología, Facultad de Farmacía, Universidad Complutense Madrid, Spain
| | - A D Hughes
- Department of Clinical Pharmacology, Imperial College London, UK
| | - M J Mulvany
- Department of Pharmacology, Faculty of Health Sciences, University of Aarhus Aarhus C, Denmark
| | - Ulf Simonsen
- Department of Pharmacology, Faculty of Health Sciences, University of Aarhus Aarhus C, Denmark
- Author for correspondence:
| |
Collapse
|
27
|
Thim T, Bentzon JF, Kristiansen SB, Simonsen U, Andersen HL, Wassermann K, Falk E. Size of myocardial infarction induced by ischaemia/reperfusion is unaltered in rats with metabolic syndrome. Clin Sci (Lond) 2006; 110:665-71. [PMID: 16448385 DOI: 10.1042/cs20050326] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Obesity is associated with metabolic syndrome and increased incidence of and mortality from myocardial infarction. The aim of the present study was to develop an animal model with metabolic syndrome and examine how that influences size of myocardial infarcts induced by occlusion and reperfusion of the left anterior descending coronary artery. Sprague–Dawley rats (n=105) were fed either LF (low-fat) or MHF (moderately high-fat) diets for 13 weeks before coronary occlusion for 45 min, followed by reperfusion for 60 min. Compared with LF-fed and lean MHF-fed rats, obese MHF-fed rats developed metabolic disturbances similar to those seen in the metabolic syndrome, including being overweight by 24% (compared with lean MHF-fed rats), having 74% more visceral fat (compared with LF-fed rats), 15% higher blood pressure (compared with LF-fed rats), 116% higher plasma insulin (compared with lean MHF-fed rats), 10% higher fasting plasma glucose (compared with LF-fed rats), 35% higher non-fasting plasma glucose (compared with lean MHF-fed rats), 36% higher plasma leptin (compared with lean MHF-fed rats) and a tendency to lower plasma adiponectin and higher plasma non-esterified fatty acids. Infarct size was similar in the three groups of rats (36±14, 42±18 and 41±14% in obese MHF-fed, lean MHF-fed and LF-fed rats respectively). In conclusion, rats fed a MHF diet developed metabolic syndrome, but this did not influence myocardial infarct size.
Collapse
Affiliation(s)
- Troels Thim
- Department of Cardiology and Institute of Clinical Medicine, Aarhus University Hospital (Skejby), Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
28
|
Martínez AC, Stankevicius E, Jakobsen P, Simonsen U. Blunted non-nitric oxide vasodilatory neurotransmission in penile arteries from renal hypertensive rats. Vascul Pharmacol 2006; 44:354-62. [PMID: 16574496 DOI: 10.1016/j.vph.2006.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 01/31/2006] [Indexed: 11/16/2022]
Abstract
The present study was designed to explore whether there are any effects on neurogenic responses in penile small arteries during the development of hypertension in a one-kidney, one-clip (1K1C) model, a non-renin-dependent model of renovascular hypertension. Five weeks after surgery, male Sprague-Dawley rats were given vehicle, bendroflumethiazide (7.5 mg/kg/day), or L-arginine (2 g/kg/day) in their drinking water for five weeks. Experiments were performed on penile small artery rings (150-200 microm) mounted on microvascular myographs for electrical field stimulation (EFS), and erectile tissue was processed for immunohistochemistry. Maximal neurogenic contractions were unmodified in penile preparations. Relaxations induced by EFS were reduced in the presence of ADMA. In 1K1C rats, neurogenic vasorelaxation mediated by nitric oxide (NO) was unaltered, while relaxation resistant to NO synthase inhibition was blunted. L-arginine and bendroflumethiazide lowered blood pressure in 1K1C rats, but vasodilation was still blunted in the penile arteries. Immunoreactivity for factor VIII and neuronal NO synthase was unaltered in penile arteries from 1K1C animals. Endothelium-dependent vasorelaxation evoked by acetylcholine was also blunted in preparations from 1K1C rats, while exogenous NO relaxation was unaffected. Plasma concentrations and urinary excretion of ADMA did not differ among the experimental animals. Our findings indicate that the reduced release of a non-NO vasodilatory neurotransmitter accounts for the impaired neurogenic vasodilation of the penile arteries. Although ADMA inhibits penile vasorelaxation, it is unlikely to affect erectile function in 1K1C rats.
