1
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
2
|
Zhang S, Liu H, Fang Q, He H, Lu X, Wang Y, Fan X. Shexiang Tongxin Dropping Pill Protects Against Chronic Heart Failure in Mice via Inhibiting the ERK/MAPK and TGF-β Signaling Pathways. Front Pharmacol 2021; 12:796354. [PMID: 34925046 PMCID: PMC8682969 DOI: 10.3389/fphar.2021.796354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Chronic heart failure (CHF) is a major public health problem with high mortality and morbidity worldwide. Shexiang Tongxin Dropping Pill (STDP) is a widely used traditional Chinese medicine preparation for coronary heart disease and growing evidence proves that STDP exerts beneficial effects on CHF in the clinic. However, the molecular mechanism of the therapeutic effects of STDP on CHF remains largely unknown. Objective: This study aimed to elucidate the mechanism of action of STDP against CHF by integrating network pharmacology analysis and whole-transcriptome sequencing. Methods: First, the mouse model of CHF was established by the transverse aortic constriction (TAC) surgery, and the efficacy of STDP against CHF was evaluated by assessing the alterations in cardiac function, myocardial fibrosis, and cardiomyocyte hypertrophy with echocardiography, Masson’s trichrome staining, and wheat germ agglutinin staining. Next, a CHF disease network was constructed by integrating cardiovascular disease-related genes and the transcriptome sequencing data, which was used to explore the underlying mechanism of action of STDP. Then, the key targets involved in the effects of STDP on CHF were determined by network analysis algorithms, and pathway enrichment analysis was performed to these key genes. Finally, important targets in critical pathway were verified in vivo. Results: STDP administration obviously improved cardiac function, relieved cardiomyocyte hypertrophy, and ameliorated myocardial fibrosis in CHF mice. Moreover, STDP significantly reversed the imbalanced genes that belong to the disease network of CHF in mice with TAC, and the number of genes with the reverse effect was 395. Pathway analysis of the crucial genes with recovery efficiency revealed that pathways related to fibrosis and energy metabolism were highly enriched, while TGF-β pathway and ERK/MAPK pathway were predicted to be significantly affected. Consistently, validation experiments confirmed that inhibiting ERK/MAPK and TGF-β signaling pathways via reduction of the phosphorylation level of Smad3 and ERK1/2 is the important mechanism of STDP against CHF. Conclusion: Our data demonstrated that STDP can recover the imbalanced CHF network disturbed by the modeling of TAC through the multi-target and multi-pathway manner in mice, and the mechanisms are mainly related to inhibition of ERK/MAPK and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Shuying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hanbing Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qianqian Fang
- Inner Mongolia Conba Pharmaceutical Co., Ltd., Hohhot, China
| | - Houhong He
- Zhejiang Conba Pharmaceutical Co., Ltd., Hangzhou, China
| | - Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohui Fan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| |
Collapse
|
3
|
Baliou S, Adamaki M, Ioannou P, Pappa A, Panayiotidis MI, Christodoulou I, Spandidos DA, Kyriakopoulos AM, Zoumpourlis V. Ameliorative effect of taurine against diabetes and renal-associated disorders (Review). MEDICINE INTERNATIONAL 2021; 1:3. [PMID: 36699147 PMCID: PMC9855276 DOI: 10.3892/mi.2021.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/25/2021] [Indexed: 01/28/2023]
Abstract
To develop novel therapeutic methods for both diabetic and renal disorders, scientists had initially focused on elucidating the molecular mechanisms of taurine in established cell lines and mouse models. Although a large amount of data have been revealed, taurine has been confirmed to be the next step of novel promising therapeutic interventions against diabetic disorders. Taurine appears to ameliorate diabetes 1-related complications in various organs through its antioxidant, anti-inflammatory and anti-hormonal actions. In type 2 diabetes, taurine has been positively implicated in glucose homeostasis, exerting potent hypoglycemic, anti-obesity, hypotensive and hypolipidemic effects. Of particular interest is that taurine provides protection against renal dysfunction, including hypertension and proteinuria, specific glomerular and tubular disorders, acute and chronic renal conditions, and diabetic nephropathy. The ameliorative effects of taurine against renal disorders are based on its osmoregulatory properties, its association with signaling pathways and its association with the renin-angiotensin-aldosterone system (RAAS). Further clinical studies are required to ensure the importance of research findings.