Collapse
|
29
|
Wadsworth R, Stankevicius E, Simonsen U. Physiologically relevant measurements of nitric oxide in cardiovascular research using electrochemical microsensors. J Vasc Res 2005; 43:70-85. [PMID: 16276114 DOI: 10.1159/000089547] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Accepted: 09/23/2005] [Indexed: 01/04/2023] Open
Abstract
Nitric oxide (NO) plays an important role in the regulation of blood flow. Pharmacological tools and a series of other techniques have been developed for studying the NO/L-arginine pathway, but it has proved difficult to make a quantitative link between effect and tissue NO concentration. NO microsensors have been applied with success for the measurement of NO in suspensions of mitochondria and cells, such as platelets and leukocytes, and in cell cultures, which together with other interventions or measurements are particularly useful for the examination of cell signalling related to the NO/L-arginine pathway. In isolated vascular segments, studies using the NO microsensor have defined the relationship between NO concentration and relaxation and revealed residual NO release in the presence of NO synthase inhibitors. Moreover, simultaneous measurements of NO concentration and vasorelaxation in isometric preparations have shown that agonist-induced relaxation is L-arginine dependent and NO release is reduced in hypertension. By placing NO microsensors in catheters, it is possible to measure NO in the living animal and man. This approach has been applied for the measurements of NO concentration in relation to increases in flow, erection, in conditions of hypoxia, and in endotoxemia. However, further methodological development of NO microsensors is necessary to avoid the influence of changes in temperature, pH and oxygen on the measurements.
Collapse
Affiliation(s)
- Roger Wadsworth
- Department of Physiology and Pharmacology, University of Strathclyde, Glasgow, Scotland, UK
| | | | | |
Collapse
|
30
|
Symons JD, Rutledge JC, Simonsen U, Pattathu RA. Vascular dysfunction produced by hyperhomocysteinemia is more severe in the presence of low folate. Am J Physiol Heart Circ Physiol 2005; 290:H181-91. [PMID: 16143648 DOI: 10.1152/ajpheart.00765.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Earlier we reported that dietary folate depletion causes hyperhomocysteinemia (HHcy) and arterial dysfunction in rats (Symons JD, Mullick AE, Ensunsa JL, Ma AA, and Rutledge JC. Arterioscler Thromb Vasc Biol 22: 772-780, 2002). Both HHcy and low folate (LF) are risk factors for cardiovascular disease. Therefore, the dysfunction we observed could have resulted from HHcy, LF, and/or their combination (HHcy + LF). We tested the hypothesis that HHcy-induced vascular dysfunction is more severe in the presence of LF. Four groups of rats consumed diets for approximately 10 wk that produced plasma homocysteine (microM) and liver folate (microg folate/g liver) concentrations, respectively, of 7 +/- 1 and 15 +/- 1 (Control; Con; n = 16), 17 +/- 2 and 15 +/- 2 (HHcy; n = 17), 10 +/- 1 and 8 +/- 1 (LF; n = 14), and 21 +/- 2 and 8 +/- 1 (HHcy + LF; n = 18). We observed that maximal ACh-evoked vasorelaxation was greatest in aortas and mesenteric arteries from Con rats vs. all groups. While the extent of dysfunction was similar between LF and HHcy animals, it was less severe compared with arteries from HHcy + LF rats. Maximal ACh-evoked vasorelaxation in coronary arteries was not different between Con and LF rats, but both were greater than HHcy + LF animals. In segments of aortas, 1) ACh-evoked vasorelaxation was similar among groups after incubation with the nonenzymatic intracellular O2(-) scavenger Tiron, 2) vascular O2(-) estimated using dihydroethidium staining was greatest in HHcy + LF vs. all groups, and 3) tension development in response to nitric oxide (NO) synthase inhibition was greatest in Con vs. all other groups. We conclude that HHcy + LF evokes greater dysfunction than either HHcy alone (aortas, mesentery) or LF alone (aortas, mesentery, coronary), likely by producing more O2(-) within the vasculature and thereby reducing NO bioavailability.
Collapse
Affiliation(s)
- J David Symons
- College of Health, Univ. of Utah, Salt Lake City, UT, USA.
| | | | | | | |
Collapse
|
31
|
Bonaventura D, Oliveira FS, da Silva RS, Bendhack LM. DECREASED VASODILATION INDUCED BY A NEW NITRIC OXIDE DONOR IN TWO KIDNEY, ONE CLIP HYPERTENSIVE RATS IS DUE TO IMPAIRED K+ CHANNEL ACTIVATION. Clin Exp Pharmacol Physiol 2005; 32:478-81. [PMID: 15854162 DOI: 10.1111/j.1440-1681.2005.04215.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. We studied the effect of the new compound trans-[RuCl([15]aneN(4))NO](2+) (15-ane) in denuded aortic rings of two kidney (2K) normotensive and two kidney, one clip (2K-1C) hypertensive rats. 2. The compound 15-ane releases nitric oxide (NO) when reduced by a catecholamine (noradrenaline). 3. Oxyhemoglobin (HbO(2)), an NO scavenger, completely abolished the effect of 15-ane in both 2K and 2K-1C rats, indicating that the relaxation is really due to NO release. 4. We tested the hypothesis that an impairment of K(+) channels plays an important role in the vasodilation induced by 15-ane. 5. The selective inhibitor of soluble guanylyl-cyclase, namely 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ; 1 micromol/L) reduced the relaxation induced by 15-ane. In 2K-1C rat aortic rings, ODQ reduced the maximum effect (E(max)) of 15-ane, whereas in 2K rat aortic rings ODQ reduced E(max) and pD(2) values to 15-ane. 6. The selective K(+) channel blockers glibenclamide (blocks K(ATP); 3 micromol/L), 4-aminopyridine (blocks K(V); 1 mmol/L) and the small conductance K(Ca) channel blocker apamin (1 micromol/L) reduced E(max) and pD(2) values for 15-ane-induced relaxation responses of aortas from 2K rats. However, iberiotoxin, a blocker of large conductance K(Ca) channels, reduced only the E(max) to 15-ane. None of these K(+) channel blockers had any effect on the relaxation induced by 15-ane of aortas from 2K-1C rats. 7. These data indicate that an impaired functional activity of K(+) channels contributes to the deficient relaxation induced by the NO donor 15-ane in renal hypertensive 2K-1C rat aortas.
Collapse
Affiliation(s)
- Daniella Bonaventura
- Laboratório de Farmacologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | |
Collapse
|
32
|
Vega E, Gómez-Villalobos MDJ, Flores G. Alteration in dendritic morphology of pyramidal neurons from the prefrontal cortex of rats with renovascular hypertension. Brain Res 2004; 1021:112-8. [PMID: 15328038 DOI: 10.1016/j.brainres.2004.06.042] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2004] [Indexed: 10/26/2022]
Abstract
We have studied, in the rat, the dendritic morphological changes of the pyramidal neurons of the medial part of the prefrontal cortex induced by the chronic effect of high blood pressure. Renovascular hypertension was induced using a silver clip on the renal artery by surgery. The morphology of the pyramidal neurons from the medial part of the prefrontal cortex was investigated in these animals. The blood pressure was measured to confirm the increase in the arterial blood pressure. After 16 weeks of increase in the arterial blood pressure, the animals were sacrificed by overdoses of sodium pentobarbital and perfused intracardially with a 0.9% saline solution. The brains were removed, processed by the Golgi-Cox stain method and analyzed by the Sholl method. The dendritic morphology clearly showed that the hypertensive animals had an increase (32%) in the dendritic length of the pyramidal cells with a decrease (50%) in the density of dendritic spines when compared with sham animals. The branch-order analysis showed that the animals with hypertension exhibit more dendritic arborization at the level of the first to fourth branch order. This result suggests that renovascular hypertension may in part affect the dendritic morphology in this limbic structure, which may implicate cognitive impairment in hypertensive patients.