Collapse
Affiliation(s)
- Stella Baliou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Adamaki
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Mihalis I. Panayiotidis
- Department of Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Ioannis Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | | | - Vassilis Zoumpourlis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
4
|
Brancaccio M, Mennitti C, Cesaro A, Fimiani F, Moscarella E, Caiazza M, Gragnano F, Ranieri A, D’Alicandro G, Tinto N, Mazzaccara C, Lombardo B, Pero R, Limongelli G, Frisso G, Calabrò P, Scudiero O. Dietary Thiols: A Potential Supporting Strategy against Oxidative Stress in Heart Failure and Muscular Damage during Sports Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9424. [PMID: 33339141 PMCID: PMC7765667 DOI: 10.3390/ijerph17249424] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Moderate exercise combined with proper nutrition are considered protective factors against cardiovascular disease and musculoskeletal disorders. However, physical activity is known not only to have positive effects. In fact, the achievement of a good performance requires a very high oxygen consumption, which leads to the formation of oxygen free radicals, responsible for premature cell aging and diseases such as heart failure and muscle injury. In this scenario, a primary role is played by antioxidants, in particular by natural antioxidants that can be taken through the diet. Natural antioxidants are molecules capable of counteracting oxygen free radicals without causing cellular cytotoxicity. In recent years, therefore, research has conducted numerous studies on the identification of natural micronutrients, in order to prevent or mitigate oxidative stress induced by physical activity by helping to support conventional drug therapies against heart failure and muscle damage. The aim of this review is to have an overview of how controlled physical activity and a diet rich in antioxidants can represent a "natural cure" to prevent imbalances caused by free oxygen radicals in diseases such as heart failure and muscle damage. In particular, we will focus on sulfur-containing compounds that have the ability to protect the body from oxidative stress. We will mainly focus on six natural antioxidants: glutathione, taurine, lipoic acid, sulforaphane, garlic and methylsulfonylmethane.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Fabio Fimiani
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Elisabetta Moscarella
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | | | - Giovanni D’Alicandro
- Department of Neuroscience and Rehabilitation, Center of Sports Medicine and Disability, AORN, Santobono-Pausillipon, 80122 Naples, Italy;
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| |
Collapse
|
5
|
The effects of taurine supplementation on obesity, blood pressure and lipid profile: A meta-analysis of randomized controlled trials. Eur J Pharmacol 2020; 885:173533. [DOI: 10.1016/j.ejphar.2020.173533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
|
6
|
Qaradakhi T, Gadanec LK, McSweeney KR, Abraham JR, Apostolopoulos V, Zulli A. The Anti-Inflammatory Effect of Taurine on Cardiovascular Disease. Nutrients 2020; 12:E2847. [PMID: 32957558 PMCID: PMC7551180 DOI: 10.3390/nu12092847] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/02/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
Taurine is a non-protein amino acid that is expressed in the majority of animal tissues. With its unique sulfonic acid makeup, taurine influences cellular functions, including osmoregulation, antioxidation, ion movement modulation, and conjugation of bile acids. Taurine exerts anti-inflammatory effects that improve diabetes and has shown benefits to the cardiovascular system, possibly by inhibition of the renin angiotensin system. The beneficial effects of taurine are reviewed.
Collapse
Affiliation(s)
- Tawar Qaradakhi
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia; (L.K.G.); (K.R.M.); (J.R.A.); (V.A.); (A.Z.)
| | | | | | | | | | | |
Collapse
|
7
|
Prideaux M, Kitase Y, Kimble M, O'Connell TM, Bonewald LF. Taurine, an osteocyte metabolite, protects against oxidative stress-induced cell death and decreases inhibitors of the Wnt/β-catenin signaling pathway. Bone 2020; 137:115374. [PMID: 32330695 PMCID: PMC7369146 DOI: 10.1016/j.bone.2020.115374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 12/17/2022]
Abstract
Taurine has been shown to have positive effects on bone mass, which are thought to be due in part to its cytoprotective effects on osteoblasts and here we show that taurine also protects osteocytes against cell death due to reactive oxygen species. Using the IDG-SW3 cell line, the expression of the taurine uptake transporter Taut/Slc6a6 is increased during osteoblast to osteocyte differentiation. Taurine had no effect on genes associated with osteoblast to osteocyte differentiation such as Dmp1, Phex or osteocalcin, even at high doses, but a slight yet significant inhibition of alkaline phosphatase was observed at the highest dose (50 mM). No effect was seen on the osteoclast regulatory genes Rankl and Opg, however the wnt antagonist Sost/sclerostin was potently and dose-dependently downregulated in response to taurine supplementation. Taurine also significantly inhibited Dkk1 mRNA expression, but only at 50 mM. Interestingly, osteocytes were found to also be able to synthesize taurine intracellularly, potentially as a self-protective mechanism, but do not secrete the metabolite. A highly significant increase in the expression of cysteine dioxygenase (Cdo), a key enzyme necessary for the production of taurine, was observed with osteoblast to osteocyte differentiation along with a decrease in methionine, the precursor of taurine. For the first time, we describe the synthesis of taurine by osteocytes, potentially to preserve viability and to regulate bone formation through inhibition of sclerostin.