Collapse
Affiliation(s)
- Elenia Vega
- Escuela de Biología, Universidad Autónoma de Puebla, Puebla, México
| | | | | |
Collapse
|
33
|
Thorsgaard M, Lopez V, Buus NH, Simonsen U. Different modulation by Ca2+-activated K+ channel blockers and herbimycin of acetylcholine- and flow-evoked vasodilatation in rat mesenteric small arteries. Br J Pharmacol 2003; 138:1562-70. [PMID: 12721112 PMCID: PMC1573811 DOI: 10.1038/sj.bjp.0705214] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The present study addressed whether endothelium-dependent vasodilatation evoked by acetylcholine and flow are mediated by the same mechanisms in isolated rat mesenteric small arteries, suspended in a pressure myograph for the measurement of internal diameter. 2. In pressurized arterial segments contracted with U46619 in the presence of indomethacin, shear stress generated by the flow evoked relaxation. Thus, in endothelium-intact segments low (5.1+/-0.6 dyn cm(-2)) and high (19+/-2 dyn cm(-2)) shear stress evoked vasodilatations that were reduced by, respectively, 68+/-11 and 68+/-8% (P<0.05, n=7) by endothelial cell removal. Acetylcholine (0.01-1 microM) evoked concentration-dependent vasodilatation that was abolished by endothelial cell removal. 3. Incubation with indomethacin alone did not change acetylcholine and shear stress-evoked vasodilatation, while the combination of indomethacin with the nitric oxide (NO) synthase inhibitor, N(G),N(G)-asymmetric dimethyl-L-arginine (ADMA 1 mM), reduced low and high shear stress-evoked vasodilatation with, respectively, 52+/-15 and 58+/-10% (P<0.05, n=9), but it did not change acetylcholine-evoked vasodilatation. 4. Inhibition of Ca(2+)-activated K(+) channels with a combination of apamin (0.5 microM) and charybdotoxin (ChTX) (0.1 microM) did not change shear stress- and acetylcholine-evoked vasodilatation. In the presence of indomethacin and ADMA, the combination of apamin (0.5 microM) and ChTx (0.1 microM) increased contraction induced by U46619, but these blockers did not change the vasodilatation evoked by shear stress. In contrast, acetylcholine-evoked vasodilatation was abolished by the combination of apamin and charybdotoxin. 5. In the presence of indomethacin, the tyrosine kinase inhibitor, herbimycin A (1 microM), inhibited low and high shear stress-evoked vasodilatation with, respectively, 32+/-12 and 68+/-14% (P<0.05, n=8), but it did not change vasodilatation induced by acetylcholine. In the presence of indomethacin and ADMA, herbimycin A neither changed shear stress nor acetylcholine-evoked vasodilatation. 6. The present study suggests that Ca(2+)-activated K(+) channels sensitive for the combination of apamin and ChTx are involved in acetylcholine-evoked, mainly non-NO nonprostanoid factor-mediated, vasodilatation, while an Src tyrosine kinase plays a role for flow-evoked NO-mediated vasodilatation in rat mesenteric small arteries.
Collapse
Affiliation(s)
- Michael Thorsgaard
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Vanesa Lopez
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Niels H Buus
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
| | - Ulf Simonsen
- Department of Pharmacology, University of Aarhus, 8000 Aarhus C, Denmark
- Author for correspondence:
| |
Collapse
|
34
|
|