Collapse
Affiliation(s)
- M Prideaux
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, United States of America.
| | - Y Kitase
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, United States of America
| | - M Kimble
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - T M O'Connell
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Otolaryngology, Indiana University, Indianapolis, United States of America
| | - L F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, United States of America; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, United States of America; Department of Orthopedic Surgery, Indiana University, Indianapolis, United States of America
| |
Collapse
|
8
|
Bkaily G, Jazzar A, Normand A, Simon Y, Al-Khoury J, Jacques D. Taurine and cardiac disease: state of the art and perspectives. Can J Physiol Pharmacol 2020; 98:67-73. [DOI: 10.1139/cjpp-2019-0313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Taurine is a nonessential amino acid that has received much attention. Two organs, the heart and the brain, are known to produce their own taurine, but in very limited quantities. It is for this reason that supplementation with this amino acid is necessary. Today, taurine is present in almost all energy drinks. A very vast literature reported beneficial effects of taurine in hepatic dysfunction, gastrointestinal injury, kidney diseases, diabetes, and cardiovascular diseases. Most of its effects were attributed to its modulation of Ca2+homeostasis as well as to its antioxidant properties. In this review, we will focus on the current status of taurine modulation of the cardiovascular system and discuss future avenues for its use as a supplement therapy in a specific cardiovascular disease, namely hypertrophy, and heart failure.
Collapse
Affiliation(s)
- Ghassan Bkaily
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Ashley Jazzar
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Alexandre Normand
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Yanick Simon
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Johny Al-Khoury
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Danielle Jacques
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
9
|
Sun Q, Wang B, Li Y, Sun F, Li P, Xia W, Zhou X, Li Q, Wang X, Chen J, Zeng X, Zhao Z, He H, Liu D, Zhu Z. Taurine Supplementation Lowers Blood Pressure and Improves Vascular Function in Prehypertension: Randomized, Double-Blind, Placebo-Controlled Study. Hypertension 2016; 67:541-9. [PMID: 26781281 DOI: 10.1161/hypertensionaha.115.06624] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023]
Abstract
Taurine, the most abundant, semiessential, sulfur-containing amino acid, is well known to lower blood pressure (BP) in hypertensive animal models. However, no rigorous clinical trial has validated whether this beneficial effect of taurine occurs in human hypertension or prehypertension, a key stage in the development of hypertension. In this randomized, double-blind, placebo-controlled study, we assessed the effects of taurine intervention on BP and vascular function in prehypertension. We randomly assigned 120 eligible prehypertensive individuals to receive either taurine supplementation (1.6 g per day) or a placebo for 12 weeks. Taurine supplementation significantly decreased the clinic and 24-hour ambulatory BPs, especially in those with high-normal BP. Mean clinic systolic BP reduction for taurine/placebo was 7.2/2.6 mm Hg, and diastolic BP was 4.7/1.3 mm Hg. Mean ambulatory systolic BP reduction for taurine/placebo was 3.8/0.3 mm Hg, and diastolic BP was 3.5/0.6 mm Hg. In addition, taurine supplementation significantly improved endothelium-dependent and endothelium-independent vasodilation and increased plasma H2S and taurine concentrations. Furthermore, changes in BP were negatively correlated with both the plasma H2S and taurine levels in taurine-treated prehypertensive individuals. To further elucidate the hypotensive mechanism, experimental studies were performed both in vivo and in vitro. The results showed that taurine treatment upregulated the expression of hydrogen sulfide-synthesizing enzymes and reduced agonist-induced vascular reactivity through the inhibition of transient receptor potential channel subtype 3-mediated calcium influx in human and mouse mesenteric arteries. In conclusion, the antihypertensive effect of chronic taurine supplementation shows promise in the treatment of prehypertension through improvement of vascular function.
Collapse
Affiliation(s)
- Qianqian Sun
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Bin Wang
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Yingsha Li
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Fang Sun
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Peng Li
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Weijie Xia
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Xunmei Zhou
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Qiang Li
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Xiaojing Wang
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Jing Chen
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Xiangru Zeng
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Zhigang Zhao
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Hongbo He
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China.
| | - Zhiming Zhu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, Chongqing, China.
| |
Collapse
|
10
|
Chen W, Guo J, Zhang Y, Zhang J. The beneficial effects of taurine in preventing metabolic syndrome. Food Funct 2016; 7:1849-63. [DOI: 10.1039/c5fo01295c] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A review of the data fromin vitro, animal and limited human studies of the beneficial effects of taurine on obesity, dyslipidaemia, diabetes mellitus and hypertension, as well as the possible metabolic and molecular mechanisms for the prevention of metabolic syndrome by taurine.
Collapse
Affiliation(s)
- Wen Chen
- Beijing Key Laboratory of Bioactive Substances and Functional Foods
- Beijing Union University
- Beijing 100191
- P.R. China
| | - Junxia Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Foods
- Beijing Union University
- Beijing 100191
- P.R. China
| | - Yanzhen Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods
- Beijing Union University
- Beijing 100191
- P.R. China
| | - Jing Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods
- Beijing Union University
- Beijing 100191
- P.R. China
| |
Collapse
|
11
|
The effect of taurine on chronic heart failure: actions of taurine against catecholamine and angiotensin II. Amino Acids 2013; 46:111-9. [DOI: 10.1007/s00726-013-1507-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 04/29/2013] [Indexed: 11/26/2022]
|
12
|
Abstract
Taurine is abundantly present in most mammalian tissues and plays a role in many important physiological functions. Atherosclerosis is the underlying mechanism of cardiovascular disease including myocardial infarctions, strokes and peripheral artery disease and remains a major cause of morbidity and mortality worldwide. Studies conducted in laboratory animal models using both genetic and dietary models of hyperlipidemia have demonstrated that taurine supplementation retards the initiation and progression of atherosclerosis. Epidemiological studies have also suggested that taurine exerts preventive effects on cardiovascular diseases. The present review focuses on the effects of taurine on the pathogenesis of atherosclerosis. In addition, the potential mechanisms by which taurine suppress the development of atherosclerosis will be discussed.
Collapse
Affiliation(s)
- Shigeru Murakami
- R&D Headquarters, Self Medication Business, Taisho Pharmaceutical Co Ltd, 24-1 Takada 3-chome, Toshima-ku, Tokyo, 170-8633, Japan,
| |
Collapse
|
13
|
Imae M, Asano T, Murakami S. Potential role of taurine in the prevention of diabetes and metabolic syndrome. Amino Acids 2012; 46:81-8. [DOI: 10.1007/s00726-012-1434-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
|
14
|
Effect of taurine on protein kinase C isoforms: role in taurine's actions? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 643:3-11. [PMID: 19239131 DOI: 10.1007/978-0-387-75681-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Taurine is generally found to be cytoprotective, diminishing damage resulting from ischemia and from initiators of heart failure. Also linked to similar events in the heart is the protein kinase C (PKC) family, which consists of at least 12 different isoforms. Therefore, we proposed that PKC might contribute to the beneficial effects of taurine on cell viability and growth. One of the PKC isoforms that has been advanced as an important mediator of cytoprotection during ischemia is PKCepsilon. In this study, we found that incubation of isolated cardiomyocytes with medium containing 20 mM taurine led to the translocation of PKCepsilon into the membrane, an event commonly associated with the cardioprotective actions of the PKC isozyme. In addition, taurine promoted the upregulation of PKCalpha PKCbeta2 and PKCzeta. Because the effects of taurine and angiotensin II on PKC distribution were largely additive, PKC does not appear to contribute to the antagonism between taurine and angiotensin II. However, the upregulation of PKC by taurine is consistent with a role of taurine in normal cell growth. In the taurine deficient heart, cardiomyocyte size is reduced, an effect that is consistent with the effect of taurine on PKCepsilon. In conclusion, the cytoprotective and pro-growth actions of taurine appears to be mediated in part by the activation of PKCepsilon.
Collapse
|
15
|
McCarty MF. Adjuvant strategies for prevention of glomerulosclerosis. Med Hypotheses 2006; 67:1277-96. [PMID: 16828231 DOI: 10.1016/j.mehy.2004.11.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 11/29/2004] [Indexed: 12/23/2022]
Abstract
The glomerulosclerosis which frequently complicates diabetes and severe hypertension is mediated primarily by increased mesangial production and activation of transforming growth factor-beta (TGF-beta), which acts on mesangial cells to boost their production of matrix proteins while suppressing extracellular proteolytic activity. Hyperglycemia and glomerular hypertension work in various complementary ways to stimulate superoxide production via NADPH oxidase in mesangial cells; the resulting oxidant stress results in the induction and activation of TFG-beta. Nitric oxide, generated by glomerular capillaries and by mesangial cells themselves, functions physiologically to oppose mesangial TGF-beta overproduction; however, NO bioactivity is compromised by oxidant stress. In addition to low-protein diets and drugs that suppress angiotensin II activity, a variety of other agents and measures may have potential for impeding the process of glomerulosclerosis. These include vitamin E, which blunts the rise in mesangial diacylglycerol levels induced by hyperglycemia; statins and (possibly) policosanol, which down-regulate NADPH oxidase activity by diminishing isoprenylation of Rac1; lipoic acid, whose potent antioxidant activity antagonizes the impact of oxidant stress on TGF-beta expression; pyridoxamine, which inhibits production of advanced glycation endproducts; arginine, high-dose folate, vitamin C, and salt restriction, which may support glomerular production of nitric oxide; and estrogen and soy isoflavones, which may induce nitric oxide synthase in glomerular capillaries while also interfering with TGF-beta signaling. Further research along these lines may enable the development of complex nutraceuticals which have important clinical utility for controlling and preventing glomerulosclerosis and renal failure. Most of these measures may likewise reduce risk for left ventricular hypertrophy in hypertensives, inasmuch as the signaling mechanisms which mediate this disorder appear similar to those involved in glomerulosclerosis.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, USA.
| |
Collapse
|
16
|
Lam NV, Chen W, Suruga K, Nishimura N, Goda T, Yokogoshi H. Enhancing effect of taurine on CYP7A1 mRNA expression in Hep G2 cells. Amino Acids 2005; 30:43-8. [PMID: 16151615 DOI: 10.1007/s00726-005-0244-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 06/30/2005] [Indexed: 12/30/2022]
Abstract
Taurine has been reported to enhance cholesterol 7alpha-hydroxylase (CYP7A1) mRNA expression in animal models. However, no in vitro studies of this effect have been reported. The Hep G2 human hepatoma cell line has been recognized as a good model for studying the regulation of human CYP7A1. This work characterizes the effects of taurine on CYP7A1 mRNA levels of Hep G2 cells in a dose- and time-dependent manner. In the dose-dependent experiment, Hep G2 cells were treated with 0, 2, 10 or 20 mM taurine in the presence or absence of cholesterol 0.2 mM for 48 h. In the time-dependent experiment, Hep G2 cells were treated with 0 or 20 mM taurine for 4, 24 and 48 h with and without cholesterol 0.2 mM. Our data revealed that taurine showed time- and dose-response effects on CYP7A1 mRNA levels in Hep G2 cells. However, glycine - a structural analogue of taurine - did not have an effect on CYP7A1 gene expression. These results show that, in agreement to previous studies on animal models, taurine induces the mRNA levels of CYP7A1 in Hep G2 cells, which could enhance cholesterol conversion into bile acids. Also, Hep G2 cell line may be an appropriate model to study the effects of taurine on human cholesterol metabolism.
Collapse
Affiliation(s)
- N V Lam
- Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences, and COE Program in the 21st Century, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Takatani T, Takahashi K, Jin C, Matsuda T, Cheng X, Ito T, Azuma J. Minoxidil Attenuates Ischemia-Induced Apoptosis in Cultured Neonatal Rat Cardiomyocytes. J Cardiovasc Pharmacol 2004; 43:789-94. [PMID: 15167272 DOI: 10.1097/00005344-200406000-00008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effects of minoxidil (a mitochondrial K+(ATP) channel opener) on ischemia-induced necrosis and apoptosis were examined using a cardiomyocyte model of simulated ischemia, since mitochondrial K+(ATP) channel openers have been suggested to be involved in the mechanisms of cardioprotective action against ischemia/reperfusion injury. In the absence of minoxidil, simulated ischemia led to cellular release of creatine phosphokinase (CPK), morphologic degeneration, and beating cessation within 24 to 72 hours. Based on the Hoechst 33258 staining pattern, a significant number of cells placed in sealed flasks underwent apoptosis. Myocytes treated with 5 microM of minoxidil failed to alter the degree of ischemia-induced CPK loss for 48 to 72 hours. However, minoxidil treatment prevented the loss of beating function in many of the ischemic cells, and attenuated the decline in intracellular ATP content after a 48-hour ischemic incubation. The number of nuclear fragmentation was significantly reduced in minoxidil-treated cells after a 72-hour ischemic insult compared with untreated ischemic cells. This effect was blocked by the mitochondrial K+(ATP) channel antagonist 5-HD. The data suggest that minoxidil renders the cell resistant to ischemia-induced necrosis and apoptosis. The beneficial effects of minoxidil appear to be related to the opening of mitochondrial K+(ATP) channels.
Collapse
Affiliation(s)
- Tomoka Takatani
- Department of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Imada K, Hosokawa Y, Terashima M, Mitani T, Tanigawa Y, Nakano K, Takenaga T, Kurachi M. Inhibitory mechanism of taurine on the platelet-derived growth factor BB-mediated proliferation in aortic vascular smooth muscle cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 526:5-15. [PMID: 12908578 DOI: 10.1007/978-1-4615-0077-3_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Keisuke Imada
- Pharmacological Evaluation Laboratory, Taisho Pharmaceutical, Co., Ltd., Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Takatani T, Takahashi K, Itoh T, Takahashi K, Hirata M, Yamamoto Y, Ohmoto M, Schaffer SW, Azuma J. Cellular characterization of taurine transporter in cultured cardiac myocytes and nonmyocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 526:25-31. [PMID: 12908580 DOI: 10.1007/978-1-4615-0077-3_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Tomoka Takatani
- Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565-0871 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Itoh T, Takahashi K, Yamauchi Y, Takahashi K, Ueyama S, Schaffer SW, Azuma J. Taurine transporter in cultured neonatal cardiomyocytes: a response to cardiac hypertrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 526:33-40. [PMID: 12908581 DOI: 10.1007/978-1-4615-0077-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Takashi Itoh
- Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Takahashi K, Ohyabu Y, Takahashi K, Solodushko V, Takatani T, Itoh T, Schaffer SW, Azuma J. Taurine renders the cell resistant to ischemia-induced injury in cultured neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 2003; 41:726-33. [PMID: 12717103 DOI: 10.1097/00005344-200305000-00009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Taurine is found in very high concentration in the mammalian heart. Because chronic myocardial taurine loss produces myocardial injury, the effects of taurine supplementation on ischemia-induced necrosis and apoptosis were examined using a cardiomyocyte model of simulated ischemia. Neonatal rat heart cells were cultured for 24-72 h in a sealed flask, a condition that leads to simulated ischemia characterized by a decrease in the pH and oxygen content of the medium and a catabolite accumulation. The consequences of altered medium taurine on cellular apoptosis and necrosis were then evaluated. Exposure of cardiomyocytes to medium containing high extracellular concentrations of taurine (20 mM) significantly elevated intracellular taurine levels, reduced p53 content, and enhanced cellular Bcl-2 content. In the absence of taurine treatment, simulated ischemia led to cellular release of creatine phosphokinase (CPK), morphologic degeneration, and beating cessation by 24-72 h. Based on DNA ladder analysis and the Hoechst 33258 staining pattern, a significant number of cells placed in sealed flasks underwent apoptosis. CPK was lost from some of the cells during simulated ischemia. In contrast to the untreated ischemic cells, the cells that were incubated in medium supplemented with taurine exhibited significantly less ischemia-induced necrosis and apoptosis. The data suggest that taurine renders the cell resistant to ischemia-induced necrosis and apoptosis. The beneficial effects of taurine may be related to the elevation in cellular Bcl-2 content.
Collapse
Affiliation(s)
- Kyoko Takahashi
- Department of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sundgren NC, Giraud GD, Stork PJS, Maylie JG, Thornburg KL. Angiotensin II stimulates hyperplasia but not hypertrophy in immature ovine cardiomyocytes. J Physiol 2003; 548:881-91. [PMID: 12626668 PMCID: PMC2342902 DOI: 10.1113/jphysiol.2003.038778] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rat and sheep cardiac myocytes become binucleate as they complete the 'terminal differentiation' process soon after birth and are not able to divide thereafter. Angiotensin II (Ang II) is known to stimulate hypertrophic changes in rodent cardiomyocytes under both in vivo and in vitro conditions via the AT1 receptor and intracellular extracellular regulated kinase (ERK) signalling cascade. We sought to develop culture methods for immature sheep cardiomyocytes in order to test the hypothesis that Ang II is a hypertrophic agent in the immature myocardium of the sheep. We isolated fetal sheep cardiomyocytes and cultured them for 96 h, added Ang II and phenylephrine (PE) for 48 h, and measured footprint area and proliferation (5-bromo-2'-deoxyuridine (BrdU) uptake) separately in mono- vs. binucleate myocytes. We found that neither Ang II nor PE changed the footprint area of mononucleated cells. PE stimulated an increase in footprint area of binucleate cells but Ang II did not. Ang II increased myocyte BrdU uptake compared to serum free conditions, but PE did not affect BrdU uptake. The MAP kinase kinase (MEK) inhibitor UO126 prevented BrdU uptake in Ang II-stimulated cells and prevented cell hypertrophy in PE-stimulated cells. This paper establishes culture methods for immature sheep cardiomyocytes and reports that: (1) Ang II is not a hypertrophic agent; (2) Ang II stimulates hyperplastic growth among mononucleate myocytes; (3) PE is a hypertrophic agent in binucleate myocytes; and (4) the ERK cascade is required for the proliferation effect of Ang II and the hypertrophic effect of PE.
Collapse
Affiliation(s)
- N C Sundgren
- Department of Physiology, Oregon Health and Science University, Portland, USA
| | | | | | | | | |
Collapse
|
23
|
Schaffer S, Solodushko V, Pastukh V, Ricci C, Azuma J. Possible cause of taurine-deficient cardiomyopathy: potentiation of angiotensin II action. J Cardiovasc Pharmacol 2003; 41:751-9. [PMID: 12717106 DOI: 10.1097/00005344-200305000-00012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Taurine, an amino acid that exhibits anti-angiotensin II and osmoregulatory activity, is found in very high concentration in the heart. When the intracellular content of taurine is dramatically reduced, the heart develops contractile defects and undergoes an eccentric form of hypertrophy. The development of myocyte hypertrophy has been largely attributed to angiotensin II, whose growth properties are antagonized by taurine. Overt heart failure is usually associated with myocyte death, including death due to angiotensin II-induced apoptosis. However, the effect of taurine deficiency on angiotensin II-induced apoptosis has not been examined. To investigate this effect, taurine-deficient cells, produced by incubating rat neonatal cardiomyocytes with medium containing the taurine transport inhibitor, beta-alanine, were exposed to angiotensin II. The peptide increased terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end-labeling (TUNEL) staining and caspase 9 activation more in the taurine-deficient than the normal cell. Angiotensin II also promoted the translocation of protein kinase C (PKC)epsilon and PKCdelta, the expression of Bax, and the activation of c-Jun N-terminal kinase (JNK), effects that were greater in the taurine-deficient cell. However, the data ruled out a role for extracellular signal-related kinase (ERK), Bad, and p38 mitogen-activated protein kinase in the beta-alanine-angiotensin II interaction. Because PKC and JNK affect the expression and phosphorylation state of certain Bcl-2 family members, they appear to contribute to the potentiation of angiotensin II-induced apoptosis by taurine deficiency.
Collapse
Affiliation(s)
- Stephen Schaffer
- University of South Alabama College of Medicine, Department of Pharmacology, Mobile, Alabama, USA.
| | | | | | | | | |
Collapse
|
24
|
Takahashi K, Azuma M, Yamada T, Ohyabu Y, Takahashi K, Schaffer SW, Azuma J. Taurine transporter in primary cultured neonatal rat heart cells: a comparison between cardiac myocytes and nonmyocytes. Biochem Pharmacol 2003; 65:1181-7. [PMID: 12663053 DOI: 10.1016/s0006-2952(03)00003-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, we examined the characteristics of the taurine transporter and the intracellular taurine content in cultured neonatal heart cells. Primary cultures of cardiac myocytes and cardiac fibroblasts (nonmyocytes) were prepared from 1-day-old Wistar rats. The parameters examined were: (a) intracellular taurine content by the HPLC method, (b) the expression levels of taurine transporter mRNA and protein using northern and western blot analysis, and (c) transporter activity determined by the uptake of 3H-labeled taurine. The taurine content of myocytes was significantly higher (3-fold) than that of nonmyocytes. Taurine transporter mRNA was strongly expressed in both myocytes and nonmyocytes, whereas the magnitude [normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene expression] of the transporter mRNA expressed in myocytes was lower than that in nonmyocytes. The expression level of transporter protein in myocytes was also lower than that of nonmyocytes. Uptake of radiolabeled taurine into monolayer cultures of heart cells was stimulated markedly by the presence of Na+ in the medium, whereas this uptake was almost abolished in the absence of Na+. The Na+/taurine stoichiometry was 2:1 for both myocytes and nonmyocytes. Kinetic analysis showed that a single saturable system was involved in taurine uptake into both cell types. In myocytes, the apparent K(m) and V(max) values for the transporter were 20.7+/-0.5 microM and 1.07+/-0.01 nmol/10(6)cells/30 min, respectively. Similarly, those of nonmyocytes were 20.3+/-0.7 microM and 0.42+/-0.01 nmol/10(6)cells/30 min. These findings indicated that both myocytes and nonmyocytes expressed an identical taurine transporter with a Michaelis-Menten constant of 20-21 microM and that a higher taurine content in myocytes may be associated with a higher V(max).
Collapse
Affiliation(s)
- Kyoko Takahashi
- Department of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Takahashi K, Ouyang X, Komatsu K, Nakamura N, Hattori M, Baba A, Azuma J. Sodium tanshinone IIA sulfonate derived from Danshen (Salvia miltiorrhiza) attenuates hypertrophy induced by angiotensin II in cultured neonatal rat cardiac cells. Biochem Pharmacol 2002; 64:745-9. [PMID: 12167494 DOI: 10.1016/s0006-2952(02)01250-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sodium tanshinone IIA sulfonate (STS), a derivative of tanshinone IIA, is isolated from the root of Salvia miltiorrhiza known as "Danshen." Although injection of S. miltiorrhiza extract and STS is used widely and successfully in clinics in China for treating cardiovascular diseases, the exact mechanism for its therapeutic basis is poorly understood. The present study was undertaken to characterize the effect of STS on angiotensin II-induced hypertrophy on cultured myocytes and cardiac fibroblasts (nonmyocytes) prepared from neonatal rat hearts. Angiotensin II (1nM) increased protein synthesis and surface area in myocytes, and DNA synthesis and cell number in nonmyocytes, respectively. Exposure of the myocytes to STS (5-80 microM) for 24hr produced no cytotoxicity as evaluated by the 3-[4,5-dimethylthiazol-2-yl]-3,5-diphenylformazan (MTT) assay. Although STS (10 microM) alone showed no effect on the growth of cultured cardiac cells, it markedly suppressed angiotensin II-induced enlargement of cells and [3H]phenylalanine incorporation, proceeding from the induction of immediate early gene (c-jun) expression in myocytes. Furthermore, STS prevented the rise in [Ca(2+)](i) mediated by angiotensin II in myocytes. In contrast, STS (10 microM) was without effect on hyperplasia and c-jun expression induced by angiotensin II in nonmyocytes. The present in vitro findings support the interpretation that STS is a substance that may be beneficial in protecting the myocardium against hypertrophy.
Collapse
Affiliation(s)
- Kyoko Takahashi
- Department of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Schaffer S, Solodushko V, Azuma J. Taurine-deficient cardiomyopathy: role of phospholipids, calcium and osmotic stress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 483:57-69. [PMID: 11787642 DOI: 10.1007/0-306-46838-7_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- S Schaffer
- Department of Pharmacology, University of South Alabama, Mobile, USA
| | | | | |
Collapse
|
27
|
Takahashi K, Ohyabu Y, Schaffer SW, Azuma J. Taurine prevents ischemia damage in cultured neonatal rat cardiomyocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 483:109-16. [PMID: 11787587 DOI: 10.1007/0-306-46838-7_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- K Takahashi
- Dept. of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Japan
| | | | | | | |
Collapse
|
28
|
Imada K, Takenaga T, Otomo S, Hosokawa Y, Totani M. Taurine attenuates the induction of immediate-early gene expression by PDGF-BB. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 483:589-94. [PMID: 11787645 DOI: 10.1007/0-306-46838-7_63] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- K Imada
- Pharmacological Evaluation Laboratory, Taisho Pharmaceutical Co., Ltd., Ohmiya, Japan
| | | | | | | | | |
Collapse
|
29
|
Azuma M, Takahashi K, Fukuda T, Ohyabu Y, Yamamoto I, Kim S, Iwao H, Schaffer SW, Azuma J. Taurine attenuates hypertrophy induced by angiotensin II in cultured neonatal rat cardiac myocytes. Eur J Pharmacol 2000; 403:181-8. [PMID: 10973617 DOI: 10.1016/s0014-2999(00)00483-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of taurine on angiotensin II-induced changes in cell morphology and biochemistry of the cultured neonatal cardiomyocyte was examined. Angiotensin II (1-100 nM) alone caused a slow increase in the surface area of the myocyte accompanied by an induction of the expression of atrial natriuretic peptide (ANP) and an upregulation of transforming growth factor beta(1) gene (TGF-beta(1)). The signaling pathway of angiotensin II (1-100 nM) was found to proceed through protein kinase C and the rapid activation of mitogen-activated protein (MAP) kinases. Pretreatment of the myocyte with taurine (20 mM) in the absence of angiotensin II had no visible effect on cell size or growth rate. However, the cells that were pretreated with taurine (20 mM) for 24 h exhibited reduced responsiveness to angiotensin II (100 nM) relative to surface cell area enlargement and the upregulation of the late and growth factor genes(ANP, TGF-beta(1)). Angiotensin II-mediated activation of the MAP kinases (extracellular signal-regulated protein kinase 1/2: ERK1/2) was not blocked by taurine. Taurine reduced the phosphorylation of a 29-kDa protein, a reaction which was enhanced by angiotensin II and appears to involve protein kinase C step. The results indicate that taurine is an effective inhibitor of certain aspects of angiotensin II action.
Collapse
Affiliation(s)
- M Azuma
- Department of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka 565,-0871, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
By 1990, exercise had been proven to lower blood pressure, and subsequently the intensity of exercise recommended was lowered from moderate to mild (lactic threshold or 50% maximum oxygen uptake). Exercise is now recommended as a useful measure to lower blood pressure in many guidelines for the management of hypertension. The antihypertensive mechanism is multifactorial involving sympathicolytic as well as diuretic actions through activation of relevant metabolic pathways; that is, decrease in endogenous ouabain-like substance, increase in s-taurine and prostaglandin E and urinary dopamine and kallikrein excretion, etc. Other metabolic changes seem to operate simultaneously, and other risk factors, such as sugar and lipid metabolism and insulin resistance are improved. Prospective epidemiologic study has suggested that a physically active lifestyle will prevent cardiovascular complications.
Collapse
Affiliation(s)
- K Arakawa
- Department of Internal Medicine, Fukuoka University School of Medicine, Japan
| |
Collapse
|
31
|
Takahashi K, Azuma M, Huschenbett J, Michaelis ML, Azuma J. Effects of antisense oligonucleotides to the cardiac Na+/Ca2+ exchanger on calcium dynamics in cultured cardiac myocytes. Biochem Biophys Res Commun 1999; 260:117-21. [PMID: 10381353 DOI: 10.1006/bbrc.1999.0877] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to explore the role of the Na+/Ca2+ exchanger on spontaneous beating of cultured cardiac myocytes. Antisense oligonucleotides (AS) based on the sequence of the cardiac Na+/Ca2+ exchanger were used to decrease expression of this Ca2+ transporting protein in cardiac myocytes. An application of AS (10 microM) caused an increase in beating rate of myocytes within 6-24 h. After 24 h of exposure, AS increased the beating rate from an average rate of 77 beats/min in control and sense-treated myocytes to 103 beats/min. Moreover, myocytes treated for 24 h with 10 microM AS exhibited an increase in diastolic [Ca2+]i levels. The antisense treatment also led to a approximately 20% decrease in expression of Na+/Ca2+ exchanger proteins within 6-24 h. Changes in mRNA levels following AS treatment could not be detected within 3- to 24-h periods. The results of these studies suggest that the Na+/Ca2+ exchanger plays a potentiating role in spontaneous the beating process by regulating [Ca2+]i dynamics and that even a small reduction in the levels of the exchanger protein has marked effects on the handling of [Ca2+]i during the cardiac cycle.
Collapse
Affiliation(s)
- K Takahashi
- Department of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Suita, 565-0871, Japan
| | | | | | | | | |
Collapse
|